
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-06: Software Components

1

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Overview

• Needs of components
• Definition of Component Software
• Components and other programming

concepts
• Example of components: short history
è Chapters 1 and 4 of Component Software:
Beyond Object-Oriented Programming. C.
Szyperski, D. Gruntz, S. Murer, Addison-Wesley,
2002.

2

Why component-based so:ware?

• Cost of software development
– from software products to product families
– need to re-use software to reduce costs
– better to buy off-the-shelf than re-implementing
– constructing systems by composing components is easier

3

Introduction

The concept of component software represents a middle path that could
solve this problem. Although each bought component is a standardized prod-
uct, with all the attached advantages, the process of component assembly
allows the opportunity for significant customization. It is likely that compo-
nents of different qualities (level of performance, resource efficiency,
robustness, degree of certification, and so on) will be available at different
prices. It is thus possible to set individual priorities when assembling based on
a fixed budget. In addition, some individual components can be custom-made
to suit specific requirements or to foster strategic advantages. Figure 1.1 illus-
trates some of the tradeoffs brought about by the spectrum of possibilities
opened up by component software.

The figure is in no way quantitative, and the actual shape of the two curves
is somewhat arbitrary. Intuitively, however, it is clear that non-linear effects
will be observed when approaching the extremes. For example, at the left end
of the scale, when everything is custom-made, flexibility has no inherent limits,
but cost efficiency plummets.

Component software also puts an end to the age-old problem of massive
upgrade cycles. Traditional fully integrated solutions required periodic upgrad-
ing. Usually this was a painful process of migrating old databases, ensuring
upwards compatibility, retraining staff, buying more powerful hardware, and
so on. In a component-based solution, evolution replaces revolution, and indi-
vidual upgrading of components as needed and “out of phase” can allow for
much smoother operations. Obviously, this requires a different way of manag-
ing services, but the potential gains are immense.

Inevitability of components

Developing excellent component technology does not suffice to establish a
market. The discipline is full of examples of technically superior products that
failed to capture sufficiently large markets. Besides technical superiority, a com-
ponent approach needs critical mass to take off. A component approach gains

1.3

6

Figure 1.1 Spectrum between make-all and buy-all.

Cost
efficiency

Flexibility,
nimbleness,

competitive edge

0
% bought

100

8557 Chapter 1 p1-16 3/10/02 10:24 PM Page 6

Why component-based software?

• Component software: composite systems made
of software components

• More reliable software
– more reliable to reuse software than to create
– system requirements can force use of certified

components (car industry, aviation, . . .)
• Emergence of a component marketplace
– Apple’s App Store, Android Market, . . .

• Emergence of distributed and concurrent systems
– we need to build systems composed of independent

parts, by necessity
4

Components as in Engineering…

• Brad Cox’s Integrated
Circuit analogy:
– Software components

should be like integrated
circuits (ICs) (IEEE
Software, 1990)

• Other analogies:
– Components of stereo

equipments
– Lego blocks, …

5

I I

Gauge components (test procedures)

Figure 7. Adevelopment process in which specification is given the same emphasis as
implementation.

wise intangible software products like
Stack or Set. Making software tangible
and observable, rather than intangible
and speculative, is the first step to making
software engineering and computer sci-
ence a reality.

Test procedures collect operational, or
indirect, measurements of what we’d re-
ally like to know, the product’s quality as
perceived by the customer. They monitor
the consumer’s interface, rather than our
traditional focus on the producer’s inter-
face (by counting lines of code, cycle
matic complexity, Halstead metrics, and
the like). This knowledge of how product
quality varies over time can then be fed
back to improve the process through sta-
tistical quality-control techniques, as de-
scribed by W. Edwards Deming6, that play
such a key role today in manufacturing.

Implications. The novelty of this a p
proach is threefold:

applying inheritance concepts not
only to implementation, but to specifica-
tion and testing, thus making the specs-
cation explicit,

preserving test procedures for reuse
across different implementations, ver-
sions, or ports through an inheritance hi-
erarchy, and

distributing. the specifications and test
procedures between producers and con-
sumers to define a common vocabulary
that both parties can use for agreeing on
software semantics.

