
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-20: Components: the Microsoft way

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Overview
• The Microsoft approach to components
• COM: Component Object Model
• The .NET framework
• Common Language Runtime
• .NET components
• Composition by aggregation and containment
• Communication by Events and Delegates
Chapter 15, sections 15.1, 15.2, 15.4, 15.11, and 15.12 of
Component Software: Beyond Object-Oriented
Programming. C. Szyperski, D. Gruntz, S. Murer, Addison-
Wesley, 2002.

2

Distributed Component Technologies

The goal:
- Integration of services for applications on various platforms
- Interoperability: let disparate systems communicate

and share data seamlessly
Approaches:

- Microsoft: DDE, COM, OLE, OCX, DCOM and ActiveX
- Sun: JavaBeans, Enterprise JavaBeans, J2EE
- CORBA (Common Object Request Broker Architecture)
- Mozilla: XPCOM (Gecko functionality as components)
- SOAP (using XML)

3

The Microsoft Approach

• Continuous re-engineering of existing
applications

• Component technology introduced gradually
taking advantage of previous success, like
– Visual Basic controls
– Object linking and embedding (OLE)
– Active X, ASP

• Solutions mainly adopted on MS platforms
• Review from older approaches to .NET + CLR

4

COM: Component Object Model
• Underlying most MS component technologies (before

.NET)
• Made available on other platforms, but with little

success
• COM does not prescribe language, structure or

implementation of an application
• COM only specifies an object model and programming

requirements that enable COM components to interact
• COM is a binary standard for interfaces
• Only requirement: code is generated in a language that

can create structures of pointers and, either explicitly or
implicitly, call functions through pointers.

• Immediate for some languages (C++, SmallTalk) but
possible for many others (C, Java, VBscript,…)

5

COM interfaces and components

• Invocation specification: when an operation (method) of the
interface is invoked, a pointer to the interface itself is passed as
additional argument (like self or this)
– The pointer can be used to access instance variables

• COM component may implement any number of interfaces.
• The entire implementation can be a defined in a single class, but it

does not have to be.
• A component can contain many objects of different classes that

collectively provide the implementation of the interfaces provided
by the component.

6

The first fundamental wiring model – COM

the calling convention, which is the specification of what exactly is passed
when calling an operation from an interface.

Methods of an object have one additional parameter – the object they
belong to. This parameter is sometimes called self or this. Its declaration is
hidden in most object-oriented languages, but a few, including Component
Pascal, make it explicit. The point is that the interface pointer is passed as a
self-parameter to any of the interface’s operations. This allows operations in a
COM interface to exhibit true object characteristics. In particular, the interface
node can be used to refer internally to instance variables. It is even possible to
attach instance variables directly to the interface node, but this is not normally
done. It is, however, quite common to store pointers that simplify the lookup
of instance variables and the location of other interfaces.

A COM component is free to contain implementations for any number of
interfaces. The entire implementation can be a single class, but it does not
have to be. A component can just as well contain many classes that are used to
instantiate objects of just as many different kinds. These objects then collec-
tively provide the implementation of the interfaces provided by the
component. Figure 15.2 shows a component that provides three different
interfaces and uses two different objects to implement these.

In Figure 15.2, object 1 implements interfaces A and B, whereas object 2
implements interface C. The dashed pointers between the interface nodes are
used internally as it must be possible to get from each node to every other
node. The unusual layout of objects and vtables is just what COM prescribes if
such an n-to-m relationship between objects and interfaces is desired.
However, without proper language support, it is not likely that many compo-
nents will take such a complex shape. What is important, though, is that there
is no single object part that ever leaves the component and represents the
entire COM object. A COM component is not necessarily a traditional class
and a COM object is not necessarily a traditional single-bodied object.
However, a COM object can be such a traditional object and all of its inter-
faces can be implemented in a single class by using multiple inheritance
(Rogerson, 1997).

There are two important questions to be answered at this point. How does
a client learn about other interfaces and how does a client compare the identity

331

Figure 15.1 Binary representation of a COM interface.

Client
variable

Interface
node Op 1

Op 2

Op nComponent

8557 Chapter 15 p329-380 8/10/02 12:24 pm Page 331

• A COM interface is a pointer to an
interface node, which is a pointer
to a table of function pointers
(also called vtable)

• Note the double indirection

The next 13 slides (till .Net Framework
excluded) were not presented during

the lesson and can be skipped

7

The Microsoft way: COM, OLE/ActiveX, COM+, and .NET CLR

of COM objects? Surprisingly, these two questions are closely related. Every
COM interface has a common first method named QueryInterface. Thus, the
first slot of the function table of any COM interface points to a QueryInterface
operation. There are two further methods shared by all interfaces. These are
explained below.

QueryInterface takes the name of an interface, checks if the current COM
object supports it, and, if so, returns the corresponding interface reference. An
error indication is returned if the interface queried for is not supported. On
the level of QueryInterface, interfaces are named using interface identifiers
(IIDs). An IID is a GUID (Chapter 12), which is a 128-bit number guaran-
teed to be globally unique. COM uses GUIDs for other purposes also.

