
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-03: Languages and Abstract machines,
Compilation and interpretation schemes

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Outline

• Programming languages and abstract
machines

• Implementation of programming languages
• Compilation and interpretation
• Intermediate virtual machines

2

Definition of Programming Languages

• A PL is defined via syntax, semantics and
pragmatics

• The syntax is concerned with the form of
programs: how expressions, commands,
declarations, and other constructs must be
arranged to make a well-formed program.

• The semantics is concerned with the meaning of
(well-formed) programs: how a program may be
expected to behave when executed on a
computer.

• The pragmatics is concerned with the way in
which the PL is intended to be used in practice.

3

Syntax

• Formally defined, but not always easy to find
– Java?
– https://docs.oracle.com/javase/specs/index.html
– Chapter 19 of Java Language Specification

• Lexical Grammar for tokens
– A regular grammar

• Syntactic Grammar for language constructs
– A context free grammar

• Used by the compiler for scanning and parsing

4

https://docs.oracle.com/javase/specs/index.html

Semantics

• Usually described precisely, but informally, in
natural language.
– May leave (subtle) ambiguities

• Formal approaches exist, often they are applied
to toy languages or to fractions of real languages
– Denotational [Scott and Strachey 1971]
– Operational [Plotkin 1981]
– Axiomatic [Hoare 1969]

• They rarely scale to fully-fledged programming
language

5

(Almost) Complete Semantics of PLs

• Notable exceptions exist:
– Pascal (part), Hoare Logic [C.A.R. Hoare and N. Wirth,

~1970]
– Standard ML, Natural semantics [R. Milner, M. Tofte

and R. Harper, ~1990]
– C, Evolving algebras [Y. Gurevich and J. Huggins, 1993]
– Java and JVM, Abstract State Machines [R. Stärk, J.

Schmid, E. Börger, 2001]
– Executable formal sematics using the K framework of

several languages (C, Java, JavaScript, PHP, Python,
Rust,…)
https://runtimeverification.com/blog/k-framework-an-overview/

6

https://runtimeverification.com/blog/k-framework-an-overview/

Pragmatics

• Includes coding conventions, guidelines for
elegant structuring of code, etc.

• Examples:
– Java Code Conventions
http://www.oracle.com/technetwork/java/codeconventions-150003.pdf

– Google Java Style Guide
https://google.github.io/styleguide/javaguide.html

• Also includes the description of the supported
programming paradigms

7

http://www.oracle.com/technetwork/java/codeconventions-150003.pdf
https://google.github.io/styleguide/javaguide.html

Programming Paradigms

A paradigm is a style of programming, characterized by a
particular selection of key concepts and abstractions
• Imperative programming: variables, commands,

procedures, …
• Object-oriented (OO) programming: objects, methods,

classes, …
• Concurrent programming: processes, communication..
• Functional programming: values, expressions,

functions, higher-order functions, …
• Logic programming: assertions, relations, …
Classification of languages according to paradigms can be
misleading 8

Implementation of a
Programming Language L

• Programs written in L must be executable
• Every language L implicitly defines an Abstract

Machine ML having L as machine language
• Implementing ML on an existing host machine

MO (via compilation, interpretation or both)
makes programs written in L executable

9

Programming Languages and Abstract Machines

• Given a programming language L, an Abstract Machine
ML for L is a collection of data structures and algorithms
which can perform the storage and execution of programs
written in L

• An abstraction of the concept of hardware machine
• Structure of an abstract machine:

Programs

Data

Memory
Operations and Data Structures for:
• Primitive data processing
• Sequence control
• Data transfer control
• Memory management

Interpreter

10

General structure of
the Interpreter

Sequence control

Data transfer control

Primitive data processing
& Memory management

start

stop

Fetch next instruction

Decode

Fetch operands

Choose

Execute op1 Execute op2 Execute opn Execute HALT...

Store the result

11

Data transfer control

The Machine Language of an AM

• Viceversa, each abstract machine M defines a
language LM including all programs which can be
executed by the interpreter of M

• Programs are particular data on which the interpreter
can act

• Components of M correspond to components of LM:
– Primitive data processing è Primitive data types
– Sequence control è Control structures
– Data transfer control è Parameter passing and value return
– Memory management è Memory management

12

An example: the Hardware Machine

• Language: Machine language
• Memory: Registers + RAM (+ cache)
• Interpreter: fetch, decode, execute loop
• Operations and Data Structures for:
• Primitive data processing
• Sequence control
• Data transfer control
• Memory management 13

6 1 Abstract Machines

Fig. 1.3 The structure of a conventional calculator

For this specific case, we can, using what we have already said about the compo-
nents of an abstract machine, identify the following parts.

