
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-22: On Designing Software Frameworks

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Software Framework Design

• Intellectual Challenging Task
• Requires a deep understanding of the application

domain
• Requires mastering of software (design)

patterns, OO methods and polymorphism in
particular

• Impossible to address in the course, but we can
play a bit…
– Using classic problems to teach Java framework

design, by H.C. Cunningham, Yi Liu and C. Zhang,
Science of Computer Programming 59 (2006).

2

Four levels for understanding frameworks

1. Frameworks are normally implemented in an object-
oriented language such as Java è Understanding the
applicable language concepts, which include inheritance,
polymorphism, encapsulation, and delegation.

2. Understanding the framework concepts and techniques
sufficiently well to use frameworks to build a custom
application

3. Being able to do detailed design and implementation of
frameworks for which the common and variable aspects
are already known.

4. Learning to analyze a potential software family, identifying
its possible common and variable aspects, and evaluating
alternative framework architectures.

3

A Framework for the family of
Divide and Conquer algorithms

• Idea: start from a well-known generic algorithm
• Apply known techniques and patterns to define a

framework for a software family
• Instances of the framework, obtained by standard

extension mechanism, will be concrete
algorithms of the family

4

function solve (Problem p) returns Solution
{ if isSimple(p)

return simplySolve(p);
else

sp[] = decompose(p);
for (i= 0; i < sp.length; i = i+1)

sol[i] = solve(sp[i]);
return combine(sol);

}

Some terminology…
• Frozen Spot: common (shared) aspect of the software family
• Hot Spot: variable aspect of the family
• Template method: concrete method of base (abstract) class

implementing behavior common to all members of the family
• A hot spot is represented by a group of abstract hook

methods.
• A template method calls a hook method to invoke a function

that is specific to one family member [Inversion of Control]
• A hot spot is realized in a framework as a hot spot

subsystem:
– An abstract base class + some concrete subclasses

5

150 H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169

Fig. 1. Hot spot subsystem.

specific to one family member. Furthermore, we must separate the various common and
variable aspects from each other and consider them independently, one at a time. We use
the terms frozen spot to denote a common (or shared) aspect of the family and hot spot to
denote a variable aspect of the family [22].
A software framework is a generic application that allows the creation of different

specific applications from a family [21]. It is an abstract design that can be reused within a
whole application domain. In a framework, the frozen spots of the family are represented
by a set of abstract and concrete base classes that collaborate in some structure. A behavior
that is common to all members of the family is implemented by a fixed, concrete template
method in a base class. A hot spot is represented by a group of abstract hook methods. A
template method calls a hook method to invoke a function that is specific to one family
member.
A hot spot is realized in a framework as a hot spot subsystem. A hot spot subsystem

typically consists of an abstract base class, concrete subclasses of that base class, and
perhaps other related classes [22]. The hook methods of the abstract base class define the
interface to the alternative implementations of the hot spot. The subclasses of the base
class implement the hook methods appropriately for a particular choice for a hot spot.
Fig. 1 shows a UML class diagram of a hot spot subsystem.
There are two principles for framework construction—unification and separation [8].

The unification principle uses inheritance to implement the hot spot subsystem. Both the
template methods and hook methods are defined in the same abstract base class. The hook
methods are implemented in subclasses of the base class. In Fig. 1, the hot spot subsystem
for the unification approach consists of the abstract base class and its subclasses. The
separation principle uses delegation to implement the hot spot subsystem. The template
methods are implemented in a concrete context class; the hook methods are defined in
a separate abstract class and implemented in its subclasses. The template methods thus
delegate work to an instance of the subclass that implements the hook methods. In Fig. 1,
the hot spot subsystem for the separation approach consists of both the client (context)
class and the abstract base class and its subclasses.
A framework is a system that is designed with generality and reuse in mind; and

design patterns [9], which are well-established solutions to program design problems
that commonly occur in practice, are the intellectual tools for achieving the desired
level of generality and reuse. Two design patterns, corresponding to the two framework
construction principles, are useful in implementation of the frameworks.

Two Principles for Framework Construction

• The unification principle [Template Method Design Pattern]
– It uses inheritance to implement the hot spot subsystem
– Both the template methods and hook methods are defined in the same

abstract base class
– The hook methods are implemented in subclasses of the base class

• The separation principle [Strategy Design Pattern]
– It uses delegation to implement the hot spot subsystem
– The template methods are implemented in a concrete context class; the

hook methods are defined in a separate abstract class and implemented in
its subclasses

– The template methods delegate work to an instance of the subclass that
implements the hook methods

6

The Template Method design pattern

• One of the behavioural pattern of the Gang of Four
• Intent: Define the skeleton of an algorithm in an operation,

deferring some steps to subclasses.
• A template method belongs to an abstract class and it defines an

algorithm in terms of abstract operations that subclasses override
to provide concrete behavior.

• Template methods call, among others, the following operations:
– concrete operations of the abstract class (i.e., fixed parts of the

algorithm);
– primitive operations, i.e., abstract operations, that subclasses

have to implement; and
– hook operations, which provide default behavior that

subclasses may override if necessary. A hook operation often
does nothing by default.

7

8

Implementation of Template Methods

• Using Java visibility modifiers
– The template method itself should not be overridden: it can be declared a public

final method
– The concrete operations can be declared private ensuring that they are only

called by the template method
– Primitive operations that must be overridden are declared protected abstract
– The hook operations that may be overridden are declared protected

• Using C++ access control
– The template method itself should not be overridden: it can be declared a

nonvirtual member function
– The concrete operations can be declared protected members ensuring that they

are only called by the template method
– Primitive operations that must be overridden are declared pure virtual
– The hook operations that may be overridden are declared protected virtual

9

The Strategy design pattern

• One of the behavioural pattern of the Gang of Four
• Intent: Allows to select (part of) an algorithm at runtime
• The client uses an object implementing the interface and

invokes methods of the interface for the hot spots of the
algorithm

10

H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169 153

Fig. 3. Template method for divide and conquer.

abstract public class DivConqTemplate
{ public final Solution solve(Problem p)

{ Problem[] pp;
if (isSimple(p)){ return simplySolve(p); }
else { pp = decompose(p); }
Solution[] ss = new Solution[pp.length];
for(int i=0; i < pp.length; i++)
{ ss[i] = solve(pp[i]); }
return combine(p,ss);

}
abstract protected boolean isSimple (Problem p);
abstract protected Solution simplySolve (Problem p);
abstract protected Problem[] decompose (Problem p);
abstract protected Solution combine(Problem p,Solution[] ss);

}

Fig. 4. Template method framework implementation.

as follows:

public interface Problem {};
public interface Solution {};

Given the auxiliary types above, we define the abstract Template Method class
DivConqTemplate as shown in Fig. 4. We generalize the combine()method to take both
the description of the problem and the subproblem solution array as arguments. The divide

Applying the
unification
principle:

UML diagram
of the solution

11

function solve (Problem p) returns Solution // template method
{ if isSimple(p) // hot spots

return simplySolve(p);
else

sp[] = decompose(p);
for (i= 0; i < sp.length; i = i+1)

sol[i] = solve(sp[i]);
return combine(sol);

}

12

H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169 153

Fig. 3. Template method for divide and conquer.

abstract public class DivConqTemplate
{ public final Solution solve(Problem p)

{ Problem[] pp;
if (isSimple(p)){ return simplySolve(p); }
else { pp = decompose(p); }
Solution[] ss = new Solution[pp.length];
for(int i=0; i < pp.length; i++)
{ ss[i] = solve(pp[i]); }
return combine(p,ss);

