“Just In Time” to understand

(An introduction to how JIT compilers work under the hood)

niversity of Pisa
Department of Computer Science

Why this topic?

| am really curious about computer works under the hood. My curiosity lead me to try
and find out how the JIT compilers function.

e How is the code compiled during the run-time?
e How is it possible to compile code into the memory and then execute it?
e Are JIT compilers horrible monsters?(Spoiler: maybe not :D)

| hope these questions will be answered during the presentation.

“Great code is efficient code. But before you can write truly efficient code, you must understand how
computer systems execute programs and how abstractions in programming languages map to the
machine's low-level hardware.” - Randall Hyde (Write Great Code, No Starch Press)

‘,\ eeeeeeeeeeeeeeeeeeeeeeeeeeeee

Minimum Requirements

To fully understand the presentation, you will need a bit of knowledge about:

Computer Architecture.
Operating System.

C++ language.

JVM Instruction Set.
Interpreters.

N COR

Outline

1.
2.
3.
4.
5.
6.

Brief history of Just In Time compilation
What is a JIT compiler?

Where is it used?

How does it work? A look at HotSpot JVM
() C++ iImplementation of a JIT compiler
Conclusions

Outline

Brief history of Just In Time compilation
What is a JIT compiler?

Where is it used?

How does it work? A look at HotSpot JVM
¢y C++ implementation of a JIT compiler
Conclusions

I ORI

Origins of JIT Compilers

e The first signs of JIT compilers date back to the 1960, from the LISP's creator
John McCarthy.

e Another ancestor of initial just-in-time compilers is the regular expression
compiler created by Ken Thompson in 1968, which converted regexes to IBM
7094 CPU native code.

e Inthe ‘70 and ‘80, the calculation power of computers was unlike today’s.
Whoever had an interpreted program and wanted to speed it up, a “mixed-code”
approach was the best idea.

e Mixed-code approach was good, however maintaining pieces of program, write in
native code and other pieces in interpreted code, was not an easy task.

Section 1 | Brief history of Just In Time compilation

eeeeeeeeeeeeeeeeeeeeeeeeeee

Origins of JIT Compilers (cont’d)

e From a mixed-code approach, developers moved to "throw-away"
compiling.

e Program pieces were compiled dynamically according to the necessities.
When the memory was about to run out, then the compiled code would be
thrown away.

e At the end of the ‘90, Java was born. Initially, the Java Virtual Machine was
really inefficient.

e Sun Microsystem developed a Just-in-time compiler to boost Java
performances.

Section 1 | Brief history of Just In Time compilation

Outline

Brief history of Just In Time compilation
What is a JIT compiler?

Where is it used?

How does it work? A look at HotSpot JVM
¢y C++ implementation of a JIT compiler
Conclusions

I ORI

e,
¥9s niversity of Pisa
%%/5 Department of Computer Science

What is “Just in Time” compilation?

Just-in-Time compilation is a dynamic translation technique that compiles

running code during the execution of a program at runtime rather than before
execution.

JIT compilation is a merge between ahead-of-time compilation and
interpretation.

Section 2 | What is a JIT compiler?

Benefits and Drawbacks of a JIT compiler

As a combination of these two traditional approaches, the JIT compilation brings advantages and
drawbacks of both.

Compilation to Native Code Just-in-Time Interpretation
1. Blazing fast and efficient / 1. Greater Portability
2. Developers can interact 2. Small program size
directly with the underlay 3. Knows a lot of information
hardware during run-time
Disadvantages Disadvantages
1. Poor portability due to : 1. Really slow because of
CPU architecture interpreter

2 Large program size - Some JIT compilers need time to
) startup.

Section 2 | What is a JIT compiler?

Outline

Brief history of Just In Time compilation
What is a JIT compiler?

Where is it used?

How does it work? A look at HotSpot JVM
¢y C++ implementation of a JIT compiler
Conclusions

=R CoI D=

5 Department of Computer Science

. Apples SairrelFen
Where it is used?

e Most browsers today, use JIT
compilers to enhance performances of
web pages and applications. Browser
engines compile JavaScript code in
native one.

