
University of Pisa
Department of Computer Science

“Just In Time” to understand
(An introduction to how JIT compilers work under the hood)

Presented by: Gabriele Pappalardo (a.a 2021/2022)

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

Why this topic?

I am really curious about computer works under the hood. My curiosity lead me to try
and find out how the JIT compilers function.

● How is the code compiled during the run-time?
● How is it possible to compile code into the memory and then execute it?
● Are JIT compilers horrible monsters?

I hope these questions will be answered during the presentation.

2

“Great code is efficient code. But before you can write truly efficient code, you must understand how
computer systems execute programs and how abstractions in programming languages map to the
machine's low-level hardware.” - Randall Hyde (Write Great Code, No Starch Press)

(Spoiler: maybe not :D)

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

Minimum Requirements

To fully understand the presentation, you will need a bit of knowledge about:

1. Computer Architecture.
2. Operating System.
3. C++ language.
4. JVM Instruction Set.
5. Interpreters.

3

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

Outline

1. Brief history of Just In Time compilation
2. What is a JIT compiler?
3. Where is it used?
4. How does it work? A look at HotSpot JVM
5. (“Tiny”) C++ implementation of a JIT compiler
6. Conclusions

4

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

Outline

1. Brief history of Just In Time compilation
2. What is a JIT compiler?
3. Where is it used?
4. How does it work? A look at HotSpot JVM
5. (“Tiny”) C++ implementation of a JIT compiler
6. Conclusions

5

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

Origins of JIT Compilers

● The first signs of JIT compilers date back to the 1960, from the LISP's creator
John McCarthy.

● Another ancestor of initial just-in-time compilers is the regular expression
compiler created by Ken Thompson in 1968, which converted regexes to IBM
7094 CPU native code.

● In the ‘70 and ‘80, the calculation power of computers was unlike today’s.
Whoever had an interpreted program and wanted to speed it up, a “mixed-code”
approach was the best idea.

● Mixed-code approach was good, however maintaining pieces of program, write in
native code and other pieces in interpreted code, was not an easy task.

6Section 1 | Brief history of Just In Time compilation

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

Origins of JIT Compilers (cont’d)

● From a mixed-code approach, developers moved to "throw-away"
compiling.

● Program pieces were compiled dynamically according to the necessities.
When the memory was about to run out, then the compiled code would be
thrown away.

● At the end of the ‘90, Java was born. Initially, the Java Virtual Machine was
really inefficient.

● Sun Microsystem developed a Just-in-time compiler to boost Java
performances.

7Section 1 | Brief history of Just In Time compilation

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

Outline

1. Brief history of Just In Time compilation
2. What is a JIT compiler?
3. Where is it used?
4. How does it work? A look at HotSpot JVM
5. (“Tiny”) C++ implementation of a JIT compiler
6. Conclusions

8

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

What is “Just in Time” compilation?

Just-in-Time compilation is a dynamic translation technique that compiles
running code during the execution of a program at runtime rather than before
execution.

JIT compilation is a merge between ahead-of-time compilation and
interpretation.

9Section 2 | What is a JIT compiler?

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

Benefits and Drawbacks of a JIT compiler

10Section 2 | What is a JIT compiler?

Just-in-TimeCompilation to Native Code

Advantages
1. Blazing fast and efficient
2. Developers can interact

directly with the underlay
hardware

Disadvantages
1. Poor portability due to

CPU architecture
2. Large program size

Interpretation

Advantages
1. Greater Portability
2. Small program size
3. Knows a lot of information

during run-time

Disadvantages
1. Really slow because of

interpreter
- Some JIT compilers need time to

startup.
+ JIT compilers know a lot of

information about the program
during run-time

As a combination of these two traditional approaches, the JIT compilation brings advantages and
drawbacks of both.

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

Outline

1. Brief history of Just In Time compilation
2. What is a JIT compiler?
3. Where is it used?
4. How does it work? A look at HotSpot JVM
5. (“Tiny”) C++ implementation of a JIT compiler
6. Conclusions

11

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

Where it is used?

● Most browsers today, use JIT
compilers to enhance performances of
web pages and applications. Browser
engines compile JavaScript code in
native one.

● Other than browsers, programs written
in Python, running on PyPy, “may”
also gain performance boost.

12Section 3 | Where is it used?