}
abstract protected boolean isSimple (Problem p);
abstract protected Solution simplySolve (Problem p);
abstract protected Problem[] decompose (Problem p);
abstract protected Solution combine(Problem p,Solution[] ss);

}

Fig. 4. Template method framework implementation.

as follows:

public interface Problem {};
public interface Solution {};

Given the auxiliary types above, we define the abstract Template Method class
DivConqTemplate as shown in Fig. 4. We generalize the combine()method to take both
the description of the problem and the subproblem solution array as arguments. The divide

H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169 153

Fig. 3. Template method for divide and conquer.

abstract public class DivConqTemplate
{ public final Solution solve(Problem p)

{ Problem[] pp;
if (isSimple(p)){ return simplySolve(p); }
else { pp = decompose(p); }
Solution[] ss = new Solution[pp.length];
for(int i=0; i < pp.length; i++)
{ ss[i] = solve(pp[i]); }
return combine(p,ss);

}
abstract protected boolean isSimple (Problem p);
abstract protected Solution simplySolve (Problem p);
abstract protected Problem[] decompose (Problem p);
abstract protected Solution combine(Problem p,Solution[] ss);

}

Fig. 4. Template method framework implementation.

as follows:

public interface Problem {};
public interface Solution {};

Given the auxiliary types above, we define the abstract Template Method class
DivConqTemplate as shown in Fig. 4. We generalize the combine()method to take both
the description of the problem and the subproblem solution array as arguments. The divide

Java code of
the framework

(unification
principle)

function solve (Problem p) returns Solution // template method
{ if isSimple(p) // hot spots

return simplySolve(p);
else

sp[] = decompose(p);
for (i= 0; i < sp.length; i = i+1)

sol[i] = solve(sp[i]);
return combine(sol);

}

• In-place sorting
• Both problem and solution

described by the same
structure: <array, first, last>

13

H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169 155

public class QuickSort extends DivConqTemplate
{ protected boolean isSimple (Problem p)

{ return (((QuickSortDesc)p).getFirst() >=
((QuickSortDesc)p).getLast());

}
protected Solution simplySolve (Problem p)
{ return (Solution) p ; }
protected Problem[] decompose (Problem p)
{ int first = ((QuickSortDesc)p).getFirst();

int last = ((QuickSortDesc)p).getLast();
int[] a = ((QuickSortDesc)p).getArr ();
int x = a[first]; // pivot value
int sp = first;
for (int i = first + 1; i <= last; i++)
{ if (a[i] < x) { swap (a, ++sp, i); } }
swap (a, first, sp);
Problem[] ps = new QuickSortDesc[2];
ps[0] = new QuickSortDesc(a,first,sp-1);
ps[1] = new QuickSortDesc(a,sp+1,last);
return ps;

}
protected Solution combine (Problem p, Solution[] ss)
{ return (Solution) p; }
private void swap (int [] a, int first, int last)
{ int temp = a[first];

a[first] = a[last];
a[last] = temp;

}
}

Fig. 6. Quicksort application.

3.3. Constructing a framework using separation

As an alternative to the above design, we can use the separation principle and Strategy
pattern to implement a divide and conquer framework. The UML class diagram for this ap-
proach is shown in Fig. 7. The template method is implemented in the (concrete) context
class DivConqContext as shown in Fig. 8. The hook methods are defined in the (abstract)
Strategy class DivConqStrategy as shown in Fig. 9. The context class delegates the hook
method calls to a reference to the instance of the Strategy class that it stores internally. Note
that the Strategy approach is more flexible than the Template Method approach in that it is
possible to switch Strategy objects dynamically by using the setAlgorithm()method of
the context class. Constructing an application of the Strategy-based framework for Quick-
sort requires that we implement a subclass of the abstract class DivConqStrategy that is
quite similar to the QuickSort class used in the unification framework (shown in Fig. 6).
The divide and conquer family of algorithms is a simple example that can be used

to illustrate both approaches to framework design. It consists of a set of algorithms that
should be known to the students. Hence, the application domain should be easy to explain.
In the associated project, students can be given the framework and asked to construct

154 H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169

public class QuickSortDesc implements Problem, Solution
{ public QuickSortDesc(int[]arr, int first, int last)

{ this.arr = arr; this.first = first; this.last = last; }
public int getFirst () { return first; }
public int getLast () { return last; }
private int[] arr; // instance data
private int first, last;

}

Fig. 5. Quicksort Problem and Solution implementation.

and conquer framework thus consists of the DivConqTemplate class and the Problem
and Solution interfaces. We can now consider an application built using this framework
library.

3.2. Building an application of the framework

In using a traditional procedure or class library, a client’s program is in control of the
computation; it “calls down” to code from the library. However, frameworks usually exhibit
an inversion of control. The framework’s code is in control of the computation; its template
methods “call down” to the client-supplied hook methods. This section illustrates the use
of the divide and conquer framework to build a quicksort application.
Quicksort is an in-place sort of a sequence of values. The description of a problem

consists of the sequence of values and designators for the beginning and ending elements
of the segment to be sorted. To simplify the presentation, we limit its scope to integer
arrays. Therefore, it is sufficient to identify a problem by the array and the beginning and
ending indices of the unsorted segment. Similarly, a solution can be identified by the array
and the beginning and ending indices of the sorted segment. This similarity between the
Problem and Solution descriptions enables us to use the same object to describe both a
problem and its corresponding solution. Thus, we introduce the class QuickSortDesc to
define the needed descriptor objects as shown in Fig. 5. Given the definitions for base class
DivConqTemplate and auxiliary class QuickSortDesc, we can implement the concrete
subclass QuickSort as shown in Fig. 6.
In a teaching module using this case study, both the framework (i.e., the abstract class)

and the framework application (i.e., the implementation of quicksort) can be presented
to the students so that they can discern the collaborations and relationships among the
classes clearly. However, a clear distinction must be made between the framework and
its application. As an exercise, the students can be assigned the task of modifying the
quicksort application to handle more general kinds of objects. Other algorithms such as
mergesort and binary search should also be assigned as exercises. The amount of work
that each hook method has to do differs from one specific algorithm to another. In the
quicksort implementation, most of the work is done in the decompose() method, which
implements the splitting or pivoting operation of quicksort. In mergesort, however, more
work will be done in the combine() operation because it must carry out the merge phase
of the mergesort algorithm.

An application of the
framework:
QuickSort

(unification principle)

• Merge-sort can be defined similarly
• In that case, combine would do most of the work

Applying the
separation
principle:

UML diagram
of the solution

14

156 H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169

Fig. 7. Strategy pattern for divide and conquer framework.

public final class DivConqContext
{ public DivConqContext (DivConqStrategy dc)

{ this.dc = dc; }
public Solution solve (Problem p)
{ Problem[] pp;

if (dc.isSimple(p)) { return dc.simplySolve(p); }
else { pp = dc.decompose(p); }
Solution[] ss = new Solution[pp.length];
for (int i = 0; i < pp.length; i++)
{ ss[i] = solve(pp[i]); }
return dc.combine(p, ss);

}
public void setAlgorithm (DivConqStrategy dc)
{ this.dc = dc; }
private DivConqStrategy dc;

}

Fig. 8. Strategy context class implementation.

abstract public class DivConqStrategy
{ abstract public boolean isSimple (Problem p);

abstract public Solution simplySolve (Problem p);
abstract public Problem[] decompose (Problem p);
abstract public Solution combine(Problem p, Solution[] ss);

}

Fig. 9. Strategy object abstract class.