As every interface has a QueryInterface operation, a client can get from any
provided interface to any other. Once a client has a reference to at least one
interface, it can obtain access to all others provided by the same COM object.
Recall that interface nodes are separate and therefore cannot serve to identify a
COM object uniquely. However, COM requires that a given COM object
returns the same interface node pointer each time it is asked for the IUnknown
interface. As all COM objects must have an IUnknown interface, the identity of
the IUnknown interface node can serve to identify the entire COM object. To
ensure that this identity is logically preserved by interface navigation, the
QueryInterface contract requires that any successful query yields an interface
that is on the same COM object – that is, establishes the same identify via
queries for IUnknown. To enable sound reasoning, the set of interfaces
explorable by queries must be an equivalence class. This means that the queries
are reflexive in that if they ask for an interface by querying that same interface,
they will succeed. They are also symmetrical in that if they ask for an interface,

332

Figure 15.2 A COM object with multiple interfaces.

Client
variables

Interface
node A

Interface
node B

Interface
node C

Object 1

Object 2

Op A1

Op A2

Op B1
Op B2
Op B3

Op C1

Op C2

8557 Chapter 15 p329-380 8/10/02 12:24 pm Page 332

• Object 1 implements
Interfaces A and B,

• Object 2 implements
Interface C

• Interfaces must be
mutually reachable

• Possible according to
COM specification,
rare in practice

A COM component with 3 interfaces
and 2 objects

8

COM Interfaces
• Identity determined by Globally unique identifiers

(GUID) (128 bits) or (non-unique) name
• IUnknown: root of interface hierarchy, includes:

– QueryInterface
– AddRef and Release (for Garbage Collection via Reference Counting)

• QueryInterface (GUID -> Interface reference/error) allows to know if
an interface is implemented by the component

• “Invocations to QueryInterface argument IUnknown on the same
component must return the same address”

• Thus IUnknown used to get the “identity” of a component

9

[uuid(00000000-0000-0000-C000-000000000046)] interface IUnknown {
HRESULT QueryInterface ([in] const IID iid, [out, iid_is(iid)] IUnknown iid);
unsigned long AddRef ();
unsigned long Release (); }

The Microsoft way: COM, OLE/ActiveX, COM+, and .NET CLR

although this particular node may have no remaining references. This is nor-
mally acceptable, and sharing of a single reference count is the usual approach.
In some cases, interface nodes may be resource intensive, such as when they
maintain a large cache structure. A separate reference count for such an inter-
face node can then be used to release that node as early as possible. (This
technique of creating and deleting interface nodes as required is sometimes
referred to as “tear-off interfaces.”)

On creation of an object or node, the reference count is initialized to 1
before handing out a first reference. Each time a copy of a reference is created,
the count must be incremented (AddRef). Each time a reference is given up, the
count must be decremented (Release). As soon as a reference count reaches
zero, the COM object has become unreachable and should therefore self-
destruct. As part of its destruction, it has to release all references to other
objects that it might still hold, calling their Release methods. This leads to a
recursive destruction of all objects exclusively held by the object under destruc-
tion. Finally, the destructed object returns the memory space it occupied.

Reference counting is a form of cooperative garbage collection. As long as
all involved components play by the rules and cooperate, memory will be safely
deallocated. At least, objects will never be deallocated while references still
exist. Reference counting has the well-known problem that it cannot deal with
cyclic references. Consider the two objects in Figure 15.4.

The two objects are, as a whole, unreachable as no other object still has a
reference to any of the two. However, the mutual reference keeps both
objects’ reference counts above zero and thus prevents deallocation.
Obviously, this is only a special case. The general case is a cycle of references

334

Figure 15.4 Cyclical references between objects.

Object A Object B

refcnt=1 refcnt=1

Figure 15.3 Depiction of a COM object.

IUnknown

IOleObject

IDataObject

IPersistStorage

IOleDocument

8557 Chapter 15 p329-380 8/10/02 12:24 pm Page 334

COM component reuse: Containement

• COM does not support for implementation inheritance
• Reuse supported through Containement & Aggregation
• Containement: an outer objects holds an exclusive

reference to an inner object
• Requests to outer can be forwarded to inner, simply

invoking one of its methods

10

The Microsoft way: COM, OLE/ActiveX, COM+, and .NET CLR

for example, perform some filtering or additional processing. Also, it is impor-
tant to retain transparency as a client of the outer object should have no way of
telling that a particular interface has been aggregated from an inner object.

With containment, the inner object is unaware of being contained. This is
different for aggregation, which needs the inner object to collaborate. A COM
object has the choice of whether or not to support aggregation. If it does, it
can become an aggregated inner object. Why is this collaborative effort
required? Recall that all COM interfaces support QueryInterface. If an inner
object’s interface is exposed to clients of the outer object, then the
QueryInterface of that inner object’s interface must still cover the interfaces
supported by the outer object. The solution is simple. The inner object learns
about the outer object’s IUnknown interface when it is aggregated. Calls to its
QueryInterface are then forwarded to the outer object’s QueryInterface.

