
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-26: Functions, Decorators and OOP

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

2

We have seen:

• Installing Python & main documentation
• Useful commands
• Modules: importing and executing
• Basics of the language
• Sequence datatypes
• Dictionaries
• Boolean expressions
• Control flow
• List Comprehension

Next topics

• FuncCon definiCon
• PosiConal and keyword arguments of funcCons
• FuncCons as objects
• Higher-order funcCons
• Namespaces and Scopes
• Object Oriented programming in Python
• Inheritance
• Iterators and generators

3

Functions in Python - Essentials

• Functions are first-class objects
• All functions return some value (possibly None)
• Function call creates a new namespace
• Parameters are passed by object reference
• Functions can have optional keyword arguments
• Functions can take a variable number of args and

kwargs
• Higher-order functions are supported

4

Func@on defini@on (1)
• Positional/keyword/default parameters

5

def sum(n,m):
""" adds two values """
return n+m

>>> sum(3,4)
7
>>> sum(m=5,n=3) # keyword parameters
8

#--------------------------------------

def sum(n,m=5): # default parameter
""" adds two values, or increments by 5 """
return n+m

>>> sum(3)
8

Function definition (2)
• Arbitrary number of parameters (varargs)

6

def print_args(*items): # arguments are put in a tuple
print(type(items))
return items

>>> print_args(1,"hello",4.5)
<class 'tuple'>
(1, 'hello', 4.5)

#--------------------------------------

def print_kwargs(**items): # args are put in a dict
print(type(items))
return items

>>> print_kwargs(a=2,b=3,c=3)
<class 'dict'>
{'a': 2, 'b': 3, 'c': 3}

Func@ons are objects

• As everything in Python, also functions are
object, of class function

7

def echo(arg): return arg
type(echo) # <class 'function'>
hex(id(echo)) # 0x1003c2bf8
print(echo) # <function echo at 0x1003c2bf8>
foo = echo
hex(id(foo)) # '0x1003c2bf8'
print(foo) # <function echo at 0x1003c2bf8>
isinstance(echo, object) # => True

Function documentation

• The comment after the functions header is
bound to the __doc__ special attribute

8

def my_function():
"""Summary line: do nothing, but document it.
Description: No, really, it doesn't do anything.
"""
pass

print(my_function.__doc__)
Summary line: Do nothing, but document it.
#
Description: No, really, it doesn't do anything.

Higher-order func@ons

• Functions can be passed as argument and
returned as result

• Main combinators (map, filter) predefined: allow
standard functional programming style in Python

• Heavy use of iterators, which support laziness
• Lambdas supported for use with combinators

lambda arguments: expression

– The body can only be a single expression

9

Map

10

>>> print(map.__doc__) % documentation
map(func, *iterables) --> map object
Make an iterator that computes the function using
arguments from each of the iterables. Stops when the
shortest iterable is exhausted.

>>> map(lambda x:x+1, range(4)) % lazyness: returns
<map object at 0x10195b278> % an iterator
>>> list(map(lambda x:x+1, range(4)))
[1, 2, 3, 4]
>>> list(map(lambda x, y : x+y, range(4), range(10)))
[0, 2, 4, 6] % map of a binary function
>>> z = 5 % variable capture
>>> list(map(lambda x : x+z, range(4)))
[5, 6, 7, 8]

Map and List Comprehension
• List comprehension can replace uses of map

11

>>> list(map(lambda x:x+1, range(4)))
[1, 2, 3, 4]
>>> [x+1 for x in range(4)]
[1, 2, 3, 4]
>>> list(map(lambda x, y : x+y, range(4), range(10)))
[0, 2, 4, 6] % map of a binary function
>>> [x+y for x in range(4) for y in range(10)]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5,... % NO!
>>> [x+y for (x,y) in zip(range(4),range(10))] % OK
[0, 2, 4, 6]
>>> print(zip.__doc__)
zip(iter1 [,iter2 [...]]) --> zip object
Return a zip object whose .__next__() method returns a tuple where

the i-th element comes from the i-th iterable argument. The
.__next__() method continues until the shortest iterable in the
argument sequence is exhausted and then it raises StopIteration.

Filter (and list comprehension)

12

>>> print(filter.__doc__) % documentation
filter(function or None, iterable) --> filter object
Return an iterator yielding those items of iterable for
which function(item) is true. If function is None,
return the items that are true.

