301AA - Advanced Programming

Lecturer: Andrea Corradini andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-14: Lambda Calculus, Haskell, Call by need

Summary

- Motivation: Laziness in Haskell
- Lambda Calculus
- Parameter passing mechanisms
 - Call by sharing
 - Call by name
 - Call by need

On laziness in Haskell

- Haskell is a lazy language
- Functions and data constructors don't evaluate their arguments until they need them
- In several languages there are forms of lazy evaluations (if-then-else, shortcutting && and | |)

```
if (x != 0) return y/x; else return 0; //ok
if (x !=0 && y/x > 5) return 0; else return 1; //ok
if (x !=0 & y/x > 5) return 0; else return 1; //no
```

```
int choose(boolean e1, boolean e2){
    if (e1 && e2) return 0; else return 1;
}
choose(x!=0, y/x>5) // ???
```

 Ok in Haskell, thanks to Normal Order evaluation and Call by Need parameter passing...

λ -calculus: syntax

 λ -terms: $t ::= x | \lambda x.t | t t | (t)$

- x variable, name, symbol,...
- λ*x*.*t* abstraction, defines an anonymous function
- *t t'* application of function *t* to argument *t'*

Terms can be represented as abstract syntax trees

Syntactic Conventions

• Applications associates to left

 $t_1 t_2 t_3 \equiv (t_1 t_2) t_3$

• The body of abstraction extends as far as possible

•
$$\lambda x. \lambda y. x y x = \lambda x. (\lambda y. (x y) x)$$

A simple tutorial on lambda calculus:

http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf

Free vs. Bound Variables

- An occurrence of x is free in a term t if it is not in the body of an abstraction λx . t
 - otherwise it is bound
 - $-\lambda x$ is a binder
- Examples
 - $-\lambda z. \lambda x. \lambda y. x (y z)$
 - (λx. x) x
- Terms without free variables are combinators
 - Identity function: id = $\lambda x. x$
 - First projection: fst = λx . λy . x

Operational Semantics

[β-reduction] *function application*

redex $(\lambda x.t) t' = t [t'/x]$

$$(\lambda x. x) y \rightarrow y$$

$$(\lambda x. x (\lambda x. x)) (u r) \rightarrow u r (\lambda x. x)$$

$$(\lambda x. (\lambda w. x w)) (y z) \rightarrow \lambda w. y z w$$

$$(\lambda x. x x) (\lambda x. x x) \rightarrow (\lambda x. x x) (\lambda x. x x)$$

Other relevant concepts:

• Normal Forms, α -conversion, η -reduction

λ -calculus as a functional language

Despite the simplicity, we can encode in λ -calculus most concepts of functional languages:

- Functions with several arguments
- Booleans and logical connectives
- Integers and operations on them
- Pairs and tuples
- Recursion
- ..

Functions with several arguments

• A definition of a function with a single argument associates a name with a λ -abstraction

f x = $\langle exp \rangle$ -- is equivalent to f = $\lambda x \cdot \langle exp \rangle$

- A function with several argument is equivalent to a sequence of λ -abstractions

 $f(x,y) = \langle exp \rangle$ -- is equivalent to $f = \lambda x. \lambda y. \langle exp \rangle$

• "Currying" and "Uncurrying"

```
curry :: ((a, b) \rightarrow c) \rightarrow a \rightarrow b \rightarrow c
curry f x y = f(x,y)
uncurry :: (a \rightarrow b \rightarrow c) \rightarrow (a, b) \rightarrow c
uncurry f (x,y) = f x y
```

Church Booleans

- $T = \lambda t \cdot \lambda f \cdot t - first$
- $F = \lambda t \cdot \lambda f \cdot f second$
- and = $\lambda b \cdot \lambda c \cdot b c F$
- or = $\lambda b \cdot \lambda c \cdot bTc$
- not = $\lambda x \cdot xFT$
- test = λ l. λ m. λ n.lmn

```
test F u w

\rightarrow (\lambda 1.\lambda m.\lambda n.lmn) F u w

\rightarrow (\lambda m.\lambda n.Fmn) u w

\rightarrow (\lambda n.Fun) w

\rightarrow Fuw
```

and T F \rightarrow (λ b. λ c.bcF) T F \rightarrow (λ c.TcF) F \rightarrow TFF \rightarrow F

not F

$$\rightarrow$$
 ($\lambda x.xFT$) F
 \rightarrow FFT
 \rightarrow T

Pairs

- pair = $\lambda f \cdot \lambda s \cdot \lambda b \cdot b f s$
- fst = $\lambda p.p T$
- snd = $\lambda p.p F$

```
fst (pair u w)
  → (λp.p T) (pair u w)
  → (pair u w) T
  → (λf.λs.λb.b f s) u w T
  → (λs.λb.b u s) w T
  → (λb.b u w) T
  → T u w
  → u
```