Figure 15.6 shows how the scenario from above changes when using aggre-
gation. Recall that the depiction of one object inside another, just as with
containment, has merely illustrative purposes. The inner object is fully self-
standing and most likely implemented by a different component than the
outer object. The aggregation relation manifests itself in the mutual object ref-
erences established between the inner and the outer object.

336

Figure 15.5 (a) Containment as seen on the level of objects. (b) Alternative depiction emphasiz-
ing the containment property.

(a)

…
Read
Write

inner

{ inner.Read }
{ inner.Write }

IStream

IUnknown

Outer object

Inner object
(b)

…
Read
Write { … }

{ … }

…
Read
Write { … }

{ … }

Inner

{ inner.Read }
{ inner.Write }

…
Read
Write

Outer object Inner object

IStream

IUnknown

IStream

IUnknown

IUnknown
IStream

8557 Chapter 15 p329-380 8/10/02 12:24 pm Page 336

The Microsoft way: COM, OLE/ActiveX, COM+, and .NET CLR

for example, perform some filtering or additional processing. Also, it is impor-
tant to retain transparency as a client of the outer object should have no way of
telling that a particular interface has been aggregated from an inner object.

With containment, the inner object is unaware of being contained. This is
different for aggregation, which needs the inner object to collaborate. A COM
object has the choice of whether or not to support aggregation. If it does, it
can become an aggregated inner object. Why is this collaborative effort
required? Recall that all COM interfaces support QueryInterface. If an inner
object’s interface is exposed to clients of the outer object, then the
QueryInterface of that inner object’s interface must still cover the interfaces
supported by the outer object. The solution is simple. The inner object learns
about the outer object’s IUnknown interface when it is aggregated. Calls to its
QueryInterface are then forwarded to the outer object’s QueryInterface.

Figure 15.6 shows how the scenario from above changes when using aggre-
gation. Recall that the depiction of one object inside another, just as with
containment, has merely illustrative purposes. The inner object is fully self-
standing and most likely implemented by a different component than the
outer object. The aggregation relation manifests itself in the mutual object ref-
erences established between the inner and the outer object.

336

Figure 15.5 (a) Containment as seen on the level of objects. (b) Alternative depiction emphasiz-
ing the containment property.

(a)

…
Read
Write

inner

{ inner.Read }
{ inner.Write }

IStream

IUnknown

Outer object

Inner object
(b)

…
Read
Write { … }

{ … }

…
Read
Write { … }

{ … }

Inner

{ inner.Read }
{ inner.Write }

…
Read
Write

Outer object Inner object

IStream

IUnknown

IStream

IUnknown

IUnknown
IStream

8557 Chapter 15 p329-380 8/10/02 12:24 pm Page 336

COM component reuse: Aggregation

11

COM object reuse

Aggregation can go any number of levels deep. Inner objects, on whatever
level, always refer to the IUnknown interface of the outermost object. For inter-
nal purposes, an outer object retains a direct reference to an inner object’s
original IUnknown. In this way, an outer object can still query for an inner
object’s interfaces without being referred to its own IUnknown. As is clearly
visible in Figure 15.6, the inner and outer objects in an aggregation setting
maintain mutual references. As explained above, such cycles would prevent
deallocation of aggregates. Thus, COM has special, and again error-prone,
rules about how to manipulate the reference counts involved in order for the
scheme to work.

Aggregation, as a pure performance tool, if compared to containment, is
probably meaningful only for deeply nested constructions. This is one of the
reasons for aggregation in COM practice being less important than contain-
ment. Another reason is the increase in complexity. Nevertheless, aggregation
can be put to work where efficient reuse of component functionality is needed.
The resulting performance is as good as that of a directly implemented inter-
face as aggregated interfaces short-circuit all aggregation levels.

Aggregation can be used to construct efficient generic wrappers (“blind del-
egation” of arbitrary interfaces). In particular, aggregation can be used to add
support for new interfaces on otherwise unchanged objects. However, doing
so requires great care as the new interfaces must not interfere with any of the
(generally unknown!) interfaces on that object. This works if the potential use
of aggregating wrappers and their added interfaces was already known when
constructing the original objects (then interference is avoided by construction
of these objects) or when the added interfaces are private to some infrastruc-
ture. For example, COM remoting builds up proxy objects that implement
both the interfaces of some remote object and private interfaces of the COM

337

Figure 15.6 Aggregation.

Outer object

Inner object

…
Read
Write { … }

{ … }

Inner

IStream

IUnknown

IUnknown

Outer

8557 Chapter 15 p329-380 8/10/02 12:24 pm Page 337

• This can be achieved (only) with
collaboration of the Inner object: calls
to QueryInterface are forwarded to
the IUnknow interface of Outer

• Containement adds overhead for calling and returning from
methods: could cause a performance issue

• With aggregation, a reference to the interface of Inner is
passed to the client.

