
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-15: Laziness, Algebraic Datatypes and Higher Order Functions

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Laziness
• Haskell is a lazy language
• Functions and data constructors (also user-defined

ones) don’t evaluate their arguments until they need
them

• Programmers can write control-flow operators that
have to be built-in in eager languages

cond True t e = t
cond False t e = e
cond :: Bool -> a -> a -> a

cond True [] [1..] => []

(||) :: Bool -> Bool -> Bool
True || x = True
False || x = x

Short-
circuiting

“or” 2

List Comprehensions

• Notation for constructing new lists from old ones:

• Similar to “set comprehension”
{ x | x Î A Ù x > 6 }

myData = [1,2,3,4,5,6,7]

twiceData = [2 * x | x <- myData]
-- [2,4,6,8,10,12,14]

twiceEvenData = [2 * x| x <- myData, x `mod` 2 == 0]
-- [4,8,12]

3

More on List Comprehensions

ghci> [x | x <- [10..20], x /= 13, x /= 15, x /= 19]
[10,11,12,14,16,17,18,20] –- more predicates

ghci> [x*y | x <- [2,5,10], y <- [8,10,11]]
[16,20,22,40,50,55,80,100,110] –- more lists

length xs = sum [1 | _ <- xs] –- anonymous (don’t care) var

–- strings are lists…
removeNonUppercase st = [c | c <- st, c `elem` ['A'..'Z']]

4

Datatype Declarations

• Examples
–

elements are Red, Yellow, Blue

elements are Atom “A”, Atom “B”, …, Number 0, ...

elements are Nil, Cons(Atom “A”, Nil), …
Cons(Number 2, Cons(Atom(“Bill”), Nil)), ...

• General form

– Type name and constructors must be Capitalized.

data Color = Red | Yellow | Blue

data Atom = Atom String | Number Int

data List = Nil | Cons (Atom, List)

data <name> = <clause> | … | <clause>
<clause> ::= <constructor> | <contructor> <type>

5

Datatypes and Pattern Matching

• Recursively defined data structure

• Constructors can be used
in Pattern Matching

• Recursive function

4

5

76

3

21

data Tree = Leaf Int | Node (Int, Tree, Tree)

Node(4, Node(3, Leaf 1, Leaf 2),
Node(5, Leaf 6, Leaf 7))

sum (Leaf n) = n
sum (Node(n,t1,t2)) = n + sum(t1) + sum(t2)

6

Case Expression

• Datatype

• Case expression

– Indentation matters in case statements in Haskell.

data Exp = Var Int | Const Int | Plus (Exp, Exp)

case e of
Var n -> …
Const n -> …
Plus(e1,e2) -> …

7

Function Types in Haskell
In Haskell, f :: A -> B means for every x Î A,

f(x) =

In words, “if f(x) terminates, then f(x) Î B.”

In ML, functions with type A ® B can throw an exception or
have other effects, but not in Haskell

some element y = f(x) Î B
run forever

8

Prelude> :t not -- type of some predefined functions
not :: Bool -> Bool
Prelude> :t (+)
(+) :: Num a => a -> a -> a
Prelude> :t (:)
(:) :: a -> [a] -> [a]
Prelude> :t elem
elem :: Eq a => a -> [a] -> Bool

Note: if f is a standard
binary function, `f` is its
infix version
If x is an infix (binary)
operator, (x) is its prefix
version.

From loops to recursion

• In functional programming, for and while loops
are replaced by using recursion

• Recursion: subroutines call themselves directly or
indirectly (mutual recursion)

9

length' [] = 0
length' (x:s) = 1 + length'(s)

// definition using guards and pattern matching
take' :: (Num i, Ord i) => i -> [a] -> [a]
take' n _

| n <= 0 = []
take' _ [] = []
take' n (x:xs) = x : take' (n-1) xs

Higher-Order Functions
• Functions that take other functions as arguments or

return a function as a result are higher-order
functions.

• Pervasive in functional programming
applyTo5 :: Num t1 => (t1 -> t2) -> t2 -- function as arg
applyTo5 f = f 5
> applyTo5 succ => 6
Ø applyTo5 (7 +) => 12

applyTwice :: (a -> a) -> a -> a -- function as arg and res
applyTwice f x = f (f x)
> applyTwice (+3) 10 => 16
> applyTwice (++ " HAHA") "HEY" => "HEY HAHA HAHA"
> applyTwice (3:) [1] => [3,3,1]

10

Higher-Order Functions
• Can be used to support alternative syntax
• Example: From functional to stream-like

(|>) :: t1 -> (t1 -> t2) -> t2
(|>) a f = f a

> length (tail (reverse [1,2,3])) => 2

> [1,2,3] |> reverse |> tail |> length => 2

11

Higher-Order Functions… everywhere
• Any curried function with more than one

argument is higher-order: applied to one
argument it returns a function

(+) :: Num a => a -> a -> a
> let f = (+) 5 // partial application
>:t f ==> f :: Num a => a -> a
> f 4 ==> 9

elem :: (Eq a, Foldable t) => a -> t a -> Bool
> let isUpper = (`elem` ['A'..'Z'])
>:t isUpper ==> isUpper :: Char -> Bool
> isUpper 'A' ==> True
> isUpper '0' ==> False

12

Higher-Order Functions:
the map combinator

map: applies argument function to each element in
a collection.