>>> filter(lambda x : x % 2 == 0,[1,2,3,4,5,6])
<filter object at 0x102288a58> % lazyness
>>> list(_) % '_' is the last value
[2, 4, 6]
>>> [x for x in [1,2,3,4,5,6] if x % 2 == 0]
[2, 4, 6] % same using list comprehension
% How to say "false" in Python
>>> list(filter(None,

[1,0,-1,"","Hello",None,[],[1],(),True,False]))
[1, -1, 'Hello', [1], True]

More modules for functional
programming in Python

• functools: Higher-order funcCons and operaCons
on callable objects, including:
– reduce(func%on, iterable[, ini%alizer])

• itertools: FuncCons creaCng iterators for efficient
looping. Inspired by constructs from APL, Haskell,
and SML.
– count(10) --> 10 11 12 13 14 ...
– cycle('ABCD') --> A B C D A B C D ...
– repeat(10, 3) --> 10 10 10
– takewhile(lambda x: x<5, [1,4,6,4,1]) --> 1 4
– accumulate([1,2,3,4,5]) --> 1 3 6 10 15

13

Decorators

14

• A decorator is any callable Python object that is used
to modify a function, method or class definition.

• A decorator is passed the original object being defined
and returns a modified object, which is then bound to
the name in the definition.

• (Function) Decorators exploit Python higher-order
features:
– Passing functions as argument
– Nested definition of functions
– Returning function

• Widely used in Python (system) programming
• Support several features of meta-programming

Basic idea: wrapping a function

15

def my_decorator(func): # function as argument
def wrapper(): # defines an inner function

print("Something happens before the function.")
func() # that calls the parameter
print("Something happens after the function.")

return wrapper # returns the inner function

def say_hello(): # a sample function
print("Hello!")

'say_hello' is bound to the result of my_decorator
say_hello = my_decorator(say_hello) # function as arg
>>> say_hello() # the wrapper is called
Something happens before the function.
Hello!
Something happens after the function.

Syntactic sugar: the "pie" syntax

• Alterna;ve, equivalent syntax

16

def my_decorator(func): # function as argument
def wrapper(): # defines an inner function

... # as before
return wrapper # returns the inner function

def say_hello(): ## HEAVY! 'say_hello' typed 3x
print("Hello!")

say_hello = my_decorator(say_hello)

@my_decorator
def say_hello():

print("Hello!")

Another decorator: do_twice

17

def do_twice(func):
def wrapper_do_twice():

func() # the wrapper calls the
func() # argument twice

return wrapper_do_twice

@do_twice # decorate the following
def say_hello(): # a sample function

print("Hello!")
>>> say_hello() # the wrapper is called
Hello!
Hello!

@do_twice # does not work with parameters!!
def echo(str): # a function with one parameter

print(str)
>>> echo("Hi...") # the wrapper is called
TypErr: wrapper_do_twice() takes 0 pos args but 1 was given
>>> echo()
TypErr: echo() missing 1 required positional argument: 'str'

do_twice for functions with parameters

• Decorators for functions with parameters can
be defined exploiting *args and **kwargs

18

def do_twice(func):
def wrapper_do_twice(*args, **kwargs):

func(*args, **kwargs)
func(*args, **kwargs)

return wrapper_do_twice

@do_twice
def say_hello():

print("Hello!")
>>> say_hello()
Hello!
Hello!

@do_twice
def echo(str):

print(str)
>>> echo("Hi... ")
Hi...
Hi...

General structure of a decorator
• Besides passing arguments, the wrapper also

forwards the result of the decorated function
• Supports introspection redefining __name__

and __doc__

19

import functools
def decorator(func):

@functools.wraps(func) #supports introspection
def wrapper_decorator(*args, **kwargs):

Do something before
value = func(*args, **kwargs)
Do something after
return value

return wrapper_decorator

Example: Measuring running @me

20

import functools
import time

def timer(func):
"""Print the runtime of the decorated function"""
@functools.wraps(func)
def wrapper_timer(*args, **kwargs):

start_time = time.perf_counter()
value = func(*args, **kwargs)
end_time = time.perf_counter()
run_time = end_time - start_time
print(f"Finished {func.__name__!r} in {run_time:.4f} secs")
return value

return wrapper_timer

@timer
def waste_some_time(num_times):

for _ in range(num_times):
sum([i**2 for i in range(10000)])

Other uses of decorators

• Debugging: prints argument list and result of calls
to decorated function

• Registering plugins: adds a reference to the
decorated function, without changing it

• In a web application, can wrap some code to
check that the user is logged in

• @staticmethod and @classmethod make a
function invocable on the class name or on an
object of the class