The implications could be immense,
once we adjust to the cultural changes that

32

this implies: a shift in power away from
those who produce the code to those who
consume it - from those who control the
implementations to those who control the
specifications. Three implications are:

Specification/testing languages could
lead to less reliance on source code, new
ways of documenting code for reuse, and
fundamentally new ideas for classifjmg
large libraries of code so it can be located
readily in reference manuals, component
catalogs, and browsers.

Specification/testing languages could
free us from our preoccupation with stan-
dardized processes (programming lan-
guages) and our neglect of standardized
products (software components). Produc-
ers would be freed to use whatever lan-
guage is best for each task, knowing that
the consumer will compile the specifica-
tion to determine whether the result is as
specified.

Specification/testing languages can
provide rigor to open-universe situations
when compile-time type checking is not
viable. For example, in the set example
described earlier, the implementation-ori-
ented declaration AbstractArray* was too
restrictive because sets should work for
members that are not subclasses of
AbstractArray. However, the anonymous
type id is unnecessarily permissive be-
cause sets do impose a protocol require-
ment that you’d like to check before run-
time. But because specification/testing
tools can induce static meanings (isADuck)
from dynamic behavior (quacksLike-
ADuck) , why not feed this back to the lan-

guage as implementation-independent
type declarations? This amounts to a new
notion of type that encompasses both the
static and dynamic properties, rather than
the static implementation-oriented mean-
ing of today.

At Stepstone, implementing software
components has never been a big proh
lem, but making them tangible to con-
sumers has been. The marketing depart-
ment experiences this in explaining the
value of a component to potential cus
tomers. Customers experience it when
they try to find useful components in li-
braries that are organized by inheritance
hierarchies and not by specification hier-
archies. And the development team expe-
riences it when changing a released com-
ponentinanyfashion, suchaswhen porting
it to a new machine, repairing a fault, or
extending it with new functionality.

Without tools to express the old specifi-
cation independently from the new and
then determine if the old specification is
intact while independently testing the
new one, development quickly slows to a
crawl. All available resources become con-
sumed in quality assurance.

f course, intangible software com-
ponents are quite different from 0 the tangible components of

gunsmithing and plumbing, and the dif-
ferences go even beyond the abstract/
concrete distinction of Figure 1 . The most
fundamental differences include

complexity, nonconformity, and mu-
tability,

intangibility (invisibility),
single-threadedness, and
ease of duplication.

This list originated in a list Fred Brooks’
provided to distinguish “the inescapable
essence of software, as opposed to mere
accidents of how we produce software
today.” I added two properties that he ne-
glected to mention: single-threadedness
and ease of duplication. However, I did
not do this to reinforce his implication that
the software crisis is an inescapable conse-
quence of software’s essence. I did it to
argue that all the items on this list are only
obstacles that can, and will, be overcome:

A robust softwarecomponents market
addresses the complexity, nonconformity,
and mutability obstacle by providing an al-

IEEE Software

Desiderata for software components

Bertrand Meyer, in Object Oriented Software Construction
(1997):
1. modular (IC chips, disk drivers, are self-contained: packaged

code)
1. compatible (chips or boards that plug in easily, simple interfaces)
2. reusable (same processor IC can serve various purposes)
3. extendible (IC technology can be improved: inheritance)

2. reliable (an IC works most of the time!)
1. correct (it does what it's supposed to, according to specification)
2. robust (it functions in abnormal conditions)

3. efficient (ICs are getting faster and faster!)
4. portable (ease of transferring to different platforms)
5. timely (released when or before users want it)

6

Software Components: a definition
“A software component is a unit of composition with
contractually specified interfaces and explicit context
dependencies only. A software component can be
deployed independently and is subject to
composition by third parties.” Clemens Szyperski

Workshop on Component-Oriented Programming,
1996 European Conference on Object-Oriented
Programming

Component Software: Beyond Object-Oriented
Programming. C. Szyperski, D. Gruntz, S. Murer,
Addison-Wesley, 2002.

7

ComposiDon unit
A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is subject
to composition by third party.

