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The RUST programming language

• Brief history 
• Overview of main concepts
• Avoiding Aliases + Mutable
• Ownership and borrowing
• Traits, generics and inheritance
• (Slides by Haozhong Zhang)
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Brief History
• Development started in 2006 by Graydon Hoare at Mozilla.
• Mozilla sponsored RUST since 2009, and announced it in 

2010.
• In 2010 shiE from the iniGal compiler in OCaml to a self-

hosGng compiler wriKen in Rust, rustc: it successfully 
compiled itself in 2011.

• rustc uses LLVM as its back end.
• Most loved programming language in the Stack Overflow

annual survey of 2016, 2017, 2018, 2019, 2020 and 2021.
• February 8, 2021: The development of the language passes 

to the Rust FoundaGon (non-profit independent) funded by 
da Mozilla, MicrosoE, Google, AWS e Huawei.
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On RUST syntax
• Rust is a system programming language with a focus on 

safety, especially safe concurrency, supporting both 
functional and imperative paradigms. 

• Concrete syntax similar to C and C++ (blocks, if-
else, while, for), match for pattern matching

• Despite the superficial resemblance to C and C++, the 
syntax of Rust in a deeper sense is closer to that of the 
ML family of languages as well as the Haskell 
language.

• Nearly every part of a function body is an expression 
(including if-else).

4



Memory safety
• Designed to be memory safe:

– No null pointers
– No dangling pointers
– No data races

• Data values can only be initialized through a fixed set of 
forms, requiring their inputs to be already initialized. 
Compile time error if any branch of code fails to assign a 
value to the variable. 

• To avoid the use on “null”, Rust core library provides an 
option type, which can be used to test if a pointer has 
Some value or None.

• Rust also introduces syntax to manage lifetimes, and the 
compiler reasons about these through its borrow checker.
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Memory management
• No garbage collection. Deterministic management of 

resources, with very low overhead. 
• Memory and other resources managed through Resource 

Acquisition Is Initialization (RAII), with optional reference 
counting. [Resource allocation is done during object 
initialization, by the constructor, while resource 
deallocation (release) is done during object destruction 
(specifically finalization), by the destructor.] 

• Rust favors stack allocation (default).  No implicit boxing. 
• Safety in the use of pointers/references/aliases is 

guaranteed by the Ownership System and by the 
compilation phase of borrowing checking.
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Ownership System
• Rust has an ownership system, based on concepts of 

ownership, borrowing and lifetimes
• Data are immutable by default, and declared mutable using 
mut.

• All values have a unique owner where the scope of the 
value is the same as the scope of the owner.

• A resource can be borrowed from its owner (via assignment 
or parameter passing) according to some rules. 

• Values can be passed by immutable reference using &T, by 
mutable reference using &mut T or by value using T. 

• At all times, there can either be multiple immutable 
references or one mutable reference to a resource. This is 
checked statically.
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Types and polymorphism
• Type inference, for variables declared with the let keyword.
• Classes are defined using structs for fields and 

implementations (impl) for methods.
• No inheritance in RUST!  è Pushing composition over 

inheritance
• The type system supports traits, corresponding to Haskell 

type classes, for ad hoc polymorphism.
• Traits can contain abstract methods or also concrete 

(default) methods. They cannot declare fields. 
• Support for bounded universal explicit polymorphism with 

generics, as in Java, where bounds are one or more traits.
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Generic functions
• Generic functions may have the generic type of parameter 

bound by one or more traits. Within such a function, the 
generic value can only be used through those traits.

• Therefore a generic function can be type-checked when 
defined (as in Java, unlike C++ templates). 

• However, implementation of Rust generics similar to typical 
implementation of C++ templates: a separate copy of the 
code is generated for each instantiation. 

