
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-25: Introduction to Python

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

2

§ Python Developed by Guido van Rossum in the early 1990s
§ In July 2018, Van Rossum stepped down as the leader in the language

community after 30 years.
§ Named after Monty Python
§ Available for download from http://www.python.org

Slides freely adapted from:
“Full Python Tutorial”

http://www.python.org/

4

Language features
§ Dynamic typing
§ Indentation instead of braces
§ Several sequence types

§ Strings; List, mutable;Tuples,immutable
§ Dictionaries (hash maps)

§ Powerful subscripting (slicing)
§ Object oriented (simple object system)
§ Higher-order functions (@decorators)
§ Flexible signatures
§ Exceptions as in Java
§ Iterators and generators

5

Pragmatics: Why Python?

§ Good example of scripting language
§ “Pythonic” style is very concise
§ Powerful but unobtrusive object system

§ Every value is an object
§ Powerful collection and iteration abstractions

§ Dynamic typing makes generics easy

But there are some weaknesses…

6

Dynamic typing – the key difference

§ Java & others: statically typed
§ Variables are declared to refer to objects of a given

type
§ Methods use type signatures to enforce contracts

§ Python
§ Variables come into existence when first assigned

to
§ A variable can refer to an object of any type
§ All types are (almost) treated the same way
§ Main drawback: type errors are only caught at

runtime

Recommended Reading
§ On-line Python tutorials

§ The Python Tutorial (http://docs.python.org/tutorial/)
§ Dense but more complete overview of the most important parts

of the language
§ See course home page for others

§ PEP 8- Style Guide for Python Code
§ http://www.python.org/dev/peps/pep-0008/
§ The official style guide to Python, contains many helpful

programming tips

§ Many other books and on-line materials
§ If you have a specific question, try Google first

7

http://docs.python.org/tutorial/
http://www.python.org/dev/peps/pep-0008/

8

Which Python?
§ Python 2.7

§ Last stable release before version 3
§ Python 2.7's end-of-life date was initially set at

2015 then postponed to 2020-01-01.
§ Python 2.7.18, Release Date: April 20, 2020, the

last release of Python 2.

§ Python 3
§ Released in December 2008
§ Many changes (including incompatible changes)
§ Much cleaner language in many ways
§ Strings use Unicode, not ASCII
§ But: A few important third party libraries are not yet

compatible with Python 3 right now

https://en.wikipedia.org/wiki/End-of-life_(product)

9

The Python Interpreter
§ Download it from

https://www.python.org/
§ Current version: 3.9.0
§ Interactive interface to Python

% python
Python 3.6.3 (v3.6.3:2c5fed86e0, Oct 3 2017, 00:32:08)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

§ Python interpreter evaluates inputs:
>>> 3*(7+2)
27

Useful commands
§ help()

§ Enters Python interactive help utility

§ help(arg)
§ Prints documentation about arg
§ Example: help(1), help(str), help({}), help(print), help(builtins)

§ type(arg)
§ Prints the type of arg
§ Example: type(1), type("Hello"), type(str), type(type)

§ _ : in the interpreter is the value of the last expression
§ Since "everything is an object", try "dot-completion" to

see what are the options…
§ Example: 1. <tab><tab> "hello". <tab><tab>
§ NB: the latter might not work. Try: "hello" <ret>; _. <tab><tab>

10

The dir() Function
§ The built-in function dir() returns a sorted list

of strings containing all names defined in a
module, a class, or an object

11

>>> import sys
>>> dir(sys) # Prints names defined in sys
['__displayhook__', '__doc__', '__excepthook__', '__loader__',
'__name__', '__package__', '__stderr__', '__stdin__',

...
>>> dir() # Prints names defined currently

...
>>> import builtins
>>> dir(builtins) #Prints built-in functions and variables

>>> dir(str) #Prints all members of class str

12

Import and Modules
§ Programs will often use classes & functions defined in

another file
§ A Python module is a single file with the same name (plus

the .py extension)
§ Modules can contain many classes and functions
§ Access using import
Where does Python look for module files?
§ The list of directories where Python looks: sys.path
§ When Python starts up, this variable is initialized from the

PYTHONPATH environment variable
§ To add a directory of your own to this list, append it to this

list.
sys.path.append('/my/new/path')

§ Oops! Operating system dependent….