• Outer cannot intercept / modify / filter invocations to Inner
• Problem: The client should not be aware of the fact that

Inner is serving instead of Outer (transparency)

COM inheritance, polymorphism
versioning

• Single inheritance among interface possible but
rarely used (eg IUnknown, IDispatch and few
others)

• But due to the QueryInterface mechanism
impossible to know if an interface has more
methods

• Polimorphism given by support to sets of
interfaces for components:
– The type of a component is the set of GUID of its

interfaces
– A subtype is a superset of interfaces

• COM does not support interface versioning
12

Creating COM objects
• An application can request a COM component

at runtime, based on its class
• Class identifiers are GUIDs (called CLSIDs)
• Procedural static API for creting objects:

– CoCreateInstance(CLASID, IID)
• Exploits a registry to identify a (local or remote)

COM server which provides a Factories for COM
Interfaces

13

The Microsoft way: COM, OLE/ActiveX, COM+, and .NET CLR

use the CLSID for “rich text.” To support such generic CLSIDs and enable
configuration, COM allows one class to emulate another. Emulation configu-
rations are kept in the system registry. For example, an emulation entry may
specify that class “Microsoft Word” does the emulation for class “rich text.”

Initializing objects, persistence, structured storage,
monikers

COM uses a two-phase approach to object initialization. After creating a COM
object using CoCreateInstance or a factory object, the object still needs to be
initialized. This is like creating a new object in C++ or Java with a constructor
that takes no arguments, the required storage being allocated, but no useful
data loaded into the new object. Once created, an object must be initialized.
There are many ways to do this and the client has control over which method
to use. This two-phase approach is more flexible than the use of constructors.

The most direct way to initialize an object is to ask it to load its data from a
file, a stream, or some other data store. For this purpose, COM defines a
family of interfaces that are all derived from IPersist and named IPersistFile,
IPersistStream, and so on. This direct approach is useful where a client wants
to take control over the source of data to be used for initialization.

A standard place to store an object’s data is in a COM structured storage. A
structured storage is like a file system within a file. A structured storage simply
is a tree structure. The root of the tree is called a root storage, the tree’s other
inner nodes are called storages, and the tree’s leaf nodes are called streams.
Streams are the “files” in a structured storage, while storage nodes are the
“directories.” From Windows 2000 on, COM’s structured storages support
simple transactions that allow an entire structured storage to be updated com-
pletely or not at all.

15.5

342

Figure 15.9 COM server with two coclasses, each with a factory.

Class A Class B

IClassFactory
or

IClassFactory2

IClassFactory
or

IClassFactory2

COM server

8557 Chapter 15 p329-380 8/10/02 12:24 pm Page 342

Example from Microsoft environment (80’s)

• Excel-generated pie chart
embedded in a Word
document displayed in a
PowerPoint presentation

• Different applications
need to share data or
procedures

14

DDE (Dynamic Data Exchange)

• A little history: starting with evolution of Microsoft approach:
– Windows gave PCs a more accessible computing environment
– Problem: lack of consistency between different programs
– What if spreadsheet and word processor need to share data?

• Early solution was integrating suites into large programs:
– e.g., Microsoft Works – Pros and cons of suite approach?

• Microsoft comes out with Dynamic Data Exchange (DDE), circa 1989
– Lets different Windows programs share data through links
– Suppose some spreadsheet data were linked into word processor
– When you changed data in spreadsheet, the new data would appear in word

processor
– Limitation: you couldn’t update the data in the word processor; you had to invoke

the spreadsheet to update the date there
– Worse, links were fragile and would break if you moved data files around in file

system
15

OLE (circa 1991)

• Object Linking and Embedding
– Linking is essentially DDE, using reference semantics
– !"#$%%&'()*$+,)-,$.,)/012)3),'31,40+)05)%3+3)&'+0)60.%)1.0/$,,0.)
3'%),37$)&+)+4$.$

– 8&'9&'()&,)/4$31$.)64$')%3+3)5&*$,)3.$)*3.($
– !"#$%%&'(),-110.+,)/0"10-'%)%0/-"$'+, :;%0/-"$'+</$'+.&/=)
/0"1-+&'(>

• A way for Windows to create documents containing objects
from other programs.
– E.g. place a chart from Excel and a slide from PowerPoint into

a Word document
– Components containers can be re-used by many applications
– But components do not make data independent of application

programs, and OLE is a platform-specific solution.
16

OLE Technology (circa 1993)

• A set of APIs to create and display a (compound) document
– Now possible to share code as well as data

• Component Object Model (COM)
– COM protocols let components connect to origination program:
– E.g. word processor can tell spreadsheet, “the user just clicked on the

spreadsheet, so start yourself up, look for data here, and let me know
when you’re done.”

• COM now includes OLE as part of a larger concept
– OLE becomes a set of standard COM interfaces

• Embedded documents retain all their original properties
– If the user decides to edit the embedded data, Windows activates the

originating application and loads the embedded document

17

OLE Extensions (OCX)

• With Windows 95 came a new standard:
– OCX (OLE Custom eXtension component)
– A piece of code, smaller than application program, but with its own

user interface
– Let users bundle OCX controls to form customized applications
– E.g., combine spell checker and synonym provider component to

make a new program
– Is this beginning to sound like object-oriented programming?