• This is called monomorphization and contrasts with the 
type erasure scheme of Java. 
– Pros: optimized code for each specific use case
– Cons: increased compile time and size of the resulting binaries. 
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An Introduction 
to 

Rust Programming Language

Haozhong Zhang

Jun 1, 2015

Slides freely adapted by the lecturer
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As a programming language …

•Rust is a system programming language barely on 
the hardware.

• No runtime requirement (eg. GC/Dynamic Type/…)
• More control (over memory allocation/destruction/…)
• …

fn main() {
println!(“Hello, world!”);

}
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More than that …

C/C++

more control,
less safety

Haskell/Python

less control,
more safety

more control,
more safety

Rust
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Rust overview

Performance, as with C
• Rust compilation to object code for bare-metal performance

But, supports memory safety
• Programs dereference only previously allocated pointers that have 

not been freed
• Out-of-bound array accesses not allowed

With low overhead
• Compiler checks to make sure rules for memory safety are followed
• Zero-cost abstraction in managing memory (i.e. no garbage 

collection)
Via
• Advanced type system
• Ownership, borrowing, and lifetime concepts to prevent memory 

corruption issues
But at a cost
• Cognitive cost to programmers who must think more about rules for 

using memory and references as they program
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Rust and typing

Primitive types
• bool
• char (4-byte unicode)
• i8/i16/i32/i64/isize
• u8/u16/u32/u64/usize
• f32/f64

Separate bool type
• C overloads an integer to get booleans
• Leads to varying interpretations in API calls

• True, False, or Fail? 1, 0, -1?
• Misinterpretations lead to security issues
• Example: PHP strcmp returns 0 for both equality *and* failure!

Numeric types specified with width
• Prevents bugs due to unexpected 

promotion/coercion/rounding
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By default, Rust variables are immutable
• Usage checked by the compiler

mut is used to declare a resource as mutable.

Immutability by default

fn main() { 
let mut a: i32 = 0; 
a = a + 1; 
println!("{}" , a); 

}

rustc 1.14.0 (e8a012324 2016-12-16) 
error[E0384]: re-assignment of immutable variable `a`
--> <anon>:3:5
|

2 |     let a: i32 = 0; 
|         - first assignment to `a`

3 |     a = a + 1; 
|     ^^^^^^^^^ re-assignment of immutable variable

error: aborting due to previous error

rustc 1.14.0 (e8a012324 2016-12-16)
1
Program ended.
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Example: C is good
Lightweight, low-level control of memory

typedef struct Dummy { int a; int b; } Dummy;

void foo(void) {
Dummy *ptr = (Dummy *) malloc(sizeof(struct Dummy));
ptr->a = 2048;
free(ptr);

}

ptr

.a

.b

Stack Heap

Precise memory layout

Lightweight reference

Destruction

.a = 2048
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Example: C is not so good
typedef struct Dummy { int a; int b; } Dummy;

void foo(void) {
Dummy *ptr = (Dummy *) malloc(sizeof(struct Dummy));
Dummy *alias = ptr;
free(ptr);
int a = alias.a;
free(alias);

}

ptr

alias

.a

.b

Stack Heap

Dangling Pointer

Use after free

Double free
Aliasing Mutation
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Other problems with aliasing + mutation
Problems*with*aliases:

•  Make*programs*more*confusing*
•  May*disallow*some*compiler’s*op;miza;ons*

•  Cause*for*a*long*;me*of*inefficiency*of*C*
versus*FORTRAN*compilers*

* 14*

int a, b, *p, *q; 
   ... 

a = *p; /* read from the variable referred to by p*/ 
 
*q = 3; /* assign to the variable referred to by q */ 
 
b = *p; /* read from the variable referred to by p */ 
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Solved by managed languages

Java, Python, Ruby, C#, Scala, Go...
• Restrict direct access to memory
• Run-time management of memory via periodic garbage 

collection
• No explicit malloc and free, no memory corruption issues
• But
• Overhead of tracking object references
• Program behavior unpredictable due to GC (bad for real-time systems)
• Limited concurrency (“global interpreter lock” typical)
• Larger code size
• VM must often be included
• Needs more memory and CPU power (i.e. not bare-metal)
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Requirements for system programs

