
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-21: Frameworks and Inversion of Control

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Frameworks and Inversion of Control

• Recap: JavaBeans as Components
• Frameworks, Component Frameworks and their

features
• Frameworks vs IDEs
• Inversion of Control and Containers
• Frameworks vs Libraries
• Decoupling Components
• Dependency InjecDon
• IoC Containers in Spring

2

Components: a recap

• Examples: Java Beans, CLR Assemblies
• Contractually specified interfaces: events, methods and

properties
• Explicit context dependencies: serializable, constructor

with no argument
• Subject to composition: connection to other beans
– Using connection oriented programming (event source and

listeners/delegates)

3

A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component
can be deployed independently and is subject to composition by third party.
Clemens Szyperski, ECOOP 1996

Towards Component Frameworks

• Software Framework: A collection of common code
providing generic functionality that can be selectively
overridden or specialized by user code providing
specific functionality

• Application Framework: A software framework used to
implement the standard structure of an application for
a specific development environment.

• Examples:
– GUI Frameworks
– Web Frameworks
– Concurrency Frameworks

4

Web Application Frameworks

GUI
Toolkits

5

Examples of Frameworks

Examples: General Software Frameworks

– .NET – Windows platform. Provides language
interoperability

– Android SDK – Supports development of apps in
Java (but does not use a JVM!)

– Cocoa – Apple’s native OO API for macOS.
Includes C standard library and the Objective-C
runtime.

– Eclipse – Cross-platform, easily extensible IDE with
plugins

6

Examples: GUI Frameworks

• Frameworks for Application with GUI
– MFC - Microsoft Foundation Class Library. C++

object-oriented library for Windows.
– Gnome – Written in C; mainly for Linux

–Qt - Cross-platform; written in C++

7

Examples: Web Frameworks

• Web Application Frameworks [based on Model-
View-Controller design pattern]
– ASP.NET by Microsoft for web sites, web applications

and web services
– GWT - Google Web Toolkit (GWT)
– Rails - Written in Ruby - Provides default structures

for databases, web services and web pages.
– Spring - for Java-based enterprise web applications
– Flask – micro-framework in Python, highly extensible

(authentication, validation, OR mapper… as
extensions)

https://en.wikipedia.org/wiki/Comparison_of_web_frameworks

Examples of Frameworks

• Concurrency
– Hadoop Map/Reduce - software framework for

applications which process big amounts of data in-
parallel on large clusters (thousands of nodes) in a
fault-tolerant manner.
• Map: Takes input data and converts it into a set of

tuples (key/value pairs).
• Reduce: Takes the output from Map and combines the

data tuples into a smaller set of tuples.

9

Features of Frameworks

• A framework embodies some abstract design, with
more behavior built in.

• In order to use it you need to insert your behavior
into various places in the framework either by
subclassing or by plugging in your own classes.

• The framework’s code then calls your code at these
points.

• A very general concept, emphasizing inversion of
control: as opposed to libraries is the code of the
framework that calls the code

10

Component Frameworks
• Frameworks that support development, deployment, composition

and execution of components designed according to a given
Component Model

• Support the development of individual components, enforcing the
design of precise interfaces

• Support the composition/connection of components according to
the mechanisms provided by the Component Model

• Allow instances of these components to be “plugged” into the
component framework itself

• Provide prebuilt functionalities, such as useful components or
automated assembly functions that automatically instantiate and
compose components to perform common tasks.

• The component framework establishes environmental conditions
for the component instances and regulates the interaction between
component instances.

11

Frameworks vs Integrated
Development Environments (IDEs)

• Orthogonal concepts
• A framework can be supported by several IDEs
– Eg: Spring supported by Spring Tool Suite (based

on Eclipse), NetBeans, IntelliJ IDEA, Eclipse, …

• An IDE can support several frameworks
– Eg: NetBeans supports JavaBeans, Spring, J2EE,

Maven, Hibernate, JavaServer Faces, Struts, Qt,…

12

Frameworks Features
• Consist of parts that are found in many apps of that type

– Libraries with APIs (classes with methods etc.)
– Ready-made extensible programs ("engines")
– Sometimes also tools (e.g. for development, configuration,

content)
• Frameworks, like software libraries, provide reusable

abstractions of code wrapped in a well-defined API
• But: Inversion of control

– unlike in libraries, the overall program's flow of control is not
dictated by the caller, but by the framework

• Helps solving recurring design problems
– Providing a default behavior
– Dictating how to fill-in-the-blanks

• Non-modifiable framework code
– Extensibility: usually by selective overriding

13

Extensibility
• All frameworks can be extended to cater for app-

specific functionality.
– A framework is intended to be extended to meet the

needs of a particular application
• Common ways to extend a framework:
– Extension within the framework language:

• Subclassing & overriding methods
• Implementing interfaces
• Registering event handlers

– Plug-ins: framework can load
certain extra code in a specific
format

14

Two selected topics

We give a closer look to two general topics
related to frameworks:

• Inversion of control
• Mastering dependencies among components

15

Inversion of Control (IoC) in GUIs

• In text-based interaction, the order of interactions
and of invocations is decided by the the code.

