301AA - Advanced Programming

Lecturer: Andrea Corradini andrea@di.unipi.it
 http://pages.di.unipi.it/corradini/

AP-16: Type Classes \& Type Inference in Haskell

Core Haskell

- Basic Types
- Unit
- Booleans
- Integers
- Strings
- Reals
- Tuples
- Lists
- Records
- Patterns
- Declarations
- Functions
- Polymorphism
- Type declarations
- Type Classes
- Monads
- Exceptions

Polymorphism in Haskell

Ad hoc polymorphism: overloading

- Present in all languages, at least for built-in arithmetic operators: +, *, -, ...
- Sometimes supported for user defined functions (Java, C++, ...)
- C++, Haskell allow overloading of primitive operators
- The code to execute is determined by the type of the arguments, thus
- early binding in statically typed languages
- late binding in dynamically typed languages

Overloading: an example

- Function for squaring a number: sqr(x) \{ return x * x; \}
- Typed version (like in C) : int sqr(int x) \{ return x * x; \}
- Multiple versions for different types: int sqrInt(int x) \{ return x * x; \} double sqrDouble(double x) \{ return x * x ; \}
- Overloading (Java, C++):
int sqr(int x) \{ return x * x ; \} double sqr(double x) \{ return x * x; \}
- But which type can be inferred by ML/Haskell?
> sqr $\mathrm{x}=\mathrm{x}$ * x

Overloading besides arithmetic

- Some functions are "fully polymorphic"

```
length :: [w] -> Int
```

- Many useful functions are less polymorphic

```
member :: [w] -> w -> Bool
```

- Membership only works for types that support equality.

```
sort :: [w] -> [w]
```

- List sorting only works for types that support ordering.

Overloading Arithmetic, Take 1

- Allow functions containing overloaded symbols to define multiple functions:

```
square x = x * x -- legal
-- Defines two versions:
-- Int -> Int and Float -> Float
```

- But consider:

```
squares (x,y,z) =
    (square }x\mathrm{ , square }y\mathrm{ , square z)
-- There are 8 possible versions!
```

- Approach not widely used because of exponential growth in number of versions.

Overloading Arithmetic, Take 2

- Basic operations such as + and * can be overloaded, but not functions defined from them

```
* -- legal
3.14 * 3.14 -- legal
square x = x * x -- Int -> Int
square 3 -- legal
square 3.14 -- illegal
```

- Standard ML uses this approach.
- Not satisfactory: Programmers cannot define functions that implementation might support

Overloading Equality, Take 1

- Equality defined only for types that admit equality: types not containing function types or abstract types.

$$
\begin{array}{ll}
3 * 3==9 & --1 \text { legal } \\
'^{\prime}==' b ' & -- \text { legal } \\
\mid x->x==\backslash y->y+1 & -- \\
\text { illegal }
\end{array}
$$

- Overload equality like arithmetic ops + and * in SML.
- But then we can’t define functions using ' $==$ ':

```
member [] Y = False
member (x:xs) y = (x==y) || member xs y
member [1,2,3] 3 -- ok if default is Int
member "Haskell" 'k' -- illegal
```

- Approach adopted in first version of SML.

Overloading Equality, Take 2

- Make type of equality fully polymorphic
(==) :: a -> a -> Bool
- Type of list-membership function

```
member :: [a] -> a -> Bool
```

- Miranda used this approach. But...
- equality applied to a function yields a runtime error
- equality applied to an abstract type compares the underlying representation, which violates abstraction principles

Overloading Equality, Take 3

- Make equality polymorphic in a limited way:
(==) :: a (==) -> a(==) -> Bool
where $a(==)$ is type variable restricted to types with equality
- Now we can type the member function:

```
member : : a(==) -> [a(==)] -> Bool
member 4 [2,3] :: Bool
member 'c' ['a', 'b', 'c'] :: Bool
member (\y -> y*2) [\x -> x, \x -> x+2] -- type error
```

- Approach used in SML today, where the type $a(==)$ is called an eqtype variable and is written "a (while normal type variables are written 'a)

