
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-09: Polymorphism

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Outline

• Polymorphism: a classification
• Overloading
• Coercion
• Inclusion polymorphism
• Overriding

2

Polymorphism

• From Greek: πολυμορφος, composed of πολυ
(many) and μορφή (form), thus “having
several forms”

• “Forms” are types
• “Polymorphic” are function names (also
operators, methods, …)

• “Polymorphic” can also be types (parametric
data types, type constructors, generics, …)
– Usually as encapsulation of several related

function names

3

Flavors of polymorphism

Related concepts:
• Coercion
• Generics
• Inheritance
• Macros
• Overloading
• Overriding
• Subtyping
• Templates
• …

• Ad hoc
• Bounded
• Contravariant
• Covariant
• Inclusion
• Invariant
• Parametric
• Universal
• …

4

Universal vs. ad hoc polymorphism

• With ad hoc polymorphism the same function
name denotes different algorithms,
determined by the actual types

• With universal polymorphism there is only
one algorithm: a single (universal) solution
applies to different objects

• Ad hoc and universal polymorphism can
coexist

5

Binding time

• The binding of the function name with the
actual code to execute can be
– at compile time – early, static binding
– at linking time
– at execution time – late, dynamic binding

• If it spans over different phases, the binding
time is the last one.

• The earlier the better, for debugging reasons.

6

Classification of Polymorphism

Polymorphism

Universal

Ad hoc

Parametric

Inclusion

Overloading

Coercion
Implicit

Bounded

Overriding

Explicit

Covariant
Invariant

Contravariant

Overloading

Coercion

7

Ad hoc polymorphism: overloading

• Present in all languages, at least for built-in
arithmetic operators: +, *, -, …

• Sometimes supported for user defined functions
(Java, C++, …)

• C++, Haskell allow overloading of primitive
operators

• The code to execute is determined by the type of
the arguments, thus
– early binding in statically typed languages
– late binding in dynamically typed languages

8

Overloading: an example

• Function for squaring a number:
sqr(x) { return x * x; }

• Typed version (like in C) :
int sqr(int x) { return x * x; }

• Multiple versions for different types:
int sqrInt(int x) { return x * x; }
double sqrDouble(double x) { return x * x; }

• Overloading (Java, C++):
int sqr(int x) { return x * x; }
double sqr(double x) { return x * x; }

9

Overloading in Haskell

• Haskell introduces type classes for handling
overloading in presence of type inference

• Very nice and clean solution, unlike most
programming languages

• We shall present this later in the course

10

Universal polymorphism: Coercion

• Coercion: automatic conversion of an object
to a different type

• Opposed to casting, which is explicit
double sqrt(double x){…}
double d = sqrt(5) // applied to int

• Thus the same code is applied to arguments of
different types

• Degenerate (and uninteresting) case of
polymorphism

11

Classification of Polymorphism

Polymorphism

Universal

Ad hoc

Parametric

Inclusion

Overloading

Coercion
Implicit

Bounded

Overriding

Explicit

Covariant
Invariant

Contravariant

12

Inclusion polymorphism

• Also known as subtyping polymorphism, or just
inheritance

• Polymorphism ensured by (Barbara Liskov’)
Substitution principle: an object of a subtype
(subclass) can be used in any context where an object
of the supertype (superclass) is expected

• [Java, C++,…] methods/functions with a formal
parameter of type T accept an actual parameter of
type S <: T (S subtype of T).

• Methods/virtual functions declared in a class can be
invoked on objects of subclasses, if not redefined…

13

Overriding

• [Java] A method m(…) of a class A can be
redefined in a subclass B of A.

• Dynamic binding:

• Overriding introduces ad hoc polymorphism in
the universal polymorphism of inheritance

• Resolved at runtime by the lookup done by the
invokevirtual operation of the JVM

14

A a = new B(); // legal
a.m(…) // overridden method in B is invoked

Overloading + Overriding: C++ vs Java

15

class A {

public void onFoo() {}
public void onFoo(int i) {}

}

class B extends A {

public void onFoo(int i) {}
}

class C extends B {
}

class D {
public static void main(String[] s)
{

C c = new C();
c.onFoo();

//Compiles !!
}

}

class A {
public:

virtual void onFoo() {}
virtual void onFoo(int i) {}

};

class B : public A {
public:

virtual void onFoo(int i) {}
};

class C : public B {
};

int main() {

C* c = new C();
c->onFoo();

//Compile error –
// doesn't exist

}

Overriding + Overloading
• [Java] Overloading is type-checked by the compiler
• Overriding resolved at runtime by the lookup done by
invokevirtual

• [C++] Dynamic method dispatch: C++ adds a v-table to each
object from a class having virtual methods

• The compiler does not see any declaration of onFoo in C,
so it continues upwards in the hierarchy. When it checks B,
it finds a declaration of void onFoo(int i), so it stops
lookup and tries overload resolution, but it fails due to the
inconsistency in the arguments.

• void onFoo(int i) hides the definitions of onFoo in
the superclass.

• Solution: add using A::onFoo; to class B

16

