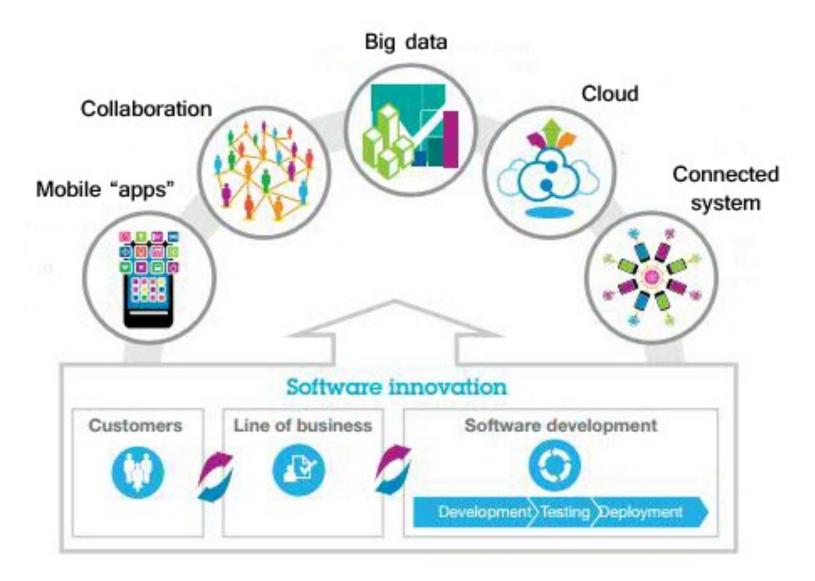
301AA - Advanced Programming

Lecturer: Andrea Corradini

andrea@di.unipi.it


http://pages.di.unipi.it/corradini/

Course pages:

http://pages.di.unipi.it/corradini/Didattica/AP-21/

AP-02: Motivations and Introduction

Software is Everywhere

Programming in the 21 century

- Software as complex as ever
- Command line interface not enough
- Data comes from multiple sources: structured (DB) and unstructured
- Single computer not enough
- Software development is a group activity
- Deployment on Web or mobile devices

Complexity Prompts for Innovation

- Object-Oriented Programming allows ever larger applications to be built
- But limited support for reuse
- OS + libraries not enough
- Reusable components are needed
- Multi-tier applications development increases the choices on how to build applications

Key Ingredients for Complex Software

- Advanced features extending programming languages
- Component models to ensure reusability
- Frameworks to support efficient development of (component based) applications
- Execution environments providing runtime support for ever dynamic software systems

The Software Architect

- A new role is needed: Software Architect
- to create, define or choose an application framework
- to create the component design according to a component model
- to structure a complex application into pieces
- to understand the interactions and dependencies among components
- to select the execution environment / platform based on cost/performance criteria
- to organize and supervise the development process

Course Objectives

- Understand programming language technology:
 - Execution Models
 - Run-time systems
- Analyze programming metaphors:
 - Objects
 - Components
 - Patterns
- Learn advanced programming techniques
- Present state-of-the-art frameworks incorporating these techniques
- Practice with all these concepts through small projects

Course Syllabus

- Programming Languages and Abstract Machines
- Run Time Systems and the JVM
- Component-based Programming
- Software Frameworks and Inversion of Control
- Polymorphism and Generic Programming
- Functional programming and Haskell
- Scripting Languages and Python

Programming Languages and Abstract Machines

- Syntax, Semantics and Pragmatics of PLs
- Programming languages and Abstract Machines
- Interpretation vs. Compilation vs. Mixed
- Examples of Virtual Machines
- Examples of Compilation Schemes

Run-Time Systems and the JVM

- RTSs provide a Virtual Execution Environment interfacing a program in execution with the OS.
- They support, among others:
 - Memory Management, Thread Management
 - Exception Handling and Security
 - AOT and JIT Compilation
 - Dynamic Link/Load
 - Debugging Support and Reflection
 - Verification
- A concrete example: the Java Virtual Machine

Component-based Programming

- Component models and frameworks, an Introduction
- Examples of component-based frameworks:
 - JavaBeans and NetBeans
 - Spring and Spring Beans
 - COM
 - CLR and .NET
 - OSGi and Eclipse
 - Hadoop Map/Reduce

Software Frameworks and Inversion of Control

- Software Framework: A collection of common code providing generic functionality that can be selectively overridden or specialized by user code providing specific functionality
- Application Framework: A software framework used to implement the standard structure of an application for a specific development environment

Framework Features

- Frameworks, like software libraries, provide reusable abstractions of code wrapped in a well-defined API
- But: Inversion of control
 - unlike in libraries, the overall program's flow of control is not dictated by the caller, but by the framework
- Helps solving recurring design problems
- Drives solution
 - Provides a default behavior
 - Dictates how to fill-in-the-blanks
- Non-modifiable framework code
 - Extensibility: usually by selective overriding

Examples of Frameworks

- General software frameworks
 - NET, Android SDK, Spring, Cocoa, Eclipse, ...
- Frameworks for Application with GUI
 - MFC, Gnome, Qt, …
- Web Application Frameworks [based on Model-View-Controller design pattern]
 - ASP.NET, GWT, Rails, …
- Concurrency
 - Hadoop Map/Reduce

Framework Design

- Intellectual Challenging Task
- Requires a deep understanding of the problem domain
- Requires mastering of software (design)
 patterns, OO methods and polymorphism in particular

