
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-12: C++ Standard Template Library
Slides freely adapted from those of Antonio Cisternino

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Introduction
• The C++ Standard Template Library (STL) has

become part of C++ standard
• The main author of STL is Alexander Stephanov
• Developed in ~1992 but based on ideas of ~1970
• He chose C++ because of templates and no

requirement of using OOP!
• The library is somewhat unrelated with the rest of

the standard library which is OO

2

The Standard Template Library
• Goal: represent algorithms in as general form as possible

without compromising efficiency
• Extensive use of templates and overloading
• Only uses static binding (and inlining): not object oriented,

no dynamic binding – very different from Java Collection
Framework

• Use of iterators for decoupling algorithms from containers
• Iterators are seen as abstraction of pointers
• Many generic abstractions
– Polymorphic abstract types and operations

• Excellent example of generic programming
– Generated code is very efficient

3

3D generic world

ALGORITHMS

DATA STRUCTURES

ITERATORS

Stephanov observed three
orthogonal dimensions in
algorithms: iterators allow
algorithms to iterate over data
structures.
Iterators are very similare to C
pointers and compatible with them

4

Main entities in STL
• Container: Collection of typed objects

– Examples: array, vector, deque, list, set, map ...
• Iterator: Generalization of pointer or address. used to step through the

elements of collections
– forward_iterator, reverse_iterator, istream_iterator, …
– pointer arithmetic supported

• Algorithm: initialization, sorting, searching, and transforming of the
contents of containers,
– for_each, find, transform, sort

• Adaptor: Convert from one form to another
– Example: produce iterator from updatable container; or stack from list

• Function object: Form of closure (class with "operator()" defined)
– plus, equal, logical_and

• Allocator: encapsulation of a memory pool
– Example: GC memory, ref count memory, ...

5

6
6

JCF vs STL

7

Java Collection Framework

Standard Template Library

A digression: Iterators in Java
• Iterators are supported in the Java Collection Framework: interface

Iterator<T>
• They exploit generics (as collections do)
• Iterators are usually defined as nested classes (non-static private

member classes): each iterator instance is associated with an
instance of the collection class

• Collections equipped with iterators have to implement the
Iterable<T> interface

8

class BinTree<T> implements Iterable<T> {
BinTree<T> left;
BinTree<T> right;
T val;
...
// other methods: insert, delete, lookup, ...
public Iterator<T> iterator() {

return new TreeIterator(this);

}

9

class BinTree<T> implements Iterable<T> {
…
private class TreeIterator implements Iterator<T> {

private Stack<BinTree<T>> s = new Stack<BinTree<T>>();
TreeIterator(BinTree<T> n) {

if (n.val != null) s.push(n);
}
public boolean hasNext() {

return !s.empty();
}
public T next() { //preorder traversal

if (!hasNext()) throw new NoSuchElementException();
BinTree<T> n = s.pop();
if (n.right != null) s.push(n.right);
if (n.left != null) s.push(n.left);
return n.val;

}
public void remove() {

throw new UnsupportedOperationException();
} }

}

Iterators in Java (cont’d)

Iterators in Java (cont’d)
• Use of the iterator to print all the nodes of a BinTree:

for (Iterator<Integer> it = myBinTree.iterator();
it.hasNext();)

{ Integer i = it.next();
System.out.println(i);

}

• Java provides (since Java 5.0) an enhanced for statement (foreach) which exploits
iterators. The above loop can be written:

for (Integer i : myBinTree)
System.out.println(i);

• In the enhanced for, myBinTree must either be an array of integers, or it has to
implement Iterable<Integer>

• The enhanced for on arrays is a bounded iteration. On an arbitrary iterator it depends
on the way it is implemented.

