301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-07: JavaBeans

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Overview

e Kinds of components in Java
e JavaBeans: design and deployment
— Properties
* Property design pattern
— Events

* Connection-oriented programming
* Observer design pattern

— Serialization
— Jar
— Introspection (InfoBeans)
=>» Chapter 14, sections 14.1, 14.3 and 14.5 of Component Software:

Beyond Object-Oriented Programming. C. Szyperski, D. Gruntz, S.
Murer, Addison-Wesley, 2002.

=» The JavaBeans API Specification, sections 1, 2, 6, 7 and 8.

https://www.oracle.com/technetwork/java/javase/
documentation/spec-136004.html

https://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html

Components in Java SE

_(Standard Edition): Java Beans

Java Language Java Language
i Security !lonitiomg JConsole VlsuaNll JMC JFR
Teel®: [yppA | ovmMT | iDL RMI JavaDB Deployment

User Interface
Toolkits

G
-

—_— lerarles

lang and util
Math Collections Ref Objects Reqular Expressions
Logging Management Instrumentation Concurrency Utilities

lang and util
Base Libraries

Reflection Versioning Preferences API JAR Zip
Java Virtual Machine Java HotSpot Client and Server VM

Proﬁles

Other Java Distributions

* Java EE (Enterprise Edition)
— Suite of specifications for application servers
— Around 20 implementations available
— Reference implementation: Oracle Glassfish

e Java ME (Micro Edition)

— embedded and mobile devices, e.g. micro-
controllers, sensors, gateways, mobile phones,
personal digital assistants (PDAs), TV set-top
boxes, printers...

Components in Java EE
(Enterprise Edition)

Client side

* JavaBeans

* Applets

* Application
Components

Web server tier

* Servlets

e JSPs

Application tier:

* Stateless session EJB
e Stateful session EJB
 Entity EJB
 Message-driven EJB

Client-Side Server-Side
Presentation Presentation
Browser Web Server
Pure HTML
ISP
JavaApplet
Java
Serviet
Desktop
Java XML
Application
Web
Services
Other Device
J2EE Client

J2EE
Platform

Server-Side

A

Enterprise

Business Logic Information

EJB Container;

-

EJB

EIB

L Web

Services

Web
Services

System

-

Components in Java EE
(Enterprise Edition)

Client side
* JavaBeans

e Applets

e Application
Components

Web server tier

* Servlets

* JSPs

Application tier:

* Stateless session EJB
e Stateful session EJB

Entity EJB

e Message-driven EJB

Client tier Web server tier App server tier Backend tier
Web JSP EJB Databases
browser container container
+ +
applets JSPs +
Entity beans
. 0 +
Rich clients Servlets T +
+ applicatiM \ Stateful & /
client stateless
components session
beans
Legacy apps
i + T + etc.
Web service Serviet M)
clients ervlets essage

driven beans

Lll¢ AN

Messaging (JMS)

Naming and directories (JNDI)

The JavaBeans APl (1996)

Goal: to define a software component model for Java, allowing
vendors to create and ship Java components that can be
composed together into applications by end users.

Design goals:

e Granularity: from small (eg. a button in a GUI) to medium
(eg. a spreadsheet as part of al larger document)
— Similar to Microsoft's OLE Control or ActiveX APlIs

* Portability: Ok in Java based application servers. Bridges

defined to other component models (like OpenDoc,
OLE/COM/ ActiveX)

* Uniformity and Simplicity: The APl should be simple to be
supported on different platforms. Strong support for small
component, with reasonable defaults.

What are Java Beans?

“A Java Bean is a reusable software component that can be
manipulated visually in a builder tool.”

* Sample tools: builders for web pages, visual applications, GUI
layout, server applications. Also document editors.

* A bean typically has a GUI representation, but not necessarily
— Invisible beans
* Any Java class can be recognized as a bean in a tool provided
that
— Has a public default constructor (no arguments)
— Implements the interface java.io.Serializable

— Isin a jar file with manifest file containing
Java-Bean: True (Really needed?)

