
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-16: Type Classes & Type Inference in Haskell

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Core Haskell

• Basic Types
– Unit
– Booleans
– Integers
– Strings
– Reals
– Tuples
– Lists
– Records

• Patterns
• Declarations
• Functions
• Polymorphism
• Type declarations
• Type Classes
• Monads
• Exceptions

2

Polymorphism in Haskell

Polymorphism

Universal

Ad hoc

Parametric

Inclusion

Overloading

Coercion
Implicit

Bounded

Overriding

Explicit

Covariant
Invariant

Contravariant

Type Inference

Type classes

Ad hoc polymorphism: overloading

• Present in all languages, at least for built-in
arithmetic operators: +, *, -, …

• Sometimes supported for user defined functions
(Java, C++, …)

• C++, Haskell allow overloading of primitive
operators

• The code to execute is determined by the type of
the arguments, thus
– early binding in statically typed languages
– late binding in dynamically typed languages

4

Overloading: an example

• Function for squaring a number:
sqr(x) { return x * x; }

• Typed version (like in C) :
int sqr(int x) { return x * x; }

• Multiple versions for different types:
int sqrInt(int x) { return x * x; }
double sqrDouble(double x) { return x * x; }

• Overloading (Java, C++):
int sqr(int x) { return x * x; }
double sqr(double x) { return x * x; }

• But which type can be inferred by ML/Haskell?
> sqr x = x * x

Overloading besides arithmetic
• Some functions are "fully polymorphic"

member :: [w] -> w -> Bool

sort :: [w] -> [w]

6

length :: [w] -> Int

• Many useful functions are less polymorphic

• List sorting only works for types that support
ordering.

• Membership only works for types that support
equality.

Overloading Arithmetic, Take 1

• Allow functions containing overloaded symbols to define
multiple functions:

• But consider:

• Approach not widely used because of exponential growth in
number of versions.

square x = x * x -- legal
-- Defines two versions:
-- Int -> Int and Float -> Float

squares (x,y,z) =
(square x, square y, square z)

-- There are 8 possible versions!

7

Overloading Arithmetic, Take 2

• Basic operations such as + and * can be overloaded,
but not functions defined from them

• Standard ML uses this approach.
• Not satisfactory: Programmers cannot define

functions that implementation might support

3 * 3 -- legal
3.14 * 3.14 -- legal
square x = x * x -- Int -> Int
square 3 -- legal
square 3.14 -- illegal

8

Overloading Equality, Take 1
• Equality defined only for types that admit equality:

types not containing function types or abstract types.

• Overload equality like arithmetic ops + and * in SML.
• But then we can’t define functions using ‘==‘:

• Approach adopted in first version of SML.

3 * 3 == 9 -- legal
'a' == 'b' -- legal
\x->x == \y->y+1 -- illegal

member [] y = False
member (x:xs) y = (x==y) || member xs y

member [1,2,3] 3 -- ok if default is Int
member "Haskell" 'k' -- illegal

9

Overloading Equality, Take 2

• Make type of equality fully polymorphic

• Type of list-membership function

• Miranda used this approach. But…
– equality applied to a function yields a runtime error
– equality applied to an abstract type compares the

underlying representation, which violates abstraction
principles

(==) :: a -> a -> Bool

member :: [a] -> a -> Bool

10

Overloading Equality, Take 3
• Make equality polymorphic in a limited way:

where a(==) is type variable restricted to types with equality
• Now we can type the member function:

• Approach used in SML today, where the type a(==) is
called an eqtype variable and is written ''a (while
normal type variables are written 'a)

(==) :: a(==) -> a(==) -> Bool

member :: a(==) -> [a(==)] -> Bool
member 4 [2,3] :: Bool
member 'c' ['a', 'b', 'c'] :: Bool
member (\y -> y*2) [\x -> x, \x -> x+2] -- type error

11

Type Classes

• Type classes solve these problems
– Idea: Generalize ML’s eqtypes to arbitrary types
– Provide concise types to describe overloaded

functions, so no exponential blow-up
– Allow users to define functions using overloaded

operations, eg, square, squares, and member
– Allow users to declare new collections of

overloaded functions: equality and arithmetic
operators are not privileged built-ins