• In the GUI-based interaction, the GUI loop decides
when to invoke the methods (listeners), based on the
order of events

16

#ruby
puts 'What is your name?'
name = gets
process_name(name)
puts 'What is your quest?'
quest = gets
process_quest(quest) TEXT

require 'tk'
root = TkRoot.new()
name_label = TkLabel.new() {text "What is Your Name?"}
name_label.pack
name = TkEntry.new(root).pack
name.bind("FocusOut") {process_name(name)}
quest_label = TkLabel.new() {text "What is Your Quest?"}
quest_label.pack
quest = TkEntry.new(root).pack
quest.bind("FocusOut") {process_quest(quest)}
Tk.mainloop() GUI

https://martinfowler.com/bliki/InversionOfControl.html

Inversion of Control in Frameworks

• With Frameworks the Inversion of Control becomes
dominant

• The application architecture is often fixed, even if
customizable, and determined by the Framework
– When using a framework, one usually just implements a few

callback functions or specializes a few classes, and then invokes
a single method or procedure.

– The framework does the rest of the work for you, invoking any
necessary client callbacks or methods at the appropriate time
and place.

• Example: Java's Swing and AWT classes, NetBeans projects
– They have a huge amount of code to manage the user interface,

and there is inversion of control because you start the GUI
framework and then wait for it to call your listeners

17

Inversion of Control
Tradi[onal Program Execu[on Inversion of Control

The app has control over the
execution flow, calling library
code when it needs to.

The framework has control over
the execution flow, calling app
code for app-specific behavior.

18

Frameworks vs Libraries

• Frameworks consist of large sets of classes
/interfaces, suitably packaged

• Not much different from libraries
• (Possible) Key feature: wide use of Inversion of

Control
• “Framework” sometimes intended as “well-

designed library”
• “Java Collection Framework” vs “Standard

Template Library”: are them frameworks or
libraries?

19

JCF vs STL

20

Java Collection Framework

Standard Template Library

Components, Containers and IoC
• Often Frameworks provide containers for deploying

components
• A container may provide at runtime functionalities

needed by the components to execute
• Example: EJB containers are responsible of the

persistent storage of data and of the availability of EJB’s
for all authorized clients

• Using IoC, EJB containers can invoke on session beans
methods like ejbRemove, ejbPassivate (store to
secondary storage), and ejbActivate (restore from
passive state).

• Spring’s IoC containers: a related concept…

21

Loosely coupled systems:
advantages and techniques

• Good OO Systems should be organised as
network of interacEng objects

• Goal: High cohesion, low coupling
• Advantages of low coupling
– Extensibility
– Testability
– Reusability

• We discuss Dependency injec+on and other
techniques to achieve it

22Nick Hines - Dependency Injection and Inversion of Control - ThoughtWorks, 2006

More on Inversion of Control
• Control: not only control flow, but also control over dependencies,

coupling, configuration
• Inversion: component gives up control to a framework and agrees

to play by some rules
• Framework calls component in well-defined ways (setters, template

methods, interface)
Dependency injection
• IoC with respect to dependencies
• something outside a component handles:

– configuration (properties)
– wiring / dependencies (components)

• component-oriented
• removes coupling

– coupling of configuration and dependencies to the point of use
– coupling of component to concrete dependent components

• somewhat contrary to encapsulation
23

A Concrete Example – A Trade Monitor
• A trader wants that the system rejects trades when the

exposure reaches a certain limit
• Thus the component TradeMonitor (a class…) provides

a method TryTrade which checks the condition
• The current exposure and the exposure limit are stored

in some persistent storage, and are accessed by
TryTrade using another component, a DAO (Data
Access Object)

• We discuss various solutions to limit dependencies
among the two components

24

public class TradeMonitor
{

// other stuff

public bool TryTrade(string symbol, int amount){
int limit = limitDao.GetLimit(symbol);
int exposure = limitDao.GetExposure(symbol);
return (exposure + amount > limit) ? false : true;

}
}

Data Access Object (DAO)

• A Java EE design pattern

controller

user

model

view

DAO

Persistent
Data
Store

Application code

Trade Monitor – The first design

• TradeMonitor is tightly coupled to LimitDao
– Extensibility – what if we replace the database with a distributed cache?
– Testability – where do the limits for test come from?