Type Classes

- Type classes solve these problems
- Idea: Generalize ML's eqtypes to arbitrary types
- Provide concise types to describe overloaded functions, so no exponential blow-up
- Allow users to define functions using overloaded operations, eg, square, squares, and member
- Allow users to declare new collections of overloaded functions: equality and arithmetic operators are not privileged built-ins
- Fit within type inference framework

Behind type classes: Intuition

- A function to sort lists can be passed a comparison operator as an argument:

```
qsort:: (a -> a -> Bool) -> [a] -> [a]
qsort cmp [] = []
qsort cmp (x:xs) = qsort cmp (filter (cmp x) xs)
    ++ [x] ++
    qsort cmp (filter (not.cmp x) xs)
```

- This allows the function to be parametric
- We can build on this idea ...

Intuition (continued)

- Consider the "overloaded" parabola function

$$
\text { parabola } x=(x * x)+x
$$

- We can rewrite the function to take the operators it contains as an argument

```
parabola' (plus, times) x = plus (times x x) x
```

- The extra parameter is a "dictionary" that provides implementations for the overloaded ops.
- We have to rewrite all calls to pass appropriate implementations for plus and times:

```
y = parabola' (intPlus,intTimes) 10
z = parabola'(floatPlus, floatTimes) 3.14
```


Systematic programming style

```
-- Dictionary type
data MathDict a = MkMathDict (a->a->a) (a->a->a)
-- Accessor functions
get_plus :: MathDict a -> (a->a->a)
get_plus (MkMathDict p t) = p
get_times :: MathDict a -> (a->a->a)
get_times (MkMathDict p t) = t
-- "Dictionary-passing style"
parabola :: MathDict a -> a -> a
parabola dict x = let plus = get_plus dict
    times = get_times dict
in plus (times \}\mathbf{x}\times\mathrm{ ) x
```

Type class declarations will generate Dictionary type and selector functions

Systematic programming style

```
-- Dictionary type
-- Dictionary construction
intDict = MkMathDict intPlus intTimes
floatDict = MkMathDict floatPlus floatTimes
-- Passing dictionaries
y = parabola intDict 10
z = parabola floatDict 3.14
```

data MathDict $a=M k M a t h D i c t(a->a->a)(a->a->a)$

Compiler will add a dictionary parameter and rewrite the body as necessary

Type Class Design Overview

- Type class declarations
- Define a set of operations, give the set a name
- Example: Eq a type class
- operations == and $\backslash=$ with type a -> a -> Bool
- Type class instance declarations
- Specify the implementations for a particular type
- For Int instance, == is defined to be integer equality
- Qualified types (or Type Constraints)
- Concisely express the operations required on otherwise polymorphic type

```
member:: Eq w => w -> [w] -> Bool
```

"for all types w that support the Eq

Qualified Types

 operations"```
Member :: Eq w => w -> [w] -> Bool
```

If a function works for every type with particular properties, the type of the function says just that:

```
sort :: Ord a => [a] -> [a]
serialise :: Show a => a -> String
square :: Num n => n -> n
squares ::(Num t, Num t1, Num t2) =>
 (t, t1, t2) -> (t, t1, t2)
```

Otherwise, it must work for any type

```
reverse :: [a] -> [a]
filter :: (a -> Bool) -> [a] -> [a]
```

Works for any type 'n' that supports the Num operations

## Type Classes

```
square :: Num n => n -> n
square x = x*x
```

class Num a where

$$
\begin{array}{lll}
(+) & :: ~ a ~ & -> \\
(*) & : & a-> \\
(*) & a \\
\text { negate } & : & a-> \\
\text { ne } & \\
\ldots \text {. etc. } .
\end{array}
$$

instance Num Int where

$$
\begin{array}{ll}
\mathrm{a}+\mathrm{b} & =\text { intPlus } \mathrm{a} b \\
\mathrm{a} * \mathrm{~b} & =\text { intTimes } \mathrm{a} \mathrm{~b} \\
\text { negate } \mathrm{a} & =\text { intNeg } \mathrm{a}
\end{array}
$$

The class declaration says what the Num operations are

> An instance declaration for a type $T$ says how the Num operations are implemented on T's

```
intPlus :: Int -> Int -> Int
intTimes :: Int -> Int -> Int
etc, defined as primitives9
```


## Compiling Overloaded Functions

When you write this...