– Fit within type inference framework

12

Behind type classes: Intuition

• A function to sort lists can be passed a
comparison operator as an argument:

– This allows the function to be parametric

• We can build on this idea …

qsort:: (a -> a -> Bool) -> [a] -> [a]
qsort cmp [] = []
qsort cmp (x:xs) = qsort cmp (filter (cmp x) xs)

++ [x] ++
qsort cmp (filter (not.cmp x) xs)

13

Intuition (continued)

• Consider the “overloaded” parabola function

• We can rewrite the function to take the
operators it contains as an argument

– The extra parameter is a “dictionary” that
provides implementations for the overloaded ops.

– We have to rewrite all calls to pass appropriate
implementations for plus and times:

parabola x = (x * x) + x

parabola’ (plus, times) x = plus (times x x) x

y = parabola’(intPlus,intTimes) 10
z = parabola’(floatPlus, floatTimes) 3.14

14

Systematic programming style
-- Dictionary type
data MathDict a = MkMathDict (a->a->a) (a->a->a)

-- Accessor functions
get_plus :: MathDict a -> (a->a->a)
get_plus (MkMathDict p t) = p

get_times :: MathDict a -> (a->a->a)
get_times (MkMathDict p t) = t

-- “Dictionary-passing style”
parabola :: MathDict a -> a -> a
parabola dict x = let plus = get_plus dict

times = get_times dict
in plus (times x x) x

Type class declarations
will generate Dictionary
type and selector
functions

15

Systematic programming style

-- Dictionary type
data MathDict a = MkMathDict (a->a->a) (a->a->a)

-- Dictionary construction
intDict = MkMathDict intPlus intTimes
floatDict = MkMathDict floatPlus floatTimes

-- Passing dictionaries
y = parabola intDict 10
z = parabola floatDict 3.14

Type class instance declarations
produce instances of the Dictionary

Compiler will add a dictionary
parameter and rewrite the body as
necessary

16

Type Class Design Overview

• Type class declarations
– Define a set of operations, give the set a name
– Example: Eq a type class

• operations == and \= with type a -> a -> Bool

• Type class instance declarations
– Specify the implementations for a particular type
– For Int instance, == is defined to be integer equality

• Qualified types (or Type Constraints)
– Concisely express the operations required on

otherwise polymorphic type

member:: Eq w => w -> [w] -> Bool
17

If a function works for every type with particular
properties, the type of the function says just that:

Otherwise, it must work for any type

Qualified Types

Member :: Eq w => w -> [w] -> Bool

sort :: Ord a => [a] -> [a]
serialise :: Show a => a -> String
square :: Num n => n -> n
squares ::(Num t, Num t1, Num t2) =>

(t, t1, t2) -> (t, t1, t2)

“for all types w that
support the Eq

operations”

reverse :: [a] -> [a]
filter :: (a -> Bool) -> [a] -> [a]

18

Type Classes
square :: Num n => n -> n
square x = x*x

class Num a where
(+) :: a -> a -> a
(*) :: a -> a -> a
negate :: a -> a
...etc...

The class declaration
says what the Num
operations are

Works for any type
‘n’ that supports
the Num operations

instance Num Int where
a + b = intPlus a b
a * b = intTimes a b
negate a = intNeg a
...etc...

An instance
declaration for a
type T says how the
Num operations are
implemented on T’s

intPlus :: Int -> Int -> Int
intTimes :: Int -> Int -> Int
etc, defined as primitives19

Compiling Overloaded Functions

square :: Num n => n -> n
square x = x*x

square :: Num n -> n -> n
square d x = (*) d x x

The “Num n =>” turns into an extra value argument to
the function. It is a value of data type Num n and it
represents a dictionary of the required operations.

When you write this... ...the compiler generates this

A value of type (Num n) is a dictionary
of the Num operations for type n

20

Compiling Type Classes

class Num n where
(+) :: n -> n -> n
(*) :: n -> n -> n
negate :: n -> n
...etc...