• More: decorators can be nested, can have
arguments, can be defined as classes…

21

Example: Caching Return Values

22

import functools
from decorators import count_calls

def cache(func):
"""Keep a cache of previous function calls"""
@functools.wraps(func)
def wrapper_cache(*args, **kwargs):

cache_key = args + tuple(kwargs.items())
if cache_key not in wrapper_cache.cache:

wrapper_cache.cache[cache_key] = func(*args, **kwargs)
return wrapper_cache.cache[cache_key]

wrapper_cache.cache = dict()
return wrapper_cache

@cache
@count_calls # decorator that counts the invocations
def fibonacci(num):

if num < 2:
return num

return fibonacci(num - 1) + fibonacci(num - 2)

Namespaces and Scopes
• A namespace is a mapping from names to objects: typically

implemented as a dictionary. Examples:
– builtins: pre-defined functions, exception names,…

• Created at intepreter's start-up
– global names of a module

• Created when the module definition is read
• Note: names created in interpreter are in module __main__

– local names of a function invocation
• Created when function is called, deleted when it completes

– and also names of a class, names of an object… see later
• Name x of a module m is an attribute of m

– accessible (read/write) with “qualified name” m.x
– if writable, it can be deleted with del

23

Namespaces and Scopes (2)
• A scope is a textual region of a Python program where a

namespace is directly accessible, i.e. reference to a name
attempts to find the name in the namespace.

• Scopes are determined statically, but are used dynamically.
• During execution at least three namespaces are directly

accessible, searched in the following order:
– the scope containing the local names
– the scopes of any enclosing functions, containing non-local, but

also non-global names
– the next-to-last scope containing the current module’s global

names
– the outermost scope is the namespace containing built-in

names
• Assignments to names go in the local scope
• Non-local variables can be accessed using nonlocal or

global 24

Scoping rules

25

def scope_test():

def do_local():
spam = "local spam"

def do_nonlocal():
nonlocal spam
spam = "nonlocal spam"

def do_global():
global spam
spam = "global spam"

spam = "test spam”

do_local()
print("After local assignment:", spam) # not affected
do_nonlocal()
print("After nonlocal assignment:", spam) # affected
do_global()
print("After global assignment:", spam) # not affected

scope_test()
print("In global scope:", spam)

After local assignment: test spam
After nonlocal assignment: nonlocal spam
After global assignment: nonlocal spam
In global scope: global spam

global
spam

scope_test
spam

do_local()
spam

do_nonlocal()

do_global()

Criticisms to Python: scopes

• Control structures don’t introduce a new
scope

26

def test():
for a in range(5):
b = a % 3
print(b)

print(b)

>>> test()

def test(x):
print(x)
for x in range(5):
print(x)

print(x)

>>> test("Hello!")

Closures in Python
• Python supports closures: Even if the scope of the

outer function is reclaimed on return, the non-local
variables referred to by the nested function are saved
in its attribute __closure__

27

def counter_factory():
counter = 0
def counter_increaser():

nonlocal counter
counter = counter + 1
return counter

return counter_increaser

>>> f = counter_factory()
>>> f()
1
>>> f()
2

>>> f.__closure__
(<cell at 0x1033ace88: int object at 0x10096dce0>,)

OOP in Python
S Typical ingredients of the Object Oriented Paradigm:

S Encapsula)on: dividing the code into a public interface, and a private
implementa)on of that interface;

S Inheritance: the ability to create subclasses that contain specializa=ons
of their parent classes.

S Polymorphism: The ability to override methods of a Class by extending
it with a subclass (inheritance) with a more specific implementa=on
(inclusion polymorphism)

From hBps://docs.python.org/3/tutorial/classes.html:

S "Python classes provide all the standard features of Object Oriented
Programming: the class inheritance mechanism allows mul;ple base
classes, a derived class can override any methods of its base class or
classes, and a method can call the method of a base class with the same
name. Objects can contain arbitrary amounts and kinds of data. As is true
for modules, classes partake of the dynamic nature of Python: they are
created at run;me, and can be modified further aAer crea;on." 28

https://docs.python.org/3/tutorial/classes.html

Defining a class (object)
S A class is a blueprint for a new data type with specific internal attributes

(like a struct in C) and internal functions (methods).
S To declare a class in Python the syntax is the following:

S statements are assignments or function definitions
S A new namespace is created, where all names introduced in the

statements will go.
S When the class definition is left, a class object is created, bound to

className, on which two operations are defined: attribute reference and
class instantiation.