function solve (Problem p) returns Solution // template method
{ if isSimple(p) // hot spots

return simplySolve(p);
else

sp[] = decompose(p);
for (i= 0; i < sp.length; i = i+1)

sol[i] = solve(sp[i]);
return combine(sol);

}

15

Code of the framework
(separation principle)

The client delegates
the hot spots to an
object implementing
the strategy

The implementations
of DivConqStrategy are
similar to the previous
case

156 H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169

Fig. 7. Strategy pattern for divide and conquer framework.

public final class DivConqContext
{ public DivConqContext (DivConqStrategy dc)

{ this.dc = dc; }
public Solution solve (Problem p)
{ Problem[] pp;

if (dc.isSimple(p)) { return dc.simplySolve(p); }
else { pp = dc.decompose(p); }
Solution[] ss = new Solution[pp.length];
for (int i = 0; i < pp.length; i++)
{ ss[i] = solve(pp[i]); }
return dc.combine(p, ss);

}
public void setAlgorithm (DivConqStrategy dc)
{ this.dc = dc; }
private DivConqStrategy dc;

}

Fig. 8. Strategy context class implementation.

abstract public class DivConqStrategy
{ abstract public boolean isSimple (Problem p);

abstract public Solution simplySolve (Problem p);
abstract public Problem[] decompose (Problem p);
abstract public Solution combine(Problem p, Solution[] ss);

}

Fig. 9. Strategy object abstract class.

156 H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169

Fig. 7. Strategy pattern for divide and conquer framework.

public final class DivConqContext
{ public DivConqContext (DivConqStrategy dc)

{ this.dc = dc; }
public Solution solve (Problem p)
{ Problem[] pp;

if (dc.isSimple(p)) { return dc.simplySolve(p); }
else { pp = dc.decompose(p); }
Solution[] ss = new Solution[pp.length];
for (int i = 0; i < pp.length; i++)
{ ss[i] = solve(pp[i]); }
return dc.combine(p, ss);

}
public void setAlgorithm (DivConqStrategy dc)
{ this.dc = dc; }
private DivConqStrategy dc;

}

Fig. 8. Strategy context class implementation.

abstract public class DivConqStrategy
{ abstract public boolean isSimple (Problem p);

abstract public Solution simplySolve (Problem p);
abstract public Problem[] decompose (Problem p);
abstract public Solution combine(Problem p, Solution[] ss);

}

Fig. 9. Strategy object abstract class.

Unification vs. separation principle
Template method vs. Strategy DP

• The two approaches differ in the coupling between client
and chosen algorithm

• With Strategy, the coupling is determined by dependency
(setter) injection, and could change at runtime 16

156 H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169

Fig. 7. Strategy pattern for divide and conquer framework.

public final class DivConqContext
{ public DivConqContext (DivConqStrategy dc)

{ this.dc = dc; }
public Solution solve (Problem p)
{ Problem[] pp;

if (dc.isSimple(p)) { return dc.simplySolve(p); }
else { pp = dc.decompose(p); }
Solution[] ss = new Solution[pp.length];
for (int i = 0; i < pp.length; i++)
{ ss[i] = solve(pp[i]); }
return dc.combine(p, ss);

}
public void setAlgorithm (DivConqStrategy dc)
{ this.dc = dc; }
private DivConqStrategy dc;

}

Fig. 8. Strategy context class implementation.

abstract public class DivConqStrategy
{ abstract public boolean isSimple (Problem p);

abstract public Solution simplySolve (Problem p);
abstract public Problem[] decompose (Problem p);
abstract public Solution combine(Problem p, Solution[] ss);

}

Fig. 9. Strategy object abstract class.

H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169 153

Fig. 3. Template method for divide and conquer.

abstract public class DivConqTemplate
{ public final Solution solve(Problem p)

{ Problem[] pp;
if (isSimple(p)){ return simplySolve(p); }
else { pp = decompose(p); }
Solution[] ss = new Solution[pp.length];
for(int i=0; i < pp.length; i++)
{ ss[i] = solve(pp[i]); }
return combine(p,ss);

}
abstract protected boolean isSimple (Problem p);
abstract protected Solution simplySolve (Problem p);
abstract protected Problem[] decompose (Problem p);
abstract protected Solution combine(Problem p,Solution[] ss);

}

Fig. 4. Template method framework implementation.

as follows:

public interface Problem {};
public interface Solution {};

Given the auxiliary types above, we define the abstract Template Method class
DivConqTemplate as shown in Fig. 4. We generalize the combine()method to take both
the description of the problem and the subproblem solution array as arguments. The divide

Framework development by
generalization

• We address now level 4 of "framework understanding"
– Learning to analyze a potential software family, identifying its

possible common and variable aspects, and evaluating
alternative framework architectures. Framework design involves
incrementally evolving a design rather than discovering it in one
single step.

• This “evolution” consists of
– examining existing designs for family members
– identifying the frozen spots and hot spots of the family
– generalizing the program structure to enable

• reuse of the code for frozen spots and
• use of different implementations for each hot spot.

• We present an example based on binary trees traversals,
starting from a concrete algorithm for printing a tree with
preorder traversal

17

Binary trees and preorder traversal

18

158 H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169

Fig. 10. Binary tree using Composite design pattern.

5. Binary tree traversal framework

As a case study on framework generalization, consider another classic problem, a binary
tree traversal [11]. This case study seeks to address aspects of the fourth level of framework
understanding described in Section 1—learning to analyze potential software families to
identify the frozen and hot spots—as well as reinforcing and extending the students’
understanding of the principles and techniques for constructing frameworks.
A binary tree is a hierarchical structure that is commonly taught in a lower-level

undergraduate data structures course in a computing science curriculum. In this case
study, we implement the binary tree with the BinTree class hierarchy, which is a
structure designed according to the Composite design pattern [9] as shown in Fig. 10.
The Composite pattern “lets clients treat individual objects and compositions of objects
uniformly” [9]. Class BinTree has the Component base-class role in the pattern
implementation, subclass Node has the Composite role, and subclass Nil has the Leaf
role. Nil is also implemented according to the Singleton pattern [9], which guarantees
exactly one instance exists. Fig. 11 shows the Java code for the BinTree class hierarchy.
A traversal is a systematic technique for “visiting” all the nodes in a tree. One common

traversal technique for a binary tree is the preorder traversal. This is a depth-first traversal,
that is, it accesses a node’s children before it accesses the node’s siblings. The preorder
traversal can be expressed by a recursive procedure as follows:

procedure preorder(t)
{ if t null, then return;

perform visit action for root node of tree t;
preorder(left subtree of t);
preorder(right subtree of t);

}

The visit action varies from application to another. The BinTree hierarchy in Fig. 11
supports a simple preorder traversal operation preorder() that merely prints a node’s
value when it is visited.

158 H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169

Fig. 10. Binary tree using Composite design pattern.

5. Binary tree traversal framework

As a case study on framework generalization, consider another classic problem, a binary
tree traversal [11]. This case study seeks to address aspects of the fourth level of framework
understanding described in Section 1—learning to analyze potential software families to
identify the frozen and hot spots—as well as reinforcing and extending the students’
understanding of the principles and techniques for constructing frameworks.
A binary tree is a hierarchical structure that is commonly taught in a lower-level

undergraduate data structures course in a computing science curriculum. In this case
study, we implement the binary tree with the BinTree class hierarchy, which is a
structure designed according to the Composite design pattern [9] as shown in Fig. 10.
The Composite pattern “lets clients treat individual objects and compositions of objects
uniformly” [9]. Class BinTree has the Component base-class role in the pattern
implementation, subclass Node has the Composite role, and subclass Nil has the Leaf
role. Nil is also implemented according to the Singleton pattern [9], which guarantees
exactly one instance exists. Fig. 11 shows the Java code for the BinTree class hierarchy.
A traversal is a systematic technique for “visiting” all the nodes in a tree. One common

traversal technique for a binary tree is the preorder traversal. This is a depth-first traversal,
that is, it accesses a node’s children before it accesses the node’s siblings. The preorder
traversal can be expressed by a recursive procedure as follows:

procedure preorder(t)
{ if t null, then return;

perform visit action for root node of tree t;
preorder(left subtree of t);
preorder(right subtree of t);

}

The visit action varies from application to another. The BinTree hierarchy in Fig. 11
supports a simple preorder traversal operation preorder() that merely prints a node’s
value when it is visited.

