301AA - Advanced Programming

Lecturer: Andrea Corradini andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-16: Type Classes & Type Inference in Haskell

Core Haskell

- Basic Types
 - Unit
 - Booleans
 - Integers
 - Strings
 - Reals
 - Tuples
 - Lists
 - Records

- Patterns
- Declarations
- Functions
- Polymorphism
- Type declarations
- Type Classes
- Monads
- Exceptions

Polymorphism in Haskell

Ad hoc polymorphism: overloading

- Present in all languages, at least for built-in arithmetic operators: +, *, -, ...
- Sometimes supported for user defined functions (Java, C++, ...)
- C++, Haskell allow overloading of primitive operators
- The code to execute is determined by the type of the arguments, thus
 - early binding in statically typed languages
 - late binding in dynamically typed languages

Overloading: an example

- Function for squaring a number: sqr(x) { return x * x; }
- Typed version (like in C) :
 int sqr(int x) { return x * x; }
- Multiple versions for different types: int sqrInt(int x) { return x * x; } double sqrDouble(double x) { return x * x; }
- Overloading (Java, C++): int sqr(int x) { return x * x; } double sqr(double x) { return x * x; }
- But which type can be inferred by ML/Haskell?
 sqr x = x * x

Overloading besides arithmetic

• Some functions are "fully polymorphic"

```
length :: [w] -> Int
```

• Many useful functions are less polymorphic

member :: [w] -> w -> Bool

• Membership only works for types that support equality.

```
sort :: [w] -> [w]
```

• List sorting only works for types that support ordering.

Overloading Arithmetic, Take 1

 Allow functions containing overloaded symbols to define multiple functions:

```
square x = x * x -- legal
-- Defines two versions:
-- Int -> Int and Float -> Float
```

• But consider:

```
squares (x,y,z) =
  (square x, square y, square z)
-- There are 8 possible versions!
```

• Approach not widely used because of exponential growth in number of versions.

Overloading Arithmetic, Take 2

 Basic operations such as + and * can be overloaded, but not functions defined from them

3 * 3	legal
3.14 * 3.14	legal
square $x = x * x$	Int -> Int
square 3	legal
square 3.14	illegal

- **Standard ML** uses this approach.
- Not satisfactory: Programmers cannot define functions that implementation might support

Overloading Equality, Take 1

 Equality defined only for types that admit equality: types not containing function types or abstract types.

3 * 3 == 9	legal
'a' == 'b'	legal
$x \rightarrow x = y \rightarrow y+1$	illegal

- Overload equality like arithmetic ops + and * in SML.
- But then we can't define functions using '==':

```
member [] y = False
member (x:xs) y = (x==y) || member xs y
member [1,2,3] 3 -- ok if default is Int
member "Haskell" 'k' -- illegal
```

• Approach adopted in first version of SML.

Overloading Equality, Take 2

• Make type of equality fully polymorphic

(==) :: a -> a -> Bool

• Type of list-membership function

member :: [a] -> a -> Bool

- Miranda used this approach. But...
 - equality applied to a **function** yields a runtime error
 - equality applied to an abstract type compares the underlying representation, which violates abstraction principles

Overloading Equality, Take 3

• Make equality polymorphic in a limited way:

(==) :: a(==) -> a(==) -> Bool

where a(==) is type variable restricted to **types with equality**

• Now we can type the member function:

```
member :: a(==) -> [a(==)] -> Bool
member 4 [2,3] :: Bool
member 'c' ['a', 'b', 'c'] :: Bool
member (\y -> y*2) [\x -> x, \x -> x+2] -- type error
```

 Approach used in SML today, where the type a(==) is called an eqtype variable and is written "a (while normal type variables are written 'a)

Type Classes

- Type classes solve these problems
 - Idea: Generalize ML's eqtypes to arbitrary types
 - Provide concise types to describe overloaded functions, so no exponential blow-up
 - Allow users to define functions using overloaded operations, eg, square, squares, and member
 - Allow users to declare new collections of overloaded functions: equality and arithmetic operators are not privileged built-ins
 - Fit within type inference framework

Behind type classes: Intuition

• A function to sort lists can be passed a comparison operator as an argument:

- This allows the function to be parametric

• We can build on this idea ...