S Attribute reference allows to access the names in the namespace in the
usual way

29

class className:
<statement-1>
…
<statement-n>

Example: Attribute reference on a class object

30

class Point:
x = 0
y = 0
def str(): # no closure: needs qualified names to refer to x and y

return "x = " + (str) (Point.x) + ", y = " + (str) (Point.y)
#--------
import ...
>>> Point.x
0
>>> Point.y = 3
>>> Point.z = 5 # adding new name
>>> Point.z
5

>>> def add(m,n):
return m+n

>>> Point.sum = add # adding new function
>>> Point.sum(3,4)
7

Point
x = 0
y = 0
str()
y = 3
z = 5
sum = add(m,n)

Creating a class instance
S A class instance introduces a new namespace nested in the class

namespace: by visibility rules all names of the class are visible
S If no constructor is present, the syntax of class instantiation is

className(): the new namespace is empty

31

class Point:
x = 0
y = 0
def str():

return "x = " + str(Point.x) + ", y = " + str(Point.y)
#--------
>>> p1 = Point()
>>> p2 = Point()
>>> p1.x
0
>>> Point.y = 3
>>> p2.y
3

>>> p1.y = 5
>>> p2.y
3

Point
x = 0
y = 0
str()
y = 3

p1
y = 5

p2

Instance methods

S A class can define a set of instance methods, which are just functions:

S The first argument, usually called self, represents the implicit parameter
(this in Java)

S A method must access the object's attributes through the self reference
(eg. self.x) and the class attributes using className.<attrName> (or
self.__class__.<attrName>)

S The first parameter must not be passed when the method is called. It is
bound to the target object. Syntax:

S But it can be passed explicitly. Alternative syntax:

32

def methodname(self, parameter1, ..., parametern):
statements

obj.methodname(arg1, ..., argn):

className.methodname(obj, arg1, ..., argn):

"Instance methods"

S Any func=on with at least one parameter defined in a class can be
invoked on an instance of the class with the dot nota=on.

S Since the instance obj is bound to the first parameter, par-0 is usually
called self.

S A name x defined in the (namespace of the) instance is accessed as
par-0.x (i.e., usually self.x)

S A name x defined in the class is accessed as className.x (or
self.__class__.x)

33

class Foo
def fun(par-0, par-1, ..., par-n):

statements
#----
>>>obj = Foo()
>>>obj.fun(arg-1,...,arg-n)
is syntactic sugar for
>>>obj.__class__.fun(obj,arg-1,...,arg-n)

Constructors
S A constructor is a special instance method with name __init__.
Syntax:

S Invocation: obj = className(arg1, …, argn)

S The first parameter self is bound to the new object.

S statements typically initialize (thus create) "instance variables", i.e.
names in the new object namespace.

S Note: at most ONE constructor (no overloading in Python!)

34

def __init__(self, parameter1, ..., parametern):
statements

class Point:
instances = []
def __init__(self, x, y):

self.x = x
self.y = y
Point.instances.append(self)

#--------
>>> p1 = Point(3,4)

Point
instances = [<Point
object at ...>]

p1
x = 3
y = 4

What about "methods in instances?"
S Instances are themselves namespaces: we can add functions to them.

S Applying the usual rules, they can hide "instance methods"

35

class Point:
def __init__(self, x, y):

self.x = x
self.y = y
def move(z,t):

self.x -= z
self.y -= t

self.move = move
def move(self,dx,dy):

self.x += dx
self.y += dy

>>> p = Point(1,1)
>>> p.x
1
>>> p.move(1,1)
>>> p.x
0
>>> p.__class__.move(p,2,2)
>>> p.x
2

Point
__init__(...)
move(...)

p
x = 1
y = 1
move(...)
__class__

String representation

S It is often useful to have a textual representation of an object
with the values of its attributes. This is possible with the
following instance method:

S This is equivalent to Java's toString (converts object to a
string) and it is invoked automatically when str or print is
called.

36

def __str__(self) :
return <string>

Special methods
S Method overloading: you can define special instance methods so that

Python's built-in operators can be used with your class.