Memory The storage component of a physical computer is composed of various
levels of memory. Secondary memory implemented using optical or magnetic com-
ponents; primary memory, organised as a linear sequence of cells, or words, of fixed
size (usually a multiple of 8 bits, for example 32 or 64 bits); cache and the registers
which are internal to the Central Processing Unit (CPU).

Physical memory, whether primary, cache or register file, permits the storage of
data and programs. As stated, this is done using the binary alphabet.

Data is divided into a few primitive “types”: usually, we have integer numbers,
so-called “real” numbers (in reality, a subset of the rationals), characters, and fixed-
length sequences of bits. Depending upon the type of data, different physical repre-
sentations, which use one or more memory words for each element of the type are
used. For example, the integers can be represented by 1s or 2s complement num-
bers contained in a single word, while reals have to be represented as floating point
numbers using one or two words depending on whether they are single or double
precision. Alphanumeric characters are also implemented as sequences of binary
numbers encoded in an appropriate representational code (for example, the ASCII
or UNI CODE formats).

We will not here go into the details of these representations since they will be
examined in more detail in Chap. 8. We must emphasise the fact that although all
data is represented by sequences of bits, at the hardware level we can distinguish
different categories, or more properly types, of primitive data that can be manip-
ulated directly by the operations provided by the hardware. For this reason, these
types are called predefined types.

The language of the physical machine The language, L H which the physical
machine executes is composed of relatively simple instructions. A typical instruc-

The Java
Virtual

Machine

14

• Language: bytecode
• Memory Heap+Stack+Permanent
• Interpreter

The Java
Virtual

Machine

15

• Language: bytecode
• Memory Heap+Stack+Permanent
• Interpreter
• Operations and Data Structures for:

• Primitive data processing
• Sequence control
• Data transfer control
• Memory management

The core of a JVM interpreter is basically this:
do {

byte opcode = fetch an opcode;
switch (opcode) {
case opCode1 :

fetch operands for opCode1;
execute action for opCode1;
break;

case opCode2 :
fetch operands for opCode2;
execute action for opCode2;
break;

case ...
} while (more to do)

Implementing an Abstract Machine
• Each abstract machine can be implemented in hardware or in

firmware, but if high-level this is not convenient in general
– Exception: Java Processors, …

• Abstract machine M can be implemented over a host machine
MO, which we assume to be already implemented

• The components of M are realized using data structures and
algorithms implemented in the machine language of MO

• Two main cases:
– The interpreter of M coincides with the interpreter of MO

• M is an extension of MO

• other components of the machines can differ
– The interpreter of M is different from the interpreter of MO

• M is interpreted over MO

• other components of the machines may coincide 16

Hierarchies of Abstract Machines
• Implementation of an AM with another can be

iterated, leading to a hierarchy (onion skin model)
• Example:

22 1 Abstract Machines

Fig. 1.8 A hierarchy of
abstract machines

A canonical example of a hierarchy of this kind in a context that is seemingly
distant from programming languages is the hierarchy5 of communications protocols
in a network of computers, such as, for example, the ISO/OSI standard.

In a context closer to the subject of this book, we can consider the example shown
in Fig. 1.8.

At the lowest level, we have a hardware computer, implemented using physical
electronic devices (at least, at present; in the future, the possibility of biological
devices will be something that must be actively considered). Above this level, we
could have the level of an abstract, microprogrammed machine. Immediately above
(or directly above the hardware if the firmware level is not present), there is the ab-
stract machine provided by the operating system which is implemented by programs
written in machine language. Such a machine can be, in turn, seen as a hierarchy of
many layers (kernel, memory manager, peripheral manager, file system, command-
language interpreter) which implement functionalities that are progressively more
remote from the physical machine: starting with the nucleus, which interacts with
the hardware and manages process state changes, to the command interpreter (or
shell) which allows users to interact with the operating system. In its complexity,
therefore, the operating system on one hand extends the functionality of the physical
machine, providing functionalities not present on the physical machine (for exam-
ple, primitives that operate on files) to higher levels. On the other hand, it masks
some hardware primitives (for example, primitives for handling I/O) in which the
higher levels in the hierarchy have no interest in seeing directly. The abstract ma-
chine provided by the operating system forms the host machine on which a high-
level programming language is implemented using the methods that we discussed in
previous sections. It normally uses an intermediate machine, which, in the diagram
(Fig. 1.8), is the Java Virtual machine and its bytecode language. The level provided
by the abstract machine for the high-level language that we have implemented (Java

5In the literature on networks, one often speaks of a stack rather than, more correctly, of a hierarchy.