10

11

#include <iostream>
#include <vector>
using namespace std;
int main() {

vector<int> vec; // create a vector to store int
int i;
// display the original size of vec
cout << "vector size = " << vec.size() << endl;
// push 5 values into the vector
for(i = 0; i < 5; i++) {

vec.push_back(i);
}
// display extended size of vec
cout << "extended vector size = " << vec.size() << endl;
// access 5 values from the vector
for(i = 0; i < 5; i++) {

cout << "value of vec [" << i << "] = " << vec[i] << endl;
}
// use iterator to access the values
vector<int>::iterator v = vec.begin();
while(v != vec.end()) {

cout << "value of v = " << *v << endl;
v++;

}
return 0;

}

Example of use: Vector and
Forward Iterator

Iterators and C++ namespaces!
• STL relies on C++ namespaces
• Containers expose a type named iterator in the

container's namespace
• Example: std::vector<std::string>::iterator
• Each class implicitly introduces a new

namespace
• The iterator type name assumes its meaning

depending on the context!

12

Complexity of operations
on containers

• It is guaranteed that inserting and erasing at the
end of the vector takes amortized constant time
whereas inserting and erasing in the middle takes
linear time.

13

STL Tutorial page 21 Johannes Weidl

container in cases where the time can vary widely as a sequence of the operations is done, but
the total time for a sequence of N operations has a better bound than just N times the worst-
case time." To understand this, remember that a vector is able to automatically expand its
size. This expansion is done, when an insert command is issued but no room is left in the
storage allocated. In that case, STL allocates room for 2n elements (where n is the actual size
of the container) and copies the n existing elements into the new storage. This allocation and
the copying process take linear time. Then the new element is inserted and for the next n-1
insertions only constant time is needed. So you need O(n) time for n insertions, averaged over
the n insert operations this results in O(1) time for one insert operation. This more accurately
reflects the cost of inserting than using the worst-case time O(n) for each insert operation.

Of course amortized constant time is about the same overhead as you have when using C/C++
arrays but note that it is important to be about the same - and not more.
For the authors of STL complexity considerations are very important because they are
convinced that component programming and especially STL will only be accepted when there
is no (serious) loss of efficiency when using it.
Maybe there are users who can afford to work inefficiently but well designed - most can not.

The following table shows the insert and erase overheads of the containers vector, list and
deque. Think of these overheads when choosing a container for solving a specific task.

Table 3: Insert and erase overheads for vector, list and deque

Before we look at the insert functionality, there is another thing to consider. When a vector is
constructed using the default constructor (the default constructor is used when no argument is
given at the declaration), no memory for elements is allocated:

vector<int> v;

We can check this using the member function capacity(), which shows the number of
elements for which memory has been allocated:

vector<int>::size_type capacity = v.capacity();
cout << "capacity: " << capacity;

Output: capacity: 0

At the first glance this doesn’t make any sense but it gets clear when you consider, that the
vector class itself is able to allocate memory for the objects inserted. In C++ you would fill
your turbine array as follows:

turbine turb;
turbine main_screen_turbines [max_size];

main_screen_turbines[0] = turb;

In STL you can use this syntax, too:

Container insert/erase overhead
at the beginning in the middle at the end

Vector linear linear amortized constant
List constant constant constant
Deque amortized constant linear amortized constant

Complexity of use of Iterators
• Consider the following code:

std::list<std::string> l;
…
quick_sort(l.begin(), l.end());

• This is not reasonable: quick_sort assumes
random access to container's elements!

• How can we control complexity of algorithms
and guarantee that code behaves as expected?

14

Classifying iterators
• The solution proposed by STL is assume that iterators

implement all operations in constant time
• Containers may support different iterators depending on

their structure:
– Forward iterators: only dereference (operator*), and pre/post-

increment operators (operator++)
– Input and Output iterators: like forward iterators but with

possible issues in dereferencing the iterator (due to I/O
operations)

– Bidirectional iterators: like forward iterators with pre/post-
decrement (operator--)

– Random access iterators: like bidirectional iterators but with
integer sum (p + n) and difference (p – q)

• Iterators heavily rely on operator overloading provided by
C++

15

Categories of iterators
• Five categories, with decreasing requirements

16

STL Tutorial page 27 Johannes Weidl

element is always inserted before a specified iterator-position and that this insertion
doesn’t affect all the other iterators defined when using a list.