S Analogous to C++ overloading mechanism:
S Pros: very compact syntax
S Cons: may be more difficult to read if not used with care

37

Operator Class Method
- __sub__(self, other)

+ __add__(self, other)

* __mul__(self, other)

/ __truediv__(self,
other)

Unary Operators
- __neg__(self)

+ __pos__(self)

Operator Class Method
== __eq__(self, other)

!= __ne__(self, other)

< __lt__(self, other)

> __gt__(self, other)

<= __le__(self, other)

>= __ge__(self, other)

Binary Operators

(Multiple) Inheritance, in one slide
• A class can be defined as a derived class

• No need of additional mechanisms: the namespace of derived is
nested in the namespace of baseClass, and uses it as the next non-
local scope to resolve names

• All instance methods are automatically virtual: lookup starts from
the instance (namespace) where they are invoked

• Python supports multiple inheritance

• Diamond problem solved by an algorithm that linearizes the set of
all (directly or indirectly) inherited classes: the Method resolution
order (MRO) è ClassName.mro()

• https://www.python.org/download/releases/2.3/mro/
38

class derived(baseClass):
statements
statements

class derived(base1,..., basen):
statements
statements

Encapsulation (and "name mangling")
S Private instance variables (not accessible except from inside an object)

don’t exist in Python.

S Conven)on: a name prefixed with underscore (e.g. _spam) is treated as
non-public part of the API (func=on, method or data member).
It should be considered an implementa=on detail and subject to change
without no=ce.

Name mangling ("storpiatura")

S Some=mes class-private members are needed to avoid clashes with
names defined by subclasses. Limited support for such a mechanism,
called name mangling.

S Any name with at least two leading underscores and at most one trailing
underscore like e.g. __spam is textually replaced with _class__spam,
where class is the current class name.

39

Example for name mangling
• Name mangling is helpful for letting subclasses override

methods without breaking intraclass method calls.

40

class Mapping:
def __init__(self, iterable):

self.items_list = []
self.__update(iterable)

def update(self, iterable):
for item in iterable:

self.items_list.append(item)

__update = update # private copy of update() method

class MappingSubclass(Mapping):

def update(self, keys, values):
provides new signature for update()
but does not break __init__()
for item in zip(keys, values):

self.items_list.append(item)

Static methods and class methods

S Static methods are simple functions defined in a class with no self
argument, preceded by the @staticmethod decorator

S They are defined inside a class but they cannot access instance attributes
and methods

S They can be called through both the class and any instance of that class!

S Benefits of static methods: they allow subclasses to customize the static
methods with inheritance. Classes can inherit static methods without
redefining them.

S Class methods are similar to static methods but they have a
first parameter which is the class name.

S Definition must be preceded by the @classmethod decorator

S Can be invoked on the class or on an instance.
41

Iterators
S An iterator is an object which allows a programmer to traverse through all the

elements of a collection (iterable object), regardless of its specific implementation.
In Python they are used implicitly by the FOR loop construct.

S Python iterator objects required to support two methods:

S __iter__ returns the iterator object itself. This is used in FOR and IN
statements.

S The next method returns the next value from the iterator. If there is no more
items to return then it should raise a StopIteration exception.

S Remember that an iterator object can be used only once. It means after it raises
StopIteration once, it will keep raising the same exception.

S Example:

42

for element in [1, 2, 3]:
print(element)

>>> list = [1,2,3]
>>> it = iter(list)
>>> it
<listiterator object at 0x00A1DB50>
>>> it.next()
1
>>> it.next()
2
>>> it.next()
3
>>> it.next() -> raises StopIteration

Generators and coroutines

S Generators are a simple and powerful tool for creating iterators.

S They are written like regular functions but use the yield statement
whenever they want to return data.

S Each time the next() is called, the generator resumes where it left-off (it
remembers all the data values and which statement was last executed).

S Anything that can be done with generators can also be done with class
based iterators (not vice-versa).

S What makes generators so compact is that the __iter__() and
next() methods are created automatically.

S Another key feature is that the local variables and execution state are
automatically saved between calls.

43

Generators (2)
S In addition to automatic method creation and saving program state, when

generators terminate, they automatically raise StopIteration.

S In combination, these features make it easy to create iterators with no
more effort than writing a regular function.

44

def reverse(data):
for index in range(len(data)-1, -1, -1):

yield data[index]

#-----------------

>>> for char in reverse('golf'):
... print(char)
...
f
l
o
g

Typing in Python

• Dynamic, strong duck typing
• Code can be annotated with types

• Module typing provides runtime support for
type hints

• Type hints can be checked statically by
external tools, like mypy

• They are ignored by CPython

45

def greetings(name: str) -> str:
return ‘Hello ‘ + name.

Miscellaneous

• Overloading: forbidden, but not necessary

• Overriding: ok, thanks to namespaces

• Generics: type hints support generics

46

Garbage collection in Python

CPython manages memory with a reference counting + a
mark&sweep cycle collector scheme
• Reference counting: each object has a counter storing the

number of references to it. When it becomes 0, memory can
be reclaimed.