Defining Modules
§ Modules are files containing defini?ons and statements. A

module defines a new namespace.
§ Modules can be organized hierarchically in packages

13

File fibo.py - Fibonacci numbers module
def fib(n): # write Fibonacci series up to n

a, b = 0, 1
while b < n:

print(b, end=' ')
a, b = b, a+b

print()

def fib2(n): # return Fibonacci series up to n
result = []
a, b = 0, 1
while b < n:

result.append(b)
a, b = b, a+b

return result

Importing a module

14

>>> import fibo # imports module from local file
'fibo.py'
>>> fibo.fib(6) # dot notation
[1, 1, 2, 3, 5]
>>> fibo.__name__ # special attribute __name__
'fibo'
>>> fibo.fib.__module__ # special attribute __module__
'fibo'

>>> from fibo import fib, fib2
or from fibo import *

>>> fib(500)
>>> fib.__module__ # special attribute __module__
'fibo'
>>> fibo.__name__ # NameError: name 'fibo' is not defined

Executing a module as a script
§ A module can be invoked as a script from the shell as

§ Executed with __name__ set to "__main__".

15

File fibo.py - Fibonacci numbers module
def fib(n): # write Fibonacci series up to n

...
def fib2(n): # return Fibonacci series up to n

...
if __name__ == "__main__": # added code

import sys
fib(int(sys.argv[1]))

> python fibo.py 60

> python fibo.py 60
1 1 2 3 5 8 13 21 34
>

The Basics

17

A Code Sample (in IDLE)
x = 34 - 23 # A comment.

y = "Hello" # Another one.

z = 3.45
if z == 3.45 or y == "Hello":

x = x + 1

y = y + " World" # String concat.

print(x) # [Py2] also print x, no brackets

print(y)

18

Enough to Understand the Code
§ Indentation matters to the meaning of the code:

§ Block structure indicated by indentation
§ The first assignment to a variable creates it.

§ Variable types don’t need to be declared.
§ Python figures out the variable types on its own.

§ Assignment uses = and comparison uses ==.
§ For numbers + - * / % are as expected.

§ Special use of + for string concatenation.
§ Special use of % for string formatting (as with printf in C)

§ Logical operators are words (and, or, not)
not symbols

§ Simple printing can be done with print().

19

Basic Datatypes
§ Integers (default for numbers)

z = 5 // 2 # Answer is 2, integer division.

§ Floats
x = 3.456

k = 5 / 2 # k = 2.5 in [Py3], k = 2 in [Py2]

§ Strings
§ Can use "" or '' to specify.

"abc" 'abc' (Same thing.)
§ Unmatched can occur within the string.

"matt's"
§ Use triple double-quotes for multi-line strings or strings than

contain both ' and " inside of them:
"""a'b"c"""

20

Whitespace
Whitespace is meaningful in Python: especially

indentation and placement of newlines.
§ Use a newline to end a line of code.

§ Use \ when must go to next line prematurely.
§ No braces { } to mark blocks of code in Python…

Use consistent indentation instead.
§ The first line with less indentation is outside of the block.
§ The first line with more indentation starts a nested block

§ Often a colon “:” appears at the start of a new
block. (E.g. for function and class definitions.)

21

Comments
§ Start comments with # – the rest of line is ignored.
§ Can include a “documentation string” as the first line of any

new function or class that you define.
§ The development environment, debugger, and other tools

use it: it’s good style to include one.
def my_function(x, y):
"""This is the docstring. This
function does blah blah blah. """
The code would go here...