17

Implementing a Programming Language

• L high level programming language

• ML abstract machine for L
• MO host machine

• Pure Interpretation
– ML is interpreted over MO

– Not very efficient, mainly because of the interpreter (fetch-decode
phases)

18

14 1 Abstract Machines

Fig. 1.4 Purely interpreted implementation

Purely interpreted implementation In a purely interpreted implementation
(shown in Fig. 1.4), the interpreter for ML is implemented using a set of instruc-
tions in L o. That is, a program is implemented in L o which interprets all of L ’s
instructions; this is an interpreter. We will call it I L o

L .
Once such interpreter is implemented, executing a program PL (written in lan-

guage L) on specified input data D ∈ D , we need only execute the program I L o
L

on machine M oL o, with PL and D as input data. More precisely, we can give
the following definition.

Definition 1.3 (Interpreter) An interpreter for language L , written in language
L o, is a program which implements a partial function:

I L o
L : (ProgL × D) → D such that I L o

L (PL , Input) = PL (Input) (1.1)

The fact that a program can be considered as input datum for another program
should not be surprising, given that, as already stated, a program is only a set of
instructions which, in the final analysis, are represented by a certain set of symbols
(and therefore by bit sequences).

In the purely interpreted implementation of L , therefore, programs in L are
not explicitly translated. There is only a “decoding” procedure. In order to execute
an instruction of L , the interpreter I L o

L uses a set of instructions in L o which
corresponds to an instruction in language L . Such decoding is not a real translation
because the code corresponding to an instruction of L is executed, not output, by
the interpreter.

It should be noted that we have deliberately not specified the nature of the ma-
chine M oL o. The language L o can therefore be a high-level language, a low-level
language or even one firmware.

Purely compiled implementation With purely compiled implementation, as
shown in Fig. 1.5, the implementation of L takes place by explicitly translating
programs written in L to programs written in L o. The translation is performed
by a special program called compiler; it is denoted by CL ,L o. In this case, the
language L is usually called the source language, while language L o is called
the object language. To execute a program PL (written in language L) on input

Implementing a Programming Language

• Pure Compilation
– Programs written in L are translated into equivalent programs

written in LO, the machine language of MO
– The translated programs can be executed directly on MO

• ML is not realized at all
– Execution more efficient, but the produced code is larger

• Two limit cases that almost never exist in reality 19

1.2 Implementation of a Language 15

Fig. 1.5 Pure compiled implementation

data D, we must first execute CL ,L o and give it PL as input. This will produce
a compiled program PcL o as its output (written in L o). At this point, we can
execute PcL o on the machine M oL o supplying it with input data D to obtain the
desired result.

Definition 1.4 (Compiler) A compiler from L to L o is a program which imple-
ments a function:

CL ,L o : ProgL → ProgL o

such that, given a program PL , if

CL ,L o(P
L) = PcL o, (1.2)

then, for every Input∈ D4:

PL (Input) = PcL o(Input) (1.3)

Note that, unlike pure interpretation, the translation phase described in (1.2)
(called compilation) is separate from the execution phase, which is, on the other
hand, handled by (1.3). Compilation indeed produces a program as output. This
program can be executed at any time we want. It should be noted that if M oL o is
the only machine available to us, and therefore if L o is the only language that we
can use, the compiler will also be a program written in L o. This is not necessary,
however, for the compiler could in fact be executed on another abstract machine
altogether and this, latter, machine could execute a different language, even though
it produces executable code for M oL o.

4It should be noted that, for simplicity, we assume that the data upon which programs operate are
the same for source and object languages. If were not the case, the data would also have to be
translated in an appropriate manner.

Compilation versus Interpretation
• Compilers efficiently fix decisions that can be taken at compile

time to avoid to generate code that makes this decision at run
time
– Type checking at compile time vs. runtime
– Static allocation
– Static linking
– Code optimization

• Compilation leads to better performance in general
– Allocation of variables without variable lookup at run time
– Aggressive code optimization to exploit hardware features

• Interpretation facilitates interactive debugging and testing
– Interpretation leads to better diagnostics of a programming

problem
– Procedures can be invoked from command line by a user
– Variable values can be inspected and modified by a user

20

Compilation + Interpretation

• All implementations of programming languages
use both. At least:
– Compilation (= translation) from external to internal

representation
– Interpretation for I/O operations (runtime support)

• Can be modeled by identifying an Intermediate
Abstract Machine MI with language LI
– A program in L is compiled to a program in LI
– The program in LI is executed by an interpreter for MI

21

Compilation + Interpretation
with Intermediate Abstract Machine

18 1 Abstract Machines

Can interpreter and compiler always be implemented?

At this point, the reader could ask if the implementation of an interpreter or a com-
piler will always be possible. Or rather, given the language, L , that we want to
implement, how can we be sure that it is possible to implement a particular program
I L o

L in language L o which performs the interpretation of all the constructs of L ?
How, furthermore, can we be sure that it is possible to translate programs of L into
programs in L o using a suitable program, CL ,L o?