• Pros: simple implementation, memory is reclaimed as soon as
possible, no need to freeze execution passing control to a
garbage collector

• Cons: additional memory needed for each object; cyclic
structures in garbage cannot be identified (thus the need of
mark&sweep)

47

Handling reference counters

• UpdaQng the refcount of an object has to be done atomically
• In case of mulQ-threading you need to synchronize all the

Qmes you modify refcounts, or else you can have wrong
values

• SynchronizaQon primiQves are quite expensive on
contemporary hardware

• Since almost every operaQon in CPython can cause a refcount
to change somewhere, handling refcounts with some kind of
synchronizaQon would cause spending almost all the 8me on
synchroniza8on

• As a consequence…

48

Concurrency in Python…

49

The Global Interpreter Lock (GIL)

• The CPython interpreter assures that only one thread
executes Python bytecode at a time, thanks to the Global
Interpreter Lock

• The current thread must hold the GIL before it can safely
access Python objects

• This simplifies the CPython implementation by making the
object model (including critical built-in types such as dict)
implicitly safe against concurrent access

• Locking the entire interpreter makes it easier for the
interpreter to be multi-threaded, at the expense of much of
the parallelism afforded by multi-processor machines.

50

More on the GIL
• However the GIL can degrade performance even when it is

not a boYleneck. The system call overhead is significant,
especially on mulQcore hardware.

• Two threads calling a funcQon may take twice as much Qme as
a single thread calling the funcQon twice.

• The GIL can cause I/O-bound threads to be scheduled ahead
of CPU-bound threads. And it prevents signals from being
delivered.

• Some extension modules, either standard or third-party, are
designed so as to release the GIL when doing
computaQonally-intensive tasks such as compression or
hashing.

• Also, the GIL is always released when doing I/O.
51

Alternatives to the GIL?
• Past efforts to create a “free-threaded” interpreter (one which locks

shared data at a much finer granularity) have not been successful because
performance suffered in the common single-processor case.

• It is believed that overcoming this performance issue would make the
implementation much more complicated and therefore costlier to
maintain.

• Guido van Rossum has said he will reject any proposal in this direction that
slows down single-threaded programs.

• Jython (on JVM, -> 2017, Python 2.7) and IronPython (on .NET) have no
GIL and can fully exploit multiprocessor systems

• PyPy (Python in Python, supporting JIT) currently has a GIL like CPython
• in Cython (compiled, for CPython extension modules) the GIL exists, but

can be released temporarily using a "with" statement

52

Criticisms to Python: syntax of tuples

• Tuples are made by the commas, not by ()
• With the exception of the empty tuple…

53

>>> type((1,2,3))
<class 'tuple'>
>>> type(())
<class 'tuple'>
>>> type((1))
<class 'int'>
>>> type((1,))
<class 'tuple'>

Criticisms to Python: indentation

• Lack of brackets makes the syntax "weaker" than
in other languages: accidental changes of
indentation may change the semantics, leaving
the program syntactically correct.

• Mixed use of tabs and blanks may cause bugs
almost impossible to detect 54

def foo(x):
if x == 0:

bar()
baz()

else:
qux(x)
foo(x - 1)

def foo(x):
if x == 0:

bar()
baz()

else:
qux(x)

foo(x – 1)

Criticisms to Python: indentation
• Lack of brackets makes it harder to refactor the code or

insert new one
• "When I want to refactor a bulk of code in Python, I need to

be very careful. Because if lost, I’m not sure what I’m
editing belongs to which part of the code. Python depends
on indentation, so if I have mistakenly removed some
indentation, I totally have no idea whether the correct code
should belong to that if clause or this while clause."

• Will Python change in the future?

55

>>> from __future__ import braces
File "<stdin>", line 1

SyntaxError: not a chance
>>>

Builtins & Libraries
• The Python ecosystem is extremely rich and in fast

evolution
• For available functions, classes and modules browse:

– Builtin Functions
• https://docs.python.org/3.8/library/functions.html

– Standard library
• https://docs.python.org/3.8/tutorial/stdlib.html

• There are dozens of other libraries, mainly for scientific
computing, machine learning, computational biology, data
manipulation and analysis, natural language processing,
statistics, symbolic computation, etc.

56

https://docs.python.org/3.8/library/functions.html
https://docs.python.org/3.8/tutorial/stdlib.html