```
square :: Num n => n -> n
square x = x*x
```

...the compiler generates this

```
square :: Num n m n m n
```

square $d x=(*) d x x$

The "Num $n=>$ " turns into an extra value argument to the function. It is a value of data type Num $n$ and it represents a dictionary of the required operations.

A value of type (Num n) is a dictionary of the Num operations for type $n$

## Compiling Type Classes

When you write this...

```
square :: Num n => n -> n
square x = x*x
```

```
class Num n where
 (+) :: n -> n -> n
 (*) :: n -> n -> n
 negate :: n -> n
 ...etc...
```

The class decl translates to:
A data type decl for Num
A selector function for each class operation
...the compiler generates this
square : : Num $n \rightarrow n \rightarrow n$ square $d x=(*) d x \times$

```
data Num n
 = MkNum (n -> n -> n)
 (n -> n -> n)
 (n -> n)
 ...etc...
```

    (*): : Num \(n \rightarrow n \rightarrow n \rightarrow n\)
    (*) (MkNum $m^{m} \ldots$ ) $=m$
A value of type (Num $n$ ) is a dictionary
of the Num operations for type $n$

## Compiling Instance Declarations

When you write this...

```
square :: Num n => n m n
square x = x*x
```

instance Num Int where

$$
\begin{array}{ll}
\mathrm{a}+\mathrm{b} & =\text { intPlus } \mathrm{a} \mathrm{~b} \\
\mathrm{a} * \mathrm{~b} & =\text { intTimes } \mathrm{a} \mathrm{~b} \\
\text { negate } \mathrm{a} & =\text { intNeg } \mathrm{a}
\end{array}
$$

An instance decl for type T translates to a value declaration for the Num dictionary for $T$
...the compiler generates this

```
square :: Num n -> n -> n
square d x = (*) d x x
```

```
dNumInt :: Num Int
dNumInt = MkNum intPlus
 intTimes
 intNeg
 ...
```

A value of type (Num $n$ ) is a dictionary
of the Num operations for type $n$

## Implementation Summary

- Each overloaded symbol has to be introduced in at least one type class.
- The compiler translates each function that uses an overloaded symbol into a function with an extra parameter: the dictionary.
- References to overloaded symbols are rewritten by the compiler to lookup the symbol in the dictionary.
- The compiler converts each type class declaration into a dictionary type declaration and a set of selector functions.
- The compiler converts each instance declaration into a dictionary of the appropriate type.
- The compiler rewrites calls to overloaded functions to pass a dictionary. It uses the static, qualified type of the function to select the dictionary.


## Functions with Multiple Dictionaries

```
squares :: (Num a, Num b, Num c) => (a, b, c) -> (a, b, c)
squares (x,y,z) = (square }x\mathrm{ , square y, square z)
```

Note the concise type for the squares function!

```
squares :: (Num a, Num b, Num c) -> (a, b, c) -> (a, b, c)
squares (da,db,dc) (x, y, z) =
 (square da x, square db y, square dc z)
```

Pass appropriate dictionary on to each square function.

## Compositionality

Overloaded functions can be defined from other overloaded functions:

```
sumSq :: Num n => n m n m n
sumSq x y = square x + square y
```



$$
\begin{gathered}
\text { sumSq : : Num } n \rightarrow n \rightarrow n \rightarrow n \\
\text { sumSq } d x y=(+) d \text { (square } d x) \\
(\text { quare } d y)
\end{gathered}
$$

## Compositionality

## Build compound instances from simpler ones:

```
class Eq a where
 (==) :: a -> a -> Bool
instance Eq Int where
 (==) = intEq -- intEq primitive equality
instance (Eq a, Eq b) => Eq(a,b)
 (u,v) == (x,y) = (u == x) && (v == y)
instance Eq a => Eq [a] where
 (==) [] [] = True
 (==) (x:xs) (y:ys) = x==y && xs == ys
 (==) _ _ = False
```


## Compound Translation

## Build compound instances from simpler ones.