Google's 8
e Other than browsers, programs written

in Python, running on PyPy, “may”

also gain performance boost. Mozila's SpiderMorkey

O pumy \—

Section 3 | Where is it used?

3%/5 Department of Computer Science

Where it is used? (cont’d)

ection

JIT compilation is used inside the
Linux Kernel for network packet
filtering (see eBPF).

Even Android use JIT compilation
to run its applications!

Furthermore, in the video games
emulation scene, JIT compilers are
used to enhance the performances
(basically, a console ISA is
translated to the CPU host ISA).

They are used everywhere,
even in your pockets!

Outline

Brief history of Just In Time compilation
What is a JIT compiler?

Where is it used?

How does it work? A look at HotSpot JVM
¢y C++ implementation of a JIT compiler
Conclusions

O ORI

’ Universi ity of Pisa
S Department of Computer Science

How a JIT compiler works

e In JIT compilation process, starting with the interpreter, some features of a
static compiler are built into the system.

e A JIT compiler will isolate some sections of the code at run-time which are
accessed more often.

e Then it will compiles them to native code, aggressively optimizing those
sections in the process.

Section 4 | How does it work? A look at HotSpot JVM

niversity of Pisa
Department of Computer Science

HotSpot JVM

COMPILE TIME
] ()
® HOtSpOt JVM IS the defaUIt Java code (.java) Class Loader
interpreter of Java. .) ’
javac
e The virtual machine is equipped with a " X
JIT C Ompll er Java class file (.class) Byte-code verification
: . J
e HotSpot practice “trace-JIT” .#:%31‘.2/\"1:.’22?23'
code ' hot-paths
com pl Iat I on. Jar files (.jar) it i CJ;(T,
e Frequently used methods inside Java I | | e
programs will be compiled in native oL /wd
code. AN

Hardware

e The methods compiled in machine

code are called hot methods ¢.

Section 4 | How does it work? A look at HotSpot JVM

SR
5 “';""‘:" 2 University of Pisa
/5 Department of Computer Science

HotSpot JVM (cont’d)

HotSpot has two main JIT compilers that
are executed according to established
thresholds:

1. the Client compiler, or C1, has a low
threshold (= 1.500 method calls), this is
used to reduce startup time.

2. the Server compiler, or C2, has a
bigger threshold (= 10.000 method calls)
and it generates efficient optimized code
for critical methods.

Section 4 | How does it work? A look at HotSpot JVM

Execution Eugi.ue

Heap

Management
- Grarbage
Collection

1T Compito&i.ov\ -
Tiered (C1 + C2)

Universi ity of Pisa
Department of Computer Science

HotSpot’s Tiered Compilation

e HotSpot JVM comes with a “tiered-compilation
mode”.

e At the startup, the JVM interprets the bytecode and
monitors it to get profiling information about the
execution path.

Compilation level

0 Interpreter

e Firstly C1, will be executed to compile the 2
bytecode into machine code to reach native
performance.

e After collecting other informations, C2 will
re-compe all the code optimizing it.

e Finally, during the execution the deoptimization '

|

| C2 Compiled
and Non-Profiled
|
|

Performance

C1 Compiled
and Profiled

Interpreted
and Profiled

p h ase m ay h a p p e n . Startup Compilation Compilation Time

v

Section 4 | How does it work? A look at HotSpot JVM

University of Pisa
Department of Computer Science

JITWatch

It is possible to monitor the HotSpot JIT compilers. JITWatch is a tool for understanding
the behaviour of the Java HotSpot Just-In-Time (JIT) compilers during execution of a
Java program.

Source Bytecode (double click for JVM spec) Assembly |V Labels | #3 (C2/OSR/Level 4) -

1 // The Sandbox is designed to help you learn about the HotSpot JIT compilers. || 0: aload_0 [# {method} (0x0000000136000388) '<init>' '()V' in 'SimpleInliningTest'

2 // Please note that the JIT compilers may behave differently when isolating a invokespecial ~#1 // Method java/lang/Cbject."<i |[Entry Point]

3 // in the Sandbox compared to running your whole application. const_0 0x00000001266b£4a0: e82b 6llc

4 store 1 0x00000001266b£4c0: 8bSe 0844 ; - SimpleInliningTest::<init>@8 (line 12)