The class decl translates
to:
A data type decl for Num
A selector function for
each class operation

data Num n
= MkNum (n -> n -> n)

(n -> n -> n)
(n -> n)
...etc...

...
(*) :: Num n -> n -> n -> n
(*) (MkNum _ m _ ...) = m

When you write this... ...the compiler generates this

A value of type (Num n) is a dictionary
of the Num operations for type n

21

square :: Num n => n -> n
square x = x*x

square :: Num n -> n -> n
square d x = (*) d x x

dNumInt :: Num Int
dNumInt = MkNum intPlus

intTimes
intNeg
...

Compiling Instance Declarations

square :: Num n => n -> n
square x = x*x

square :: Num n -> n -> n
square d x = (*) d x x

instance Num Int where
a + b = intPlus a b
a * b = intTimes a b
negate a = intNeg a
...etc...

When you write this... ...the compiler generates this

A value of type (Num n) is a dictionary
of the Num operations for type n

An instance decl for type T
translates to a value
declaration for the Num
dictionary for T

22

Implementation Summary
• Each overloaded symbol has to be introduced in at least

one type class.
• The compiler translates each function that uses an

overloaded symbol into a function with an extra parameter:
the dictionary.

• References to overloaded symbols are rewritten by the
compiler to lookup the symbol in the dictionary.

• The compiler converts each type class declaration into a
dictionary type declaration and a set of selector functions.

• The compiler converts each instance declaration into a
dictionary of the appropriate type.

• The compiler rewrites calls to overloaded functions to pass
a dictionary. It uses the static, qualified type of the
function to select the dictionary.

23

Functions with Multiple Dictionaries

squares :: (Num a, Num b, Num c) => (a, b, c) -> (a, b, c)
squares(x,y,z) = (square x, square y, square z)

squares :: (Num a, Num b, Num c) -> (a, b, c) -> (a, b, c)
squares (da,db,dc) (x, y, z) =

(square da x, square db y, square dc z)

Pass appropriate
dictionary on to each
square function.

Note the concise type for
the squares function!

24

Compositionality

sumSq :: Num n => n -> n -> n
sumSq x y = square x + square y

sumSq :: Num n -> n -> n -> n
sumSq d x y = (+) d (square d x)

(square d y)

Pass on d to squareExtract addition
operation from d

Overloaded functions can be defined from other
overloaded functions:

25

Compositionality

class Eq a where
(==) :: a -> a -> Bool

instance Eq Int where
(==) = intEq -- intEq primitive equality

instance (Eq a, Eq b) => Eq(a,b)
(u,v) == (x,y) = (u == x) && (v == y)

instance Eq a => Eq [a] where
(==) [] [] = True
(==) (x:xs) (y:ys) = x==y && xs == ys
(==) _ _ = False

Build compound instances from simpler ones:

26

Compound Translation

class Eq a where
(==) :: a -> a -> Bool

instance Eq a => Eq [a] where
(==) [] [] = True
(==) (x:xs) (y:ys) = x==y && xs == ys
(==) _ _ = False

data Eq = MkEq (a->a->Bool) -- Dictionary type
(==) (MkEq eq) = eq -- Selector
dEqList :: Eq a -> Eq [a] -- List Dictionary
dEqList d = MkEq eql
where
eql [] [] = True
eql (x:xs) (y:ys) = (==) d x y && eql xs ys
eql _ _ = False

Build compound instances from simpler ones.

27

Many Type Classes

• Eq: equality
• Ord: comparison
• Num: numerical operations
• Show: convert to string
• Read: convert from string
• Testable, Arbitrary: testing.
• Enum: ops on sequentially ordered types
• Bounded: upper and lower values of a type
• Generic programming, reflection, monads, …
• And many more.