•Must be fast and have minimal runtime overhead
•Should support direct memory access, but be 

memory –safe
Rust provides Box<T> to point to data on the Heap
•Boxes allow you to store data on the heap rather 

than the stack..
•Boxes don’t have performance overhead, other 

than storing their data on the heap instead of on 
the stack. But they don’t have many extra 
capabilities either.
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Rust’s Solution: Zero-cost Abstraction
struct Dummy { a: i32, b: i32 }

fn foo() {
let mut res: Box<Dummy> = Box::new(Dummy {

a: 0, 
b: 0

});
res.a = 2048;

}

res

.a = 0

.b = 0

Stack Heap

.a = 2048

Variable binding

Memory allocation

Resource owned by res is freed automatically
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Side Slide: Type Inference
struct Dummy { a: i32, b: i32 }

fn foo() {
let mut res: Box<Dummy> = Box::new(Dummy {

a: 0, 
b: 0

});
res.a = 2048;

}
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Rust’s Solution: Ownership & Borrowing

Compiler enforces:
•Every resource has a unique owner.
•Others can borrow the resource from its owner.
•Owner cannot free or mutate its resource while it is 

borrowed.

Aliasing Mutation

No need for runtime Memory safety Data-race freedom
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Ownership
struct Dummy { a: i32, b: i32 }

fn foo() {
let mut res = Box::new(Dummy {

a: 0, 
b: 0

});
}

res

.a = 0

.b = 0

Stack Heap

owns

res is out of scope and its resource is freed automatically
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Ownership: Unique Owner
struct Dummy { a: i32, b: i32 }

fn foo() {
let mut res = Box::new(Dummy {

a: 0, 
b: 0

});
take(res);
println!(“res.a = {}”, res.a);

}

fn take(arg: Box<Dummy>) {
}

Ownership is moved from res to arg

arg is out of scope and the resource is freed automaCcally

Compiling Error!

Aliasing Mutation
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Immutable/Shared Borrowing (&)
struct Dummy { a: i32, b: i32 }

fn foo() {
let mut res = Box::new(Dummy{

a: 0, 
b: 0

});
take(&res);
res.a = 2048;

}

fn take(arg: &Box<Dummy>) {
arg.a = 2048;

}

Resource is immutably borrowed by arg from res

Resource is sCll owned by res. No free here.

Resource is returned from arg to res

Aliasing Mutation

Compiling Error: Cannot mutate via 
an immutable reference
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Immutable/Shared Borrowing (&)

•Read-only sharing

struct Dummy { a: i32, b: i32 }

fn foo() {
let mut res = Box::new(Dummy{a: 0, b: 0});
{

let alias1 = &res;
let alias2 = &res;
res.a = 2048;
let alias3 = alias2;

}
res.a = 2048;

}
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Mutable Borrowing (&mut)
Aliasing Mutationstruct Dummy { a: i32, b: i32 }

fn foo() {
let mut res = Box::new(Dummy{a: 0, b: 0});

take(&mut res);
res.a = 4096;

let borrower = &mut res;
let alias   = &mut res;

}

fn take(arg: &mut Box<Dummy>) {
arg.a = 2048;

}

Mutably borrowed by arg from res

Returned from arg to res

MulCple mutable borrowings
are disallowed
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Concurrency & Data-race Freedom
struct Dummy { a: i32, b: i32 }

fn foo() {
let mut res = Box::new(Dummy {a: 0, b: 0});

std::thread::spawn(move || {
let borrower = &mut res;
borrower.a += 1;

});

res.a += 1;
}

Error: res is being mutably borrowed

res is mutably borrowed

Spawn a new thread
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Other smart pointers in Rust

