
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

h-p://pages.di.unipi.it/corradini/

AP-14: Lambda Calculus, Haskell, Call by need

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Summary

• Motivation: Laziness in Haskell
• Lambda Calculus
• Parameter passing mechanisms
– Call by sharing
– Call by name
– Call by need

2

On laziness in Haskell
• Haskell is a lazy language
• Func.ons and data constructors don’t evaluate their

arguments un.l they need them
• In several languages there are forms of lazy evalua.ons

(if-then-else, shortcu=ng && and ||)

if (x != 0) return y/x; else return 0; //ok
if (x !=0 && y/x > 5) return 0; else return 1; //ok
if (x !=0 & y/x > 5) return 0; else return 1; //no

int choose(boolean e1, boolean e2){
if (e1 && e2) return 0; else return 1;

}
choose(x!=0, y/x>5) // ???

• Ok in Haskell, thanks to Normal Order evalua8on and
Call by Need parameter passing…

3

λ-calculus: syntax
λ-terms: t ::= x | λx.t | t t | (t)
• x variable, name, symbol,…
• λx.t abstraction, defines an anonymous function
• t t' application of function t to argument t’

4
A simple tutorial on lambda calculus:
http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf

Syntac5c Conven5ons
• Applica5ons associates to le9

t1 t2 t3 º (t1 t2) t3
• The body of abstrac5on extends as far as possible

• lx. ly. x y x º lx. (ly. (x y) x)

Terms can be represented as abstract syntax trees

Free vs. Bound Variables
• An occurrence of x is free in a term t if it is not in the

body of an abstrac7on lx. t
– otherwise it is bound
– lx is a binder

• Examples
– lz. lx. ly. x (y z)
– (lx. x) x

• Terms without free variables are combinators
– Iden5ty func5on: id = lx. x
– First projec5on: fst = lx. ly. x

5

Operational Semantics
[β-reduc7on] func%on applica%on

(λx.t) t' = t [t'/x]

(l x. x) y ®

(l x. x (l x. x)) (u r) ®

y

u r (l x.x)

(l x. (lw. x w)) (y z) ® lw. y z w

redex

(l x. x x)(lx. x x) ® (lx. x x) (lx. x x)
Other relevant concepts:

• Normal Forms, α-conversion, η-reduc7on 6

λ-calculus as a funcGonal language

Despite the simplicity, we can encode in λ-
calculus most concepts of funcEonal languages:
• FuncEons with several arguments
• Booleans and logical connecEves
• Integers and operaEons on them
• Pairs and tuples
• Recursion
• …

7

Functions with several arguments
• A defini7on of a func7on with a single argument

associates a name with a λ-abstrac7on

• A func7on with several argument is equivalent to a
sequence of λ-abstrac7ons

• “Currying” and “Uncurrying”

f x = <exp> -- is equivalent to
f = λx.<exp>

f(x,y) = <exp> -- is equivalent to
f = λx. λy.<exp>

curry :: ((a, b) -> c) -> a -> b -> c
curry f x y = f(x,y)
uncurry :: (a -> b -> c) -> (a, b) -> c
uncurry f (x,y) = f x y 8

Church Booleans
• T = lt.lf.t -- first
• F = lt.lf.f -- second
• and = lb.lc.bcF
• or = lb.lc.bTc
• not = lx.xFT
• test =ll.lm.ln.lmn

and T F
à (lb.lc.bcF) T F
à (lc.TcF) F
à TFF
à F

not F
à (lx.xFT) F
à FFT
à T

test F u w
à (ll.lm.ln.lmn) F u w
à (lm.ln.Fmn) u w
à (ln.Fun) w
à Fuw
à w

9

Pairs
• pair = lf.ls.lb.b f s
• fst = lp.p T
• snd = lp.p F

fst (pair u w)
à (lp.p T) (pair u w)
à (pair u w) T
à (lf.ls.lb.b f s) u w T
à (ls.lb.b u s) w T
à (lb.b u w) T
à T u w
à u

10

Church Numerals

• 0 = ls. lz. z
• 1 = ls. lz. s z
• 2 = ls. lz. s (s z)
• 3 = ls. lz. s (s (s z))