Exercise 4.1.3: Refine Exercise 4.1.2 and print the original bit sequence and the "bit-stuffed"
bit sequence to cout. Use the hint from Exercise 4.1.2 to form a loop for the output
procedure.

Exercise 4.1.4: Refine Exercise 4.1.3 and print out the absolute and relative expansion of the
bit sequence. The absolute expansion is the expasion measured in bits (e.g. the bit-
stuffed sequence has increased by 5 bits), the relative expansion is the percentage of the
expansion (e.g. the relative expansion between the "new" and "old" sequence is 5.12%).

Exercise 4.1.5: Refine Exercise 4.1.4 and write the inverse algorithm to the one in Exercise
4.1.2 that the receiver has to perform to get the initial binary data representation. After
the bit-stuffing and bit-unstuffing compare your list with the original one using the
equality operator==. If the lists are equal, you did a fine job. Note: It is advisable to
include a plausibility test in your unstuff algorithm. After a sequence of five consecutive
ones there must be a zero, otherwise something went wrong in the stuffing algorithm.

"Iterators are a generalization of pointers that allow a programmer to work with different data structures
(containers) in a uniform manner", [2]. From the short survey in section 4.1.1 we know that iterators are
objects that have operator* returning a value of a type called the value type of the iterator.

Since iterators are a generalization of pointers it is assumed that every template function that takes
iterators as arguments also works with regular pointers.

There are five categories of iterators. Iterators differ in the operations defined on them. Each iterator is
designed to satisfy a well-defined set of requirements. These requirements define what operations can be
applied to the iterator. According to these requirements the iterators can be assigned to the five
categories. Iterator categories can be arranged from left to right to express that the iterator category on
the left satisfies the requirements of all the iterator categories on the right (and so could be called more
powerful).

Figure 7: Iterator categories

Random Access
Iterators

Bidirectional
Iterators

Forward
Iterators

Input
Iterators

Output
Iterators

means, iterator category on the left satisfies the requirements of all iterator categories
on the right

• Each category has only those functions
defined that are realizable in constant
time. [Efficiency concern of STL!]

• Not all iterators are defined for all
categories: since random access takes
linear time on lists, random access
iterators cannot be used with lists.

STL Tutorial page 28 Johannes Weidl

This arrangement means that a template function wich expects for example a bidirectional iterator can
be provided with a random access iterator, but never with a forward iterator. Imagine an algorithm that
needs random access to fulfil his task, but is provided with a method that only allows to pass through
the elements successively from one to the next. It simply won’t work.

Iterators that point past the last element of a range are called past-the-end iterators. Iterators for which
the operator* is defined are called dereferenceable. It is never assumed that past-the-end iterators are
dereferenceable. An iterator value (i.e. an iterator of a specific iterator type) that isn’t associated with a
container is called singular (iterator) value. Pointers can also be singular. After the declaration of an
uninitialized pointer with

int* x;

x is assumed to be singular. Dereferenceable and past-the-end iterators are always non-singular.

All the categories of iterators have only those functions defined that are realizeable for that category in
(amortized) constant time. This underlines the efficiency concern of the library.

Because random access in a linked list doesn’t take constant time (but linear time), random access
iterators cannot be used with lists. Only input/output iterators up to bidirectional iterators are valid for
the use with the container list. The following table shows the iterators that can be used with the
containers vector, list and deque (of course all iterators that satisfy the requirements of the listed
iterators can be used as well):

Container Iterator Category
vector random access iterators
list bidirectional iterators
deque random access iterators

Table 5: Most powerful iterator categories that can be used with vector, list and deque

Iterators of these categories are returned when using the member functions begin or end or declaring an
iterator with e.g. vector<int>::iterator i;
The iterator categories will be explained starting with the input iterators and output iterators.

