301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

AP-09: Polymorphism


mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Outline

Polymorphism: a classification
Overloading

Coercion

Inclusion polymorphism
Overriding



Polymorphism

From Greek: moAvpopdoc, composed of moAu
(many) and popdn (form), thus “having
several forms”

“Forms” are types

“Polymorphic” are function names (also
operators, methods, ...)

“Polymorphic” can also be types (parametric
data types, type constructors, generics, ...)

— Usually as encapsulation of several related
function names



Flavors of polymorphism

Ad hoc
Bounded
Contravariant
Covariant
Inclusion
Invariant
Parametric
Universal

Related concepts:

Coercion
Generics
Inheritance
Macros
Overloading
Overriding
Subtyping
Templates



Universal vs. ad hoc polymorphism

* With ad hoc polymorphism the same function
name denotes different algorithms,
determined by the actual types

* With universal polymorphism there is only
one algorithm: a single (universal) solution
applies to different objects

* Ad hoc and universal polymorphism can
coexist



Binding time

* The binding of the function name with the
actual code to execute can be

— at compile time — early, static binding
— at linking time
— at execution time - late, dynamic binding

 |f it spans over different phases, the binding
time is the last one.

* The earlier the better, for debugging reasons.



Classification of Polymorphism

Coercion
Implicit

Parametric <
Unlversal Explicit — Bounded

Covariant

Polymorphism Invariant

Contravariant

Overrldlng
Ad hoc

Overloading



Ad hoc polymorphism: overloading

* Presentin all languages, at least for built-in
arithmetic operators: +, *, -, ...

 Sometimes supported for user defined functions
(Java, C++, ...)

* C++, Haskell allow overloading of primitive
operators

 The code to execute is determined by the type of
the arguments, thus

— early binding in statically typed languages
— late binding in dynamically typed languages



Overloading: an example

* Function for squaring a number:
sgr(x) { return x * x; }
* Typed version (like in C) :
int sqr(int x) { return x * x; }
* Multiple versions for different types:

int sqrInt(int x) { return x * x; }
double sqrDouble(double x) { return x * x; }

* Overloading (Java, C++):
int sqr(int x) { return x * x; }
double sqgr(double x) { return x * x; }



Overloading in Haskell

* Haskell introduces type classes for handling
overloading in presence of type inference

* Very nice and clean solution, unlike most
programming languages
* We shall present this later in the course



Universal polymorphism: Coercion

e Coercion: automatic conversion of an object
to a different type

* Opposed to casting, which is explicit

double sqgrt(double x){..}
double d = sqrt(5) // applied to int

* Thus the same code is applied to arguments of
different types

 Degenerate (and uninteresting) case of
polymorphism



Classification of Polymorphism

Coercion
Implicit

Parametric <
Universal Explicit — Bounded

Inclusion / /

Covariant

Invariant
Contravariant
Ad hoc

AN

Overloading

Polymorphism




Inclusion polymorphism

Also known as subtyping polymorphism, or just
inheritance

Polymorphism ensured by (Barbara Liskov’)
Substitution principle: an object of a subtype
(subclass) can be used in any context where an object
of the supertype (superclass) is expected

[Java, C++,...] methods/functions with a formal
parameter of type T accept an actual parameter of
type S<: T (S subtype of T).

Methods/virtual functions declared in a class can be
invoked on objects of subclasses, if not redefined...



Overriding

e [Java] A method m(...) of a class A can be
redefined in a subclass B of A.

 Dynamic binding:

A a = new B(); // legal
a.m(...) // overridden method in B is invoked

* Overriding introduces ad hoc polymorphism in
the universal polymorphism of inheritance

* Resolved at runtime by the lookup done by the
invokevirtual operation of the JVM



Overloading + Overriding: C++ vs Java

class A {

public:
virtual void onFoo() {}
virtual void onFoo(int i) {}

}i

class B public A {
public:
virtual void onFoo(int i) {}
}i
class C public B {
}i

int main() {

C* ¢ = new C();

c->onFoo();
//Compile error —
// doesn't exist

class A {

public void onFoo() {}
public void onFoo(int 1) {}

}

class B extends A {

public void onFoo(int 1) {}

}

class C extends B {

}

class D {
public static void main(String[] s)
{
C c = new C();
c.onFoo();
//Compiles !!




Overriding + Overloading

[Java] Overloading is type-checked by the compiler

Overriding resolved at runtime by the lookup done by
invokevirtual

[C++] Dynamic method dispatch: C++ adds a v-table to each
object from a class having virtual methods

The compiler does not see any declaration of onFoo in C,
so it continues upwards in the hierarchy. When it checks B,
it finds a declaration of void onFoo(int i), so it stops
lookup and tries overload resolution, but it fails due to the
inconsistency in the arguments.

void onFoo(int i) hides the definitions of onFoo in
the superclass.

Solution: add using A::onFoo; toclassB