18

ActiveX (circa 1996)

• Microsoft retools OLE and COM as ActiveX
– ActiveX applies to a whole set of COM-based

technologies
• ActiveX control is Microsoft's answer to the Java

technology from Sun
– An ActiveX control is roughly equivalent to a Java

applet, but is known as an ActiveX control
• Writing a program to run in the ActiveX

environment creates a self-sufficient program that
can run anywhere in ActiveX network

• This component is known as an ActiveX control, and
is often used to attach a program to a web page

19

ActiveX - implementation

• An ActiveX control can be created using one of several
languages or development tools, including C++ and
Visual Basic, or with scripting tools such as VBScript.

• Network OLE for rudimentary support of distributed
applications

• ActiveX controls originally were Windows only
– Other vendors later provided Mac and Unix/Linux support

for ActiveX
• Security issues: ActiveX controls have full file access (no

sandbox)
– Can be signed for authentication

20

The .NET Framework: Summary

• The .NET framework and .NET components
• Types of .NET components, connections of

components, and deployments
• Local and distributed components
• Aggregation and containment compositions
• Synchronous and asynchronous method

invocations
• Delegates and Event-based communication

21

The .NET Framework

• Introduced by Microsoft in 2000.
• Platform for rapid and easier building, deploying,

and running secured .NET software components
• Support for rapid development of XML web

services and applications
• Highly productive, component-based, multi-

language environment for integrating existing
applications with internet

• Emphasis on interoperability

22

The .NET Framework consists of:
• The Common Language Specification (CLS)

It contains guidelines, that language should follow so
that they can communicate with other .NET languages.
It is also responsible for Type matching.
• The Framework Base Class Libraries (BCL)

A consistent, object-oriented library of prepackaged
functionalities and Applications.
• The Common Language Runtime (CLR)

A language-neutral development & execution
environment that provides common runtime for
application execution .

23

.NET Framework structure
(http://www.dotnet101.com/articles/art014_dotnet.asp)

24

Common Language Specification

CLS performs the following functions:

• Establishes a framework that helps enable cross-language
integration, type safety, and high performance code
execution

• Provides an object-oriented model that supports the
complete implementation of many programming languages

• Defines rules that languages must follow, which helps
ensure that objects written in different languages can
interact with each other

25

.NET Framework Base Class Library
• The Class Library is a comprehensive, object-oriented collection

of reusable types
• These class library can be used to develop applications that

include:
– Traditional command-line applications
– Graphical user interface (GUI) applications
– Applications based on the latest innovations provided by ASP.NET

• Web Forms
• XML Web services

26

Common Language Runtime (CLR)
• CLR ensures:

– A common runtime environment for all .NET languages
– Uses Common Type System (strict-type & code-verification)
– Memory allocation and garbage collection
– Intermediate Language (MSIL) to native code compiler.
– Security and interoperability of the code with other

languages

• Over 36 languages supported today
– C#, VB, Jscript, Visual C++ from Microsoft
– Perl, Python, Smalltalk, Cobol, Haskell, Mercury, Eiffel, Oberon, Oz, Pascal, APL,

CAML, Scheme, etc.

27

Overview of .NET Framework (cont.)

• Supports development and deployment of desktop,
window, and web-based application services on both
Windows platforms and on other platforms through
SOAP and HTTP

• .NET simplifies and improves support for components
development and deployment w.r.t. Component
Object Model (COM), and Distributed COM (DCOM)
technology.

• COM components can be reused. Differently from
COM, .NET technology supports component versions,
and different versions can coexist without any conflict.

28

Overview of .NET Framework (cont.)

• Support of distributed components by Remoting Channel
technology.

• Supports of Interoperability between COM, .NET and XML
web service components.

• The .NET framework is available in .NET Framework SDK and
Visual Studio.NET IDE SDK which support writing, building,
testing, and deploying of .NET applications.

• It supports all .NET languages such as VB.NET, VC.NET, C#, and
many others.

29

Microsoft CLI (Common Language
Infrastructure): some historical notes

• When Java became popular Microsoft joined the initiative
• The idea was to exploit the dynamic load features of JVM to

implement a component based architecture like COM
• There were two main problems:

– Interoperability with the existing code (COM)
– Support for many programming languages

• Microsoft extended the JVM but Sun complained of license
infringement

• Microsoft started developing its own technology
• This was based on their experience on Java, but they tried to

address the two problems above
• The result was the Common Language Infrastructure (CLI)
• The core of CLI is the Common Language Runtime (CLR)

which plays the same role as the JVM in Java 30

.NET Framework

ASP .Net
(WebServices,

Webforms)

Windows Forms
(Control, Drawing)

Basic
.NET Class library --- mscorlib.dll

CLR (Common Language Runtime) mscoree.dll

CTS (Common Type System)

JIT (just In Time Compiler)

CLR Execution

Windows Platform

.Net Framework
SDK

.Net Visual
Studio

Class loader

Common Language Infrastructure 31

Some CLI implementation
• CLR – Microsoft’s commercial offering
• SSCLI (code-named “Rotor”) – Microsoft’s Shared Source

CLI (free, but not for commercial use; discontinued)
• Mono - open source project initiative sponsored by Ximian

(now a part of Novell) and now by Microsoft
• DotGNU Portable .NET – till ~2008
• OCL – portions of the implementation of the CLI by Intel –

till ~2002
• .Net Core – Open Source, Cross-platform, Supported by

Microsoft and community (V3.1 Released 2019-12-03)
• .Net 5.0.5 – Released 2021-04-06

32

Common features of CLR and JVM

• Secure
• Portable
• Automatic MM (GC)
• Type safety
• Dynamic loading
• Class Library
• OOP

• Mix-in inheritance
Note that the essential traits of the
execution environment are similar,

though there are relevant difference
in the design

CLI has been standardized (ECMA
and ISO) and is a superset of Java.
We will refer mainly to CLR.