An input iterator has the fewest requirements. It has to be possible to declare an input iterator.
It also has to provide a constructor. The assignment operator has to be defined, too. Two input
iterators have to be comparable for equality and inequality. operator* has to be defined and
it must be possible to increment an input iterator.

Input Iterator Requirements:

• constructor
• assignment operator
• equality/inequality operator
• dereference operator
• pre/post increment operator

C++ operators and iterators (1)
• Forward iterators provide for one-directional traversal

of a sequence, expressed with ++:
– Operator ==, !=, *, ++

• input iterators and output iterators are like forward
iterators but do not guaratee these properties of forward
iterators:
– that an input or output iterator can be saved and used to start

advancing from the position it holds a second time
– That it is possible to assign to the object obtained by applying *

to an input iterator
– That it is possible to read from the object obtained by applying *

to an output iterator
– That it is possible to test two output iterators for equality or

inequality (== and != may not be defined)
17

C++ operators and iterators (2)
• Bidirectional iterators provide for traversal in both

directions, expressed with ++ and --:
– Same operators as forward iterator
– Operator --

• Random access iterators provide for bidirectional
traversal, plus bidirectional “long jumps”:
– Same operators as bidirectional iterator
– Operator += n and -= n with n of type int
– Addition and subtraction of an integer through operator + and

operator –
– Comparisons through operator <, operator >, operator <=,

operator >=
• Any C++ pointer type, T*, obeys all the laws of the

random access iterator category.
18

Iterator validity

• When a container is modified, iterators to it
can become invalid: the result of operations
on them is not defined

• Which iterators become invalid depends on
the operation and on the container type

19

STL Tutorial page 26 Johannes Weidl

The first version erases the first vector element. The second version erases all remaining
elements so the vector gets empty.

When inserting in or erasing from a container, there is something to take into consideration. If
you have an iterator pointing e.g. to the end of a vector and you insert an element at its
beginning, the iterator to the end gets invalid. Only iterators before the insertion point remain
valid. If no place is left and expansion takes place, all iterators get invalid. This is clear,
because new memory is allocated, the elements are copied and the old memory is freed.
Iterators aren’t automatically updated and get invalid, that means the result of operations
using such iterators is undefined. Take this into consideration when inserting or erasing and
then using iterators earlier defined on this container. The following table shows the validity of
the containers vector, list and deque after inserting and erasing an element, respectively.

Table 4: Iterator validity after inserting or erasing

Now we are able to store objects in a container (at least in the vector) that provides several
means to administer and maintain it. To apply algorithms to the elements in the vector we have
to understand the iterator concept which is described in detail in the next section.

This section contains specifications for exercises dealing with the topics in section 4.1.
Solving these tasks should give you the possibility to apply your lections learned and compare
your solutions with the ones given in the solutions part of this tutorial.

Exercise 4.1.1: Write a STL program that declares a vector of integer values, stores five
arbitrary values in the vector and then prints the single vector elements to cout. Be sure
to have read section 3.3 on how to compile STL programs.

Exercise 4.1.2: Write a STL program that takes an arbitrary sequence of binary digits (integer
values 0 and 1) from cin and stores them into a container. When receiving a value
different from 0 or 1 from cin stop reading. Now, you should have a container storing a
sequence of 0’s and 1’s. After finishing the read-process, apply a "bit-stuffing" algorithm
to the container. Bit-stuffing is used to transmit data from a sender to a receiver. To
avoid bit sequences in the data, which would erroneously be interpreted as the stop flag
(here: 01111110), it is necessary to ensure that six consecutive 1’s in the data are splitted
by inserting a 0 after each consecutive five 1’s. Hint: Complexity considerations
(inserting in the middle of a vector takes linear time!) and the fact, that inserting into a
vector can make all iterators to elements invalid should make you choose the STL
container list. A list of integers is defined like a vector by list<int> l; All
operations explained in the vector section are provided for the list, too. Get an iterator to
the first list element. As long as this iterator is different from the end() iterator
increment the iterator and dereference it to get the appropriate binary value. Note that an