Binary trees as instance of
the Composite design pattern
• Provides uniform access to

nodes and to leaves

Pseudo-code of generic
depth-first preorder
left-to-right traversal
(action not specified)

Binary tree class hierarcy

19

H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169 159

abstract public class BinTree
{ public void setValue(Object v) { } // mutators

public void setLeft(BinTree l) { } // default
public void setRight(BinTree r) { }
abstract public void preorder(); // traversal
public Object getValue() { return null; } // accessors
public BinTree getLeft() { return null; } // default
public BinTree getRight() { return null; }

}

public class Node extends BinTree
{ public Node(Object v, BinTree l, BinTree r)

{ value = v; left = l; right = r; }
public void setValue(Object v) { value = v; } // mutators
public void setLeft(BinTree l) { left = l; }
public void setRight(BinTree r) { right = r; }
public void preorder() // traversal
{ System.out.println("Visit node with value: " + value);

left.preorder(); right.preorder();
}
public Object getValue() { return value; } // accessors
public BinTree getLeft() { return left; }
public BinTree getRight() { return right; }
private Object value; // instance data
private BinTree left, right;

}

public class Nil extends BinTree
{ private Nil() { } // private to require use of getNil()

public void preorder() { }; // traversal
static public BinTree getNil() { return theNil; } // Singleton
static public BinTree theNil = new Nil();

}

Fig. 11. Binary tree class hierarchy.

Building a software framework for binary tree traversals involves the general principles
for framework design.We begin with the simple preorder operation and tree structure given
in Fig. 11 and consider the domain of the family and identify the frozen spots and hot spots.
What is the scope of the family of binary tree traversals? The family should include

at least the standard kinds of depth-first traversals (e.g., preorder, postorder, and in-order)
and allow flexible visit actions on the nodes. In general, the visit action will be a function
on the node’s attributes and on the accumulated state of the traversal computed along the
sequence of all the nodes accessed to that point in the computation. The framework should
enable traversal orders other than the depth first. The framework should also support binary
search trees, but it is not necessary that it support multiway trees or general graphs.
What, then, are the commonalities, that is, frozen spots, that all members of the family

exhibit? Considering the scope and examining the prototype application, we choose the
following frozen spots:

H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169 159

abstract public class BinTree
{ public void setValue(Object v) { } // mutators

public void setLeft(BinTree l) { } // default
public void setRight(BinTree r) { }
abstract public void preorder(); // traversal
public Object getValue() { return null; } // accessors
public BinTree getLeft() { return null; } // default
public BinTree getRight() { return null; }

}

public class Node extends BinTree
{ public Node(Object v, BinTree l, BinTree r)

{ value = v; left = l; right = r; }
public void setValue(Object v) { value = v; } // mutators
public void setLeft(BinTree l) { left = l; }
public void setRight(BinTree r) { right = r; }
public void preorder() // traversal
{ System.out.println("Visit node with value: " + value);

left.preorder(); right.preorder();
}
public Object getValue() { return value; } // accessors
public BinTree getLeft() { return left; }
public BinTree getRight() { return right; }
private Object value; // instance data
private BinTree left, right;

}

public class Nil extends BinTree
{ private Nil() { } // private to require use of getNil()

public void preorder() { }; // traversal
static public BinTree getNil() { return theNil; } // Singleton
static public BinTree theNil = new Nil();

}

Fig. 11. Binary tree class hierarchy.

Building a software framework for binary tree traversals involves the general principles
for framework design.We begin with the simple preorder operation and tree structure given
in Fig. 11 and consider the domain of the family and identify the frozen spots and hot spots.
What is the scope of the family of binary tree traversals? The family should include

at least the standard kinds of depth-first traversals (e.g., preorder, postorder, and in-order)
and allow flexible visit actions on the nodes. In general, the visit action will be a function
on the node’s attributes and on the accumulated state of the traversal computed along the
sequence of all the nodes accessed to that point in the computation. The framework should
enable traversal orders other than the depth first. The framework should also support binary
search trees, but it is not necessary that it support multiway trees or general graphs.
What, then, are the commonalities, that is, frozen spots, that all members of the family

exhibit? Considering the scope and examining the prototype application, we choose the
following frozen spots:

H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169 159

abstract public class BinTree
{ public void setValue(Object v) { } // mutators

public void setLeft(BinTree l) { } // default
public void setRight(BinTree r) { }
abstract public void preorder(); // traversal
public Object getValue() { return null; } // accessors
public BinTree getLeft() { return null; } // default
public BinTree getRight() { return null; }

}

public class Node extends BinTree
{ public Node(Object v, BinTree l, BinTree r)

{ value = v; left = l; right = r; }
public void setValue(Object v) { value = v; } // mutators
public void setLeft(BinTree l) { left = l; }
public void setRight(BinTree r) { right = r; }
public void preorder() // traversal
{ System.out.println("Visit node with value: " + value);

left.preorder(); right.preorder();
}
public Object getValue() { return value; } // accessors
public BinTree getLeft() { return left; }
public BinTree getRight() { return right; }
private Object value; // instance data
private BinTree left, right;

}

public class Nil extends BinTree
{ private Nil() { } // private to require use of getNil()

public void preorder() { }; // traversal
static public BinTree getNil() { return theNil; } // Singleton
static public BinTree theNil = new Nil();

}

Fig. 11. Binary tree class hierarchy.

Building a software framework for binary tree traversals involves the general principles
for framework design.We begin with the simple preorder operation and tree structure given
in Fig. 11 and consider the domain of the family and identify the frozen spots and hot spots.
What is the scope of the family of binary tree traversals? The family should include

at least the standard kinds of depth-first traversals (e.g., preorder, postorder, and in-order)
and allow flexible visit actions on the nodes. In general, the visit action will be a function
on the node’s attributes and on the accumulated state of the traversal computed along the
sequence of all the nodes accessed to that point in the computation. The framework should
enable traversal orders other than the depth first. The framework should also support binary
search trees, but it is not necessary that it support multiway trees or general graphs.
What, then, are the commonalities, that is, frozen spots, that all members of the family

exhibit? Considering the scope and examining the prototype application, we choose the
following frozen spots:

Abstract class defining defaults
and abstract methods

Implementation of the
abstract class for Nodes
• The action simply prints

Implementation of the
abstract class for leaves,
using the Singleton DP

Identifying Frozen and Hot Spots

Possible choices, generalizing the concrete
program to a family of tree-traversal algorithms
• Frozen Spots (fixed for the whole family)
– The structure of the tree, as defined by the

BinTree hierarchy
– A traversal accesses every element of the tree

once, but it can stop before completing
– A traversal performs one or more visit actions

accessing an element of the tree

20

Identifying Frozen and Hot Spots

• Hot Spots (to be fixed in each element of the
family)
1. Variability in the visit operation’s action: a function

of the current node’s value and the accumulated
result

2. Variability in ordering of the visit action with respect
to subtree traversals. Should support preorder,
postorder, in-order, and their combination

3. Variability in the tree navigation technique. Should
support any access order (not only left-to-right,
depth-first, total traversals)

21

22

H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169 161

abstract public class BinTree
{ ...

abstract public Object preorder(Object ts, PreorderStrategy v);
...