22

Assignment
§ Binding a variable in Python means setting a

name to hold a reference to some object.
§ Assignment creates references, not copies (like Java)

§ A variable is created the first time it appears on
the left side of an assignment expression:

x = 3

§ An object is deleted (by the garbage collector)
once it becomes unreachable.

§ Names in Python do not have an intrinsic type.
Objects have types.
§ Python determines the type of the reference automatically

based on what data is assigned to it.

23

Multiple Assignment
§ You can also assign to multiple names at the same time.

>>> x, y = 2, 3
>>> x
2
>>> y
3

Sequence types:
Tuples, Lists, and Strings

25

Sequence Types
1. Tulpes

• A simple immutable ordered sequence of items
• Immutable: a tuple cannot be modified once created....

• Items can be of mixed types, including collection types

2. Strings
§ Immutable
§ Conceptually very much like a tuple
§ [Py3] UTF-8 Unicode (type str)
§ [Py2] 8-bit chars (type str)

UTF-16 Unicode (type unicode)
3. Lists

• Mutable ordered sequence of items of mixed types

26

Sequence Types 2
§ The three sequence types (tuples, strings, and lists) share

much of the same syntax and functionality.

§ Tuples are defined using parentheses (and commas).
>>> tu = (23, 'abc', 4.56, (2,3), 'def')

§ Lists are defined using square brackets (and commas).
>>> li = ["abc", 34, 4.34, 23]

§ Strings are defined using quotes (", ', or """).
>>> st = "Hello World"
>>> st = 'Hello World'
>>> st = """This is a multi-line
string that uses triple quotes. """

27

Sequence Types 3
§ We can access individual members of a tuple, list, or string

using square bracket “array” notation.
§ Note that all are 0 based…

>>> tu = (23, 'abc', 4.56, (2,3), 'def')
>>> tu[1] # Second item in the tuple.
'abc'

>>> li = ["abc", 34, 4.34, 23]
>>> li[1] # Second item in the list.
34

>>> st = "Hello World"
>>> st[1] # Second character in string.
'e'

28

Negative indices

>>> t = (23, 'abc', 4.56, (2,3), 'def')

Positive index: count from the left, starting with 0.
>>> t[1]
'abc'

Negative lookup: count from right, starting with –1.
>>> t[-3]
4.56

29

Slicing: Return Copy of a Subset (1)

>>> t = (23, 'abc', 4.56, (2,3), 'def')

Return a copy of the container with a subset of the original
members. Start copying at the first index, and stop copying
before the second index.

>>> t[1:4]
('abc', 4.56, (2,3))

You can also use negative indices when slicing.
>>> t[1:-1]
('abc', 4.56, (2,3))

Optional argument allows selection of every nth item.
>>> t[1:-1:2]
('abc', (2,3))

30

Slicing: Return Copy of a Subset (2)

>>> t = (23, 'abc', 4.56, (2,3), 'def')

Omit the first index to make a copy starting from the beginning
of the container.

>>> t[:2]
(23, 'abc')

Omit the second index to make a copy starting at the first
index and going to the end of the container.

>>> t[2:]
(4.56, (2,3), 'def')

31

Copying the Whole Sequence

To make a copy of an entire sequence, you can use [:].
>>> t[:]
(23, 'abc', 4.56, (2,3), 'def')

Note the difference between these two lines for mutable
sequences:

>>> list2 = list1 # 2 names refer to 1 ref
Changing one affects both

>>> list2 = list1[:] # Two independent copies, two refs

32

The ‘in’ Operator
§ Boolean test whether a value is inside a collection (often

called a container in Python):
>>> t = [1, 2, 4, 5]
>>> 3 in t
False
>>> 4 in t
True
>>> 4 not in t
False

§ For strings, tests for substrings
>>> a = 'abcde'
>>> 'c' in a
True
>>> 'cd' in a
True
>>> 'ac' in a
False

§ Be careful: the in keyword is also used in the syntax of
for loops and list comprehensions.

33

The + Operator
§ The + operator produces a new tuple, list, or string whose

value is the concatenation of its arguments.