5 public class SimpleInliningTest const_0 001266bf4dd: ££d2 458b

6 | istore_2 0x00000001266b£4e0: 4181 fb0O ; - SimpleInliningT init>@11 (line 12)

7 public SimpleInliningTest () iload_2 0x00000001266bf4f8: 0000 456b - SimpleInliningTes init>@8 (line 12)

8 1dc #7 // int 1000000 0x00000001266b£500: db45 2bda

9 int sum = 0; if_icmpge 28 0x00000001266b£520: 418b e841 0x00000001266b£524: iinc {reexecute=0 rethrow=0 return_oop=0}
10 aload 0 - SimpleInliningTest::<init>@22 (line 12)
11 // 1_000_000 is F4240 in hex iload 1 0x00000001266b£524: 03ed 6bdd 0x00000001266b£528: iadd {reexecute=0 rethrow=0 return_oop=0}
12 for (int i = 0 ; i < 1 .000_000; i++) : bipush 99 - SimpleInliningTest::adde2 (line 22)

13 { invokevirtual #8 // Method add: (IT)I - SimpleInliningTe <init>@18 (line 14
14 sum = this.add(sum, 99); // 63 hex istore_1 0x00000001266bf528: 6341 03db ; - SimpleInliningTest::<init>@11 (line 12

15) iinc Z [Px00000001266b1530:_0£00_7c34]

16 goto 8 UTZEE6I5407 U866 J0e8 1266b£544: ImmutableOopMap {[0]=Oop }

17 System.out.println("Sum:" + sum); getstatic #14 // Field java/lang/System.out: if _icmpge {reexecute=l rethrow=0 return_oop=0}
18 } il - (reexecute) SimpleInliningTest::<init>@11 (line 12)
19 #20, 0// InvokeDynamic #0:makeConcal[0x00000001266b£544: b88a 58£8 0x00000001266b£548: iadd {reexecute=0 rethrow=0 return_oop=0}
20 t add(int a, int b) #24 // Method java/io/PrintStream.) - SimpleInliningTest::add@2 (line 22

21 { - SimpleTnliningTe: <init>@18 (line 14)
L —— 0x00000001266b£548: 83c3 6341

23 } 0x00000001266b£560: 6666 908 0x00000001266b£564: ImmutableOopMap {rbp=Oop }

24 iload 2 {reexecute=0 rethrow=0 return oo
25 public static void main(String[] args) ; - SimpleInliningTest::<init>@8 (line 12)
26 { 0x00000001266b£564: 988a 58£8 ; - SimpleInliningTest

27 new SimpleInliningTest(); - SimpleInliningTes: 14)

28 } 0x00000001266bf574: 63bd 4042

29) 0x00000001266b£58c: 2466 90e8 0x00000001266b£590: ImmutableOopMap {}

iload 2 {reexecute=0 rethrow=0 return_oo)
- SimplelnliningTest::<init>@8 (line 12)

0x00000001266b£590: 6c8a 58£8
[Exception Handler]
0x00000001266bf5a0: e95b a962
0x00000001266bf5ac: 2c24 05e9
[/MachCode]

Section 4 | How does it work? A look at HotSpot JVM

So, why don’t use an AOT compiler instead?

JEP 295: Ahead-of-Time Compilation

Well... That is a good question!

Type Feature
Scope Implementation
Status Closed/Delivered
. Rel 9
Java developers introduced an o e
Discussion hotspot dash compiler dash dev at openjdk dot java dot net
" . . Effort M
Durati M
experimental AOT compiler in JDK 9 .
Endorsed by John Rose
(see JEP 295: Ahead-of-Time et

Issue 8166089

Compilation) Summary

Compile Java classes to native code prior to launching the virtual machine.

Goals

= Improve the start-up time of both small and large Java applications, with at
most a limited impact on peak performance.

B u_t = Change the end user's work flow as little as possible.
"aw

Non-Goals

It is not necessary to provide an explicit, exposed library-like mechanism for saving
and loading compiled code.

Motivation

JIT compilers are fast, but Java programs can become so large that it takes a long
time for the JIT to warm up completely. Infrequently-used Java methods might never
be compiled at all, potentially incurring a performance penalty due to repeated
interpreted invocations.