A first simple func5on:
• succ = ln. ls. lz. s (n s z)

succ 2
à (ln. ls. lz. s (n s z)) 2
à (ls. lz. s (2 s z))
à (ls. lz. s ((ls. lz. s (s z)) s z))
à (ls. lz. s (s (s z)) = 3

Higher order func5ons:
n takes a func5on s as argument
and returns the n-th composi5on
of s with itself, sn

applies the func5on one
more 5me

sn

11

Arithme0cs with Church Numerals
Addition:
• plus = lm. ln. ls. lz. m s (n s z)

Multiplication:
• times = lm. ln. ls. lz. m (n s) z

Exponentiation:
• pow = lm. ln. ls. lz. n m s z

Test by zero:
• Z = lx. x F not F
• Z 0 = ((0 F) not) F = not F = T
• Z n = ((n F) not) F = Fn(not) F = F

sm

sn

mn

(sn)m = sn*m

12

Fix-point combinator and recursion

The following fix-point combinator Y, when applied to a func5on
R, returns a fix-point of R, i.e. R(YR) = YR

• Y = (ly.(lx.y(x x))(lx.y(x x)))
• YR = (lx.R(x x))(lx.R(x x))

= R((lx.R(x x))(lx.R(x x))) = R(YR)

A recursive func5on defini5on (like factorial) can be read as a
higher-order transforma5on having a func5on as first argument,
and the desired func5on is its fix-point.

13

Fix-point combinator and recursion
A recursive definition:
• sums(n) = (n==0 ? 0 : n + sums(n-1))
• sums = \n -> (n == 0 ? 0 : n + sums(n-1))

sums is the fix-point of the following higher-order function:
• R = \F -> \n -> (n == 0? 0 : n + F(n-1))
• R=(lr.ln.Z n 0 (n S (r (P n)))) // in l-calculus
Example of application

(Y R) 3 = R (Y R) 3 =
(3 == 0? 0 : 3 + (Y R) (3-1)) =
3 + (Y R) 2 =
3 + R (Y R) 2 =
3 + (2 == 0? 0 : 2 + (Y R) (2-1)) =
3 + 2 + (Y R) 1 =
... 3 + 2 + 1 + 0 = 6

14

Applica've and Normal Order evalua'on
• Applica've Order evalua&on

– Arguments are evaluated before applying the func8on –
aka Eager evalua*on, parameter passing by value

• Normal Order evalua&on
– Func8on evaluated first, arguments if and when needed
– Sort of parameter passing by name
– Some evalua8on can be repeated

• Church-Rosser
– If evalua8on terminates, the result (normal form) is

unique
– If some evalua8on terminates, normal order evalua8on

terminates

15

Applicative order
(λx.(+ x x)) (+ 3 2)
à (λx.(+ x x)) 5
à (+ 5 5)
à10

Normal order
(λx.(+ x x)) (+ 3 2)
à (+ (+ 3 2) (+ 3 2))
à (+ 5 (+ 3 2))
à (+ 5 5)
à10

Define Ω = (λx.x x)
Then
ΩΩ = (λx.x x) (λx.x x)
à x x [(λx.x x)/x]
à (λx.x x) (λx.x x) = ΩΩ
à … non-terminating
(λx. 0) (ΩΩ)
à { Applicative order}
… non-terminating
(λx. 0) (ΩΩ)
à { Normal order}
0

β-conversion
(λx.t) t’ = t [t’/x]

Parameter passing mechanism in Haskell:
Call by need

• Haskell realizes lazy evalua)on by using call by need
parameter passing: an expression passed as
argument is bound to the formal parameter, but it is
evaluated only if its value is needed.

• The argument is evaluated only the first %me, using
the memoiza)on technique: the result is saved and
further uses of the argument do not need to re-
evaluate it

16

Call by need (cont.)

• Combined with lazy data constructors, this allows to
construct potentially infinite data structures and to call
infinitely recursive functions without necessarily causing
non-termination

• Note: lazy evaluation works fine with purely functional
languages

• Side effects require that the programmer reasons about
the order that things happen, not predictable in lazy
languages.

• We will address this fact when introducing Hakell's IO-
Monad

17

Warning!

• The next slides about Parameter Passing
Mechanisms where not presented during the
course. They are included in this document for
the interested reader.