§ Extends concatenation from strings to other types

>>> (1, 2, 3) + (4, 5, 6)
(1, 2, 3, 4, 5, 6)

>>> [1, 2, 3] + [4, 5, 6]
[1, 2, 3, 4, 5, 6]

>>> "Hello" + " " + "World"
'Hello World'

Mutability:
Tuples vs. Lists

35

Lists: Mutable

>>> li = ['abc', 23, 4.34, 23]
>>> li[1] = 45
>>> li

['abc', 45, 4.34, 23]

§ We can change lists in place.
§ Name li still points to the same memory reference when

we’re done.

36

Tuples: Immutable

>>> t = (23, 'abc', 4.56, (2,3), 'def')
>>> t[2] = 3.14

Traceback (most recent call last):
File "<pyshell#75>", line 1, in -toplevel-

tu[2] = 3.14
TypeError: object doesn't support item assignment

You can’t change a tuple.
You can make a fresh tuple and assign its reference to a previously

used name.
>>> t = (23, 'abc', 3.14, (2,3), 'def')

§ The immutability of tuples means they’re faster than lists.

37

Operations on Lists Only - 1

>>> li = [1, 11, 3, 4, 5]

>>> li.append('a') # Note the method syntax
>>> li
[1, 11, 3, 4, 5, 'a']

>>> li.insert(2, 'i')
>>>li
[1, 11, 'i', 3, 4, 5, 'a']

38

The extend method vs the + operator
§ + creates a fresh list (with a new memory reference)
§ extend is just like add in Java; it operates on list li in place.

>>>li
[1, 11, 'i', 3, 4, 5, 'a']
>>> li.extend([9, 8, 7])
>>>li
[1, 2, 'i', 3, 4, 5, 'a', 9, 8, 7]

Confusing:
§ extend takes a list as an argument
§ append t akes a singleton as an argument, unlike Java
>>> li.append([10, 11, 12])
>>> li
[1, 2, 'i', 3, 4, 5, 'a', 9, 8, 7, [10, 11, 12]]

39

Operations on Lists Only - 3
>>> li = ['a', 'b', 'c', 'b']

>>> li.index('b') # index of first occurrence*

1

*more complex forms exist

>>> li.count('b') # number of occurrences
2

>>> li.remove('b') # remove first occurrence
>>> li

['a', 'c', 'b']

40

Operations on Lists Only - 4
>>> li = [5, 2, 6, 8]

>>> li.reverse() # reverse the list *in place*
>>> li

[8, 6, 2, 5]

>>> li.sort() # sort the list *in place*
>>> li

[2, 5, 6, 8]

>>> li.sort(some_function)
sort in place using user-defined comparison

41

Tuples vs. Lists
§ Lists slower but more powerful than tuples.

§ Lists can be modified, and they have lots of handy operations we
can perform on them.

§ Tuples are immutable and have fewer features.

§ To convert between tuples and lists use the list() and tuple()
functions:
li = list(tu)
tu = tuple(li)

Sets, by examples

42

>>> basket = {'apple', 'orange', 'apple', 'pear', 'orange',
'banana'}
>>> print(basket) # show that duplicates have been
removed
{'orange', 'banana', 'pear', 'apple'}
>>> 'orange' in basket # fast membership testing
True
>>> 'crabgrass' in basket
False
>>> # Demonstrate set operations on unique letters from two words
>>> a = set('abracadabra')
>>> b = set('alacazam')
>>> a # unique letters in a
{'a', 'r', 'b', 'c', 'd'}
>>> a - b # letters in a but not in b
{'r', 'd', 'b'}
>>> a | b # letters in a or b or both
{'a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'}
>>> a & b # letters in both a and b
{'a', 'c'}
>>> a ^ b # letters in a or b but not both
{'r', 'd', 'b', 'm', 'z', 'l'}

• Empty set: set()
• Indexing not supported
• Mixed types

Dictionaries: a mapping collection type

Dictionaries: Like maps in Java
§ Dictionaries store a mapping between a set of keys

and a set of values.
§ Keys can be of any immutable hashable type

§ cannot contain mutable components
§ Values can be any type
§ Values and keys can be of different types in a single dictionary

§ You can
§ define
§ modify
§ view
§ lookup
§ delete
the key-value pairs in the dictionary.