Apple’s SquirrelFish

Google’s V8

Mozilla’s SpiderMonkey

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

Where it is used? (cont’d)

● JIT compilation is used inside the
Linux Kernel for network packet
filtering (see eBPF).

● Even Android use JIT compilation
to run its applications!

● Furthermore, in the video games
emulation scene, JIT compilers are
used to enhance the performances
(basically, a console ISA is
translated to the CPU host ISA).

13Section 3 | Where is it used?

Dolphin Emulator

Android

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

They are used everywhere,
even in your pockets!

14Section 3 | Where is it used?

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

Outline

1. Brief history of Just In Time compilation
2. What is a JIT compiler?
3. Where is it used?
4. How does it work? A look at HotSpot JVM
5. (“Tiny”) C++ implementation of a JIT compiler
6. Conclusions

15

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

How a JIT compiler works

● In JIT compilation process, starting with the interpreter, some features of a
static compiler are built into the system.

● A JIT compiler will isolate some sections of the code at run-time which are
accessed more often.

● Then it will compiles them to native code, aggressively optimizing those
sections in the process.

16Section 4 | How does it work? A look at HotSpot JVM

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

HotSpot JVM

● HotSpot JVM is the default
interpreter of Java.

● The virtual machine is equipped with a
JIT compiler.

● HotSpot practice “trace-JIT”
compilation.

● Frequently used methods inside Java
programs will be compiled in native
code.

● The methods compiled in machine
code are called hot methods 🔥.

17Section 4 | How does it work? A look at HotSpot JVM

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

HotSpot JVM (cont’d)
HotSpot has two main JIT compilers that
are executed according to established
thresholds:

1. the Client compiler, or C1, has a low
threshold (≈ 1.500 method calls), this is
used to reduce startup time.

2. the Server compiler, or C2, has a
bigger threshold (≈ 10.000 method calls)
and it generates efficient optimized code
for critical methods.

18Section 4 | How does it work? A look at HotSpot JVM

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

HotSpot’s Tiered Compilation

● HotSpot JVM comes with a “tiered-compilation
mode”.

● At the startup, the JVM interprets the bytecode and
monitors it to get profiling information about the
execution path.

● Firstly C1, will be executed to compile the
bytecode into machine code to reach native
performance.

● After collecting other informations, C2 will
re-compe all the code optimizing it.

● Finally, during the execution the deoptimization
phase may happen.

19Section 4 | How does it work? A look at HotSpot JVM

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

JITWatch

20Section 4 | How does it work? A look at HotSpot JVM

It is possible to monitor the HotSpot JIT compilers. JITWatch is a tool for understanding
the behaviour of the Java HotSpot Just-In-Time (JIT) compilers during execution of a
Java program.

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

So, why don’t use an AOT compiler instead?

Well… That is a good question!

Java developers introduced an
experimental AOT compiler in JDK 9
(see JEP 295: Ahead-of-Time
Compilation)

21Section 4 | How does it work? A look at HotSpot JVM

But…

https://openjdk.java.net/jeps/295
https://openjdk.java.net/jeps/295

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

So, why don’t use an AOT compiler instead? (cont’d)

… since developers saw a little use of this
compiler, and, seeing as the amount of
work to maintain it was pretty huge*, they
decided to remove it! (see
https://openjdk.java.net/jeps/410)

(*) Just think all the CPU architectures out of here:
x86_64, ARM, MIPS, RISC-V, PowerPC (☠) and
so many others...

22Section 4 | How does it work? A look at HotSpot JVM

https://openjdk.java.net/jeps/410

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022) 23

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

Outline

1. Brief history of Just In Time compilation
2. What is a JIT compiler?
3. Where is it used?
4. How does it work? A look at HotSpot JVM
5. (“Tiny”) C++ implementation of a JIT compiler
6. Conclusions

24

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

Disclaimer!

The next slides will show C++ and Assembly code.

The code implements an interpreter which evaluates a small (a really small one)
subset of JVM instructions, specifically, the ones about integer operations. Of
course the code is only used for didactic purposes; real JIT compilers are much
more complex (and surely more efficient, more memory-safe) than this one,
so be aware for it!