33

Foundation of .NET framework – CLR

• Common Language Runtime (CLR) is a virtual machine
environment sitting on the top of the operating system.

• CLR consists of Common Type System (CTS), Just-In-Time CIL
Compiler (JIT), Virtual Execution System, plus other
management services (garbage collection, security
management).

• CLR is like JVM in Java. It is assembled in a package of
assembly consisting of MS Intermediate Language (MSIL)
code and manifest (Metadata about this packet).

• The CIL code is translated into native code by JIT compiler in
CLR. IL code is verified by CTS first to check the validity of
data type used in the code.

34

Foundation of .NET framework – CLR

• Multilanguage support: (VB, managed C++, C# etc) by
Common Language CLR implementation.

• A class in one language can inherit properties and methods
from related classes in other languages.

• The CTS defines a standard set of data type and rules for
creating new types.
– Reference types
– Value types

• The code targeting CLR and to be executed by CLR is called
.NET managed code. All MS language compilers generate
managed codes that conform to the CTS.

35

Foundation of .NET framework – CLR

• The CIL code is like Java byte code. Regardless of the
source programming languages, IL codes can interact
by support of the CLR.

• The IL code can be in the format of executable (.EXE)
or Dynamic Link Library (.DLL).

• If these IL codes are generated by .NET compiler, they
are called managed code.

• The managed code can be executed only on .NET
aware platform. Some DLL or EXE generated by non
.NET compilers (such as early version of VC++) are
called un-managed code.

36

How CLR works

C#

C++

ML

VB

…

CIL

x86

Unmanaged

Managed

JIT

Managed x86

GC

CLR

Security

BCL

Loader

37

Foundation of .NET framework – CLR

Assembly in
.DLL or .EXE

IL code

VB . Net C# . Net C++ . Net

VB .Net
Compiler

C# .Net
Compiler

C++
Compiler

Class Loader and
Type Verifier

JIT

Managed native
code

CLR Execution
Unit

Class
Library

Deployment

CLR 38

Towards the CommonType System
• Execution environments such as CLR and JVM are

data oriented
• A type is the unit of code managed by the

runtime: loading, code, state and permissions are
defined in terms of types

• Applications are set of types that interact
together

• One type exposes a static method (Main) which is
the entry point of the application: it loads the
needed types and creates the appropriate
instances

39

• There are base types: primitive types, Object, String and
Class (which is the entry-point for reflection)

• Type constructors are:
– Array
– Class

• The primitive types are unrelated
to Object with respect to
inheritance relation

• This applies to interfaces too,
but objects that implements
interfaces always inherit
from Object

• Java type system is far simpler
than the one of CLR

Java type system

Object

interface T

int
Primitive types

Class

String

T[]

class T

40

Common Type System
• Goal: To establish a framework to support cross-language

interoperability, type safety, and high performance code execution.
• Defines a rich set of data types, based on an object-oriented model.
• Defines rules that ensure that objects written in different languages

can interact with each other.
• Specifies the rules for scopes, type visibility and access to the

members of a type. The Common Language Runtime enforces the
visibility rules.

• Defines rules of type inheritance, virtual methods and object
lifetime.

• Languages supported by .NET can implement only part of the
common data types.

41

CLR Common Type System
• Common rooted: also numbers inherits

from Object
• There are more type constructors:

– Enum: constants
– Struct: like class but without

inheritance and stack allocation
– Delegate: type that describes

a set of methods with common
signature

• Value types (numbers and structs)
inherits from Object. Still are not
references and aren't stored on the
heap

• The trick is that when a value type
should be upcasted to Object it is
boxed in a wrapper on the heap

• The opposite operation is called
unboxing

Object

interface T

int Base types

Type

String

Array

class T

ValueType

T[]

Delegate Delegate T

Enum Enum T

Struct T

42

The .NET Framework Class Library

• The .NET framework class library is a collection of reusable basic
classes which are well organized by namespaces.

• Correspond to Java API and packages
• A namespace consists of many classes and sub-namespaces. It is

deployed as a component class library itself and is organized in a
component–based hierarchy.

• The .NET framework itself is built up in a component model.
• Developers can create custom namespaces
• A namespace can be deployed as an assembly of binary

components.
• using <namespace> in C# or

import <namespace> in VB
to access classes in a namespace.