Intuition (continued)

• Consider the "overloaded" parabola function

parabola x = (x * x) + x

• We can rewrite the function to take the operators it contains as an argument

parabola' (plus, times) x = plus (times x x) x

- The extra parameter is a "dictionary" that provides implementations for the overloaded ops.
- We have to rewrite all calls to pass appropriate implementations for plus and times:

```
y = parabola' (intPlus, intTimes) 10
z = parabola' (floatPlus, floatTimes) 3.14
```

Systematic programming style

```
-- Dictionary type
data MathDict a = MkMathDict (a->a->a) (a->a->a)
```

```
-- Accessor functions
get_plus :: MathDict a -> (a->a->a)
get plus (MkMathDict p t) = p
```

```
get_times :: MathDict a -> (a->a->a)
get times (MkMathDict p t) = t
```

```
Type class declarations
```

will generate Dictionary type and selector functions

```
-- "Dictionary-passing style"

parabola :: MathDict a -> a -> a

parabola dict x = let plus = get_plus dict

times = get_times dict

in plus (times x x) x
```

Systematic programming style

Type class **instance declarations** produce instances of the Dictionary

```
-- Dictionary type
data MathDict a = MkMathDict (a->a->a) (a->a->a)
-- Dictionary construction
intDict = MkMathDict intPlus intTimes
floatDict = MkMathDict floatPlus floatTimes
-- Passing dictionaries
y = parabola intDict 10
z = parabola floatDict 3.14
```

Compiler will add a dictionary parameter and rewrite the body as necessary

Type Class Design Overview

• Type class declarations

- Define a set of operations, give the set a name
- Example: Eq a type class
 - operations == and \= with type a -> a -> Bool
- Type class instance declarations
 - Specify the implementations for a particular type
 - For Int instance, == is defined to be integer equality
- Qualified types (or Type Constraints)
 - Concisely express the operations required on otherwise polymorphic type

member:: Eq w => w -> [w] -> Bool

Member :: Eq w \Rightarrow w \Rightarrow [w] \Rightarrow Bool

If a function works for every type with particular properties, the type of the function says just that:

sort	:: Ord a \Rightarrow [a] \rightarrow [a]	
serialise	:: Show a => a -> String	
square	:: Num n \Rightarrow n \Rightarrow n	
squares	:: (Num t, Num t1, Num t2) =>	
	(t, t1, t2) -> (t, t1, t2))

Otherwise, it must work for any type

reverse :: [a] -> [a] filter :: (a -> Bool) -> [a] -> [a] Works for any type 'n' that supports the Num operations

Type Classes

square :: Num n => n \rightarrow n square x = x*x

class	Num a	wł	nere	9		
(+)	::	a	->	a	->	a
(*)	::	a	->	a	->	a
nega	ate ::	a	->	a		
e	etc					

instance Num Int where a + b = intPlus a b a * b = intTimes a b negate a = intNeg a ...etc... The class declaration says what the Num operations are

An instance declaration for a type T says how the Num operations are implemented on T's

intPlus :: Int -> Int -> Int intTimes :: Int -> Int -> Int etc, defined as primitives₀

Compiling Overloaded Functions

When you write this...

square :: Num n => n \rightarrow n square x = x*x ...the compiler generates this

square	::	Num	n	->	n	->	n
square	d	x =	(*)	d	x	x	

The "Num n =>" turns into an extra value argument to the function. It is a value of data type Num n and it represents a dictionary of the required operations.