```
class Eq a where
 (==) :: a -> a -> Bool
instance Eq a => Eq [a] where
 (==) [] [] = True
 (==) (x:xs) (y:ys) = x==y && xs == ys
 (==) _ _ = False
```



```
data Eq = MkEq (a->a->Bool) -- Dictionary type
```

(==) (MkEq eq) = eq
dEqList :: Eq a -> Eq [a] -- List Dictionary
dEqList $d=$ MkEq eql
where

$$
\begin{array}{lll}
\text { eql [] } & {[]} & =\text { True } \\
\text { eql (x:xs) }(y: y s) & =(==) \text { d } x y \& \& \text { eql xs ys } \\
\text { eql } & - & =\text { False }
\end{array}
$$

## Many Type Classes

- Eq: equality
- Ord: comparison
- Num: numerical operations
- Show: convert to string
- Read: convert from string
- Testable, Arbitrary: testing.
- Enum: ops on sequentially ordered types
- Bounded: upper and lower values of a type
- Generic programming, reflection, monads, ...
- And many more.


## Subclasses

- We could treat the Eq and Num type classes separately

```
memsq :: (Eq a, Num a) => a -> [a] -> Bool
memsq x xs = member (square x) xs
```

- But we expect any type supporting Num to also support Eq
- A subclass declaration expresses this relationship:

```
class Eq a => Num a where
 (+) :: a -> a -> a
 (*) :: a -> a -> a
```

- With that declaration, we can simplify the type of the function

```
memsq :: Num a => a -> [a] -> Bool
memsq x xs = member (square x) xs
```



## Default Methods

- Type classes can define "default methods"

```
-- Minimal complete definition:
-- (==) or (/=)
class Eq a where
 (==) :: a -> a -> Bool
 x == y = not (x/= y)
 (/=) :: a -> a -> Bool
 x/= y = not (x == y)
```

- Instance declarations can override default by providing a more specific definition.


## Deriving

- For Read, Show, Bounded, Enum, Eq, and Ord, the compiler can generate instance declarations automatically

```
data Color = Red | Green | Blue
 deriving (Show, Read, Eq, Ord)
Main>:t show
show :: Show a => a -> String
Main> show Red
"Red"
Main> Red < Green
True
Main>:t read
read :: Read a => String -> a
Main> let c :: Color = read "Red"
Main> c
Red
```

- Ad hoc : derivations apply only to types where derivation code works


## Numeric Literals

```
class Num a where
 (+) :: a -> a -> a
 (-) :: a -> a -> a
 fromInteger : : Integer \(->\) a
inc : : Num a => a \(->\) a
inc \(\mathrm{x}=\mathrm{x}+1\)
```

Even literals are overloaded.
$1::($ Num $a)=>a$
"1" means
"fromInteger 1"

Advantages:

- Numeric literals can be interpreted as values of any appropriate numeric type
- Example: 1 can be an Integer or a Float or a user-defined numeric type.


## Polymorphism in Haskell

Polymorphism


## Type Checking vs Type Inference

- Standard type checking:

```
int f(int x) { return x+1; };
int g(int y) { return f(y+1)*2; };
```

- Examine body of each function
- Use declared types to check agreement
- Type inference:

```
f(tat<x) { return x+1; };
inct(n) y) { return f(y+1)*2; };
```

- Examine code without type information. Infer the most general types that could have been declared.

ML and Haskell are designed to make type inference feasible.

## Why study type inference?

- Reduces syntactic overhead of expressive types, still allowing for static type checking
- Guaranteed to produce most general type
- Originally developed for functional languages, now used more and more in any kind of languages
- Illustrative example of a flow-insensitive static analysis algorithm


## History \& connolexity

- Original type inference algorithm
- Invented by Haskell Curry and Robert Feys for the simply typed lambda calculus in 1958
- In 1969, J. Roger Hindley
- extended the algorithm to a richer language and proved it always produced the most general type
- In 1978, Robin Milner
- independently developed andequivalent algorithm, called algorithm W, during his work designing ML.
- In 1982, Luis Damas proved the algorithm was complete.
- When Hindley/Milner type inference algorithm was developed, its complexity was unknown. In 1989, Kanellakis, Mairson, and Mitchell proved that the problem was exponential-time complete
- Usually linear in practice though...
- Running time is exponential in the depth of polymorphic declarations


## uHaskell

- Subset of Haskell to explain type inference. - Haskell and ML both have overloading
- Will do not consider overloading now