Section 4 | How does it work? A look at HotSpot JVM

https://openjdk.java.net/jeps/295
https://openjdk.java.net/jeps/295

University of Pisa
Department of Computer Science

So, why don’t use an AOT compiler instead? (cont’d)

JEP 410: Remove the Experimental AOT and JIT Compiler

... since developers saw a little use of this

Type Feature
Scope |DK

compiler, and, seeing as the amount of

Release 17
Component hotspot/compiler

WO rk .to m ai ntai n i.t WaS p retty h u g e*, .th ey Discu;#;; tswtspot dash compiler dash dev at openjdk dot java dot net

Duration S

decided to remove it! (see
https://openjdk.java.net/jeps/410)

Issue 8263327

Summary

Remove the experimental Java-based ahead-of-time (AOT) and just-in-time (JIT)
compiler. This compiler has seen little use since its introduction and the effort
required to maintain it is significant. Retain the experimental Java-level JVM compiler
interface (JVMCI) so that developers can continue to use externally-built versions of
the compiler for JIT compilation.

Motivation

(*) J U St th I n k al | th e C P U arCh |teCtU reS O Ut Of here: Ahead-of-time compilation (the jaotc tool) was incorporated into JDK 9 as an

experimental feature via JEP 295. The jaotc tool uses the Graal compiler, which is

X86_64’ ARM’ MIPS, RISC_V’ PowerPC (o0) and itself written in Java, for AOT compilation.

The Graal compiler was made available as an experimental JIT compiler in JDK 10 via
JEP 317.

SO many Others mas We have seen little use of these experimental features since they were introduced,

and the effort required to maintain and enhance them is signi

were not included in the JDK 16 builds published by Oracle} and no one complamed

Section 4 | How does it work? A look at HotSpot JVM

https://openjdk.java.net/jeps/410

niversity of Pisa
Department of Computer Science

and no one complained.

THIS IS FINE.

Outline

Brief history of Just In Time compilation
What is a JIT compiler?

Where is it used?

How does it work? A look at HotSpot JVM
() C++ implementation of a JIT compiler
Conclusions

=R OO

niversity of Pisa
Department of Computer Science

Disclaimer!

The next slides will show C++ and Assembly code.

The code implements an interpreter which evaluates a small (a really small one)
subset of JVM instructions, specifically, the ones about integer operations. Of
course the code is only used for didactic purposes; real JIT compilers are much
more complex (and surely more efficient, more memory-safe) than this one,
so be aware for it!

All the JVM instructions can be found here:
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-6.html

Section 5 | C++ implementation of a JIT compiler

https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-6.html

Under the hood: Code (1)

int main(int argc, char** argv) {

Main {
env = std::map<int, int>{{VAR_X, 3}};

: int square(int x) {
squareFun = std::vector<std::string> { X % X

"{load_0", ’

"{load_0",

" lmUl” 3

"ireturn"

jit_compiler = JITCompiler{env};
jvm_interpreter = JVMInterpreter{env};

ASTNode* tree = JVMParser::parse_from_bytecode(squareFun);
JITFunction fun = jit_compiler.compile_jvm_function(tree);

The code shown above is a Java
function used to compute the
el e e e square of a number. The compiled
. JVM bytecode version can be
obtained using the javap utility.

jit_compiler.dump_assembly();

Section 5 | C++ implementation of a JIT compiler

Under the hood: Code (2)

) @
int main(int argc, char** argv) {
env = std::map<int, int>{{VAR_X, 3}};

squareFun = std::vector<std::string> {
"{load_0",
"{load_0",
"{mul",
"ireturn"
3

jit_compiler = JITCompiler{env};
jvm_interpreter = JVMInterpreter{env};

ASTNode* tree = JVMParser::parse_from_bytecode(squareFun);
JITFunction fun = jit_compiler.compile_jvm_function(tree);

jit_compiler.dump_assembly();

std::cout << "Interpreted:\t" << jvm_interpreter.interpret(tree) << "\n";
std::cout << "Compiled:\t\t" << fun();

0;

Section 5 | C++ implementation of a JIT compiler

The JVMParser class transform the
bytecode into an Abstract Syntax
Tree (like the one shown below). This
code representation is useful for both
interpretation and compilation of this
example.