18

Parameter Passing Mechanisms
• Parameter passing modes

– In
– In/out
– Out

• Parameter passing mechanisms
– Call by value (in)
– Call by reference (in+out)
– Call by result (out)
– Call by value/result (in+out)
– Call by need (in)
– Call by sharing (in/out)
– Call by name (in+out)

19

L-Values vs. R-Values and
Value Model vs. Reference Model

• Consider the assignment of the form: a = b
– a is an l-value, an expression deno&ng a loca'on, e.g.

• an array element a[2]
• a variable foo
• a dereferenced pointer *p
• a more complex expression like (f(a)+3)->b[c]

– b is an r-value: any syntac&cally valid expression with a type
compa&ble to that of a

• Languages that adopt the value model of variables copy the
value of b into the loca5on of a

• Languages that adopt the reference model of variables copy
references, resul5ng in shared data values via mul5ple
references

20

Value Model vs. Reference Model
in some programming languages

• Lisp/Scheme, ML, Haskell, Smalltalk adopt the reference
model. They copy the reference of b into a so that a and b
refer to the same object

• Most impera5ve programming languages use the value model
• Java uses the value model for built-in types and the reference

model for class instances
• C# uses value model for value types, reference model for

reference types

21

Assignment in
Value Model vs. Reference Model

22

6.1 Expression Evaluation 227

4a 4

2

2b

2c

a

b

c

Figure 6.2 The value (left) and reference (right) models of variables. Under the reference
model, it becomes important to distinguish between variables that refer to the same object
and variables that refer to different objects whose values happen (at the moment) to be
equal.

model of variables, as in Clu, there is (at least conceptually) only one 2—a sort of
Platonic Ideal—to which any variable can refer. The practical effect is the same in
this example, because integers are immutable: the value of 2 never changes, so we
can’t tell the difference between two copies of the number 2 and two references to
“the” number 2. !

In a language that uses the reference model, every variable is an l-value. When
it appears in a context that expects an r-value, it must be dereferenced to obtain
the value to which it refers. In most languages with a reference model (including
Clu), the dereference is implicit and automatic. In ML, the programmer must use
an explicit dereference operator, denoted with a prefix exclamation point. We will
revisit ML pointers in Section 7.7.1.

The difference between the value and reference models of variables becomes
particularly important (specifically, it can affect program output and behavior)
if the values to which variables refer can change “in place,” as they do in many
programs with linked data structures, or if it is possible for variables to refer
to different objects that happen to have the “same” value. In this latter case it
becomes important to distinguish between variables that refer to the same object
and variables that refer to different objects whose values happen (at the moment)
to be equal. (Lisp, as we shall see in Sections 7.10 and 10.3.3, provides more than
one notion of equality, to accommodate this distinction.) We will discuss the value
and reference models of variables further in Section 7.7.

DESIGN & IMPLEMENTATION

Implementing the reference model
It is tempting to assume that the reference model of variables is inherently
more expensive than the value model, since a naive implementation would
require a level of indirection on every access. As we shall see in Section 7.7.1,
however, most compilers for languages with a reference model use multiple
copies of immutable objects for the sake of efficiency, achieving exactly the
same performance for simple types that they would with a value model.

b := 2;
c := b;
a := b + c 6.1 Expression Evaluation 227

4a 4

2

2b

2c

a

b

c

Figure 6.2 The value (left) and reference (right) models of variables. Under the reference
model, it becomes important to distinguish between variables that refer to the same object
and variables that refer to different objects whose values happen (at the moment) to be
equal.

model of variables, as in Clu, there is (at least conceptually) only one 2—a sort of
Platonic Ideal—to which any variable can refer. The practical effect is the same in
this example, because integers are immutable: the value of 2 never changes, so we
can’t tell the difference between two copies of the number 2 and two references to
“the” number 2. !

In a language that uses the reference model, every variable is an l-value. When
it appears in a context that expects an r-value, it must be dereferenced to obtain
the value to which it refers. In most languages with a reference model (including
Clu), the dereference is implicit and automatic. In ML, the programmer must use
an explicit dereference operator, denoted with a prefix exclamation point. We will
revisit ML pointers in Section 7.7.1.