```
<decl> ::= <name> <pat> = <exp>
<pat> ::= Id | (<pat>, <pat>) | <pat> : <pat> | []
<exp> ::= Int | Bool | [] | Id | (<exp>)
 | <exp> <op> <exp>
 | <exp> <exp> | (<exp>, <exp>)
 | if <exp> then <exp> else <exp>
```


## Type Inference: Basic Idea

- Example

$$
f \mathbf{x}=2+\mathbf{x} \quad-- \text { a simple declaration }
$$

- What is the type of $f$ ?
+ has type: Int $\rightarrow$ Int $\rightarrow$ Int
(with overloading would be Num $a=>a \rightarrow a \rightarrow a$ )
2 has type: Int
Since we are applying + to $x$ we need $x::$ Int
Therefore $\mathrm{f} x=2+\mathrm{x}$ has type Int $\rightarrow$ Int

```
f x = 2 + x
> f :: Int -> Int
```


## Step 1: Parse Program

- Parse program text to construct parse tree.

```
f x = 2 + x
```



- Binary @-nodes to represent application
- Ternary Fun-node for function definitions
- Infix operators are converted to Curried function application during
 parsing: $2+x \rightarrow(+) 2 x$


## Step 2: Assign type variables to nodes



Variables are given same type as binding occurrence.

## Constraints from Application Nodes



$$
t_{2} 0=t_{1} 1->t_{2}
$$

- Function application (apply for)
- Type of $\mathbf{f}$ ( $t \_0$ in figure) must be domain $\rightarrow$ range.
- Domain of $\mathbf{f}$ must be type of argument $x$ ( $t$ _1)
- Range of $\mathbf{f}$ must be result of application ( t _ 2 )
- Constraint: t_0 = t_1 -> t_2


## Constraints from Abstractions



$$
t_{-} 0=t \_1->t_{2}
$$

- Function declaration:
- Type of $\mathbf{f}\left(\mathrm{t} \_0\right)$ must domain $\rightarrow$ range
- Domain is type of abstracted variable $x$ ( $t \_1$ )
- Range is type of function body e (t_2)
- Constraint: t_0 = t_1 -> t_2


## Step 3: Add Constraints



## Step 4: Solve Constraints

$$
\begin{aligned}
& t_{-}=t_{1}->t_{-} 6 \\
& t_{-} 4=t_{-}->t_{-} 6 \\
& t_{-2}=t_{-}->t_{-}^{4} \\
& t_{-2}=\text { Int } \rightarrow \text { Int } \rightarrow \text { Int } \\
& t_{-} 3=\text { Int }
\end{aligned}
$$

$$
\text { t_3 }->\text { t_4 }=\text { Int }->\text { (Int }->\text { Int) }
$$

$$
t_{-}^{-} 6=\text { Int }
$$

$$
t^{-} 4=\text { Int }->\text { Int }
$$

$$
t^{-2}=\text { Int }->\text { Int }->\text { Int }
$$

$$
t^{-} 3=\operatorname{Int}
$$

## Step 5:

## Determine type of declaration

$$
\begin{aligned}
& t \_0=\text { Int }->\text { Int } \\
& t \_1=\text { Int } \\
& t \_6=\text { Int } \\
& t-4=\text { Int }->\text { Int } \\