This is the Abstract Syntax Tree
representing the JVM bytecode. The
leafs refers to function parameters, while
the root node is a multiplicative
operation between x and x.

Under the hood: Compiler’s Core

Compiler’s core.
Here is where the
magic happens.

Next slides will explain the three
labelled blocks.

Section 5 | C++ implementation of a JIT compiler

WONOU A WN

int(*JITFunction)();

JITFunction compile 1_function(ASTNode* tree) {

assembly.clear();
memory = <uint8_t*>(mmap(nullptr, 1024,
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_PRIVATE | MAP_ANONYMOUS ,-1, 0));

(memory == MAP_FAILED) {
std::runtime_error{"Cannot allocate memory for the compiled function!"};

assembly.push_back(0x55);

assembly.push_back(0x48); assembly.push_back(9); assembly.push_back(0x

aux_compile(tree);

assembly.push_back(0x5d);

assembly.push_back(0xc3);

(std::size_t 1 = 0; i < assembly.size(); i++) memory[i] = assembly[i];

<JITFunction>(memory);

Under the hood: Compiler’s Core (1)

The first piece of the body asks to the
operating system to reserve 1KB of
memory inside the heap using mmap
syscall. In this area of memory we are
going to write our compiled function.

We cannot use the standard malloc
function because we have to set some
flags about the allocated memory.

These flags allow us to tell to the OS the
desired memory protections. Specifically,
we want that our memory can be
readable, writable (risky flag) and, the
most important one, executable.

Section 5 | C++ implementation of a JIT compiler

Most of browser exploits are due to
how JIT compilers use this memory!
The attacker could write inside the
memory arbitrary code! For more
information see: JIT Spraying.

memory = <uint8_t*>(mmap(nullptr, 1024,
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_PRIVATE | MAP_ANONYMOUS ,-1, 0));

(memory == MAP_FAILED) {
std::runtime_error{"Cannot allocate memory for the compiled function!"};

https://en.wikipedia.org/wiki/JIT_spraying

Under the hood: Compiler’s Core (2)

The second body piece writes the assembly
code into a vector of bytes (uin8_t).

<std::uint_8t> assembly;
The first and the latter parts are standard x86_64
instructions used to create a new stack frame for
the function’s execution. seseibly puch_back{exas);

assembly.push_back(0x48); assembly.push_back(0x89); assembly.push_back(0xe5)

aux_compile(tree);

The middle part, where the aux_compile

function is invoked, uses the AST showed before
to produce assembly instructions according to assembly.push_back(0xc3);
the tree structure.

assembly.push_back(0x5d);

(std::size_t 1 = 0; 1 < assembly.size(); i++) memory[i] = assembly[i];

Finally, copy the compiled assembly instructions
contained inside the assembly vector into the
new allocated memory pointed by the memory
pointer.

Section 5 | C++ implementation of a JIT compiler

niversity of Pisa
Department of Computer Science

Under the hood: Compiler’s Core (3)

The last body piece casts the pointer to
uint8_t to a function pointer!

The function pointer has a definition like
this one: int (*JITFunction) ()

The cast is the real deal we were looking
for. Basically, this operation will allow the
program to call the compiled function
during the run-time, resulting in the
function execution.

<JITFunction>(memory);

Since our example compiles and
computes only integer numbers the
function will return an integer.

Section 5 | C++ implementation of a JIT compiler

Under the hood: Inspecting Call (1)

int main(int argc, char** argv) {
1 call compile_jvm_function()

2 mov gword ptr [rbp - 8], rax
3 call gword ptr [rbp - 8]

env = std::map<int, int>{{VAR_X, 3}};

squareFun = std::vector<std::string> {
"{load_0",

"iload_0",

"imul",

"ireturn"

jit_compiler = JITCompiler{env};
jvm_interpreter = JVMInterpreter{env};