43

The .NET Framework Class Library

System

Console Object

Primitive Type Array String

IO

NET

Data

Web

XML

Remoting

Delegate

NameSpace

Class

………

………

44

The Component Model of .NET

• Assemblies (or CIL DLL components) replace the
COM Components

• The .NET component technology is unified-language
oriented. Any .NET component is in the format of
pre-compiled MSIL, which can be binary plugged in
by any other MSIL components or any other .NET
compatible clients.

• A .NET component is a single pre-compiled and self
described CIL module built from one or more classes
or multiple modules deployed in a DLL assembly file.

45

Assemblies
• Assemblies are the smallest unit of code distribution,

deployment and versioning
• Individual components are packaged into assemblies
• Can be dynamically loaded into the execution engine

on demand either from local disk, across network, or
even created on-the-fly under program control

Single File Assembly

Resources

MSIL

MetaData

Manifest

ThisAssembly.dll

Resources

MSIL

MetaData

Manifest

ThisAssembly.dll

MSIL

Metadata

A.netmodule

B.netmodule

Manifest
(No Assembly Metadata)

MSIL

Metadata

Manifest
(No Assembly Metadata)

Multi File Assembly

46

Assembly characteristics
• Self-describing

– To enable data-driven execution

• Platform-independent
• Bounded by name

– Locate assemblies by querying its strong name
– Strong name = (publisher token, assembly name, version vector, culture)
– Version vector = (major, minor, build, patch)

• Assembly loading is sensitive to version and policy
– Assemblies are loaded using tunable binding rules, which allow programmers and

administrators to contribute policy to assembly-loading behavior.

• Validated
– Each time an assembly is loaded, it is subject to a series of checks to ensure the

assembly’s integrity.

47

Assembly structure

• An assembly consists of up to four parts:
1. Manifest (table of info records): name, version

vector = (major, minor, build, patch), culture,
strong name (public key from the publisher),
type reference information (for exported types)
list of files in the assembly, information on
referenced assemblies reference.

2. Metadata of modules
3. CIL code of module
4. Resources such as image files.

48

The Component Model of .NET

• A module has CIL code and its metadata but without
manifest. Not loadable dynamically. Building block at
compile time to build up an assembly Module file.
Extension: .netmodule.

• An Assembly is made up by one or many classes in a
module. Assembly has a manifest file to self-describe
the component itself.

• An assembly has a file extension .dll or .exe and is
dynamically loadable.

49

The Component Model of .NET

• A .dll file is not executable just like a class file is a
byte code file that is not executable.

• An .exe file, generated by a .NET compiler, has a PE
.NET format
– PE (Portable Executable) is the standard MS format for

executable files
– PE .NET identifies the executable as for execution on the

CLR: it causes a call to the CLR runtime at the beginning

50

The Component Model of .NET
• A .NET component can be

– Local (.dll), can only be accessed locally (within same application
domain), in same machine

– Remote (distributed) (.exe), can be accessed remotely in same
machine or different machines.

• A .NET DLL component can be deployed
– as a private component, knowing the target client
– as a shared public component

• In the latter case it must be published (registered) in a
centralized repository Global Assembly Cache (GAC), typically
using its strong name.

• A shared component supports side-by-side multiple version
component execution.

51

The Connection Model of .NET
• .NET component compositions enable the

component reuse in either aggregation
compositions or containment compositions.

outer

inner

innerM()
outerM2()

outer

inner
innerM()

outerM1()

containment

aggregation

52

Containment compositions
• If a request to the outer component needs

help from an inner component the request is
forwarded to that inner component.

• The outer component does not expose the
interface of the inner component.

• The client is blind of the handler of the
request. The outerM2() delegates a request
to the innerM() method of inner component

outer

inner

innerM()
outerM2()

containment

53

Aggregation compositions
• The service of inner component hands out its

service directly to the client of outer component.
– The outer component exposes the interfaces of inner

component.
– The innerM() method of inner component becomes

part of interface to the outer component

• A .NET component can also be composed by
mixed aggregations and containments in a flat
structure or nested compositions in multiple
levels in depth.

outer

inner
innerM()

outerM1()
aggregation

54

DELEGATES IN CLR / C#

55

What are Delegates?
• A Delegate (in CLR / C#) is a type that represents references

to methods with a specific parameter list and return type.
• Eg: delegate int MyFun(int i, int j);

is a type with instances holding methods of type
(int*int à int)

• Similar to function pointers in C++, but type-safe and
secure.

• An instance of a Delegate type can hold/refer both to static
and to instance methods (of the prescribed signature).

• The method referred to by a delegate instance can be
invoked by passing the list of actual parameters to the
instance itself.

56

Possibile uses of delegates

• Delegates can used to pass methods as
arguments to other methods, thus supporting a
functional programming style with some higher-
order features.

• Delegates can be used to support event based
programming, where event handlers are invoked
through delegates.

• The ability to refer to a method as a parameter
makes delegates ideal for defining callback
methods.