44

Creating and accessing
dictionaries
>>> d = {'user':'bozo', 'pswd':1234}

>>> d['user']
'bozo'

>>> d['pswd']
1234

>>> d['bozo']

Traceback (innermost last):
File ‘<interactive input>’ line 1, in ?

KeyError: bozo

§ Keys must be unique.
>>> d1 = {1:7,1:5}
>>> d1
{1: 5}

45

§ Assigning to an existing key changes the value.

>>> d = {'user':'bozo', 'pswd':1234}

>>> d['user'] = 'clown'
>>> d
{'user':'clown', 'pswd':1234}

§ Assigning to a non-existing key adds a new pair.

>>> d['id'] = 45
>>> d
{'user':'clown’, 'id':45, 'pswd':1234}

§ Dictionaries are unordered
§ New entry might appear anywhere in the output.

§ (Dictionaries work by hashing)

Updating Dictionaries

46

Removing dictionary entries
>>> d = {'user':'bozo', 'p':1234, 'i':34}

>>> del d['user'] # Remove one. Note that del is
a function.

>>> d
{'p':1234, 'i':34}

>>> d.clear() # Remove all.
>>> d
{}

>>> a=[1,2]
>>> del a[1] # (del also works on lists)
>>> a

[1]

47

Useful Accessor Methods
>>> d = {'user':'bozo', 'p':1234, 'i':34}

>>> list(d.keys()) # List of current keys
['user', 'p', 'i']

>>> list(d.values()) # List of current values.
['bozo', 1234, 34]

>>> list(d.items()) # List of item tuples.
[('user','bozo'), ('p',1234), ('i',34)]

>>> list(d) # When accessing a dictionary as
a list, the keys are returned

['user', 'p', 'i’]

48

Using dictionaries

49

Write a program to compute the frequency of the words
of a string read from the input. The output should print
the words in increasing alphanumerical order.

freq = {} # frequency of words in text [Python3]
line = input()
for word in line.split():

freq[word] = freq.get(word,0)+1

words = list(freq.keys())
words.sort()

for w in words:
print ("%s:%d" % (w,freq[w]))

Boolean Expressions

True and False
§ True and False are constants

§ Other values are treated as equivalent to either
True or False when used in conditionals:
§ False: zero, None, empty containers
§ True: non-zero numbers, non-empty objects
§ See PEP 8 for the most Pythonic ways to compare

§ Comparison operators: ==, !=, <, <=, etc.
§ X == Y

§ X and Y have same value (like Java equals method)
§ X is Y :

§ X and Y refer to the exact same object (like Java ==)

51

Logical Operators
§ You can also combine Boolean expressions.

§ True if a is True and b is True: a and b
§ True if a is True or b is True: a or b
§ True if a is False: not a

52

Conditional Expressions
§ x = true_value if condition else false_value

§ lazy evaluation:
§ First, condition is evaluated
§ If True, true_value is evaluated and returned
§ If False, false_value is evaluated and returned

53

Control Flow

if Statements (as expected)
if x == 3:

print("X equals 3.")
elif x == 2:

print("X equals 2.")
else:

print("X equals something else.")
print ("This is outside the 'if'.")

Note:
§ Use of indentation for blocks
§ Colon (:) after boolean expression

55

while Loops (as expected)
>>> x = 3
>>> while x < 5:

print (x, "still in the loop")
x = x + 1

3 still in the loop
4 still in the loop
>>> x = 6
>>> while x < 5:

print (x, "still in the loop")

>>>

56

break and continue

§ You can use the keyword break inside a loop to
leave the while loop entirely.