Church Numerals

• $\mathbf{0} = \lambda \mathbf{s} \cdot \lambda \mathbf{z} \cdot \mathbf{z}$

- $1 = \lambda s. \lambda z. s z$
- $2 = \lambda s. \lambda z. s (s z)$
- $3 = \lambda s. \lambda z. s (s (s z))$

Higher order functions:

n takes a function s as argument and returns the n-th composition of s with itself, sⁿ

A first simple function: s^n • succ = $\lambda n \cdot \lambda s \cdot \lambda z \cdot s (n \cdot s \cdot z)$

succ 2applies the function one
more time→ (λn. λs. λz. s (n s z)) 2applies the function one
more time→ (λs. λz. s (2 s z))2→ (λs. λz. s ((λs. λz. s (s z)) s z))→ (λs. λz. s (s (s z)) = 3

Arithmetics with Church Numerals

Addition: • plus = λm . λn . λs . λz . m s (n s z) Multiplication: • times = $\lambda m \cdot \lambda n \cdot \lambda s \cdot \lambda z \cdot m \cdot (n \cdot s) \cdot z \cdot (s^n)^m = s^{n^*m}$ Exponentiation: • pow = λm . λn . λs . λz . n m s zTest by zero: • $Z = \lambda x$. x F not F • Z O = ((O F) not) F = not F = T• $Z \mathbf{n} = ((\mathbf{n} F) not) F = F^n(not) F = F$

Fix-point combinator and recursion

The following *fix-point combinator* Y, when applied to a function **R**, returns a fix-point of **R**, i.e. **R(YR) = YR**

• $\Psi = (\lambda y.(\lambda x.y(x x))(\lambda x.y(x x)))$

•
$$\mathbf{YR} = (\lambda \mathbf{x} \cdot \mathbf{R}(\mathbf{x} \cdot \mathbf{x}))(\lambda \mathbf{x} \cdot \mathbf{R}(\mathbf{x} \cdot \mathbf{x}))$$

= $\mathbf{R}((\lambda \mathbf{x} \cdot \mathbf{R}(\mathbf{x} \cdot \mathbf{x}))(\lambda \mathbf{x} \cdot \mathbf{R}(\mathbf{x} \cdot \mathbf{x}))) = \mathbf{R}(\mathbf{YR})$

A recursive function definition (like *factorial*) can be read as a higher-order transformation having a function as first argument, and the desired function is its fix-point.

Fix-point combinator and recursion

A recursive definition:

- sums(n) = (n==0 ? 0 : n + sums(n-1))
- sums = $n \rightarrow (n == 0 ? 0 : n + sums(n-1))$

sums is the fix-point of the following higher-order function:

- $R = \langle F \rangle \langle n \rangle (n == 0? 0 : n + F(n-1))$
- R=(λ r. λ n.Z n 0 (n S (r (P n))))// in λ -calculus Example of application

Applicative and Normal Order evaluation

- Applicative Order evaluation
 - Arguments are evaluated before applying the function aka *Eager evaluation, parameter passing by value*
- Normal Order evaluation
 - Function evaluated first, arguments if and when needed
 - Sort of parameter passing by name
 - Some evaluation can be repeated
- Church-Rosser
 - If evaluation terminates, the result (*normal form*) is unique
 - If some evaluation terminates, normal order evaluation terminates

 β -conversion (λx.t) t' = t [t'/x] Applicative order $(\lambda x.(+x x)) (+ 3 2)$ $\rightarrow (\lambda x.(+x x)) 5$ $\rightarrow (+ 5 5)$ $\rightarrow 10$

Define $\Omega = (\lambda x. x x)$ Then $\Omega \Omega = (\lambda x. x x) (\lambda x. x x)$ \rightarrow x x [(λ x.x x)/x] \rightarrow ($\lambda x.x x$) ($\lambda x.x x$) = $\Omega \Omega$ \rightarrow ... non-terminating (λx. 0) (ΩΩ) \rightarrow { *Applicative order*} ... non-terminating (λx. 0) (ΩΩ) \rightarrow { Normal order } 0

```
Normal order

(\lambda x.(+ x x)) (+ 3 2)

\rightarrow (+ (+ 3 2) (+ 3 2))

\rightarrow (+ 5 (+ 3 2))

\rightarrow (+ 5 5)

\rightarrow 10
```

Parameter passing mechanism in Haskell: *Call by need*

- Haskell realizes *lazy evaluation* by using *call by need* parameter passing: an expression passed as argument is bound to the formal parameter, but it is evaluated only if its value is needed.
- The argument is evaluated only the first time, using the memoization technique: the result is saved and further uses of the argument do not need to reevaluate it

Call by need (cont.)

- Combined with *lazy data constructors*, this allows to construct potentially infinite data structures and to call infinitely recursive functions without necessarily causing non-termination
- Note: lazy evaluation works fine with purely functional languages
- Side effects require that the programmer reasons about the order that things happen, not predictable in lazy languages.
- We will address this fact when introducing Hakell's IO-Monad

Warning!