A value of type (Num n) is a dictionary of the Num operations for type n

Compiling Type Classes

When you write this...

square :: Num n => n \rightarrow n square x = x*x

class	Num r	n	wh	ere	•		
(+)	::	•	n	->	n	->	n
(*)	::		n	->	n	->	n
nega	te :	•	n	->	n		
e	etc	•					

The class decl translates to: A data type decl for Num A selector function for each class operation ... the compiler generates this

square	•••	Num	n	->	n	->	n
square	d :	к =	(*)	d	x	x	

A value of type (Num n) is a dictionary of the Num operations for type n

Compiling Instance Declarations

When you write this...

square :: Num n => n \rightarrow n square x = x*x ...the compiler generates this

square	::	Num	n	->	n	->	n
square	d :	к =	(*)	d	x	x	

instance	Num	Int where	3
a + b	=	intPlus	a b
a * b	=	intTimes	a b
negate	a =	intNeg a	
etc	• • •		

An instance decl for type T translates to a value declaration for the Num dictionary for T

A value of type (Num n) is a dictionary of the Num operations for type n

Implementation Summary

- Each overloaded symbol has to be introduced in at least one type class.
- The compiler translates each function that uses an overloaded symbol into a function with an extra parameter: the dictionary.
- References to overloaded symbols are rewritten by the compiler to lookup the symbol in the dictionary.
- The compiler converts each type class declaration into a dictionary type declaration and a set of selector functions.
- The compiler converts each instance declaration into a dictionary of the appropriate type.
- The compiler rewrites calls to overloaded functions to pass a dictionary. It uses the static, qualified type of the function to select the dictionary.

Functions with Multiple Dictionaries

squares :: (Num a, Num b, Num c) => (a, b, c) \rightarrow (a, b, c) squares(x,y,z) = (square x, square y, square z)

Note the concise type for the squares function!

squares :: (Num a, Num b, Num c) \rightarrow (a, b, c) \rightarrow (a, b, c) squares (da,db,dc) (x, y, z) = (square da x, square db y, square dc z)

> Pass appropriate dictionary on to each square function.

Compositionality

Overloaded functions can be defined from other overloaded functions:

sumSq :: Num n => n -> n -> nsumSq x y = square x + square y

Extract addition operation from d

Pass on d to square

Compositionality

Build compound instances from simpler ones:

```
class Eq a where
  (==) :: a -> a -> Bool
instance Eq Int where
 (==) = intEq -- intEq primitive equality
instance (Eq a, Eq b) \Rightarrow Eq(a,b)
  (u,v) == (x,y) = (u == x) \&\& (v == y)
instance Eq a \Rightarrow Eq [a] where
  (==) [] [] = True
  (==) (x:xs) (y:ys) = x==y && xs == ys
  (==) _ = False
```

Compound Translation

Build compound instances from simpler ones.

```
class Eq a where
  (==) :: a -> a -> Bool
instance Eq a => Eq [a] where
  (==) [] [] = True
  (==) (x:xs) (y:ys) = x==y && xs == ys
  (==) _ = False
```

```
data Eq = MkEq (a->a->Bool) -- Dictionary type
(==) (MkEq eq) = eq -- Selector
dEqList :: Eq a -> Eq [a] -- List Dictionary
dEqList d = MkEq eql
where
    eql [] [] = True
    eql (x:xs) (y:ys) = (==) d x y && eql xs ys
    eql _ _ _ = False
```

Many Type Classes

- Eq: equality
- Ord: comparison
- Num: numerical operations
- Show: convert to string
- Read: convert from string
- Testable, Arbitrary: testing.
- Enum: ops on sequentially ordered types
- **Bounded**: upper and lower values of a type
- Generic programming, reflection, monads, ...
- And many more.

Subclasses

• We could treat the Eq and Num type classes separately

memsq :: (Eq a, Num a) => a -> [a] -> Bool
memsq x xs = member (square x) xs

- But we expect any type supporting Num to also support Eq
- A subclass declaration expresses this relationship:

• With that declaration, we can simplify the type of the function

```
memsq :: Num a => a -> [a] -> Bool
memsq x xs = member (square x) xs
```


Default Methods

• Type classes can define "default methods"

```
-- Minimal complete definition:

-- (==) or (/=)

class Eq a where

(==) :: a -> a -> Bool

x == y = not (x /= y)

(/=) :: a -> a -> Bool

x /= y = not (x == y)
```

 Instance declarations can override default by providing a more specific definition.