JavaBeans as Software Components

Beans are binary building blocks (class files)
Development vs. deployment (customization)

Beans can be assembled to build a new bean

or a new application, applet, ... writing glue
code to wire beans together

Client side bean vs. beans for business logic
process in MVC on server

Beans on server are not visible

Sample Reusable Components

Button Beans Slider Bean
|
& Multiple Line r R
Labeled Button ‘ Title | ’ | tht)_;;;te I —_u—
Rl | 2l

An application constructed from Beans

Di=lal s smle]<| =]~ 2z [CF o= =1 &)
[Dialog =0 =[Genera =] B| 7| [E |2 [EBEE GOlwl =)=

Al oixl
A B | [| D | E | F | G =

1
25

3

1

5

6

7

8

9

10

11

12

13

14 -
[3]\ Sheet! {Sheet2 £ Sheetd £ Sheatd £ SheetS £She! 4| | LI—I

JavaBeans common features

e Support for properties, both for customization and for
programmatic use

e Support for events: simple communication metaphor that
can be used to connect several beans

* Support for customization: in the builder the user can
customize the appearance and behaviour of the bean

e Support for persistence: a bean can be customized in an
application builder and then have its customized state
saved away and reloaded later

e Support for introspection: a builder tool can analyze how
the bean works

Emphasis on GUI, but textual programming also possible using
the existing API

Design time vs. run-time

* A bean must be able to run in the design
environment of a builder tool providing means
to the user to customize aspect and behaviour

e At run-time there is less need for
customization

* Possible solution: design-time information for
customization is separated form run-time
information, and not loaded at run-time

— <BeanName>Beanlnfo.java class

Simple Properties

* Discrete named attributes that can affect a
pean instance’s appearance or behaviour

* Property X (and its type) determined by public
setter (setX) and /or getter (getX) methods

* Can be changed at design time
(customization) or run-time (application logic)

 Example property: background

public java.awt.Color getBackground ()
public void setBackground (java.awt.Color color);

@ BeanBox

Cile CAld iscas C v isieme = Help
=% Properties - BlueButton [lj[=] E3

BlueButton

O] ExplicitButton

OurButton font Abcde...

OrangeButton ‘press

label
EventhMonitor

@ JelyBean background _
.&’ Juggler

TickTock

foreground

Voter
ChangeReporter

Molecule

QuoteMonitor
JDBC SELECT

SorterBean

% Bridge Tester X
4 | How can a builder identify the properties of a bean?

Introspection

Process of analyzing a bean to determine the
capability

Allows application builder tool to present info
about a component to software designers

<BeanName>Beaninfo class to explicitly infer
info on a bean

Implicit method: based on reflection, naming
conventions, and design patterns

Design Pattern for Simple Properties

* From pair of methods:

public <PropertyType> get<PropertyName>();
public void set<PropertyName>(<PropertyType> a);

infer existence of property propertyName of type
PropertyType

 Example:

public java.awt.Color getBackground ()
public void setBackground (java.awt.Color color);

* If only the getter (setter) method is present then the
property is read-only (write-only)

16

Pattern for Indexed Properties

 If a property is an array, setter/getter methods
can take an index or the whole array

public
public
public
public

java.
java.
void
void

awt.Color getSpectrum (int index);

awt.Color[] getSpectrum ()

setSpectrum (int index, java.awt.Color color);
setSpectrum (java.awt.Color[] colors);

* From these methods, by introspection the
builder infers the existence of property
spectrum of type java.awt.Color(]

Bound and Constrained Property

* A bound property generates an event when
the property is changed

* A constrained property can only change value
if none of the registered observers "poses a
veto"

=» We discuss them after the event-based
commuhnication mechanism

Connection-oriented programming

e Paradigm for gluing together components in a
builder tool

* Based on the Observer design pattern
* Adequate for GUlIs

Pattern: Observer (Behavioral)
aka Publish-Subscribe

Name: Observer

Problem: Define a one-to-many dependency
among objects so that when one object
changes state, all of its dependents are
notified and updated automatically.

Observers
Subject Observer
1 *
+Attach(in Observer) +Update()
+Detach(in Observer)
+Notify() O

For all o in observers {
o->Update()
}

ConcreteSubject ConcreteObserver
Subject
—subjectState —observerState
+GetState() O +Update() O
+SetState() =
observerState =

Return subjectState subject->GetState()

Events

In Java the Observer pattern is based on
Events and Event Listeners

An event is an object created by an event
source and propagated to the registered event
listeners

Multicast semantics by default: several
possible listeners

Unicast semantics (at most one listener) can
be enforced by tagging the event source.

Design Pattern for Events

Based on methods for (un)registering listeners. From
public void add<EventListType>(<EventListType> a)

public void remove<EventListType>(<EventListType> a)

infer that the object is source of an event; the name is
extracted from EventListType.

Example: from

public void addUserSleepsListener (UserSleepsListener 1);

public void removeUserSleepsListener (UserSleepsListener 1);

infers that the class generates a UserSleeps event

23

Unicast event sources

e Unicast sematics is assumed if the add
method is declared to throw
java.util.TooManyListenersException

* Example:

public void addJackListener(JackListener t)
throws java.util.TooManyListenersException;

public void removeJackListener (JackListener t);

defines a unicast event source for the
“JackListener” interface.

Event Adaptors

 Placed between the event source and a listener
e |s atthe same time listener and source

 Examples of uses of adaptors:

— Implementing an event queuing mechanism between
sources and listeners.