& t \_2=\text { Int } \rightarrow \text { Int } \rightarrow \text { Int } \\
& t \_3=\text { Int }
\end{aligned}
$$

$$
\begin{aligned}
& f x=2+x \\
& >f:: \operatorname{Int}->\text { Int }
\end{aligned}
$$



## Type Inference Algorithm

- Parse program to build parse tree
- Assign type variables to nodes in tree
- Generate constraints:
- From environment: constants (2), built-in operators (+), known functions (tail).
- From shape of parse tree: e.g., application and abstraction nodes.
- Solve constraints using unification
- Determine types of top-level declarations


## Inferring Polymorphic Types

- Example:

$$
\begin{aligned}
& f g=g 2 \\
& >f::\left(\text { Int }->t_{-} 4\right)->t_{-} 4
\end{aligned}
$$

- Step 1:


## Build Parse Tree



## Inferring Polymorphic Types

- Example:

$$
\begin{aligned}
& f g=g 2 \\
& >f::\left(\text { Int }->t_{-} 4\right)->t_{1} 4
\end{aligned}
$$

- Step 2:

Assign type variables


## Inferring Polymorphic Types

- Example:

$$
\begin{aligned}
& f g=g 2 \\
& >f::\left(\text { Int }->t_{-}\right)->t_{1} 4
\end{aligned}
$$

- Step 3:

Generate constraints

$$
\begin{aligned}
& t_{-} 0=t_{-1} \rightarrow t_{-} 4 \\
& t_{-1}=t_{-}->t_{-} 4 \\
& t_{-}=\text {Int }
\end{aligned}
$$



## Inferring Polymorphic Types

- Example:

$$
\begin{aligned}
& f g=g 2 \\
& >f::\left(\text { Int }->t_{-} 4\right)->t_{-} 4
\end{aligned}
$$

- Step 4:

Solve constraints

$$
\begin{aligned}
& t_{-} 0=t_{-}->t_{-} 4 \\
& t_{-1}=t_{-}->t_{-} \\
& t_{-}=\text {Int }
\end{aligned}
$$



$$
\begin{aligned}
& t_{-} 0=\left(\text { Int }->t_{-} 4\right)->t_{-} 4 \\
& t_{-}=\text {Int }->t_{-} 4 \\
& t_{-}=\text {Int }
\end{aligned}
$$



## Inferring Polymorphic Types

- Example:

$$
\begin{aligned}
& f g=g 2 \\
& >f::\left(\text { Int }->t_{-} 4\right)->t_{-} 4
\end{aligned}
$$

- Step 5:

Determine type of top-level declaration
Unconstrained type variables become polymorphic types.

$$
\begin{aligned}
& t_{-} 0=\left(\text { Int }->t_{-} 4\right)->t_{-} 4 \\
& t_{-1}=\text { Int }->t_{-}^{4} \\
& t_{-}=\text {Int }
\end{aligned}
$$



## Using Polymorphic Functions

- Function:

$$
\begin{aligned}
& f g=g 2 \\
& >f::\left(\text { Int } \rightarrow t_{-} 4\right)->t_{-} 4
\end{aligned}
$$

- Possible applications:

```
add x = 2 + x
> add :: Int -> Int
f add
> 4 :: Int
```

```
isEven x = mod (x, 2) == 0
> isEven:: Int -> Bool
f isEven
> True :: Bool
```


## Polymorphic Datatypes

- Functions may have multiple clauses