The difference between the value and reference models of variables becomes
particularly important (specifically, it can affect program output and behavior)
if the values to which variables refer can change “in place,” as they do in many
programs with linked data structures, or if it is possible for variables to refer
to different objects that happen to have the “same” value. In this latter case it
becomes important to distinguish between variables that refer to the same object
and variables that refer to different objects whose values happen (at the moment)
to be equal. (Lisp, as we shall see in Sections 7.10 and 10.3.3, provides more than
one notion of equality, to accommodate this distinction.) We will discuss the value
and reference models of variables further in Section 7.7.

DESIGN & IMPLEMENTATION

Implementing the reference model
It is tempting to assume that the reference model of variables is inherently
more expensive than the value model, since a naive implementation would
require a level of indirection on every access. As we shall see in Section 7.7.1,
however, most compilers for languages with a reference model use multiple
copies of immutable objects for the sake of efficiency, achieving exactly the
same performance for simple types that they would with a value model.

Value model

Reference model

References and pointers
• Most implementa)ons of PLs have as target architecture a Von

Neumann one, where memory is made of cells with addresses
• Thus implementa=ons use the value model of the target

architecture
• Assump=on: every data structure is stored in memory cells
• We “define”:

– A reference to X is the address of the (base) cell where X is stored
– A pointer to X is a loca4on containing the address of X

• Value model based implementa=ons can mimic the reference
model using pointers and standard assignment
– Each variable is associated with a loca4on
– To let variable y refer to data X, the address of (reference to) X is wri;en in

the loca4on of y, which becomes a pointer.

23

Parameter Passing by Sharing

• Call by sharing: parameter passing of data in the
reference model

• The value of the variable is passed as actual
argument, which in fact is a reference to the
(shared) data
– Essentially this is call by value of the variable!

• Java uses both pass by value and pass by sharing
– Variables of primitive built-in types are passed by

value
– Class instances are passed by sharing
– The implementation is identical

24

Parameter Passing in Algol 60
• Algol 60 uses call by name by default, but also call by value
• Effect of call by name is like β-reduction in λ-calculus: the

actual parameter is copied wherever the formal parameter
appears in the body, then the resulting code is executed

• Thus the actual parameter is evaluated a number of times (0,
1, …) that depends on the logic of the program

• Since the actual parameter can contain names, it is passed in
a closure with the environment at invocation time (called a
thunk)

• Call by name is powerful but makes programs difficult to read
and to debug (think to λ-calculus…): dismissed in subsequent
versions of Algol

25

An example of Call by Name:
Jensen’s device

• What does the following Algol 60 procedure compute?

• Apparently, (high-low+1) * expr

26

real procedure sum(expr, i, low, high);
value low, high; low and high are passed by value
real expr; expr and i are passed by name
integer i, low, high;

begin
real rtn;
rtn := 0;
for i := low step 1 until high do
rtn := rtn + expr;

sum := rtn return value by assigning to function name
end sum

An example of Call by Name:
Jensen’s device

• But: y := sum(3*x*x-5*x+2,x,1,10)

• It computes

27

real procedure sum(expr, i, low, high);
value low, high; low and high are passed by value
real expr; expr and i are passed by name
integer i, low, high;

begin
real rtn;
rtn := 0;
for x := low step 1 until high do
rtn := rtn + 3*x*x-5*x+2;

sum := rtn return value by assigning to function name
end sum

y = S 3x2-5x+2x=1

10

Call by name & Lazy evaluaEon (call by need)

• In call by name parameter passing (default in Algol 60)
arguments (like expressions) are passed as a closure
(“thunk”) to the subroutine

• The argument is (re)evaluated each time it is used in the
body

• Haskell realizes lazy evaluation by using call by need
parameter passing, which is similar: an expression passed
as argument is evaluated only if its value is needed.

• Unlike call by name, the argument is evaluated only the
first time, using memoization: the result is saved and
further uses of the argument do not need to re-evaluate
it

28

Call by name & Lazy evaluation (call by need)

• Combined with lazy data constructors, this allows to
construct potenPally infinite data structures and to call
infinitely recursive funcPons without necessarily causing
non-terminaPon

• Note: lazy evaluaPon works fine with purely func0onal
languages

• Side effects require that the programmer reasons about
the order that things happen, not predictable in lazy
languages.

• We will address this fact when introducing Hakell's IO-
Monad

29

Summary of Parameter Passing Modes

30