Type Sharable? Mutable? Thread Safe?
& yes * no no
&mut no * yes no
Box no yes no
Rc yes no no
Arc yes no yes
RefCell yes ** yes no
Mutex yes, in Arc yes yes

* but doesn't own contents, so lifetime restrictions.
** while there is no mutable borrow
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Lifetimes
•A lifetime is a construct the compiler (or more 

specifically, its borrow checker) uses to ensure all
borrows are valid.
•A variable's lifetime begins when it is created and 

ends when it is destroyed. 
• Lifetimes are mostly inferred, but can be made 

explicit using generics
•The compiler checks that every borrowed 

variable/reference has a lifetime that is longer than 
the borrower
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// Lifetimes are annotated below with lines denoting the creation
// and destruction of each variable.
// `i` has the longest lifetime because its scope entirely encloses
// both `borrow1` and `borrow2`. The duration of `borrow1` compared
// to `borrow2` is irrelevant since they are disjoint.
fn main() {

let i = 3; // Lifetime for `i` starts. ────────────────┐
{ //                                                   │

let borrow1 = &i; // `borrow1` lifetime starts. ──┐│
//                                                ││
println!("borrow1: {}", borrow1); //              ││

} // `borrow1 ends. ──────────────────────────────────┘│
{ //                                                   │

let borrow2 = &i; // `borrow2` lifetime starts. ──┐│
//                                                ││
println!("borrow2: {}", borrow2); //              ││

} // `borrow2` ends. ─────────────────────────────────┘│
} // Lifetime ends. ─────────────────────────────────────┘

Lifetime inference
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// `print_refs` takes two references to `i32` which have different
// lifetimes `'a` and `'b` (passed as generic parameters). 
fn print_refs<'a, 'b>(x: &'a i32, y: &'b i32) {  

println!("x is {} and y is {}", x, y);
}
// A function which takes no arguments, but has a lifetime parameter `'a`.
fn failed_borrow<'a>() {

let _x = 12;
// ERROR: `_x` does not live long enough
// let y: &'a i32 = &_x;
// The lifetime of `&_x` is shorter than that of `y`. 
// A short lifetime cannot be coerced into a longer one.

}
fn main() {

let (four, nine) = (4, 9); // Create variables to be borrowed below.    
print_refs(&four, &nine); // Borrows of both variables are passed
// In other words, the lifetime of `four` and `nine` must 
// be longer than that of `print_refs`.   
failed_borrow();

}

Explicit Lifetimes
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Other aspects of Rust: Enums

•Algebraic data types

•First-class
• Instead of integers (C/C++)

•Structural
• Parameters
• Replacement of union in C/C++
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Enums

enum RetInt {
Fail(u32),
Succ(u32)

}

fn foo_may_fail(arg: u32) -> RetInt {
let fail = false;
let errno: u32;
let result: u32;
...
if fail {

RetInt::Fail(errno)
} else {

RetInt::Succ(result)
}

}
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Enums: No Null Pointers

enum std::option::Option<T> {
None,
Some(T)

}

struct SLStack {
top: Option<Box<Slot>>

}

struct Slot {
data: Box<u32>,
prev: Option<Box<Slot>>

}

36



Enums: Trees a ADT
#[derive(Debug)]
enum Tree<T> {

Empty,
Node(T, Box<Tree<T>>, Box<Tree<T>>)

}

fn main() {
let tree = Tree::Node(

42,
Box::new(Tree::Node(

0,
Box::new(Tree::Empty),
Box::new(Tree::Empty)

)),
Box::new(Tree::Empty));

println!("{:?}", tree); 
// prints Node(42, Node(0, Empty, Empty), Empty)

}
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Pattern Match

let x = 5;

match x {
1             => println!(“one”),
2             => println!(“two”),
3|4           => println!(“three or four”),
5 ... 10      => println!(“five to ten”),
e @ 11 ... 20 => println!(“{}”, e);
_             => println!(“others”),