All the JVM instructions can be found here:
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-6.html

25Section 5 | C++ implementation of a JIT compiler

https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-6.html

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

Under the hood: Code (1)

26Section 5 | C++ implementation of a JIT compiler

}
The code shown above is a Java
function used to compute the
square of a number. The compiled
JVM bytecode version can be
obtained using the javap utility.

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

Under the hood: Code (2)

27Section 5 | C++ implementation of a JIT compiler

} This is the Abstract Syntax Tree
representing the JVM bytecode. The
leafs refers to function parameters, while
the root node is a multiplicative
operation between x and x.

The JVMParser class transform the
bytecode into an Abstract Syntax
Tree (like the one shown below). This
code representation is useful for both
interpretation and compilation of this
example.

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

Under the hood: Compiler’s Core

28Section 5 | C++ implementation of a JIT compiler

Compiler’s core.
Here is where the
magic happens.

1

2

3

Next slides will explain the three
labelled blocks.

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

Under the hood: Compiler’s Core (1)

29Section 5 | C++ implementation of a JIT compiler

The first piece of the body asks to the
operating system to reserve 1KB of
memory inside the heap using mmap
syscall. In this area of memory we are
going to write our compiled function.

We cannot use the standard malloc
function because we have to set some
flags about the allocated memory.

These flags allow us to tell to the OS the
desired memory protections. Specifically,
we want that our memory can be
readable, writable (risky flag) and, the
most important one, executable.

Most of browser exploits are due to
how JIT compilers use this memory!
The attacker could write inside the
memory arbitrary code! For more
information see: JIT Spraying.

https://en.wikipedia.org/wiki/JIT_spraying

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

Under the hood: Compiler’s Core (2)

30Section 5 | C++ implementation of a JIT compiler

The second body piece writes the assembly
code into a vector of bytes (uin8_t).

The first and the latter parts are standard x86_64
instructions used to create a new stack frame for
the function’s execution.
(Since my computer uses an Intel i7, I wrote x86_64
instructions, on ARM/RISC-V processor the code will not
work).

The middle part, where the aux_compile
function is invoked, uses the AST showed before
to produce assembly instructions according to
the tree structure.

Finally, copy the compiled assembly instructions
contained inside the assembly vector into the
new allocated memory pointed by the memory
pointer.

std::vector<std::uint_8t> assembly;

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

Under the hood: Compiler’s Core (3)

31Section 5 | C++ implementation of a JIT compiler

The last body piece casts the pointer to
uint8_t to a function pointer!

The function pointer has a definition like
this one: int(*JITFunction)()

The cast is the real deal we were looking
for. Basically, this operation will allow the
program to call the compiled function
during the run-time, resulting in the
function execution.

Since our example compiles and
computes only integer numbers the
function will return an integer.

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

Under the hood: Inspecting Call (1)

32Section 5 | C++ implementation of a JIT compiler

1. After the compilation, the fun
variable contains a pointer to
the allocated function.

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

Under the hood: Inspecting Call (2)

33Section 5 | C++ implementation of a JIT compiler

2. When the CPU will execute the call instruction, the Program
Counter will be updated with the value saved inside the stack.
This memory address points to the allocated memory of
previously compiled function.

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

Under the hood: Output

34Section 5 | C++ implementation of a JIT compiler

Compiled code in x86_64

Console Output

Once the function is compiled inside the program’s memory we can invoke it! This is the result:

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

A Real JIT Compiler

35Section 5 | C++ implementation of a JIT compiler

● If you would like to see how a real JIT
compiler is implemented, see LuaJIT.

● The compiler works for the Lua
programming language and it is used
in a lot of applications.

● For more details, see the “LuaJIT
Project” at https://luajit.org.

https://luajit.org

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

Outline

1. Brief history of Just In Time compilation
2. What is a JIT compiler?
3. Where is it used?
4. How does it work? A look at HotSpot JVM
5. (“Tiny”) C++ implementation of a JIT compiler
6. Conclusions

36

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

Conclusions

37Section 6 | Conclusions

We saw what JIT compilers are, how they are built (conceptually speaking) and
where they are used. There is a lot of content that wasn’t shown in slides, I will
leave some resources and references I used for this presentation.