> map (+3) [1,5,3,1,6]
[4,8,6,4,9]
> map (++ "!") ["BIFF", "BANG", "POW"]
["BIFF!","BANG!","POW!"]
> map (replicate 3) [3..6]
[[3,3,3],[4,4,4],[5,5,5],[6,6,6]]
> map (map (^2)) [[1,2],[3,4,5,6],[7,8]]
[[1,4],[9,16,25,36],[49,64]]
> map fst [(1,2),(3,5),(6,3),(2,6),(2,5)]
[1,3,6,2,2] 13

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

Higher-Order Functions:
the filter combinator

filter: takes a collection and a boolean predicate, and
returns the collection of the elements satisfying the
predicate

> filter (>3) [1,5,3,2,1,6,4,3,2,1]
[5,6,4]
> filter (==3) [1,2,3,4,5]
[3]
> filter even [1..10]
[2,4,6,8,10]
> let notNull x = not (null x)
in filter notNull [[1,2,3],[],[3,4,5],[2,2],[],[],[]]

[[1,2,3],[3,4,5],[2,2]] 14

filter :: (a -> Bool) -> [a] -> [a]
filter _ [] = []
filter p (x:xs)

| p x = x : filter p xs
| otherwise = filter p xs

Higher-Order Functions:
the reduce combinator

reduce (foldl, foldr): takes a collection, an initial value,
and a function, and combines the elements in the
collection according to the function.

15

-- folds values from end to beginning of list
foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

-- folds values from beginning to end of list
foldl :: Foldable t => (b -> a -> b) -> b -> t a -> b
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

-- variants for non-empty lists
foldr1 :: Foldable t => (a -> a -> a) -> t a -> a
foldl1 :: Foldable t => (a -> a -> a) -> t a -> a

Binary
function

Initial
value

List/collect
ion

Examples
sum' :: (Num a) => [a] -> a
sum' xs = foldl (\acc x -> acc + x) 0 xs

maximum' :: (Ord a) => [a] -> a
maximum' = foldr1 (\x acc -> if x > acc then x else acc)

reverse' :: [a] -> [a]
reverse' = foldl (\acc x -> x : acc) []

product' :: (Num a) => [a] -> a
product' = foldr1 (*)

filter' :: (a -> Bool) -> [a] -> [a]
filter' p = foldr (\x acc > if p x then x : acc else acc) []

head' :: [a] -> a
head' = foldr1 (\x _ -> x)

last' :: [a] -> a
last' = foldl1 (_ x -> x)

16

foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b
foldl :: Foldable t => (b -> a -> b) -> b -> t a -> b
foldr1 :: Foldable t => (a -> a -> a) -> t a -> a

The remaining slides of this presentation were
not presented during the lesson. They are left
here for the interested reader.

17

On efficiency
• Iteration and recursion are equally powerful in theoretical sense:

Iteration can be expressed by recursion and vice versa
• Recursion is the natural solution when the solution of a problem is

defined in terms of simpler versions of the same problem, as for
tree traversal

• In general a procedure call is much more expensive than a
conditional branch

• Thus recursion is in general less efficient, but good compilers for
functional languages can perform good code optimization

• Use of combinators, like map, reduce (foldl, foldr), filter, foreach,…
strongly encouraged, because they are highly optimized by the
compiler.

18

Tail-Recursive Functions
• Tail-recursive functions are functions in which no operations follow the

recursive call(s) in the function, thus the function returns immediately
after the recursive call:
tail-recursive not tail-recursive
int trfun() int rfun()
{ … { …
return trfun(); return 1+rfun();

} }

• A tail-recursive call could reuse the subroutine's frame on the run-time
stack, since the current subroutine state is no longer needed
– Simply eliminating the push (and pop) of the next frame will do

• In addition, we can do more for tail-recursion optimization: the compiler
replaces tail-recursive calls by jumps to the beginning of the function

19

Tail-Recursion Optimization: Example

20

int gcd(int a, int b) // tail recursive
{ if (a==b) return a;
else if (a>b) return gcd(a-b, b);
else return gcd(a, b-a);

}

int gcd(int a, int b) // possible optimization
{ start:

if (a==b) return a;
else if (a>b) { a = a-b; goto start; }
else { b = b-a; goto start; }

}

int gcd(int a, int b) // comparable efficiency
{ while (a!=b)

if (a>b) a = a-b;
else b = b-a;

return a;
}

Converting Recursive Functions to
Tail-Recursive Functions

• Remove the work after the recursive call and include it in some other
form as a computation that is passed to the recursive call

• For example

can be rewritten into a tail-recursive function:

Equivalently, using the where syntax:

21

reverse [] = [] -- quadratic
reverse (x:xs) = (reverse xs) ++ [x]

reverse xs = -- linear, tail recursive
let rev ([], accum) = accum

rev (y:ys, accum) = rev (ys, y:accum)
in rev (xs, [])

reverse xs = -- linear, tail recursive
rev (xs, [])
where rev ([], accum) = accum

rev (y:ys, accum) = rev (ys, y:accum)

Converting recursion into
tail recursion: Fibonacci

• The Fibonacci function implemented as a recursive function is very
inefficient as it takes exponential time to compute:

with a tail-recursive helper function, we can run it in O(n) time:

22

fib = \n -> if n == 0 then 1
else if n == 1 then 1
else fib (n - 1) + fib (n - 2)

fibTR = \n -> let fibhelper (f1, f2, i) =
if (n == i) then f2
else fibhelper (f2, f1 + f2, i + 1)

in fibhelper(0,1,0)

Comparing foldl and foldr

23

-- folds values from end to beginning of list
foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

-- folds values from beginning to end of list
foldl :: Foldable t => (b -> a -> b) -> b -> t a -> b
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

• foldl is tail-recursive, foldr is not. But because of
laziness Haskell has no tail-recursion optimization.

• foldl' is a variant of foldl where f is evaluated
strictly. It is more efficient.

See
https://wiki.haskell.org/Foldr_Foldl_Foldl'