}

public class Node extends BinTree
{ ...

public Object preorder(Object ts,PreorderStrategy v) //traversal
{ ts = v.visitPre(ts, this);

ts = left.preorder(ts, v);
ts = right.preorder(ts, v);
return ts;

}
...

}

public class Nil extends BinTree
{ ...

public Object preorder(Object ts, PreorderStrategy v)
{ return ts; }
...

}

public interface PreorderStrategy
{ abstract public Object visitPre(Object ts, BinTree t); }

Fig. 12. Binary tree with generalized visit action.

5.2. Generalizing the visit order

In this case study, hot spot #2 requires making the “order” of the visit actions a feature
that can be customized for a specific application. That is, it must be possible to vary the
order of a node’s visit action with respect to the traversals of its children. The framework
should support preorder, postorder, and in-order traversals and perhaps combinations of
those. A good generalization of the three standard traversals is one that potentially performs
a visit action on the node at any of three different points—on first arrival (i.e., a “left” visit),
between the subtree traversals (i.e., a “bottom” visit), and just before departure from the
node (i.e., a “right” visit). This is sometimes called an Euler tour traversal [11].
We enable the needed variability for this hot spot by generalizing the hot spot subsystem

introduced in the previous step instead of introducing a new hot spot subsystem. We
generalize the behavior of the preorder method in the BinTree hierarchy and replace
it by a method traverse that encodes the common features of all Euler tour traversals but
delegates the visit actions at the three possible visit points to hook methods defined on the
Strategy object. We also observe that there was no visit action associated with a Nil subtree
in the previous versions of the program. In some applications, it might be useful to have
some action associated with a visit to a Nil subtree. So we add a fourth hook method for
handling this as a special case. In the framework, we thus replace the PreorderStrategy

H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169 161

abstract public class BinTree
{ ...

abstract public Object preorder(Object ts, PreorderStrategy v);
...

}

public class Node extends BinTree
{ ...

public Object preorder(Object ts,PreorderStrategy v) //traversal
{ ts = v.visitPre(ts, this);

ts = left.preorder(ts, v);
ts = right.preorder(ts, v);
return ts;

}
...

}

public class Nil extends BinTree
{ ...

public Object preorder(Object ts, PreorderStrategy v)
{ return ts; }
...

}

public interface PreorderStrategy
{ abstract public Object visitPre(Object ts, BinTree t); }

Fig. 12. Binary tree with generalized visit action.

5.2. Generalizing the visit order

In this case study, hot spot #2 requires making the “order” of the visit actions a feature
that can be customized for a specific application. That is, it must be possible to vary the
order of a node’s visit action with respect to the traversals of its children. The framework
should support preorder, postorder, and in-order traversals and perhaps combinations of
those. A good generalization of the three standard traversals is one that potentially performs
a visit action on the node at any of three different points—on first arrival (i.e., a “left” visit),
between the subtree traversals (i.e., a “bottom” visit), and just before departure from the
node (i.e., a “right” visit). This is sometimes called an Euler tour traversal [11].
We enable the needed variability for this hot spot by generalizing the hot spot subsystem

introduced in the previous step instead of introducing a new hot spot subsystem. We
generalize the behavior of the preorder method in the BinTree hierarchy and replace
it by a method traverse that encodes the common features of all Euler tour traversals but
delegates the visit actions at the three possible visit points to hook methods defined on the
Strategy object. We also observe that there was no visit action associated with a Nil subtree
in the previous versions of the program. In some applications, it might be useful to have
some action associated with a visit to a Nil subtree. So we add a fourth hook method for
handling this as a special case. In the framework, we thus replace the PreorderStrategy

H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169 161

abstract public class BinTree
{ ...

abstract public Object preorder(Object ts, PreorderStrategy v);
...

}

public class Node extends BinTree
{ ...

public Object preorder(Object ts,PreorderStrategy v) //traversal
{ ts = v.visitPre(ts, this);

ts = left.preorder(ts, v);
ts = right.preorder(ts, v);
return ts;

}
...

}

public class Nil extends BinTree
{ ...

public Object preorder(Object ts, PreorderStrategy v)
{ return ts; }
...

}

public interface PreorderStrategy
{ abstract public Object visitPre(Object ts, BinTree t); }

Fig. 12. Binary tree with generalized visit action.

5.2. Generalizing the visit order

In this case study, hot spot #2 requires making the “order” of the visit actions a feature
that can be customized for a specific application. That is, it must be possible to vary the
order of a node’s visit action with respect to the traversals of its children. The framework
should support preorder, postorder, and in-order traversals and perhaps combinations of
those. A good generalization of the three standard traversals is one that potentially performs
a visit action on the node at any of three different points—on first arrival (i.e., a “left” visit),
between the subtree traversals (i.e., a “bottom” visit), and just before departure from the
node (i.e., a “right” visit). This is sometimes called an Euler tour traversal [11].
We enable the needed variability for this hot spot by generalizing the hot spot subsystem

introduced in the previous step instead of introducing a new hot spot subsystem. We
generalize the behavior of the preorder method in the BinTree hierarchy and replace
it by a method traverse that encodes the common features of all Euler tour traversals but
delegates the visit actions at the three possible visit points to hook methods defined on the
Strategy object. We also observe that there was no visit action associated with a Nil subtree
in the previous versions of the program. In some applications, it might be useful to have
some action associated with a visit to a Nil subtree. So we add a fourth hook method for
handling this as a special case. In the framework, we thus replace the PreorderStrategy

Hot Spot #1: Generalizing the visit action
• Using the separation principle (Strategy pattern) we allow different visit actions on the

same tree
• action is represented by the abstract method visitPre
• It takes an accumulator Object and a BinTree as arguments

H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169 161

abstract public class BinTree
{ ...

abstract public Object preorder(Object ts, PreorderStrategy v);
...

}

public class Node extends BinTree
{ ...

public Object preorder(Object ts,PreorderStrategy v) //traversal
{ ts = v.visitPre(ts, this);

ts = left.preorder(ts, v);
ts = right.preorder(ts, v);
return ts;

}
...

}

public class Nil extends BinTree
{ ...

public Object preorder(Object ts, PreorderStrategy v)
{ return ts; }
...

}

public interface PreorderStrategy
{ abstract public Object visitPre(Object ts, BinTree t); }

Fig. 12. Binary tree with generalized visit action.

5.2. Generalizing the visit order

In this case study, hot spot #2 requires making the “order” of the visit actions a feature
that can be customized for a specific application. That is, it must be possible to vary the
order of a node’s visit action with respect to the traversals of its children. The framework
should support preorder, postorder, and in-order traversals and perhaps combinations of
those. A good generalization of the three standard traversals is one that potentially performs
a visit action on the node at any of three different points—on first arrival (i.e., a “left” visit),
between the subtree traversals (i.e., a “bottom” visit), and just before departure from the
node (i.e., a “right” visit). This is sometimes called an Euler tour traversal [11].
We enable the needed variability for this hot spot by generalizing the hot spot subsystem

introduced in the previous step instead of introducing a new hot spot subsystem. We
generalize the behavior of the preorder method in the BinTree hierarchy and replace
it by a method traverse that encodes the common features of all Euler tour traversals but
delegates the visit actions at the three possible visit points to hook methods defined on the
Strategy object. We also observe that there was no visit action associated with a Nil subtree
in the previous versions of the program. In some applications, it might be useful to have
some action associated with a visit to a Nil subtree. So we add a fourth hook method for
handling this as a special case. In the framework, we thus replace the PreorderStrategy

New BinTree hierarcy.