28

Subclasses

• We could treat the Eq and Num type classes separately

– But we expect any type supporting Num to also support Eq

• A subclass declaration expresses this relationship:

• With that declaration, we can simplify the type of the function

memsq :: (Eq a, Num a) => a -> [a] -> Bool
memsq x xs = member (square x) xs

class Eq a => Num a where
(+) :: a -> a -> a
(*) :: a -> a -> a

memsq :: Num a => a -> [a] -> Bool
memsq x xs = member (square x) xs

29

30

Default Methods

• Type classes can define “default methods”

• Instance declarations can override default by
providing a more specific definition.

-- Minimal complete definition:
-- (==) or (/=)
class Eq a where

(==) :: a -> a -> Bool
x == y = not (x /= y)
(/=) :: a -> a -> Bool
x /= y = not (x == y)

31

Deriving
• For Read, Show, Bounded, Enum, Eq, and Ord, the compiler

can generate instance declarations automatically
data Color = Red | Green | Blue

deriving (Show, Read, Eq, Ord)

Main>:t show
show :: Show a => a -> String
Main> show Red
"Red"
Main> Red < Green
True
Main>:t read
read :: Read a => String -> a
Main> let c :: Color = read "Red"
Main> c
Red

32

• Ad hoc : derivations apply only to types where derivation code works

Numeric Literals
class Num a where
(+) :: a -> a -> a
(-) :: a -> a -> a
fromInteger :: Integer -> a
...

inc :: Num a => a -> a
inc x = x + 1

Even literals are
overloaded.
1 :: (Num a) => a

“1” means
“fromInteger 1”

Advantages:
- Numeric literals can be interpreted as values

of any appropriate numeric type
- Example: 1 can be an Integer or a Float or a

user-defined numeric type.
33

Polymorphism in Haskell

Polymorphism

Universal

Ad hoc

Parametric

Inclusion

Overloading

Coercion
Implicit

Bounded

Overriding

Explicit

Covariant
Invariant

Contravariant

Type Inference

Type classes

• Standard type checking:

– Examine body of each function
– Use declared types to check agreement

• Type inference:

– Examine code without type information. Infer the
most general types that could have been declared.

int f(int x) { return x+1; };
int g(int y) { return f(y+1)*2; };

Type Checking vs Type Inference

int f(int x) { return x+1; };
int g(int y) { return f(y+1)*2; };

ML and Haskell are designed to make type inference feasible.
35

Why study type inference?

– Reduces syntactic overhead of expressive types,
still allowing for static type checking

– Guaranteed to produce most general type
– Originally developed for functional languages,

now used more and more in any kind of languages
– Illustrative example of a flow-insensitive static

analysis algorithm

36

History & Complexity
• Original type inference algorithm

– Invented by Haskell Curry and Robert Feys for the simply typed lambda
calculus in 1958

• In 1969, J. Roger Hindley
– extended the algorithm to a richer language and proved it always produced

the most general type
• In 1978, Robin Milner

– independently developed andequivalent algorithm, called algorithm W, during
his work designing ML.

• In 1982, Luis Damas proved the algorithm was complete.
• When Hindley/Milner type inference algorithm was developed, its

complexity was unknown. In 1989, Kanellakis, Mairson, and Mitchell
proved that the problem was exponential-time complete

• Usually linear in practice though…
– Running time is exponential in the depth of polymorphic declarations

37

uHaskell

• Subset of Haskell to explain type inference.
– Haskell and ML both have overloading
– Will do not consider overloading now

<decl> ::= <name> <pat> = <exp>
<pat> ::= Id | (<pat>, <pat>) | <pat> : <pat> | []
<exp> ::= Int | Bool | [] | Id | (<exp>)

| <exp> <op> <exp>
| <exp> <exp> | (<exp>, <exp>)
| if <exp> then <exp> else <exp>

38

Type Inference: Basic Idea

• Example

• What is the type of f?
+ has type: Int ® Int ® Int

(with overloading would be Num a => a ® a ® a)
2 has type: Int
Since we are applying + to x we need x :: Int

Therefore f x = 2 + x has type Int ® Int

f x = 2 + x -- a simple declaration

39

f x = 2 + x -- a simple declaration
> f :: Int -> Int

Step 1: Parse Program

• Parse program text to construct parse tree.