Container operation iterator validity
vector inserting reallocation necessary - all iterators get invalid

no reallocation - all iterators before insert point remain valid
erasing all iterators after erasee point get invalid

list inserting all iterators remain valid
erasing only iterators to erased elements get invalid

deque inserting all iterators get invalid
erasing all iterators get invalid

Limits of the model
• Iterators provide a linear view of a container
• Thus we can define only algorithms operating on

single dimension containers
• If it is needed to access the organization of the

container (i.e. to visit a tree in a custom fashion)
the only way is to define a new iterator

• Nonetheless the model is expressive enough to
define a large number of algorithms!

20

Under the hood…
• To really understand the philosophy behind STL

it is necessary to dig into its implementation
• In particular it is useful to understand on which

language mechanisms it is based upon:
– Type aliases (typedefs)
– Template functions and classes
– Operator overloading
– Namespaces

21

Iterators: small struct
• Iterators are implemented by containers
• Usually are implemented as struct (classes with

only public members)
• An iterator implements a visit of the container
• An iterator retains inside information about the

state of the visit (i.e. in a vector, the pointer to
the current element and the number of
remaining elements)

• The state may be complex in the case of non
linear structures such as trees or graphs

22

A simple forward iterator for vectors

template <class T>
struct v_iterator {

T *v;
int sz;
v_iterator(T* v, int sz) : v(v), sz(sz) {}
// != implicitly defined
bool operator==(v_iterator& p) { return v == p->v; }
T operator*() { return *v; }
v_iterator& operator++() { // Pre-increment

if (sz) ++v, --sz; else v = NULL;
return *this;

}
v_iterator operator++(int) { // Post-increment!

v_iterator ret = *this;
++(*this); // call pre-increment
return ret;

}
};

23

Where is used v_iterator?
template <class T>
class vector {
private:
T v[];
int sz;
struct v_iterator { … };

public:
typedef v_iterator iterator;
typedef v_iterator const const_iterator;
typedef T element;
…
iterator begin() { return v_iterator(v, sz); }
iterator end() { return v_iterator(NULL, 0); }

};

24

Inheritance? No thanks!
• STL relies on typedefs combined with namespaces to

implement genericity
• The programmer always refers to container::iterator to know

the type of the iterator
• There is no relation among iterators for different containers!
• The reason for this is PERFORMANCE
• Without inheritance types are resolved at compile time and

the compiler may produce better code!
• This is an extreme position: sacrificing inheritance may lead to

lower expressivity and lack of type-checking
• STL relies only on coding conventions: when the programmer

uses a wrong iterator the compiler complains of a bug in the
library!

25

Inlining
• STL relies also on the compiler
• C++ standard has the notion of inlining which is a

form of semantic macros
• A method invocation is type-checked then it is

replaced by the method body
• Inline methods should be available in header files

and can be labelled inline or defined within class
definition

• Inlining isn't always used: the compiler tends to
inline methods with small bodies and without
iteration

• The compiler is able to determine types at compile
time and usually does inlining of function objects

26

Memory management
• STL abstracts from the specific memory model used by a

concept named allocators.
• All the information about the memory model is

encapsulated in the Allocator class.
• Each container is parametrized by such an allocator to let

the implementation be unchanged when switching
memory models.

27

template <class T,
template <class U> class Allocator = allocator>
class vector {

... };

• The second template argument is a default argument that
uses the pre-defined allocator "allocator" (implementing
STL's own memory management strategies), when no other
allocator is specified by the user.

Potential problems
• The main problem with STL is error checking
• Almost all facilities of the compiler fail with STL

resulting in lengthy error messages that ends with
error within the library

• The generative approach taken by C++ compiler also
leads to possible code bloat

• Code bloat can be a problem if the working set of a
process becomes too large!

28