Deriving

• For Read, Show, Bounded, Enum, Eq, and Ord, the compiler can generate instance declarations automatically

```
data Color = Red | Green | Blue
    deriving (Show, Read, Eq, Ord)
```

```
Main>:t show
show :: Show a => a -> String
Main> show Red
"Red"
Main> Red < Green
True
Main>:t read
read :: Read a => String -> a
Main> let c :: Color = read "Red"
Main> c
Red
```

• Ad hoc : derivations apply only to types where derivation code works

Numeric Literals

Advantages: Numeric literals can be interpreted as values of any appropriate numeric type Example: 1 can be an Integer or a Float or a user-defined numeric type.

Type Checking vs Type Inference

• Standard type checking:

int f(int x) { return x+1; }; int g(int y) { return f(y+1)*2; };

- Examine body of each function
- Use declared types to check agreement
- Type inference:

int f(int x) { return x+1; };

int g(int y) { return f(y+1)*2; };

 Examine code without type information. Infer the most general types that could have been declared.

ML and Haskell are *designed* to make type inference feasible.

Why study type inference?

- Reduces syntactic overhead of expressive types, still allowing for static type checking
- Guaranteed to produce most general type
- Originally developed for functional languages, now used more and more in any kind of languages
- Illustrative example of a flow-insensitive static analysis algorithm

History & Complexity

- Original type inference algorithm
 - Invented by Haskell Curry and Robert Feys for the simply typed lambda calculus in 1958
- In 1969, J. Roger Hindley
 - extended the algorithm to a richer language and proved it always produced the most general type
- In 1978, Robin Milner
 - independently developed and equivalent algorithm, called algorithm W, during his work designing ML.
- In 1982, Luis Damas proved the algorithm was complete.
- When Hindley/Milner type inference algorithm was developed, its complexity was unknown. In 1989, Kanellakis, Mairson, and Mitchell proved that the problem was exponential-time complete
- Usually linear in practice though...
 - Running time is exponential in the depth of polymorphic declarations

uHaskell

- Subset of Haskell to explain type inference.
 - Haskell and ML both have overloading
 - Will do not consider overloading now

Type Inference: Basic Idea

• Example

f x = 2 + x -- a simple declaration

- What is the type of **f**?
 - + has type: Int \rightarrow Int \rightarrow Int

(with overloading would be Num $a \Rightarrow a \rightarrow a \rightarrow a$)

2 has type: Int

Since we are applying + to x we need x :: Int

Therefore f x = 2 + x has type Int \rightarrow Int

f x = 2 + x -- a simple declaration > f :: Int -> Int

Step 1: Parse Program

• Parse program text to construct parse tree.

Step 2: Assign type variables to nodes

Variables are given same type as binding occurrence.

Constraints from Application Nodes

- Function application (apply f to x)
 - Type of **f** (t_0 in figure) must be **domain** \rightarrow **range**.
 - **Domain** of **f** must be type of argument x (t_1)
 - Range of f must be result of application (t_2)
 - Constraint: t_0 = t_1 -> t_2

Constraints from Abstractions

- Function declaration:
 - Type of **f** (t_0) must domain \rightarrow range
 - Domain is type of abstracted variable x (t_1)
 - Range is type of function body e (t_2)
 - Constraint: t_0 = t_1 -> t_2

Step 3: Add Constraints

Step 4: Solve Constraints

Step 5: Determine type of declaration

Type Inference Algorithm

- Parse program to build parse tree
- Assign type variables to nodes in tree
- Generate constraints:
 - From environment: constants (2), built-in operators (+), known functions (tail).
 - From shape of parse tree: e.g., application and abstraction nodes.
- Solve constraints using *unification*
- Determine types of top-level declarations

• Example:

4

• Step 1: Build Parse Tree

• Example:

 Step 2: Assign type variables

t 4

• Example:

t 4

 Step 3: Generate constraints

• Example:

 Step 4: Solve constraints

• Example:

 Step 5: Determine type of top-level declaration

Using Polymorphic Functions

• Function:

• Possible applications:

add x = 2 + x
> add :: Int -> Int
f add
> 4 :: Int

isEven x = mod (x, 2) == 0
> isEven:: Int -> Bool

- fisEven
- > True :: Bool

Polymorphic Datatypes

• Functions may have multiple clauses

```
length [] = 0
length (x:rest) = 1 + (length rest)
```