Components
Glue code

System

• Binary units – black boxes, not source code
• Partial deployment not possible
• System can be built by combining components
• No (externally) observable state
• Indistinguishable from copies 8

What is a contract?
A so%ware component is a unit of composi2on with
contractually specified interfaces and explicit context
dependencies only. A so%ware component can be deployed
independently and is subject to composi2on by third party.

• Interface – component specifica2on

• Contract - A specifica2on a@ached to an interface that
mutually binds the clients and providers of the components.
– Func:onal Aspects (API)
– Pre- and post-condi:ons for the opera:ons specified by API.
– Non func:onal aspects (different constrains, environment

requirements, etc.)

9

"Contractually specified interfaces"
• Require mechanism for interface definition, such as

Interface Definition Language (IDL)
• Contracts specify more than dependencies and interfaces

– how the component can be deployed
– how can be instantiated
– how the instances behave through the advertised interfaces

• Note: this is more than a set of per-interface specifications
• Example: a queuing component has a stable storage

requires interface and enqueue and dequeue provides
interfaces. The contract states that:
– what is enqueued via one interface can be dequeued via the

other
– instances can only be used by connecting them to a provider

implementing the stable storage interface
10

What is an explicit context dependency?
A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is
subject to composition by third party.

• Provided and Required Interface

• Context dependencies - Specification of the deployment
environment and run-time environment
– Example: Which tools, platforms, resources or other components

are required?

13

A soJware component is a unit of composi:on with contractually
specified interfaces and explicit context dependencies only. A
soJware component can be deployed independently and is subject
to composi:on by third party.

• Late binding - dependencies are resolved at load or run-:me.

What does it mean deployed independently?

Platform (framework)

connector

14

A software component is a unit of composition with
contractually specified interfaces and explicit context
dependencies only. A software component can be deployed
independently and is subject to composition by third party.

• The component can be plugged into a system or composed
with other components by third parties, not aware of the
internals of the component.

What does it mean deployed independently?

15

Basic concepts of a Component Model

• Component interface: describes the operations
(method calls, messages, . . .) that a component
implements and that other components may use

• Composition mechanism: the manner in which
different components can be composed to work
together to accomplish some task.
For example, using message passing.

• Component platform: A platform for the
development and execution of components

• Concepts are language/paradigm agnostic
• Lays the ground for language interoperability

16

Before Components: Modules
• Support for modules in several languages since the

1970’s
• Modules as main feature of programming languages

for supporting developement of large applications
– Support information hiding through encapsulation: explicit import and

export lists
– Reduce risks of name conflicts; support integrity of data abstraction

• Teams of programmers can work on separate modules
in a project
– No language support for modules in C and Pascal
– Modula-2 modules, Ada packages
– Java packages (?), new notion of module in Java 9

17

Scoping Rules for Modules
• Scoping: modules encapsulate variables, data types,

and subroutines in a package
– Objects inside are visible to each other
– Objects inside are not visible outside unless exported
– Objects outside are visible [open scopes], or are not visible

inside unless imported [closed scopes], or are visible with
“qualified name” [selectively open scopes] (eg: B.x)

• A module interface specifies exported variables, data
types and subroutines

• The module implementation is compiled separately
and implementation details are hidden from the user
of the module

18

Module Types, towards Classes

• Modules as abstraction mechanism: collection of
data with operations defined on them (sort of
abstract data type)

• Various mechanism to get module instances:
– Modules as manager: instance as additional

arguments to subroutines (Modula-2)
– Modules as types (Simula, ML)

• Object-Oriented: Modules (classes) + inheritance
• Many OO languages support a notion of Module

(packages) independent from classes

19

20

Components and Programming Concepts

• Component can be anything and can contain
anything
– (CollecCons of) classes, objects, funcCons/algorithms,

data structures
• Typically granularity is coarser than classes
• Components support:
– UnificaCon of data and funcCon
– EncapsulaCon: no visible state
– IdenCty: each soJware enCty has a unique idenCty
– Use of interfaces to represent specificaCon

dependencies

OOP vs COP

• Object orientation is not primarily concerned with
reuse, but with appropriate domain/problem
representation using concepts like:
– Objects, classes, inheritance, polymorphism

• Experience has shown that the use of OO does not
necessarily produce reusable software

21

CBSE – Component-Based
Software Engineering

• Provides methods and tools for
– Building systems from components
– Building components as reusable units
– Performing maintenance by replacement of

components and introducing new components
into the system

– System architecture detailed in terms of
components

22

24

Component Forms

1. Component specification
2. Component interface
3. Component implementation
4. Installed component
5. Component object

25

Component Specification

• The specification of a unit of software that
describes the behavior of a set of Component
Objects and defines a unit of implementation.