The preorder method takes
the action from the strategy
and handles accumulation

Exercise: define strategies for
printing the values of the
nodes, and for computing the
sum / max of all node values

23

Hot Spot #2: Generalizing the visit order
We generalize the previous hot spot
subsystem
• The Euler Strategy visits each node

three times (left = pre, right = post,
bottom = in)

preorder is now traverse

Using the new abstract
methods an Euler Strategy
can implement any
combination of pre-order,
post-order or in-order
traversal

Also visitNil method added,
for the sake of generality

162 H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169

abstract public class BinTree
{ ...

abstract public Object traverse(Object ts, EulerStrategy v);
...

}

public class Node extends BinTree
{ ...

public Object traverse(Object ts, EulerStrategy v) // traversal
{ ts = v.visitLeft(ts,this); // upon arrival from above

ts = left.traverse(ts,v);
ts = v.visitBottom(ts,this); // upon return from left
ts = right.traverse(ts,v);
ts = v.visitRight(ts,this); // upon completion
return ts;

}
...

}

public class Nil extends BinTree
{ ...

public Object traverse(Object ts, EulerStrategy v)
{ return v.visitNil(ts,this); }
...

}

public interface EulerStrategy
{ abstract public Object visitLeft(Object ts, BinTree t);

abstract public Object visitBottom(Object ts, BinTree t);
abstract public Object visitRight(Object ts, BinTree t);
abstract public Object visitNil(Object ts, BinTree t);

}

Fig. 13. Binary tree with Euler traversal.

interface from the previous program with a new EulerStrategy interface that defines the
new hook methods. Fig. 13 shows the changes made to the code in Fig. 11 to incorporate
the Euler tour traversal order for the visit actions.

5.3. Generalizing the tree navigation

In this case study, hot spot #3 requires making the navigation of the tree structure a
feature that can be customized to meet the needs of a specific application. In particular,
it should enable variability in the order in which nodes are accessed. For example, the
framework should support breadth-first traversals as well as depth-first traversals. As we
consider this generalization step, two of the frozen spots are of relevance:

(1) The BinTree hierarchy cannot be modified by clients of the framework.
(2) A traversal must access every element of the tree once, unless the computation

determines that it can stop before it completes the traversal.

162 H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169

abstract public class BinTree
{ ...

abstract public Object traverse(Object ts, EulerStrategy v);
...

}

public class Node extends BinTree
{ ...

public Object traverse(Object ts, EulerStrategy v) // traversal
{ ts = v.visitLeft(ts,this); // upon arrival from above

ts = left.traverse(ts,v);
ts = v.visitBottom(ts,this); // upon return from left
ts = right.traverse(ts,v);
ts = v.visitRight(ts,this); // upon completion
return ts;

}
...

}

public class Nil extends BinTree
{ ...

public Object traverse(Object ts, EulerStrategy v)
{ return v.visitNil(ts,this); }
...

}

public interface EulerStrategy
{ abstract public Object visitLeft(Object ts, BinTree t);

abstract public Object visitBottom(Object ts, BinTree t);
abstract public Object visitRight(Object ts, BinTree t);
abstract public Object visitNil(Object ts, BinTree t);

}

Fig. 13. Binary tree with Euler traversal.

interface from the previous program with a new EulerStrategy interface that defines the
new hook methods. Fig. 13 shows the changes made to the code in Fig. 11 to incorporate
the Euler tour traversal order for the visit actions.

5.3. Generalizing the tree navigation

In this case study, hot spot #3 requires making the navigation of the tree structure a
feature that can be customized to meet the needs of a specific application. In particular,
it should enable variability in the order in which nodes are accessed. For example, the
framework should support breadth-first traversals as well as depth-first traversals. As we
consider this generalization step, two of the frozen spots are of relevance:

(1) The BinTree hierarchy cannot be modified by clients of the framework.
(2) A traversal must access every element of the tree once, unless the computation

determines that it can stop before it completes the traversal.

162 H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169

abstract public class BinTree
{ ...

abstract public Object traverse(Object ts, EulerStrategy v);
...

}

public class Node extends BinTree
{ ...

public Object traverse(Object ts, EulerStrategy v) // traversal
{ ts = v.visitLeft(ts,this); // upon arrival from above

ts = left.traverse(ts,v);
ts = v.visitBottom(ts,this); // upon return from left
ts = right.traverse(ts,v);
ts = v.visitRight(ts,this); // upon completion
return ts;

}
...

}

public class Nil extends BinTree
{ ...

public Object traverse(Object ts, EulerStrategy v)
{ return v.visitNil(ts,this); }
...

}

public interface EulerStrategy
{ abstract public Object visitLeft(Object ts, BinTree t);

abstract public Object visitBottom(Object ts, BinTree t);
abstract public Object visitRight(Object ts, BinTree t);
abstract public Object visitNil(Object ts, BinTree t);

}

Fig. 13. Binary tree with Euler traversal.

interface from the previous program with a new EulerStrategy interface that defines the
new hook methods. Fig. 13 shows the changes made to the code in Fig. 11 to incorporate
the Euler tour traversal order for the visit actions.

5.3. Generalizing the tree navigation

In this case study, hot spot #3 requires making the navigation of the tree structure a
feature that can be customized to meet the needs of a specific application. In particular,
it should enable variability in the order in which nodes are accessed. For example, the
framework should support breadth-first traversals as well as depth-first traversals. As we
consider this generalization step, two of the frozen spots are of relevance:

(1) The BinTree hierarchy cannot be modified by clients of the framework.
(2) A traversal must access every element of the tree once, unless the computation

determines that it can stop before it completes the traversal.

162 H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169

abstract public class BinTree
{ ...

abstract public Object traverse(Object ts, EulerStrategy v);
...

}

public class Node extends BinTree
{ ...

public Object traverse(Object ts, EulerStrategy v) // traversal
{ ts = v.visitLeft(ts,this); // upon arrival from above

ts = left.traverse(ts,v);
ts = v.visitBottom(ts,this); // upon return from left
ts = right.traverse(ts,v);
ts = v.visitRight(ts,this); // upon completion
return ts;

}
...

}

public class Nil extends BinTree
{ ...

public Object traverse(Object ts, EulerStrategy v)
{ return v.visitNil(ts,this); }
...

}

public interface EulerStrategy
{ abstract public Object visitLeft(Object ts, BinTree t);

abstract public Object visitBottom(Object ts, BinTree t);
abstract public Object visitRight(Object ts, BinTree t);
abstract public Object visitNil(Object ts, BinTree t);

}

Fig. 13. Binary tree with Euler traversal.

interface from the previous program with a new EulerStrategy interface that defines the
new hook methods. Fig. 13 shows the changes made to the code in Fig. 11 to incorporate
the Euler tour traversal order for the visit actions.

5.3. Generalizing the tree navigation

In this case study, hot spot #3 requires making the navigation of the tree structure a
feature that can be customized to meet the needs of a specific application. In particular,
it should enable variability in the order in which nodes are accessed. For example, the
framework should support breadth-first traversals as well as depth-first traversals. As we
consider this generalization step, two of the frozen spots are of relevance:

(1) The BinTree hierarchy cannot be modified by clients of the framework.
(2) A traversal must access every element of the tree once, unless the computation

determines that it can stop before it completes the traversal.