• The next slides about Parameter Passing Mechanisms where not presented during the course. They are included in this document for the interested reader.

Parameter Passing Mechanisms

- Parameter passing modes
 - In
 - In/out
 - Out
- Parameter passing mechanisms
 - Call by value (in)
 - Call by reference (in+out)
 - Call by result (out)
 - Call by value/result (in+out)
 - Call by need (in)
 - Call by sharing (in/out)
 - Call by name (in+out)

L-Values vs. R-Values and Value Model vs. Reference Model

- Consider the assignment of the form: *a* **= b**
 - *a* is an *I-value*, an expression denoting a location, e.g.
 - an array element **a[2]**
 - a variable foo
 - a dereferenced pointer *p
 - a more complex expression like (f(a)+3)->b[c]
 - *b* is an *r-value*: any syntactically valid expression with a type compatible to that of a
- Languages that adopt the *value model* of variables copy the value of *b* into the location of *a*
- Languages that adopt the *reference model* of variables copy references, resulting in shared data values via multiple references

Value Model vs. Reference Model in some programming languages

- Lisp/Scheme, ML, Haskell, Smalltalk adopt the reference model. They copy the reference of **b** into **a** so that **a** and **b** refer to the same object
- Most imperative programming languages use the value model
- Java uses the value model for built-in types and the reference model for class instances
- C# uses value model for value types, reference model for reference types

Assignment in Value Model vs. Reference Model

References and pointers

- Most **implementations** of PLs have as target architecture a Von Neumann one, where memory is made of cells with addresses
- Thus implementations use the *value model* of the target architecture
- Assumption: every data structure is stored in memory cells
- We "define":
 - A reference to X is the address of the (base) cell where X is stored
 - A pointer to X is a location containing the address of X
- Value model based implementations can mimic the *reference model* using *pointers* and standard assignment
 - Each variable is associated with a location
 - To let variable y refer to data X, the address of (reference to) X is written in the location of y, which becomes a pointer.

Parameter Passing by Sharing

- Call by sharing: parameter passing of data in the reference model
- The value of the variable is passed as actual argument, which in fact is a reference to the (shared) data
 - Essentially this is call by value of the variable!
- Java uses both pass by value and pass by sharing
 - Variables of primitive built-in types are passed by value
 - Class instances are passed by sharing
 - The implementation is identical

Parameter Passing in Algol 60

- Algol 60 uses *call by name* by default, but also call by value
- Effect of call by name is like β -reduction in λ -calculus: the actual parameter is copied wherever the formal parameter appears in the body, then the resulting code is executed
- Thus the actual parameter is evaluated a number of times (0, 1, ...) that depends on the logic of the program
- Since the actual parameter can contain names, it is passed in a closure with the environment at invocation time (called a thunk)
- Call by name is powerful but makes programs difficult to read and to debug (think to λ-calculus...): dismissed in subsequent versions of Algol

An example of Call by Name: Jensen's device

• What does the following Algol 60 procedure compute?

Apparently, (high-low+1) * expr

An example of Call by Name: Jensen's device

• But: $y := sum(3 \times x \times x - 5 \times x + 2, x, 1, 10)$

• It computes
$$y = \sum_{x=1}^{10} 3x^2 - 5x + 2$$

Call by name & Lazy evaluation (call by need)

- In *call by name* parameter passing (default in Algol 60) arguments (like expressions) are passed as a closure ("thunk") to the subroutine
- The argument is (re)evaluated each time it is used in the body
- Haskell realizes *lazy evaluation* by using *call by need* parameter passing, which is similar: an expression passed as argument is evaluated only if its value is needed.
- Unlike call by name, the argument is evaluated only the first time, using memoization: the result is saved and further uses of the argument do not need to re-evaluate it

Call by name & Lazy evaluation (call by need)

- Combined with *lazy data constructors*, this allows to construct potentially infinite data structures and to call infinitely recursive functions without necessarily causing non-termination
- Note: lazy evaluation works fine with purely functional languages
- Side effects require that the programmer reasons about the order that things happen, not predictable in lazy languages.
- We will address this fact when introducing Hakell's IO-Monad

Summary of Parameter Passing Modes

parameter mode	representative languages	implementation mechanism	permissible operations	change to actual?	alias?
value	C/C++, Pascal, Java/C# (value types)	value	read, write	no	no
in, const	Ada, C/C++, Modula-3	value or reference	read only	no	maybe
out	Ada	value or reference	write only	yes	maybe
value/result	Algol W	value	read, write	yes	no
var, ref	Fortran, Pascal, C++	reference	read, write	yes	yes
sharing	Lisp/Scheme, ML, Java/C# (reference types)	value or reference	read, write	yes	yes
in out	Ada	value or reference	read, write	yes	maybe
name	Algol 60, Simula	closure (thunk)	read, write	yes	yes
need	Haskell, R	closure (thunk) with memoization	read, write*	yes*	yes*