1 . Af‘ter ‘the Compilation, ‘the fun ASTNode*_tree = JVMF’arser:fparse_fr(‘)m_bytecode(sguareFun);
EiriEit)IEB (:()r1taair1s; a F)()ir1teer t() JITFunction fun = jit_compiler.compile_jvm_function(tree);
\'
the allocated function LIS R

std::cout << "Interpreted:\t" << jvm_interpreter.interpret(tree) << "\n";
std::cout << "Compiled:\t\t" << fun();

Section 5 | C++ implementation of a JIT compiler

Under the hood: Inspecting Call (2)

1 call compile_jvm_function() std::cout << "Compiled:\t\t" << fun();
2 mov gword ptr [rbp - 8], rax

3 call gword ptr [rbp - 8]

2. When the CPU will execute the call instruction, the Program
Counter will be updated with the value saved inside the stack.
This memory address points to the allocated memory of
previously compiled function.

Instruction Description
call Label Push return address and jump to label

call *Operand Push return address and jump to specified location

Section 5 | C++ implementation of a JIT compiler

Under the hood: Output

Once the function is compiled inside the program’s memory we can invoke it! This is the result:

Compiled code: 55 48 89 e5 c7 45 fc 03 00 00 00 c7 45 f8 03 00 00 00 8b 45 fc 0f af 45 f8 89 45 f8 5d c3
Interpreted: 9

Compiled: 9 Console Output

Process finished with exit code 0

rbp
e5 rbp, rsp
fc 03 00 00 00 dword ptr [rbp
: f8 03 00 00 00 dword ptr [rbp
Compiled code in x86_64 : fc eax, dword ptr
: 45 f8 eax, dword ptr
f8 dword ptr [rbp
rbp

Section 5 | C++ implementation of a JIT compiler

University of Pisa
Department of Computer Science

A Real JIT Compiler

e If you would like to see how a real JIT
compiler is implemented, see LuaJIT.

e The compiler works for the Lua
programming language and it is used
in a lot of applications.

e For more details, see the “LuadIT
Project” at https://luajit.org.

Section 5 | C++ implementation of a JIT compiler

LualIT

Home
LualIT

LualIT

LualIT is a Just-In-Time Compiler (JIT) for the Lua programming language. Lua is a
powerful, dynamic and light-weight programming language. It may be embedded or

Download §
Installation
Running
Extensions
FFI Library
FFI Tutorial
ffi.* API
FFI Semantics
jit.* Library
Lua/C API
Status
FAQ
Performance
on x86/x64
on ARM
on PPC
on PPC/e500
on MIPS
Wiki »
Mailing List
Sponsors

used as a gt |-purpose, d-al language.

LualIT is Copyright © 2005-2021 Mike Pall, released under the MIT open source
license.

LLVM
ApI+aBI T IIT T e DLL/.s0
Overview

LualIT has been successfully used as a scripting middleware in games, appliances,
network and graphics apps, numerical simulations, trading platforms and many other
specialty icati It scales from devices, smartphones, desktops up to
server farms. It combines high flexibility with high performance and an unmatched
low memory footprint.

LualIT has been in continuous development since 2005. It's widely considered to be
one of the fastest i i i It has outperformed other
dynamic on many cr languag ks since its first release — often
by a substantial margin.

For LuaJIT 2.0, the whole VM has been rewritten from the ground up and relentlessly

for per It i a high-speed interpreter, written in
with a f-the-art JIT i
An i ive trace pil is i with SSA-based

and highly tuned code generation backends. A substantial reduction of the overhead
associated with dynamic languages allows it to break into the performance range

reserved for offline, static language compilers.

https://luajit.org

Outline

Brief history of Just In Time compilation
What is a JIT compiler?

Where is it used?

How does it work? A look at HotSpot JVM
¢y C++ implementation of a JIT compiler
Conclusions

R GO R

’ University of Pisa
S Department of Computer Science

Conclusions

We saw what JIT compilers are, how they are built (conceptually speaking) and
where they are used. There is a lot of content that wasn’t shown in slides, | will
leave some resources and references | used for this presentation.