```
length [] = 0
length (x:rest) = 1 + (length rest)
```

- Type inference
- Infer separate type for each clause
- Combine by adding constraint that all clauses must have the same type
- Recursive calls: function has same type as its definition


## Type Inference with Datatypes

- Example: length (x:rest) $=1+$ (length rest)
- Step 1: Build Parse Tree



## Type Inference with Datatypes

- Example: length (x:rest) $=1+$ (length rest)
- Step 2: Assign type variables



## Type Inference with Datatypes

- Example: length $(x: r e s t)=1+$ (length rest)
- Step 3: Generate constraints

$$
\begin{aligned}
& t_{-} 0=t_{-} 3->t_{-} 10 \\
& t_{-}=t_{-} \\
& t_{-} 3=\left[t_{-1]}\right. \\
& t_{-} 6=t_{-}->t_{-} 10 \\
& t_{-} 4=t_{-}->t_{-} 6 \\
& t_{-} 4=\text { Int } \rightarrow \text { Int } \rightarrow \text { Int } \\
& t_{-} 5=\text { Int } \\
& t_{-} 0
\end{aligned}
$$

(+) : : t_4

length : : t_0

## Type Inference with Datatypes

- Example: length (x:rest) $=1+$ (length rest)
- Step 3: Solve Constraints


$$
\begin{aligned}
& t_{-} 0=t_{-} 3->t_{-} 10 \\
& t_{-} 3=t_{2} \\
& t_{-} 3=[t-1] \\
& t_{-} 6=t_{-}->t_{-} 10 \\
& t_{-} 4=t_{-}->t_{-} 6 \\
& t_{-} 4=\text { Int } \rightarrow \text { Int } \rightarrow \text { Int } \\
& t_{-} 5=\text { Int } \\
& t_{-} 0
\end{aligned}
$$

length : : t_0
$t \_0=\left[t \_1\right]->$ Int

## Multiple Clauses

- Function with multiple clauses

```
append ([],r) = r
append (x:xs,r) = x : append (xs,r)
```

- Infer type of each clause
- First clause:

```
> append :: ([t_1], t_2) -> t_2
```

- Second clause:
> append :: ([t_3], t_4) -> [t_3]
- Combine by equating types of two clauses
> append :: ([t_1], [t_1]) -> [t_1]


## Most General Type

- Type inference produces the most general type

```
map (f, []) = []
map (f, x:xs)=fx: map (f, xs)
> map :: (t_1 -> t_2, [t_1]) -> [t_2]
```

- Functions may have many less general types

```
> map :: (t_1 -> Int, [t_1]) -> [Int]
> map :: (Bool -> t_2, [Bool]) -> [t_2]
> map :: (Char -> Int, [Char]) -> [Int]
```

- Less general types are all instances of most general type, also called the principal type


## Type Inference with overloading

- In presence of overloading (Type Classes), type inference infers a qualified type $\mathbf{Q}=>\mathbf{T}$
- T is a Hindley Milner type, inferred as seen before
- $\mathbf{Q}$ is set of type class predicates, called a constraint
- Consider the example function:

```
example z xs =
 case xs of
 [] -> False
 (y:ys) -> y > z || (y==z && ys == [z])
```

- Type Tis a -> [a] -> Bool
- Constraint $\mathbf{Q}$ is $\{$ Ord $\mathrm{a}, \mathrm{Eq} \mathrm{a}, \mathrm{Eq}[\mathrm{a}]\}$


## Simplifying Type Constraints

- Constraint sets $Q$ can be simplified:
- Eliminate duplicates
- (Eq a, Eq a) simplifies to Eq a
- Use an instance declaration
- If we have instance Eq a => Eq [a], then (Eq a, Eq [a]) simplifies to Eq a
- Use a class declaration
- If we have class Eq a => Ord a where ..., then (Ord a, Eq a) simplifies to Ord a
- Applying these rules,
- (Ord a, Eq a, Eq[a]) simplifies to Ord a


## Type Inference with overloading

- Putting it all together:

```
example z xs =
 case xs of
 [] -> False
 (y:ys) -> y > z || (y==z && ys ==[z])
```

$-T=a->[a]->$ Bool
$-Q=($ Ord $a, E q a, E q[a])$
$-Q$ simplifies to Ord a

- example : : Ord a => a -> [a] -> Bool


## Detecting Errors

- Errors are detected when predicates are known not to hold:

```
Prelude> 'a' + 1
 <interactive>:33:1: error:
 - No instance for (Num Char) arising from a use of 't'
 - In the expression: 1 + 'a'
 In an equation for 'it': it = 1 + 'a'
```

Prelude> ( x -> x )
<interactive>:34:1: error:

- No instance for (Show (p0 -> pO)) arising from a use of 'print' (maybe you haven't applied a function to enough arguments?)
- In a stmt of an interactive GHCi command: print it