}

Compiler enforces the matching is complete
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Pattern Match

enum std::option::Option<T> {
None,
Some(T)

}

struct SLStack {
top: Option<Box<Slot>>

}

fn is_empty(stk: &SLStack) -> bool {
match stk.top {

None     => true,
Some(..) => false,

}
}
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Generic

struct SLStack {
top: Option<Box<Slot>>

}

struct Slot {
data: Box<u32>,
prev: Option<Box<Slot>>

}

fn is_empty(stk: &SLStack) -> bool {
match stk.top {

None     => true,
Some(..) => false,

}
}
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Generic

struct SLStack<T> {
top: Option<Box<Slot<T>>>

}

struct Slot<T> {
data: Box<T>,
prev: Option<Box<Slot<T>>>

}

fn is_empty<T>(stk: &SLStack<T>) -> bool {
match stk.top {

None     => true,
Some(..) => false,

}
}
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Traits (Typeclass in Haskell)
trait Stack<T> {

fn new() -> Self;
fn is_empty(&self) -> bool;
fn push(&mut self, data: Box<T>);

fn pop(&mut self) -> Option<Box<T>>;
}

impl<T> Stack<T> for SLStack<T> {
fn new() -> SLStack<T> {

SLStack{ top: None }
}

fn is_empty(&self) -> bool {
match self.top {

None     => true,
Some(..) => false,

}
}

}

Type implementing this trait

Object of the type 
implementing this trait

struct SLStack<T> {
top: Option<Box<Slot<T>>>

}

struct Slot<T> {
data: Box<T>,
prev: Option<Box<Slot<T>>>

}
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Using Traits for Bounded Polymorphism
trait Stack<T> {

fn new() -> Self;
fn is_empty(&self) -> bool;
fn push(&mut self, data: Box<T>);
fn pop(&mut self) -> Option<Box<T>>;

}

fn generic_push<T, S: Stack<T>>(stk: &mut S, 
data: Box<T>) {

stk.push(data);
}

fn main() {
let mut stk = SLStack::<u32>::new();
let data = Box::new(2048);
generic_push(&mut stk, data);

}
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Multiple traits as bounds
trait Clone {

fn clone(&self) -> Self;
}

impl<T> Clone for SLStack<T> {
...

}

fn immut_push<T, S: Stack<T>+Clone>(stk: &S, data: Box<T>) -> S 
{

let mut dup = stk.clone();
dup.push(data);
dup

}

fn main() {
let stk = SLStack::<u32>::new();
let data = Box::new(2048);
let stk = immut_push(&stk, data);
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And if Mutably Sharing is necessary?

•Mutably sharing is inevitable in the real world.
•Example: mutable doubly linked list

prev

next

prev

next

prev

next

struct Node {
prev: option<Box<Node>>,
next: option<Box<Node>>

}
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Rust’s Solution: Raw Pointers

•Compiler does NOT check the memory safety of 
most operations wrt. raw pointers.
•Most operations wrt. raw pointers should be 

encapsulated in a unsafe {} syntactic structure.

prev

next

prev

next

prev

next

struct Node {
prev: option<Box<Node>>,
next: *mut Node

}
Raw pointer
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Unsafe superpowers

•Dereference a raw pointer
•Call an unsafe function or method
•Access or modify a mutable static variable
• Implement an unsafe trait
•Access fields of unions
Note: unsafe{} does not switch off the borrow 
checker
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Rust’s Solution: Raw Pointers

let a = 3;

unsafe {
let b = &a as *const i32 as *mut i32;
*b = 4;

} 

println!(“a = {}”, a);

I know what I’m doing

Print “a = 4”
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Foreign Function Interface (FFI)

•All foreign functions are unsafe.

extern {
fn write(fd: i32, data: *const u8, len: u32) -> i32;

}

fn main() {
let msg = ”Hello, world!\n”;
unsafe {

write(1, &msg[0], msg.len());
}

}
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