§ You can use the keyword continue inside a loop
to stop processing the current iteration of the
loop and immediately go on to the next one.

57

assert
§ An assert statement will check to make sure that

something is true during the course of a program.
§ If the condition if false, the program throws an exception

(AssertionError)

assert(number_of_players < 5)

58

For Loops

For Loops 1
§ For-each is Python’s only form of for loop
§ A for loop steps through each of the items in a collection

type, or any other type of object which is “iterable”

for <item> in <collection>:
<statements>

§ If <collection> is a list or a tuple, then the loop steps
through each element of the sequence.

§ If <collection> is a string, then the loop steps through each
character of the string.

for someChar in "Hello World":
print(someChar)

60

For Loops 2
for <item> in <collection>:
<statements>

§ <item> can be more complex than a single
variable name.
§ If the elements of <collection> are themselves collections,

then <item> can match the structure of the elements. (We
saw something similar with list comprehensions and with
ordinary assignments.)

for (x, y) in [('a',1), ('b',2), ('c',3), ('d',4)]:
print(x)

61

For loops and the range() function
§ We often want to write a loop where the variables ranges

over some sequence of numbers. The range() function
returns a list of n numbers from 0 up to but not including
the number we pass to it.

§ range(5) returns [0,1,2,3,4]
§ So we can say:

for x in range(5):
print(x)

§ Variant: range(start, stop[,step])

§ [Py2]: range() returns a list, xrange() returns an iterator that
provides the same functionality, more efficiently

§ [Py3]: range() returns an iterator, xrange() illegal
62

Abuse of the range() function
§ Don't use range() to iterate over a sequence solely to have

the index and elements available at the same time

§ Avoid:
for i in range(len(mylist)):

print(i, mylist[i])

§ Instead:
for (i, item) in enumerate(mylist):

print(i, item)

§ This is an example of an anti-pattern in Python
§ For more, see: http://lignos.org/py_antipatterns/

63

http://lignos.org/py_antipatterns/

Generating Lists using
“List Comprehensions”

List Comprehensions 1
§ A powerful feature of the Python language.

§ Generate a new list by applying a function to every member
of an original list.

§ Python programmers use list comprehensions extensively.
You’ll see many of them in real code.

[expression for name in list]

65

List Comprehensions 2

>>> li = [3, 6, 2, 7]
>>> [elem*2 for elem in li]
[6, 12, 4, 14]

[expression for name in list]
§ Where expression is some calculation or operation

acting upon the variable name.
§ For each member of the list, the list comprehension

1. sets name equal to that member, and
2. calculates a new value using expression,

§ It then collects these new values into a list which is the
return value of the list comprehension.

[expression for name in list]

66

List Comprehensions 3

§ If the elements of list are other collections, then
name can be replaced by a collection of names
that match the “shape” of the list members.

>>> li = [('a', 1), ('b', 2), ('c', 7)]
>>> [n * 3 for (x, n) in li]
[3, 6, 21]

[expression for name in list]

67

Filtered List Comprehension 1
§ Filter determines whether expression is performed

on each member of the list.

§ When processing each element of list, first check if
it satisfies the filter condition.

§ If the filter condition returns False, that element is
omitted from the list before the list comprehension
is evaluated.

[expression for name in list if filter]

68

>>> li = [3, 6, 2, 7, 1, 9]
>>> [elem * 2 for elem in li if elem > 4]
[12, 14, 18]

§ Only 6, 7, and 9 satisfy the filter condition.
§ So, only 12, 14, and 18 are produced.

Filtered List Comprehension 2
[expression for name in list if filter]

69

§ Since list comprehensions take a list as input and
produce a list as output, they are easily nested:

>>> li = [3, 2, 4, 1]
>>> [elem*2 for elem in

[item+1 for item in li]]
[8, 6, 10, 4]

§ The inner comprehension produces: [4, 3, 5, 2].
§ So, the outer one produces: [8, 6, 10, 4].

Nested List Comprehensions

70