Polymorphism and Generic Programming

- A classification of Polymorphism
- Polymorphism in C++: inclusion polymorphism and templates
- Java Generics
- The Standard Template Library: an overview
- Generics and inheritance: invariance, covariance and contravariance

Functional programming and Haskell

- Introduction to Functional Programming
- Evaluation strategies (lambda-calculus)
- Haskell: main features
- Type Classes and overloading
- Monads
- Functional programming in Java
 - Lambdas and Stream API

Scripting Languages and Python

- Overview of scripting languages
- Main features of Python
- Imperative, functional and OO programming in Python
- Higher-order functions and Decorators
- On the implementation of Python: the Global Interpreter Lock

Selected Advanced Concepts in Programming Languages

- The RUST programming language
 - Avoiding Aliases + Mutable: Ownership and borrowing
 - Traits, generics and inheritance
- Closures vs Delegates in CLI
- Active patterns in F#
- Extensions in Swift

Design Patterns

Design Patterns in few slides

- A fundamental concept in Software Engineering & Programming, useful whenever one is designing a solution to a problem
- We shall meet several Design Patterns along the course (e.g., Observer or Publish-Subscribe, Visitor, Template Method,...)
- Just a brief introduction...

Design Patterns: From Architecture to Software Development

- Invented in the 1970's by architect Christopher Alexander:

 "Each pattern describes a problem which occurs over and over again in our environment, and then describes the core of the solution to that problem, in such a way that you can use this solution a million times over, without ever doing it the same way twice"

 Christopher Alexander, A Pattern Language, 1977
- The book includes 253 patterns for architectural design
- Common definition of a pattern:
 - "A solution to a problem in a context."
- Patterns can be applied to many different areas of human endehavour, including software development (where they are more successful!)

(Software) Design Patterns

- A (software) design pattern is a general, reusable solution to a commonly occurring problem within a given context in software design.
- Different abstraction levels:
 - Complex design for an entire application or subsystem
 - Solution to a general design problem in a particular context
 - Simple reusable design class such as *linked list*, hash table, etc.

Patterns solve software structural problems like:

- Abstraction
- Encapsulation
- Information hiding
- Separation of concerns
- Coupling and cohesion
- Separation of interface and implementation
- Single point of reference
- Divide and conquer

Patterns also solve non-functional problems like:

- Changeability
- Interoperability
- Efficiency
- Reliability
- Testability
- Reusability

Main components of a Design Pattern

- Name: meaningful text that reflects the problem,
 e.g. Bridge, Mediator, Flyweight
- Problem addressed: intent of the pattern, objectives achieved within certain constraints
- Context: circumstances under which it can occur, used to determine applicability
- Forces: constraints or issues that solution must address, forces may conflict!
- Solution: the static and dynamic relationships among the pattern components. Structure, participants, collaboration. Solution must resolve all forces!

The 23 Design Patterns of the Gang of Four

Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides

Design Patterns: Elements of Reusable
Object-Oriented Software [1995]

FM Factory Method	Creational				Structural		A Adapter
PT	S	Behavioural			CR	СР	D
Prototype	Singleton				Chain of Responsibility	Composite	Decorator
AF	TM Template Method	CD	MD Mediator	O	IN	PX	FA
Abstract Factory	Template Method	Command	Mediator	Observer	Interpreter	Proxy	Façade
BU	SR Strategy	M M	ST	IT Iterator	Visitor	FL Flyweight	BR

5.5. Pattern: Singleton (Creational)

Name: Singleton

Problem:

How can we guarantee that one and only one instance of a class can be created?

Context: In some applications it is important to have exactly one instance of a class, e.g. sales of one company.

Forces: Can make an object globally accessible as a global variable, but this violates encapsulation. Could use class (static) operations and attributes, but polymorphic redefinition is not always possible.

Solution:

Create a class with a class operation **getInstance()**. When class is first accessed, this creates relevant object instance and returns object identity to client. On subsequent calls of **getInstance()**, no new instance is created, but identity of existing object is returned.

Singleton Structure

```
Singleton

Object identifier for singleton instance, class scope or static

Returns object identifier for unique instance, class-scope or static

+getInstance()
+getSingletonData()
+singletonOperation()
-Singleton()

Private constructor only accessible via getInstance()
```

```
getInstance() {
   if (uniqueInstance == null)
      { uniqueInstance = new Singleton() }
      return uniqueInstance
}
```

Example: Code

```
class Singleton {
  private static Singleton uniqueInstance = null;
  private Singleton() { .. } // private constructor
  public static Singleton getInstance() {
   if (uniqueInstance == null)
      uniqueInstance = new Singleton(); //call constructor
   return uniqueInstance;
```

Comments

- To specify a class has only one instance, we make it inherit from Singleton.
- + controlled access to single object instance through **Singleton** encapsulation
- + Can tailor for any finite number of instances
- + namespace not extended by global variables
- access requires additional message passing
- Pattern limits flexibility, significant redesign if singleton class later gets many instances

Design Patterns vs. Frameworks

- More abstract than frameworks
 - Frameworks can be embodied in code, but only examples of patterns can be embodied in code
 - Design patterns explain the intent, trade-offs, and consequences of a design
- Smaller architectural elements than frameworks
 - A typical framework contains several design patterns but the reverse is never true.
- Less specialized than frameworks
 - Frameworks always have a particular application domain
 - Design patterns can be used in nearly any kind of application