301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-03: Languages and Abstract machines,
Compilation and interpretation schemes

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Outline

Programming languages and abstract
machines

Implementation of programming languages
Compilation and interpretation
Intermediate virtual machines

Definition of Programming Languages

A PL is defined via syntax, semantics and
pragmatics

The syntax is concerned with the form of
programs: how expressions, commands,
declarations, and other constructs must be
arranged to make a well-formed program.

The semantics is concerned with the meaning of
(well-formed) programs: how a program may be
expected to behave when executed on a
computer.

The pragmatics is concerned with the way in
which the PL is intended to be used in practice.

Syntax

Formally defined, but not always easy to find
— Java?

— https://docs.oracle.com/javase/specs/index.html
— Chapter 19 of Java Language Specification
Lexical Grammar for tokens

— A regular grammar

Syntactic Grammar for language constructs
— A context free grammar

Used by the compiler for scanning and parsing

https://docs.oracle.com/javase/specs/index.html

Semantics

* Usually described precisely, but informally, in
natural language.

— May leave (subtle) ambiguities

 Formal approaches exist, often they are applied
to toy languages or to fractions of real languages
— Denotational [Scott and Strachey 1971]
— Operational [Plotkin 1981]
— Axiomatic [Hoare 1969]

* They rarely scale to fully-fledged programming
language

(Almost) Complete Semantics of PLs

* Notable exceptions exist:

— Pascal (part), Hoare Logic [C.A.R. Hoare and N. Wirth,
~1970]

— Standard ML, Natural semantics [R. Milner, M. Tofte
and R. Harper, ~1990]

— C, Evolving algebras [Y. Gurevich and J. Huggins, 1993]

— Java and JVM, Abstract State Machines [R. Stark, J.
Schmid, E. Borger, 2001]

— Executable formal sematics using the K framework of
several languages (C, Java, JavaScript, PHP, Python,
Rust,...)

https://runtimeverification.com/blog/k-framework-an-overview/

https://runtimeverification.com/blog/k-framework-an-overview/

Pragmatics

* Includes coding conventions, guidelines for
elegant structuring of code, etc.

 Examples:

— Java Code Conventions

http://www.oracle.com/technetwork/java/codeconventions-150003.pdf

— Google Java Style Guide
https://google.github.io/styleguide/javaguide.html
* Also includes the description of the supported
programming paradigms

http://www.oracle.com/technetwork/java/codeconventions-150003.pdf
https://google.github.io/styleguide/javaguide.html

Programming Paradigms

A paradigm is a style of programming, characterized by a
particular selection of key concepts and abstractions

Imperative programming: variables, commands,
procedures, ...

Object-oriented (OO) programming: objects, methods,
classes, ...

Concurrent programming: processes, communication..

Functional programming: values, expressions,
functions, higher-order functions, ...

Logic programming: assertions, relations, ...

Classification of languages according to paradigms can be
misleading

Implementation of a
Programming Language L

* Programs written in L must be executable

* Every language L implicitly defines an Abstract
Machine M, having L as machine language

* Implementing M, on an existing host machine
M, (via compilation, interpretation or both)
makes programs written in L executable

Programming Languages and Abstract Machines

* Given a programming language L, an Abstract Machine
M, for L is a collection of data structures and algorithms
which can perform the storage and execution of programs
written in L

* An abstraction of the concept of hardware machine
e Structure of an abstract machine:

Memory Interpreter
Operations and Data Structures for:
Programs e Primitive d :
p > Srzmmve ata p1;0cessmg
* Sequence contro
Data i

* Data transfer control
* Memory management

General structure of
the Interpreter

Sequence control Fetch next instruction <
Decode
Data transfer control Fetch operands
Primitive data processing 4 >
Execute op, Execute op, Execute op,, Execute HALT

& Memory management \/
Data transfer control Store the result @

11

The Machine Language of an AM

* Viceversa, each abstract machine M defines a

language L,,including all programs which can be
executed by the interpreter of M

* Programs are particular data on which the interpreter

can act

* Components of M correspond to components of Ly,

— Primitive data processing
— Sequence control

— Data transfer control

— Memory management

=» Primitive data types

=» Control structures

=» Parameter passing and value return
= Memory management

An example: the Hardware Machine

Language: Machine language

Main memory

Memory: Registers + RAM (+ cache)
Interpreter: fetch, decode, execute loop
Operations and Data Structures for:

Primitive data processing
Sequence control

Data transfer control
Memory management

13

class
class files loader

T h e J a Va subsystem

Virtual |
I r u a : native
i method hean Java pe micthod
i area stacks registers
h . : stacks
IVI a C I n e i runtime data areas
-----------/_A-\-. ""
423 |
I 4 :
: native
execution g native method spisny
engine interface libraries

* Language: bytecode
 Memory Heap+Stack+Permanent
* Interpreter

14

Virtual
Machine

Language: bytecode

case opCodel
fetch operands
execute action
break;

case opCodeZ
fetch operands
execute action
break;

case

} while (more to do)

for
for

for
for

The core of a JVM interpreter is basically this:

do {
byte opcode = fetch an opcode;
The Java switch (opcode) {

opCodel;
opCodel;

opCodeZ;
opCodeZ;

Memory Heap+Stack+Permanent
Interpreter
Operations and Data Structures for:

Primitive data processing
Sequence control

Data transfer control
Memory management

Implementing an Abstract Machine

Each abstract machine can be implemented in hardware or in
firmware, but if high-level this is not convenient in general

— Exception: Java Processors, ...

Abstract machine M can be implemented over a host machine
My, which we assume to be already implemented

The components of M are realized using data structures and
algorithms implemented in the machine language of Mg

Two main cases:
— The interpreter of M coincides with the interpreter of Mg,
* Mis an extension of Mg
e other components of the machines can differ
— The interpreter of M is different from the interpreter of Mg
* Mis interpreted over Mg
e other components of the machines may coincide

Hierarchies of Abstract Machines

* Implementation of an AM with another can be
iterated, leading to a hierarchy (onion skin model)

 Example:

E-Business machine (on-line commerce applications)

Web Service machine (languages for web services)

Web machine (browser etc.)

HL machine (Java)

Intermediate machine (Java Bytecode)

Operating System machine

Firmware machine

[Hardware machine J

Implementing a Programming Language

L high level programming language
M, abstract machine for L

M, host machine

Pure Interpretation

— M, is interpreted over Mg

— Not very efficient, mainly because of the interpreter (fetch-decode
phases)

Program in L

\ —————————————————
Interpretq for L Output data
written in LO | |
ey /V —————————————————
! Input data : lExecution on MO

MO

Implementing a Programming Language

* Pure Compilation

— Programs written in L are translated into equivalent programs
written in Ly, the machine language of Mg

— The translated programs can be executed directly on Mg
* M, is not realized at all
— Execution more efficient, but the produced code is larger

Input data |
_______________ I
Program Compiler Program
. e Output data
written in L from L to LO written in LO ! P |
lExecution on M A lExecution MO

Abstract macchine M Al

Host macchine M O

* Two limit cases that almost never exist in reality

19

Compilation versus Interpretation

Compilers efficiently fix decisions that can be taken at compile
time to avoid to generate code that makes this decision at run
time

— Type checking at compile time vs. runtime

— Static allocation

— Static linking

— Code optimization

Compilation leads to better performance in general

— Allocation of variables without variable lookup at run time

— Aggressive code optimization to exploit hardware features

Interpretation facilitates interactive debugging and testing

— Interpretation leads to better diagnostics of a programming
problem

— Procedures can be invoked from command line by a user
— Variable values can be inspected and modified by a user

Compilation + Interpretation

* All implementations of programming languages
use both. At least:

— Compilation (= translation) from external to internal
representation

— Interpretation for I/O operations (runtime support)
 Can be modeled by identifying an Intermediate
Abstract Machine M, with language L,
— A program in L is compiled to a program in L,
— The program in L, is executed by an interpreter for M,

Compilation + Interpretation
with Intermediate Abstract Machine

Input data

I
I
I
L ____i
P‘rogre}m Compiler ' Progrgm '
written in L from L to Li written in L7

|
|

TN Interpreter for L¢ I
written —»! Output data
__w inLoorRTS | o
Rrogrgm Compiler . I'Drogr?lm '
written in L from L to Li written in Lz)
Execution on MO
lCompilation on M A
MA MO