Hot Spot #3: Generalizing the tree navigation

• Support for breadth-first, depth-first, left-to-right,
right-to-left, partial traversal, …

• Remember the frozen spots:
– The structure of the tree, as defined by the BinTree

hierarchy: it cannot be modified
– A traversal accesses every element of the tree once,

but it can stop before completing
• Instead of generalizing the traverse method, we

use the Visitor design pattern
• Visitor guarantees separation between algorithm

and data structure

24

The Visitor design pattern

25

• The data structure can be made of
different types of components
(ConcreteElements)

• Each component implements an
accept(Visitor) method

• The Visitor defines one visit method
for each type

• The navigation logic is in the Visitor

• At each step, the correct visit method
is selected by overloading

Hot Spot #3: Binary Tree Visitor framework

26

164 H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169

Fig. 14. Binary tree Visitor framework.

Programming projects accompanying use of this case study in a course can
require development of various applications or require the design of new kinds of
BinTreeVisitor subsystems. Instructors can also ask the students to apply the analysis
and design techniques to other possible families.
As with the divide and conquer algorithms, binary tree structures and algorithms are

well known to computing science and software engineering students. Use of this case study
in an upper-level undergraduate course should not require an extensive explanation of the
domain of the framework. However, this case study, and the application of the techniques to
other problems, does require considerable thought and analysis on the part of the students.
It is not a trivial activity for students to discover a sequence of generalization steps and
effective hot spot abstractions that are appropriate for a large family of programs.

6. Related work

The thesis of this paper is that classic problems, such as those related to classic
algorithms and data structures, are helpful examples for instructors to use in teaching
computing science and software engineering students techniques for the design of software
families. This paper describes two relatively simple examples designed to help teach both
the use and construction of the type of software family called a software framework. The

27

The BinTree code is almost unchanged,
only the traverse method is changed to
• accept an instance of Visitor
• invoke visit(this) on it

H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169 165

abstract public class BinTree
{ public void setValue(Object v) { } // mutators

public void setLeft(BinTree l) { } // default
public void setRight(BinTree r) { }
abstract public void accept(BinTreeVisitor v); // accept Visitor
public Object getValue() { return null; } // accessors
public BinTree getLeft() { return null; } // default
public BinTree getRight() { return null; }

}

public class Node extends BinTree
{ public Node(Object v, BinTree l, BinTree r)

{ value = v; left = l; right = r; }
public void setValue(Object v) { value = v; } // mutators
public void setLeft(BinTree l) { left = l; }
public void setRight(BinTree r) { right = r; }
// accept a Visitor object
public void accept(BinTreeVisitor v) { v.visit(this); }
public Object getValue() { return value; } // accessors
public BinTree getLeft() { return left; }
public BinTree getRight() { return right; }
private Object value; // instance data
private BinTree left, right;

}

public class Nil extends BinTree
{ private Nil() { } // private to require use of getNil()

// accept a Visitor object
public void accept(BinTreeVisitor v) { v.visit(this); }
static public BinTree getNil() { return theNil; } // Singleton
static public BinTree theNil = new Nil();

}

public interface BinTreeVisitor
{ abstract void visit(Node t);

abstract void visit(Nil t);
}

Fig. 15. Binary tree using Visitor pattern.

examples are aimed at advanced Java programming or software design courses in which
students have not been previously exposed to frameworks in a significant way. The goal is
to improve the students’ abilities to construct and use abstractions in the design of software
families.
Some advocate that use of frameworks be integrated into the introductory computing

science sequence, e.g., into the data structures course [23]. In this approach, the
understanding and use of standard data structure frameworks replace many of the
traditional topics, which focus on the construction of data structures and algorithms. The
availability of standard libraries such as the Java Collections frameworkmakes this a viable
approach. The argument is that when students enter the workplace, they more often face

H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169 165

abstract public class BinTree
{ public void setValue(Object v) { } // mutators

public void setLeft(BinTree l) { } // default
public void setRight(BinTree r) { }
abstract public void accept(BinTreeVisitor v); // accept Visitor
public Object getValue() { return null; } // accessors
public BinTree getLeft() { return null; } // default
public BinTree getRight() { return null; }

}

public class Node extends BinTree
{ public Node(Object v, BinTree l, BinTree r)

{ value = v; left = l; right = r; }
public void setValue(Object v) { value = v; } // mutators
public void setLeft(BinTree l) { left = l; }
public void setRight(BinTree r) { right = r; }
// accept a Visitor object
public void accept(BinTreeVisitor v) { v.visit(this); }
public Object getValue() { return value; } // accessors
public BinTree getLeft() { return left; }
public BinTree getRight() { return right; }
private Object value; // instance data
private BinTree left, right;

}

public class Nil extends BinTree
{ private Nil() { } // private to require use of getNil()

// accept a Visitor object
public void accept(BinTreeVisitor v) { v.visit(this); }
static public BinTree getNil() { return theNil; } // Singleton
static public BinTree theNil = new Nil();

}

public interface BinTreeVisitor
{ abstract void visit(Node t);

abstract void visit(Nil t);
}

Fig. 15. Binary tree using Visitor pattern.

examples are aimed at advanced Java programming or software design courses in which
students have not been previously exposed to frameworks in a significant way. The goal is
to improve the students’ abilities to construct and use abstractions in the design of software
families.
Some advocate that use of frameworks be integrated into the introductory computing

science sequence, e.g., into the data structures course [23]. In this approach, the
understanding and use of standard data structure frameworks replace many of the
traditional topics, which focus on the construction of data structures and algorithms. The
availability of standard libraries such as the Java Collections frameworkmakes this a viable
approach. The argument is that when students enter the workplace, they more often face

H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169 165

abstract public class BinTree
{ public void setValue(Object v) { } // mutators

public void setLeft(BinTree l) { } // default
public void setRight(BinTree r) { }
abstract public void accept(BinTreeVisitor v); // accept Visitor
public Object getValue() { return null; } // accessors
public BinTree getLeft() { return null; } // default
public BinTree getRight() { return null; }

}

public class Node extends BinTree
{ public Node(Object v, BinTree l, BinTree r)

{ value = v; left = l; right = r; }
public void setValue(Object v) { value = v; } // mutators
public void setLeft(BinTree l) { left = l; }
public void setRight(BinTree r) { right = r; }
// accept a Visitor object
public void accept(BinTreeVisitor v) { v.visit(this); }
public Object getValue() { return value; } // accessors
public BinTree getLeft() { return left; }
public BinTree getRight() { return right; }
private Object value; // instance data
private BinTree left, right;

}

public class Nil extends BinTree
{ private Nil() { } // private to require use of getNil()

// accept a Visitor object
public void accept(BinTreeVisitor v) { v.visit(this); }
static public BinTree getNil() { return theNil; } // Singleton
static public BinTree theNil = new Nil();

}

public interface BinTreeVisitor
{ abstract void visit(Node t);

abstract void visit(Nil t);
}

Fig. 15. Binary tree using Visitor pattern.

examples are aimed at advanced Java programming or software design courses in which
students have not been previously exposed to frameworks in a significant way. The goal is
to improve the students’ abilities to construct and use abstractions in the design of software
families.
Some advocate that use of frameworks be integrated into the introductory computing

science sequence, e.g., into the data structures course [23]. In this approach, the
understanding and use of standard data structure frameworks replace many of the
traditional topics, which focus on the construction of data structures and algorithms. The
availability of standard libraries such as the Java Collections frameworkmakes this a viable
approach. The argument is that when students enter the workplace, they more often face