— Acting as a filter.

— Demultiplexing multiple event sources onto a single
event listener.

— Acting as a generic “wiring manager” between
sources and listeners.

Event Adaptors: general architecture

public synchronized

void addFooListener(FooListener fel); Overview of Event Adaptor Model.
A3
~
~
~
~
~
~
) . ~ ~ void dolt(FooEvent fe) {
register Listener ~
~ }
~
~
~
~
~
~
~ I
~
EventSource Object
) ' A/
fire forward 4
Event class XyzListener implements FooListener { Event

void fooHappened(FooEvent fe) {
eDestination.dolt(fe);

} T~

interface
reference

e
EventAdaptor

[eDestination | J reference to destination

Event adaptors example:
Demultiplexing multiple event sources

OK Button buttonPushed(PBEvent pbe)

l OKButtonAdaptor Dialog Box

buttonPushed(PBEvent pbe) {

|

|

| dialog doOKAction(); = 00K Action() {
| }
|

|

¥

okButton.addPBListener(okButtonAdaptor)
cancelButton.addPBListener(cancelButtonAdaptor)

| CancelButtonAdaptor

I doCancelAction() {
buttonPushed(PBEvent pbe) { ...

I

I

| dialog.doCancelAction(); L e)
¥

I

I

Cancel Button buttonPushed(PBEvent pbe)

Back to Bound Properties

Can generate an event when the property is
changed

The event is of type PropertyChangeEvent
and is sent to objects that previously

registered an interest in receiving such
notifications

Bean with bound property: event source
Bean implementing listener: event target

Helper classes in the APl to simplify
implementation

Implement Bound Property in a Bean

Import java.beans package

Instantiate a PropertyChangeSupport helper object
private PropertyChangeSupport changes =
new PropertyChangeSupport(this);

Implement methods to maintain the property change listener
list:

public void
addPropertyChangeListener (PropertyChangeListener 1)

{ changes.addPropertyChangeListener(1l);}

(also removePropertyChangeListener methodis
needed)

29

Implement Bound Property in a Bean (cont.)

4. Modify a property’s setter method to fire a property change
event when the property is changed.

public void setX(int newX) {
int oldx = x;
X = newX;
changes.firePropertyChange("x", o0ldX, newX);

Implement Bound Property Listener

1. Listener bean must implement the interface
PropertyChangeListner

public class MyLstnr implements
PropertyChangeListener, Serializable

2. It must override the method

public abstract void
propertyChange (PropertyChangeevent evt)

Sample registration:

Button button = new OurButton();
MyLstnr lis = new MyLstnr();
button.addPropertyChangelListener (lis);

31

Constrained Property

It generates an event when an attempt is made to change its
value

The event type is PropertyChangeEvent

The event is sent to objects that previously registered an
interest in receiving such notification

Those other objects have the ability to veto the proposed
change by raising an exception

This allows a bean to operate differently according to the
runtime environment

Three Parts in Implementation of
Constrained Property

1. Source bean containing one or more constrained
properties

2. Listener objects that implement the
VetoableChangeListener interface. These
objects either accept or reject the proposed change.
The change is rejected by raising a
PropertyVetoException

3. PropertyChangeEvent object containing property
name, old value, new value.

Implement Constrained Property in a Bean

The bean containing the constrained property must:
1. Importthe java.beans package

2. Instantiate a VetoableChangeSupport object:

private VetoableChangeSupport wvetos =
new VetoableChangeSupport (this);

3. Implement methods to maintain the listener list:
public void
addVetoableChangelistener (VetoableChangelistener 1)
{ vetos.addVetoableChangeListener(l);}

4. and similarly for removeVetoableChangelistener

34

Implement Constrained Property in a Bean (cont.)

5. Write a property’s setter method to fire a property change
event:

public void setX(int newX)
{ int o0ldX = X;

try{
vetos.fireVetoableChange (“X", o0ldX, newX);
// if no veto there
X = newX;
// add here code to notify change, if needed

} catch(PropertyVetoException e){

// code to be executed if
// change is rejected by somebody

35

1.

Implementing Constrained Property Listeners

Implements the VetoableChangeListener interface
which has an abstract method
void vetoChange (PropertyChangeEvent evt)

Override this abstract method. This is the method that will
be called by the source bean on each object in the listener
list kept by the vetoableChangeSupport object

If the listener wants to forbid the change described in evt, it

should raise a PropertyVetoException. Otherwise simply
return.

36

Summary

* JavaBean is a platform-neutral component
architecture for reusable software component

* |tis a black box component to be used to build
arge component or application

* Property, method, event, introspector,
customizer are parts of the JavaBean API