f x = 2 + x

• Binary @-nodes to represent
application

• Ternary Fun-node for function
definitions

• Infix operators are converted to
Curried function application during
parsing: 2 + x è (+) 2 x 40

Step 2: Assign type variables to nodes

Variables are given same type
as binding occurrence.

f x = 2 + x

41

Constraints from Application Nodes

• Function application (apply f to x)
– Type of f (t_0 in figure) must be domain ®

range.
– Domain of f must be type of argument x (t_1)
– Range of f must be result of application (t_2)
– Constraint: t_0 = t_1 -> t_2

f x

t_0 = t_1 -> t_2

42

Constraints from Abstractions

• Function declaration:
– Type of f (t_0) must domain ® range
– Domain is type of abstracted variable x (t_1)
– Range is type of function body e (t_2)
– Constraint: t_0 = t_1 -> t_2

f x = e

t_0 = t_1 -> t_2

43

Step 3: Add Constraints

t_0 = t_1 -> t_6
t_4 = t_1 -> t_6
t_2 = t_3 -> t_4
t_2 = Int -> Int -> Int
t_3 = Int

f x = 2 + x

44

Step 4: Solve Constraints
t_0 = t_1 -> t_6
t_4 = t_1 -> t_6
t_2 = t_3 -> t_4
t_2 = Int -> Int -> Int
t_3 = Int

t_3 -> t_4 = Int -> (Int -> Int)

t_3 = Int
t_4 = Int -> Intt_0 = t_1 -> t_6

t_4 = t_1 -> t_6
t_4 = Int -> Int
t_2 = Int -> Int -> Int
t_3 = Int

t_1 -> t_6 = Int -> Int

t_1 = Int
t_6 = Int

t_0 = Int -> Int
t_1 = Int
t_6 = Int
t_4 = Int -> Int
t_2 = Int -> Int -> Int
t_3 = Int

45

Step 5:
Determine type of declaration

f x = 2 + x
> f :: Int -> Int

t_0 = Int -> Int
t_1 = Int
t_6 = Int
t_4 = Int -> Int
t_2 = Int -> Int -> Int
t_3 = Int

46

Type Inference Algorithm

• Parse program to build parse tree
• Assign type variables to nodes in tree
• Generate constraints:
– From environment: constants (2), built-in

operators (+), known functions (tail).
– From shape of parse tree: e.g., application and

abstraction nodes.
• Solve constraints using unification
• Determine types of top-level declarations

47

Inferring Polymorphic Types
f g = g 2
> f :: (Int -> t_4) -> t_4• Example:

• Step 1:
Build Parse Tree

48

Inferring Polymorphic Types
f g = g 2
> f :: (Int -> t_4) -> t_4• Example:

• Step 2:
Assign type variables

49

Inferring Polymorphic Types

• Example:
• Step 3:

Generate constraints

t_0 = t_1 -> t_4
t_1 = t_3 -> t_4
t_3 = Int

f g = g 2
> f :: (Int -> t_4) -> t_4

50

Inferring Polymorphic Types

• Example:
• Step 4:

Solve constraints

t_0 = t_1 -> t_4
t_1 = t_3 -> t_4
t_3 = Int

t_0 = (Int -> t_4) -> t_4
t_1 = Int -> t_4
t_3 = Int

f g = g 2
> f :: (Int -> t_4) -> t_4

51

Inferring Polymorphic Types

• Example:
• Step 5:

Determine type of top-level declaration

t_0 = (Int -> t_4) -> t_4
t_1 = Int -> t_4
t_3 = Int

Unconstrained type
variables become
polymorphic types.

f g = g 2
> f :: (Int -> t_4) -> t_4

52

Using Polymorphic Functions

• Function:

• Possible applications:

add x = 2 + x
> add :: Int -> Int

f add
> 4 :: Int

isEven x = mod (x, 2) == 0
> isEven:: Int -> Bool

f isEven
> True :: Bool

f g = g 2
> f :: (Int -> t_4) -> t_4

53

Polymorphic Datatypes

• Functions may have multiple clauses

• Type inference
– Infer separate type for each clause
– Combine by adding constraint that all clauses

must have the same type
– Recursive calls: function has same type as its

definition

length [] = 0
length (x:rest) = 1 + (length rest)