H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169 165

abstract public class BinTree
{ public void setValue(Object v) { } // mutators

public void setLeft(BinTree l) { } // default
public void setRight(BinTree r) { }
abstract public void accept(BinTreeVisitor v); // accept Visitor
public Object getValue() { return null; } // accessors
public BinTree getLeft() { return null; } // default
public BinTree getRight() { return null; }

}

public class Node extends BinTree
{ public Node(Object v, BinTree l, BinTree r)

{ value = v; left = l; right = r; }
public void setValue(Object v) { value = v; } // mutators
public void setLeft(BinTree l) { left = l; }
public void setRight(BinTree r) { right = r; }
// accept a Visitor object
public void accept(BinTreeVisitor v) { v.visit(this); }
public Object getValue() { return value; } // accessors
public BinTree getLeft() { return left; }
public BinTree getRight() { return right; }
private Object value; // instance data
private BinTree left, right;

}

public class Nil extends BinTree
{ private Nil() { } // private to require use of getNil()

// accept a Visitor object
public void accept(BinTreeVisitor v) { v.visit(this); }
static public BinTree getNil() { return theNil; } // Singleton
static public BinTree theNil = new Nil();

}

public interface BinTreeVisitor
{ abstract void visit(Node t);

abstract void visit(Nil t);
}

Fig. 15. Binary tree using Visitor pattern.

examples are aimed at advanced Java programming or software design courses in which
students have not been previously exposed to frameworks in a significant way. The goal is
to improve the students’ abilities to construct and use abstractions in the design of software
families.
Some advocate that use of frameworks be integrated into the introductory computing

science sequence, e.g., into the data structures course [23]. In this approach, the
understanding and use of standard data structure frameworks replace many of the
traditional topics, which focus on the construction of data structures and algorithms. The
availability of standard libraries such as the Java Collections frameworkmakes this a viable
approach. The argument is that when students enter the workplace, they more often face

Binary Tree Visitor framework: the BinTree code

Binary Tree Visitor framework:
defining a visitor for Euler Traversal

• The Visitor framework has two levels
– the Visitor pattern as described above
– Possibly a second framework for the design of the Visitor objects.

• To implement an Euler tour traversal we
– design a concrete class EulerTourVisitor that implements the BinTreeVisitor

interface
– this class delegates the specific visit actions to a Strategy object of type

EulerStrategy.

28

166 H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169

Fig. 16. Euler tour traversal Visitor framework.

public class EulerTourVisitor implements BinTreeVisitor
{ public EulerTourVisitor(EulerStrategy es, Object ts)

{ this.es = es; this.ts = ts; }
public void setVisitStrategy(EulerStrategy es) // mutators
{ this.es = es; }
public void setResult(Object r) { ts = r; }
public void visit(Node t) // Visitor hookimplementations
{ ts = es.visitLeft(ts,t); // upon first arrival from above

t.getLeft().accept(this);
ts = es.visitBottom(ts,t); // upon return from left
t.getRight().accept(this);
ts = es.visitRight(ts,t); // upon completion of this node

}
public void visit(Nil t) { ts = es.visitNil(ts,t); }
public Object getResult(){ return ts; } // accessor
private EulerStrategy es; // encapsulates state changing ops
private Object ts; // traversal state

}

public interface EulerStrategy
{ abstract public Object visitLeft(Object ts, BinTree t);

abstract public Object visitBottom(Object ts, BinTree t);
abstract public Object visitRight(Object ts, BinTree t);
abstract public Object visitNil(Object ts, BinTree t);

}

Fig. 17. Euler tour traversal Visitor.

the task of using standard components to build systems than that of writing programs in
which they re-implement basic data structures and algorithms. Although it is appropriate
that we cultivate the use of high-level abstractions, we should be careful not to abandon
teaching of the intellectual fundamentals of computing science in a desire to train better
technicians.
Others have constructed small software frameworks that are useful in pedagogical

settings. Of particular interest is the work by Nguyen and Wong. In work similar to the

29

• The navigation logic is in
the visit() method

• It exploits accept() to
pass to the next node

• The concrete actions are
defined in an object
implementing
EulerStrategy

• The strategy is injected
with the constructor
and can be changed
dynamically.

Visitor for Euler Traversal using Strategy

166 H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169

Fig. 16. Euler tour traversal Visitor framework.

public class EulerTourVisitor implements BinTreeVisitor
{ public EulerTourVisitor(EulerStrategy es, Object ts)

{ this.es = es; this.ts = ts; }
public void setVisitStrategy(EulerStrategy es) // mutators
{ this.es = es; }
public void setResult(Object r) { ts = r; }
public void visit(Node t) // Visitor hookimplementations
{ ts = es.visitLeft(ts,t); // upon first arrival from above

t.getLeft().accept(this);
ts = es.visitBottom(ts,t); // upon return from left
t.getRight().accept(this);
ts = es.visitRight(ts,t); // upon completion of this node

}
public void visit(Nil t) { ts = es.visitNil(ts,t); }
public Object getResult(){ return ts; } // accessor
private EulerStrategy es; // encapsulates state changing ops
private Object ts; // traversal state

}

public interface EulerStrategy
{ abstract public Object visitLeft(Object ts, BinTree t);

abstract public Object visitBottom(Object ts, BinTree t);
abstract public Object visitRight(Object ts, BinTree t);
abstract public Object visitNil(Object ts, BinTree t);

}

Fig. 17. Euler tour traversal Visitor.

the task of using standard components to build systems than that of writing programs in
which they re-implement basic data structures and algorithms. Although it is appropriate
that we cultivate the use of high-level abstractions, we should be careful not to abandon
teaching of the intellectual fundamentals of computing science in a desire to train better
technicians.
Others have constructed small software frameworks that are useful in pedagogical

settings. Of particular interest is the work by Nguyen and Wong. In work similar to the

166 H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169

Fig. 16. Euler tour traversal Visitor framework.

public class EulerTourVisitor implements BinTreeVisitor
{ public EulerTourVisitor(EulerStrategy es, Object ts)

{ this.es = es; this.ts = ts; }
public void setVisitStrategy(EulerStrategy es) // mutators
{ this.es = es; }
public void setResult(Object r) { ts = r; }
public void visit(Node t) // Visitor hookimplementations
{ ts = es.visitLeft(ts,t); // upon first arrival from above

t.getLeft().accept(this);
ts = es.visitBottom(ts,t); // upon return from left
t.getRight().accept(this);
ts = es.visitRight(ts,t); // upon completion of this node

}
public void visit(Nil t) { ts = es.visitNil(ts,t); }
public Object getResult(){ return ts; } // accessor
private EulerStrategy es; // encapsulates state changing ops
private Object ts; // traversal state

}

public interface EulerStrategy
{ abstract public Object visitLeft(Object ts, BinTree t);

abstract public Object visitBottom(Object ts, BinTree t);
abstract public Object visitRight(Object ts, BinTree t);
abstract public Object visitNil(Object ts, BinTree t);

}

Fig. 17. Euler tour traversal Visitor.

the task of using standard components to build systems than that of writing programs in
which they re-implement basic data structures and algorithms. Although it is appropriate
that we cultivate the use of high-level abstractions, we should be careful not to abandon
teaching of the intellectual fundamentals of computing science in a desire to train better
technicians.
Others have constructed small software frameworks that are useful in pedagogical

settings. Of particular interest is the work by Nguyen and Wong. In work similar to the

Conclusions

• Software Framework design is a complex task
• Starting point: families of homogeneous software

applications
• Identification of frozen spots and hot spots
• Use of design patterns and of other techniques

for greater generality and for reducing coupling
• Inversion of control and in particular dependency

injection arise naturally
• Suggested reading: Why do I hate Frameworks?

By Joel Spolsky, co-founder of Stack Overflow

30