Section 6 | Conclusions

University of Pisa
S Department of Computer Science

Resources

A brief history of Just In Time by John Aycock

JIT through the ages by Neeraja Ramanan

The Java HotSpot VM by Tobias Hartmann
(https://ethz.ch/content/dam/ethz/special-interest/infk/inst-cs/Ist-da
m/documents/Education/Classes/Spring2018/210 Compiler Desig
n/Slides/2018-Compiler-Design-Guest-Talk.pdf)

Understanding Java JIT Compilation with JIT Watch
(https://www.oracle.com/technical-resources/articles/java/architect
-evans-pti.html)

How the JIT compiler boosts Java performance in OpenJDK
(https://developers.redhat.com/articles/2021/06/23/how-jit-compile
r-boosts-java-performance-openjdk)

JVM JIT-compiler overview
(http://cr.openjdk.java.net/~vlivanov/talks/2015 JIT Overview.pdf)
Just in Time Compilation Explained
(https://www.freecodecamp.org/news/just-in-time-compilation-expl
ained/)

What the JIT!? Anatomy of the OpendDK HotSpot JVM
(https://www.infog.com/articles/OpenJDK-HotSpot-What-the-JIT/)

Deep Dive Into the New Java JIT Compiler - Graal
(https://www.baeldung.com/graal-java-jit-compiler)

How to write a JIT Compiler
(https://github.com/spencertipping/jit-tutorial)

Adventures in JIT compilation:
https://eli.thegreenplace.net/2017/adventures-in-jit-compilation-par
t-1-an-interpreter/

Writing a minimal x86-64 JIT compiler in C++
(https://solarianprogrammer.com/2018/01/10/writing-minimal-x86-6
4-jit-compiler-cpp/)

Just-in-time compilation

(https://en.wikipedia.org/wiki/Just-in-time compilation)

How JIT Compilers are implemented and Fast: Pypy, LuadIT, Graal
and more (https://carolchen.me/blog/technical/jits-impls/)

A deep introduction to JIT compilers: JITs are not very Just-in-time
(https://carolchen.me/blog/technical/jits-intro/)

OpendDK Wiki
(https://wiki.openjdk.java.net/display/HotSpot/Compiler)

https://ethz.ch/content/dam/ethz/special-interest/infk/inst-cs/lst-dam/documents/Education/Classes/Spring2018/210_Compiler_Design/Slides/2018-Compiler-Design-Guest-Talk.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/inst-cs/lst-dam/documents/Education/Classes/Spring2018/210_Compiler_Design/Slides/2018-Compiler-Design-Guest-Talk.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/inst-cs/lst-dam/documents/Education/Classes/Spring2018/210_Compiler_Design/Slides/2018-Compiler-Design-Guest-Talk.pdf
https://www.oracle.com/technical-resources/articles/java/architect-evans-pt1.html
https://www.oracle.com/technical-resources/articles/java/architect-evans-pt1.html
https://developers.redhat.com/articles/2021/06/23/how-jit-compiler-boosts-java-performance-openjdk
https://developers.redhat.com/articles/2021/06/23/how-jit-compiler-boosts-java-performance-openjdk
http://cr.openjdk.java.net/~vlivanov/talks/2015_JIT_Overview.pdf
https://www.freecodecamp.org/news/just-in-time-compilation-explained/
https://www.freecodecamp.org/news/just-in-time-compilation-explained/
https://www.infoq.com/articles/OpenJDK-HotSpot-What-the-JIT/
https://www.baeldung.com/graal-java-jit-compiler
https://github.com/spencertipping/jit-tutorial
https://eli.thegreenplace.net/2017/adventures-in-jit-compilation-part-1-an-interpreter/
https://eli.thegreenplace.net/2017/adventures-in-jit-compilation-part-1-an-interpreter/
https://solarianprogrammer.com/2018/01/10/writing-minimal-x86-64-jit-compiler-cpp/
https://solarianprogrammer.com/2018/01/10/writing-minimal-x86-64-jit-compiler-cpp/
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://carolchen.me/blog/technical/jits-impls/
https://carolchen.me/blog/technical/jits-intro/
https://wiki.openjdk.java.net/display/HotSpot/Compiler

| hope you enjoyed these topics and found them interesting.

| would like to thank professor Andrea Corradini for the opportunity he gave to
me for this presentation. Furthermore, | would like to thank my colleagues and my
friends for their support and feedback.