public class TradeMonitor
{

private LimitDao limitDao;

public TradeMonitor()
{

limitDao = new LimitDao();
}

public bool TryTrade(string symbol, int amount)
{

int limit = limitDao.GetLimit(symbol);
int exposure = limitDao.GetExposure(symbol);

return (exposure + amount > limit)? false : true;
}

}

public class LimitDao
{

public int GetExposure(string symbol)
{

// Do something with the database
}

public int GetLimit(string symbol)
{

// Do something with the database
}

}

limitDao = new LimitDao();

26

Trade Monitor – The Design Refactored (1)
• Introduce interface/implementation separation

– Logic does not depend on DAO anymore.
– Does this really solve the problem?

public class TradeMonitor
{

private LimitRepository limitRepository;

public TradeMonitor()
{

limitRepository = new LimitDao();
}

public bool TryTrade(string symbol, int amount)
{

. . .
}

}

public interface LimitRepository
{

int GetExposure(string symbol);
int GetLimit(string symbol);

}
public class LimitDao extends LimitRepository
{

public int GetExposure(string symbol){…}

public int GetLimit(string symbol){…}
}

limitRepository = new LimitDao();

• The constructor still has a static dependency on DAO

27

• Introduce a Factory. It has the responsibility to
create the required instance.

• TradeMonitor decoupled from LimitDao
• LimitDao sDll Dghtly-coupled, this Dme to Factory
public class LimitFactory
{

public static LimitRepository GetLimitRepository()
{

return new LimitDao();
}

}

public class TradeMonitor
{

private LimitRepository limitRepository;

public TradeMonitor()
{
limitRepository = LimitFactory.GetLimitRepository();
}

public bool TryTrade(string symbol, int amount)
{

. . .
}

}

LimitFactory

TradeMonitor

<<interface>>
LimitRepository

LimitDao

<<creates>>
return new LimitDao();

28

Trade Monitor – The Design Refactored (2)

• Introduce a ServiceLocator. This object acts as a (static)
registry for the LimitDao you need.

• This gives us extensibility, testability, reusability
• Note that an external Assembler sets up the registry

public class ServiceLocator{

public static void RegisterService(Type t, object o)
{. . .}

public static object GetService(Type t)
{. . .}

}

public class TradeMonitor{
private LimitRepository limitRepository;

public TradeMonitor(){
object o =

ServiceLocator.GetService(typeof(LimitRepository));
limitRepository = (LimitRepository) o;

}

public bool TryTrade(string symbol, int amount){
. . .

}
}

29

Trade Monitor – The Design Refactored (3)

ServiceLocator – Pros and cons
• The Service Locator pattern succeeds in decoupling the TradeMonitor

from the LimitDao
• Allows new components to be dynamically created and used by other

components later
• It can be generalized in several ways, eg. to cover dynamic lookup
Cons:
• Every component that needs a dependency must have a reference to the

service locator
• All components need to be registered with the service locator
• If bound by name:

– Services can’t be type-checked
– Component has a dependency to the dependent component names
– if many components share an instance but later you want to specify different

instance for some, this becomes difficult
• If bound by type:

– Can only bind one instance of a type in a container
• Code needs to handle lookup problems

30

Towards Dependency Injection
• In the original situation, we aim at

relaxing the coupling using solutions
based on Inversion of Control

Q: Which “control” is inverted?
A: The dependency of TradeMonitor
from the LimitDao

The plugin is created by an external
Assembler and it is passed to
TradeMonitor in some way.
Thus the dependency is not anymore
in the code of the main component,
but it is injected into it

31

Dependency Injection
• Dependency injection allows avoiding hard-coded

dependencies (strong coupling) and changing them
• Allows selection among multiple implementations of a

given dependency interface at run time
• Examples:
– load plugins dynamically
– replace mock objects in test environments vs. real objects

in production environments
• Three forms:
– Setter injection
– Constructor injection
– (Interface injection)

32

Dependency injecEon based on se#er methods

• Idea: add a setter, leaving creation and resolution to others
public class TradeMonitor
{

private LimitRepository limitRepository;

public TradeMonitor()
{
}

public LimitRepository Limits
{

set { limitRepository = value;}
}
public bool TryTrade(string symbol, int amount){

. . .
}

}

• Pros:
• Leverages existing JavaBean reflective patterns
• Simple, often already available

• Cons:
• Possible to create partially constructed objects
• Advertises that dependency can be changed at runtime (as opposed to

constructor)

This is Setter Injection

• Widely used in Spring

33

Dependency Injection based on Constructors
• Why not just use the constructor?
public class TradeMonitor
{

private LimitRepository limitRepository;

public TradeMonitor(LimitRepository
limitRepository)

{
this.limitRepository = limitRepository;