* The “pure” schemes as limit cases

Virtual Machines as Intermediate
Abstract Machines

e Several language implementations adopt a compilation
+ interpretation schema, where the Intermediate
Abstract Machine is called Virtual Machine

e Adopted by Pascal, Java, Smalltalk-80, C#, functional
and logic languages, and some scripting languages

— Pascal compilers generate P-code that can be interpreted
or compiled into object code

— Java compilers generate bytecode that is interpreted by
the Java virtual machine (JVM). The JVM may translate
bytecode into machine code by just-in-time (JIT)
compilation

Compilation and Execution on
Virtual Machines

 Compiler generates intermediate program

Virtual machine interprets the intermediate
program

Source , Intermediate
P Compiler
rogram Program

Compile on X Run on VM

V/rtual

RunonX,Y, Z, .

C# VB.NET J# Other Intermediate Machines
code code code

l l l * Microsoft compilers for C#, F#, ... generate

CIL code (Common Intermediate Language)

conforming to CLI (Common Language
Compiler Compiler Compiler
Infrastructure).

* It can be executed in .NET, .NET Core, or
other Virtual Execution Systems (like Mono)

? Common Language Infrastructure ~.* CILis compiled to the target machine

27

.NET compatible languages compile to a

Common second platform-neutral language called
Intermediate Common Intermediate Language (CIL).
Language
Common The platform-specific Common Language

Runtime (CLR) compiles CIL to machine-
Langl_jage readable code that can be executed on the
Runtime
current platform.

:

01001100101011 ;
11010101100110 25

Other Intermediate Machines

LLVM is a compiler infrastructure designed as a set
of reusable libraries with well-defined interfaces:

* Implemented in C++

e Several front-ends
 Several back-ends
* First release: 2003

Clang C/C++/0ObjC
Frontend

e The LLVM IR (Intermediate

representation) can also be
interpreted

LLVM IR much lower-level
than Java bytecodes or CIL

Fortran -

livm-gcc Frontend

LLVM
Optimizer

Haskell -~

GHC Frontend

LLVM IR

LLVM IR

LLVM
X86 Backend

LLVM
PowerPC Backend

LLVM
ARM Backend

-~ X86

- PowerPC

- ARM

26

Advantages of intermediate abstract
machine (examples for JVM)

* Portability: Compile the Java source,
distribute the bytecode and execute on any
platform equipped with JVM

* Interoperability: for a new language L, just
provide a compiler to JVM bytecode; then it
could exploit Java libraries
— By design in Microsoft CLI
— De facto for several languages on JVM

Other Compilation Schemes
* Pure Compilation and Static Linking

Adopted by the typical Fortran systems

* Library routines are separately linked
(merged) with the object code of the program

Source Compr Incomplete
ompiler .
Program Ob]ect Code

extern printf () ;

_printt | Gratic Library Binary
fget . Linker
“fscan | Object Code Executable

Compilation, Assembly, and

Static Linking

* Facilitates debugging of the compiler

Source Assembly
Compiler
Program Program

extern printf () ;

_fget
_fscan

_printf
Static Library
Object Code

Assembler

- =

Binary
Executable

29

Compilation, Assembly, and
Dynamic Linking

 Dynamic libraries (DLL, .so, .dylib) are linked at
run-time by the OS (via stubs in the executable)

Source . Assembly
Compiler
Program Program

extern printf () ;

Shared Dynamic Libraries

_printf, fqget, fscan, ..

Input

- =

‘ Incomplete
“ o

30

Summary: Languages and Abstract Machines
Compilation and interpretation schemes

Reading: ch. 1 of Programming Languages: Principles and
Paradigms by M. Gabbrielli and S. Martini

Syntax, Semantics and Pragmatics of PLs
Programming languages and Abstract Machines
Interpretation vs. Compilation vs. Mixed
Examples of Virtual Machines

Examples of Compilation Schemes

- Next topic: Runtime Support and the JVM