The precise answer to this question requires notions from computability theory
which will be introduced in Chap. 3. For the time being, we can only answer that the
existence of the interpreter and compiler is guaranteed, provided that the language,
L o, that we are using for the implementation is sufficiently expressive with respect
to the language, L , that we want to implement. As we will see, every language
in common use, and therefore also our L o, have the same (maximum) expressive
power and this coincides with a particular abstract model of computation that we
will call Turing Machine. This means that every possible algorithm that can be for-
mulated can be implemented by a program written in L o. Given that the interpreter
for L is no more than a particular algorithm that can execute the instructions of
L , there is clearly no theoretical difficulty in implementing the interpreter I L o

L .
As far as the compiler is concerned, assuming that it, too, is to be written in L o,
the argument is similar. Given that L is no more expressive than L o, it must be
possible to translate programs in L into ones in L o in a way that preserves their
meaning. Furthermore, given that, by assumption, L o permits the implementation
of any algorithm, it will also permit the implementation of the particular compiling
program CL ,L o that implements the translation.

Fig. 1.6 Implementation: the real case with intermediate machine

The real situation for the implementation of a high-level language is therefore
that shown in Fig. 1.6. Let us assume, as above, that we have a language L that has
to be implemented and assume also that a host machine M oL o exists which has
already been constructed. Between the machine ML that we want to implement and

• The “pure” schemes as limit cases

22

Virtual Machines as Intermediate
Abstract Machines

• Several language implementations adopt a compilation
+ interpretation schema, where the Intermediate
Abstract Machine is called Virtual Machine

• Adopted by Pascal, Java, Smalltalk-80, C#, functional
and logic languages, and some scripting languages
– Pascal compilers generate P-code that can be interpreted

or compiled into object code
– Java compilers generate bytecode that is interpreted by

the Java virtual machine (JVM). The JVM may translate
bytecode into machine code by just-in-time (JIT)
compilation

23

Compilation and Execution on
Virtual Machines

• Compiler generates intermediate program
• Virtual machine interprets the intermediate

program

Virtual
Machine

Compiler
Source

Program
Intermediate

Program

Input Output

Run on VMCompile on X

Run on X, Y, Z, …
24

25

• Microsoft compilers for C#, F#, … generate
CIL code (Common Intermediate Language)
conforming to CLI (Common Language
Infrastructure).

• It can be executed in .NET , .NET Core, or
other Virtual Execution Systems (like Mono)

• CIL is compiled to the target machine

Other Intermediate Machines

LLVM is a compiler infrastructure designed as a set
of reusable libraries with well-defined interfaces:
• Implemented in C++
• Several front-ends
• Several back-ends
• First release: 2003

26

Other Intermediate Machines

• The LLVM IR (Intermediate
representation) can also be
interpreted

• LLVM IR much lower-level
than Java bytecodes or CIL

Advantages of intermediate abstract
machine (examples for JVM)

• Portability: Compile the Java source,
distribute the bytecode and execute on any
platform equipped with JVM

• Interoperability: for a new language L, just
provide a compiler to JVM bytecode; then it
could exploit Java libraries
– By design in Microsoft CLI
– De facto for several languages on JVM

27

Other Compilation Schemes
• Pure Compilation and Static Linking
• Adopted by the typical Fortran systems
• Library routines are separately linked

(merged) with the object code of the program

Compiler
Source

Program
Incomplete

Object Code

LinkerStatic Library
Object Code

_printf
_fget
_fscan
…

extern printf();

Binary
Executable

28

Compilation, Assembly, and
Static Linking

• Facilitates debugging of the compiler

Compiler
Source

Program
Assembly
Program

LinkerStatic Library
Object Code

Binary
Executable

Assembler

_printf
_fget
_fscan
…

extern printf();

29

Compilation, Assembly, and
Dynamic Linking

• Dynamic libraries (DLL, .so, .dylib) are linked at
run-time by the OS (via stubs in the executable)

Compiler
Source

Program
Assembly
Program

Incomplete
Executable

Input
Output

Assembler

Shared Dynamic Libraries
_printf, _fget, _fscan, …

extern printf();

30

Summary: Languages and Abstract Machines
Compilation and interpretation schemes

• Reading: Ch. 1 of Programming Languages: Principles and
Paradigms by M. Gabbrielli and S. Martini

• Syntax, Semantics and Pragmatics of PLs
• Programming languages and Abstract Machines
• Interpretation vs. Compilation vs. Mixed
• Examples of Virtual Machines
• Examples of Compilation Schemes
• à Next topic: Runtime Support and the JVM

31