}
public bool TryTrade(string symbol, int amount){

. . .
}

}

Pros:
• Object can’t be partially constructed
• Simple, often already available
Cons:
• Bidirectional dependencies between objects can be tricky
• Constructors can easily get big and parameters confusing
• If lots of optional dependencies, may have lots of constructors
• Can make class evolution more complicated (an added

dependency affects all users of the class) wrt setter injection

This is Constructor Injection

• Widely used in PicoContainer

34

Exploiting Constructor Injection for Testing

[TestFixture]
public class TradeMonitorTest
{

[Test]
public void MonitorBlocksTradesWhenLimitExceeded()
{

DynamicMock mockRepository = new DynamicMock(typeof(LimitRepository));
mockRepository.SetupResult('GetLimit', 1000000, new Type[] { typeof(string) });
mockRepository.SetupResult('GetExposure', 999999, new Type[] { typeof(string) });

TradeMonitor monitor = new
TradeMonitor((LimitRepository)mockRepository.MockInstance);

Assert.IsFalse(monitor.TryTrade('MSFT', 1000), 'Monitor should block trade');
}

}

public class TradeMonitor
{

private LimitRepository repository;

public TradeMonitor(LimitRepository repository) { this.repository =
repository; }

public bool TryTrade(string symbol, int amount)
{

int limit = repository.GetLimit(symbol);
int exposure = repository.GetExposure(symbol);
return ((amount + exposure) <= limit);

}
}

35

Summary: decoupling using Service
Locator vs Dependency InjecJon

36

Which solution to use?
• Both Service Locator and Dependency Injection provide

the desired decoupling
• With service locator, the desired component is obtained

after request by the TradeMonitor to the Locator: no IoC
• With dependency injection there is no explicit request: the

component appears in the application class
• Inversion of control a bit harder to understand
• With Service Locator the application still depends on the

locator
• It is easier to find dependencies of component if

Dependency Injection is used
– Check constructors and setters vs check all invocations to

locator in the source code

37

Towards IoC Containers

• There are still some open questions
– Who creates the dependencies? (who is the “Assembler”?)
– What if we need some initialisation code that must be run

after dependencies have been set?
– What happens when we don’t have all the components?

• IoC Containers solve these issues [eg: Spring]
– Have configuration – often external
– Create objects
– Ensure all dependencies are satisfied
– Provide lifecycle support

38

Other possible solutions
• Reflection can be used to determine dependencies,

reducing the need for config files.
– Make components known to container.
– Container examines constructors and determines

dependencies.
• Most IoC containers support auto-wiring: automatic

wiring between properties of a bean and other beans
based, eg, on name or type

• Auto-wiring provides other benefits:
– Less typing.
– Static type checking by IDE at edit time.
– More intuitive for developer.

39

Dependency injection in Spring
• The objects that form the backbone of a Spring application are

called beans
• A bean is an object that is instantiated, assembled, and otherwise

managed by a Spring IoC container
• Bean definition contains the information called configuration

metadata, which is needed for the container to know the following
– How to create a bean
– Bean’s lifecycle details
– Bean’s dependencies

• The configuration metadata can be supplied to the container in
three possible ways:
– XML based configuration file (the standard)
– Annotation-based configuration
– Java-based configuration

40

Spring IoC containers
• The Spring container is at the core of the Spring

Framework.
• The container will create the objects, wire them

together, configure them, and manage their complete
life cycle from creaVon Vll destrucVon.

• The Spring container uses Dependency Injec=on to
manage the components that make up an applicaVon.

• The container gets its instrucVons on what objects to
instanVate, configure, and assemble by reading the
configura=on metadata provided.

• The diagram to the right represents a high-level view
of how Spring works. The Spring IoC container makes
use of Java POJO classes and configuraVon metadata
to produce a fully configured and executable system
or applicaVon.

41

// imports…
public class MainApp {

public static void main(String[] args) {
ApplicationContext context = new ClassPathXmlApplicationContext("Beans.xml");
HelloWorld obj = (HelloWorld) context.getBean("helloWorld");
obj.getMessage();

}} The main class, loading an Application Context
42

public class HelloWorld {
private String message;
public void setMessage(String message){

this.message = message;
}
public void getMessage(){

System.out.println("Your Message : " + message);
}

} The bean: a POJO (Plain Old Java Object)

<?xml version = "1.0" encoding = "UTF-8"?>
<beans xmlns = "http://www.springframework.org/schema/beans"

xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation = "http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd”>
<bean id = "helloWorld" class = "com.tutorialspoint.HelloWorld">

<property name = "message" value = "Hello World!"/>
</bean>

</beans> The ConfiguraNon Metafile (XML)

Setter Injection
(performed by the
IoC container)