- Type inference
 - Infer separate type for each clause
 - Combine by adding constraint that all clauses must have the same type
 - Recursive calls: function has same type as its definition

- Example: length (x:rest) = 1 + (length rest)
- Step 1: Build Parse Tree

- Example: length (x:rest) = 1 + (length rest)
- Step 2: Assign type variables

- Example: length (x:rest) = 1 + (length rest)
- Step 3: Generate constraints t_0 = t_3 -> t_10
 t_3 = t_2

- Example: length (x:rest) = 1 + (length rest)
- Step 3: Solve Constraints $t_0 = t_3 \rightarrow t_{10}$ t 3 = t 23 = [t 1]Fun $6 = t 9 \rightarrow t 10$ $4 = t 5 -> t_6$ $4 = Int \rightarrow Int \rightarrow Int$ t 5 = Int(_:_) :: t_3 length :: t_0 (@) :: t_10 $t 0 = t 2 -> t_9$ (@) :: t_6 (@) :: t_9 x :: t 1 rest :: t_2

1 :: t_5

(+) :: t_4

 $t 0 = [t 1] \rightarrow Int$

length :: t_0

rest :: t 2

Multiple Clauses

• Function with multiple clauses

append ([],r) = r
append (x:xs, r) = x : append (xs, r)

- Infer type of each clause
 - First clause:

> append :: ([t_1], t_2) -> t_2

– Second clause:

> append :: ([t_3], t_4) -> [t_3]

• Combine by equating types of two clauses

> append :: ([t_1], [t_1]) -> [t_1]

Most General Type

• Type inference produces the most general type

```
map (f, [] ) = []
map (f, x:xs) = f x : map (f, xs)
> map :: (t_1 -> t_2, [t_1]) -> [t_2]
```

• Functions may have many less general types

> map	::	(t_1	->	Int,	[t_1])	->	[Int]
> map	::	(Bool	->	t_2,	[Bool])	->	[t_2]
> map	::	(Char	->	Int,	[Char])	->	[Int]

 Less general types are all instances of most general type, also called the *principal type*

Type Inference with overloading

- In presence of overloading (Type Classes), type inference infers a *qualified type* Q => T
 - T is a Hindley Milner type, inferred as seen before
 - Q is set of type class predicates, called a constraint
- Consider the example function:

```
example z xs =
    case xs of
    []    -> False
    (y:ys) -> y > z || (y==z && ys == [z])
```

- Type T is a -> [a] -> Bool
- Constraint Q is { Ord a, Eq a, Eq [a]}

Simplifying Type Constraints

- Constraint sets Q can be simplified:
 - Eliminate duplicates
 - (Eq a, Eq a) simplifies to Eq a
 - Use an instance declaration
 - If we have instance Eq a => Eq [a], then (Eq a, Eq [a]) simplifies to Eq a
 - Use a class declaration
 - If we have class Eq a => Ord a where ..., then (Ord a, Eq a) simplifies to Ord a
- Applying these rules,

- (Ord a, Eq a, Eq[a]) simplifies to Ord a

Type Inference with overloading

• Putting it all together:

```
example z xs =
    case xs of
    []    -> False
    (y:ys) -> y > z || (y==z && ys ==[z])
```

- T = a -> [a] -> Bool
- -Q = (Ord a, Eq a, Eq [a])
- Q simplifies to Ord a
- example :: Ord a => a -> [a] -> Bool

Detecting Errors

• Errors are detected when predicates are known not to hold:

```
Prelude> 'a' + 1
<interactive>:33:1: error:
    No instance for (Num Char) arising from a use of `+'
    In the expression: 1 + 'a'
    In an equation for `it': it = 1 + 'a'
```

Prelude> $(x \rightarrow x)$

<interactive>:34:1: error:

- No instance for (Show (p0 -> p0)) arising from a use of 'print' (maybe you haven't applied a function to enough arguments?)
- In a stmt of an interactive GHCi command: print it