57

Example: use of delegate type in C#

class Foo {
delegate int MyFun(int i, int j);
static int Add(int i, int j)

{return i + j;}
int Mult(int x, int y)

{return x * y;}

static void Main(string[] args) {
MyFun fun = new MyFun(Foo.Add);
Console.WriteLine(fun(2, 3));
Foo obj = new Foo();
fun = new MyFun(obj.Mult);
Console.WriteLine(fun(2, 3));

}
}

• type def MyFun
instances:
int * int -> int

• Delegate instance:
static method

• Prints 5
• Delegate instance:

instance method
• Prints 6
• Note that fun must

remember also obj

58

Delegates like closures?

• In functional programming it is possible to define a
function that refers to external variables

• The behavior of the function depends on those
external values and may change

• Closures are used in functional programming to close
open terms in functions

• Delegates are not equivalent to closures although
they are a pair (env, func): the environment should
be of the same type (class) to which the method
belongs

59

Functional programming in C#?
• Delegates allow representing static and instance

methods as values, that can be passed as arguments
• Introduce elements of FP style in the mainstream,

cleaner event model (call-backs can be naturally
expressed as delegates)

• Example: mapping on an array:

delegate int MyFun(int);
int[] ApplyInt(MyFun f, int[] a) {

int[] r = new int[a.Length];
for (int i = 0;i < a.Length;i++)

r[i] = f(a[i]);
return r;

}
60

Events using delegates?
• Event systems are built on the notion of notification

(call-back)
• Described with the Observer or Publish/Subscribe

design pattern, as seen for JavaBeans
• A method invocation can be seen as a notification
• Event model introduced by Java 1.1:

– There are source of events
– There are listeners that ask sources for notifications
– Event fires: a method is invoked for each subscriber

61

Event Model

Event Source

Subscriber
Subscribe

Notification

Subscribed listeners

62

Event model in Java

• Which method should call the event source to notify
the event?

• In Java there are no delegates and interfaces are
used instead (XXXListener)

• The listener must implement an interface and the
source provides a method for (un)subscription.

• A list of subscribed listeners is kept by the event
source

63

Delegates to handle events

• Delegates allow connecting event sources to listeners
independent of the types involved

• In C# a delegate object can be used to specify which
method must be invoked when an event is fired

• One approach could be to store an array of delegates
in the source to represents subscribers

• A component (not necessarily the listener) builds a
delegate on the listener and subscribes to an event

64

Multicast delegates

• Event notification is in general one-to-many
• CLR provides multicast delegates to support

notification to many listeners
• A multicast delegate is a kind of delegate that holds

inside a list of “delegate objects”
• Multicast delegates keep track of subscriptions to

event sources reducing the burden of replicating the
code

65

Multicast delegates: Example

delegate void Event();
class EventSource {

public Event evt;
…
evt(); // fires the event
…

}

class Foo { public void MyMethod() {} }

// Elsewhere in the program!
EventSource src = new EventSource();
Foo f = new Foo();
src.evt += new Event(f.MyMethod); // subscribe

Unrelated types!

66

C# and delegates

• In C# there is no way to choose between single and
multicast delegates

• The compiler always generates multicast delegates
• If more than one method is registered, they are

invoked on order of subscription. The returned value
is the result of the last invokation.

• In principle JIT could get rid of possible inefficiencies

67

Event keyword

• C# introduces the event keyword to control access to
a delegate member.

• If a delegate field of a class is labeled with event then
outside code will be able to use only += and -=
operators on it

• Listener would not be allowed to affect the
subscribers list in other ways

• Event infrastructures can be easily implemented by
means of this keyword and delegates

68

Multicast delegates: event keyword

delegate void Event();
class EventSource {
public event Event evt;
…
evt(); // fires the event

…
}

class Foo { public void MyMethod() {} }

// Elsewhere in the program!
EventSource src = new EventSource();
Foo f = new Foo();
src.evt += new Event(f.MyMethod);
src.evt = null; // ERROR!

69

Remoting Connectors for .NET
Distributed Components

• A component or a client cannot directly access a remote
component running in different application domain in same or
different processes unless using Remoting channel connection.

• The marshaling makes it possible to invoke a remote method of a
distributed component.

• There are two ways to marshal an object: in MBV (Marshal by
Value) server passes a copy of object to client or in Marshal by
Reference (MBR) client creates a proxy of a remote object.

• When a remote component must run at a remote site, MBR is the
only choice.

• Similar to RMI in Java

70

Remoting Asynchronous Callback Invocation
Between Distributed .NET Components

• The Remoting asynchronous callback is based on Remoting
Delegate. It will not block out the client while waiting for
notification from remote components.

• For example, someone wants to be notified once the stock prices
reaches a specified level. Instead of pooling the stock price all the
time, why not let the server notify you and you can do whatever
you want to do.

• In some other cases, the jobs on server will take very long to
complete, why not let the server notify you when the job is done.

• When client makes a synchronous call to remote method of remote
component, it passes a callback method to server to be called back
late through Remoting Delegate.

71

Conclusion

• The Microsoft approach to components
• Several technologies developed around COM
• Main innovation: The .NET framework in 2000
• Common Language Runtime
• .NET components: Assemblies
• Composition by aggregation and containment
• Communication by Events and Delegates

72