54

Type Inference with Datatypes

• Example:
• Step 1: Build Parse Tree

length (x:rest) = 1 + (length rest)

55

Type Inference with Datatypes

• Example:
• Step 2: Assign type variables

length (x:rest) = 1 + (length rest)

56

Type Inference with Datatypes

• Example:
• Step 3: Generate constraints

length (x:rest) = 1 + (length rest)

t_0 = t_3 -> t_10
t_3 = t_2
t_3 = [t_1]
t_6 = t_9 -> t_10
t_4 = t_5 -> t_6
t_4 = Int -> Int -> Int
t_5 = Int
t_0 = t_2 -> t_9

57

Type Inference with Datatypes

• Example:
• Step 3: Solve Constraints

length (x:rest) = 1 + (length rest)

t_0 = t_3 -> t_10
t_3 = t_2
t_3 = [t_1]
t_6 = t_9 -> t_10
t_4 = t_5 -> t_6
t_4 = Int -> Int -> Int
t_5 = Int
t_0 = t_2 -> t_9

t_0 = [t_1] -> Int 58

Multiple Clauses

• Function with multiple clauses

• Infer type of each clause
– First clause:

– Second clause:

• Combine by equating types of two clauses

append ([],r) = r
append (x:xs, r) = x : append (xs, r)

> append :: ([t_1], t_2) -> t_2

> append :: ([t_3], t_4) -> [t_3]

> append :: ([t_1], [t_1]) -> [t_1]

59

Most General Type

• Type inference produces the most general type

• Functions may have many less general types

• Less general types are all instances of most general
type, also called the principal type

map (f, []) = []
map (f, x:xs) = f x : map (f, xs)
> map :: (t_1 -> t_2, [t_1]) -> [t_2]

> map :: (t_1 -> Int, [t_1]) -> [Int]
> map :: (Bool -> t_2, [Bool]) -> [t_2]
> map :: (Char -> Int, [Char]) -> [Int]

60

Type Inference with overloading
• In presence of overloading (Type Classes), type inference

infers a qualified type Q => T
– T is a Hindley Milner type, inferred as seen before
– Q is set of type class predicates, called a constraint

• Consider the example function:

– Type T is a -> [a] -> Bool
– Constraint Q is { Ord a, Eq a, Eq [a]}

example z xs =
case xs of
[] -> False
(y:ys) -> y > z || (y==z && ys == [z])

Ord a because y>z
Eq a because y==z
Eq [a] because ys == [z]

61

Simplifying Type Constraints

• Constraint sets Q can be simplified:
– Eliminate duplicates

• (Eq a, Eq a) simplifies to Eq a
– Use an instance declaration

• If we have instance Eq a => Eq [a],
then (Eq a, Eq [a]) simplifies to Eq a

– Use a class declaration
• If we have class Eq a => Ord a where ...,

then (Ord a, Eq a) simplifies to Ord a
• Applying these rules,
– (Ord a, Eq a, Eq[a]) simplifies to Ord a

62

Type Inference with overloading

• Putting it all together:

– T = a -> [a] -> Bool
– Q = (Ord a, Eq a, Eq [a])
– Q simplifies to Ord a
– example :: Ord a => a -> [a] -> Bool

example z xs =
case xs of
[] -> False
(y:ys) -> y > z || (y==z && ys ==[z])

63

Detecting Errors

• Errors are detected when predicates are
known not to hold:

Prelude> 'a' + 1
<interactive>:33:1: error:

• No instance for (Num Char) arising from a use of ‘+’
• In the expression: 1 + 'a'
In an equation for ‘it’: it = 1 + 'a'

Prelude> (\x -> x)
<interactive>:34:1: error:

• No instance for (Show (p0 -> p0)) arising from a use of ‘print’
(maybe you haven't applied a function to enough arguments?)

• In a stmt of an interactive GHCi command: print it

64