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

Resources

● A brief history of Just In Time by John Aycock
● JIT through the ages by Neeraja Ramanan
● The Java HotSpot VM by Tobias Hartmann

(https://ethz.ch/content/dam/ethz/special-interest/infk/inst-cs/lst-da
m/documents/Education/Classes/Spring2018/210_Compiler_Desig
n/Slides/2018-Compiler-Design-Guest-Talk.pdf)

● Understanding Java JIT Compilation with JIT Watch
(https://www.oracle.com/technical-resources/articles/java/architect
-evans-pt1.html)

● How the JIT compiler boosts Java performance in OpenJDK
(https://developers.redhat.com/articles/2021/06/23/how-jit-compile
r-boosts-java-performance-openjdk)

● JVM JIT-compiler overview
(http://cr.openjdk.java.net/~vlivanov/talks/2015_JIT_Overview.pdf)

● Just in Time Compilation Explained
(https://www.freecodecamp.org/news/just-in-time-compilation-expl
ained/)

● What the JIT!? Anatomy of the OpenJDK HotSpot JVM
(https://www.infoq.com/articles/OpenJDK-HotSpot-What-the-JIT/)

38

● Deep Dive Into the New Java JIT Compiler - Graal
(https://www.baeldung.com/graal-java-jit-compiler)

● How to write a JIT Compiler
(https://github.com/spencertipping/jit-tutorial)

● Adventures in JIT compilation:
https://eli.thegreenplace.net/2017/adventures-in-jit-compilation-par
t-1-an-interpreter/

● Writing a minimal x86-64 JIT compiler in C++
(https://solarianprogrammer.com/2018/01/10/writing-minimal-x86-6
4-jit-compiler-cpp/)

● Just-in-time compilation
(https://en.wikipedia.org/wiki/Just-in-time_compilation)

● How JIT Compilers are implemented and Fast: Pypy, LuaJIT, Graal
and more (https://carolchen.me/blog/technical/jits-impls/)

● A deep introduction to JIT compilers: JITs are not very Just-in-time
(https://carolchen.me/blog/technical/jits-intro/)

● OpenJDK Wiki
(https://wiki.openjdk.java.net/display/HotSpot/Compiler)

https://ethz.ch/content/dam/ethz/special-interest/infk/inst-cs/lst-dam/documents/Education/Classes/Spring2018/210_Compiler_Design/Slides/2018-Compiler-Design-Guest-Talk.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/inst-cs/lst-dam/documents/Education/Classes/Spring2018/210_Compiler_Design/Slides/2018-Compiler-Design-Guest-Talk.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/inst-cs/lst-dam/documents/Education/Classes/Spring2018/210_Compiler_Design/Slides/2018-Compiler-Design-Guest-Talk.pdf
https://www.oracle.com/technical-resources/articles/java/architect-evans-pt1.html
https://www.oracle.com/technical-resources/articles/java/architect-evans-pt1.html
https://developers.redhat.com/articles/2021/06/23/how-jit-compiler-boosts-java-performance-openjdk
https://developers.redhat.com/articles/2021/06/23/how-jit-compiler-boosts-java-performance-openjdk
http://cr.openjdk.java.net/~vlivanov/talks/2015_JIT_Overview.pdf
https://www.freecodecamp.org/news/just-in-time-compilation-explained/
https://www.freecodecamp.org/news/just-in-time-compilation-explained/
https://www.infoq.com/articles/OpenJDK-HotSpot-What-the-JIT/
https://www.baeldung.com/graal-java-jit-compiler
https://github.com/spencertipping/jit-tutorial
https://eli.thegreenplace.net/2017/adventures-in-jit-compilation-part-1-an-interpreter/
https://eli.thegreenplace.net/2017/adventures-in-jit-compilation-part-1-an-interpreter/
https://solarianprogrammer.com/2018/01/10/writing-minimal-x86-64-jit-compiler-cpp/
https://solarianprogrammer.com/2018/01/10/writing-minimal-x86-64-jit-compiler-cpp/
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://carolchen.me/blog/technical/jits-impls/
https://carolchen.me/blog/technical/jits-intro/
https://wiki.openjdk.java.net/display/HotSpot/Compiler

University of Pisa
Department of Computer Science

Gabriele Pappalardo @ UniPi (2021/2022)

Thanks

I hope you enjoyed these topics and found them interesting.

I would like to thank professor Andrea Corradini for the opportunity he gave to
me for this presentation. Furthermore, I would like to thank my colleagues and my
friends for their support and feedback.

39