• Behavior is defined as a set of Interfaces. A
Component Specification is realized as a
Component Implementation.

26

Component Interface

• A definition of a set of behaviors that can be
offered by a Component Object .

27

Component Implementation

• A realization of Component Specification,
which is independently deployable.

• This means it can be installed and replaced
independently of other components.
– It does not mean that it is independent of other

components – it may have many dependencies.
– It does not necessarily mean that it is a single

physical item, such as a single file.

28

Installed Component

• An installed (or deployed) copy of a
Component Implementation.

• A Component Implementation is deployed by
registering it with the runtime environment.
– This enables the runtime environment to identify

the Installed Component to use when creating an
instance of the component, or when running one
of its operations.

29

Component Object

• An instance of an Installed Component.
• A runQme concept.
• An object with its own data and a unique

idenQty.
• The thing that performs the implemented

behavior. An Installed Component may have
mulQple Component Objects (which require
explicit idenQficaQon) or a single one (which
may be implicit).

Summary CBSE – basic definitions
• The basis is the Component
• Components can be assembled

according to the rules specified by the
component model

• Components are assembled through
their interfaces

• A Component Composition is the
process of assembling components to
form an assembly, a larger component
or an application

• Component are performing in the
context of a component framework

• All parts conform to the component
model

• A component technology is a concrete
implementation of a component model

c 1 c 2

Middleware

Run-time system
framework

Component Model

30

Some successful components: In the past...

• Mathematical libraries
– NAGLIB - Fortran Library
– Mathematical and physical functions

• Characteristics
!Well defined theory behind the functions - very well

standardized
!Simple Interface - procedural type of communication

between client (application) and server (component)
!Well defined input and output
!Relative good error handling
!Difficult for adaptation (not flexible)

31

Some successful components: The big ones…

Client - server type
• Database Servers
– Relational databases, (Object-oriented

databases, hierarchical databases)
– Standard API - SQL
!Different dialects of the standard

• X-windows
– Standard API, callback type of communication
!High level of adaptation
!Too general - difficult to use it

32

Even bigger components:
Operating systems

• Example - Unix
– A general purpose OS, used as a platform for dedicated

purposes
– Standard API - POSIX
! Commands used as components in a shell-process
! Low-level but well-defined interfaces (file sharing, pipes

and filter)
!Different variants, POSIX is not sufficient
!Not a real component behavior (difficult to replace or

update)
• MS Windows ...

33

More recent components…

• Plugin architectures (finer-grained components)
– Netscape’s Navigator web browsers
– Active Server Pages (ASP) and Java Server Pages (JSP)

architectures for web servers
• Microsoft’s Visual Basic
• Java Beans, Enterprise JavaBeans (EJB)
• Microsoft’s COM+
• Android’s component based apps
• Modern application and integration servers

around J2EE and COM+ / .NET

34

What do all the above examples have
in common?

• In all cases there is an infrastructure providing
rich foundational functionality for the addressed
domain.

• Components can be purchased from
independent providers and deployed by clients.

• The components provide services that are
substantial enough to make duplication of their
development too difficult or not cost- effective.

• Multiple components from different sources can
coexist in the same installation.

35

• Components exist on a level of abstraction where
they directly mean something to the deploying
client

• With Visual Basic, this is obvious – a control has a
direct visual representation, displayable and
editable properties, and has meaning that is
closely attached to its appearance.

• With plugins, the client gains some explicable,
high-level feature and the plugin itself is a user-
installed and configured component

36

Modules vs. Components

• Several component-related concepts already
present in modules

• Modules as part of a program, component as part
of a system

• Components can include static resources
• Modules may expose observable state
• Modules encompassed by classes in OO

languages in the 1990’s
• Now present in most modern languages

37

