
 1

AP-21 – Programming Assignment #1- v2
November 9, 2021

Exercise 1 (Java Beans) – Tic Tac Toe
Tic Tac Toe is a paper-and-pencil game for two players who take turns marking the spaces in a three-
by-three grid with X or O. The player who succeeds in placing three of their marks in a horizontal,
vertical, or diagonal row is the winner.
We want to implement Tic Tac Toe using Java Beans. (Note: There are several tutorials on the web
showing how you can do it, but none satisfies the requirements listed below.)
The system is made of a graphical dashboard, TTTBoard, containing the board, a
TTTController label, and a restart button (see Figure 2 below). The board is made of 9 cells,
which must be instances of a Java bean called TTTCell. Each cell has therefore the same appearance
and the same logic. Conceptually, the TTTBoard dashboard displays the board and checks at each
move if the game is ended, while the TTTController label monitors that the two players alternate
correctly in a game.

Requirements for the TTTCell bean
A cell must be a square (e.g. a JPanel), completely covered by two buttons (e.g. two JButtons),
initially labelled X and O. A cell has (at least) one property: State, initially set to “Initial”, which
must be both bound and constrained (in the JavaBean’s sense). When the state is “Initial” and the
user clicks on button X, an attempt to set State to “X” is made. If this change is not vetoed, the cell
changes state, the background color of the clicked button is changed (you can choose your preferred
colors for X and O), the O button is disabled and its label is set to the empty string, making evident
that the cell is marked X. Dual effects must be obtained if the user clicks on button O. Figure 1 shows
the effects of clicking on each button if the change is not vetoed. Note: clicking on a cell with state
different from “Initial” should have no effect.

Figure 1: A cell in the initial state, after clicking X and after clicking O.

Cells must also provide support for a “reset” action that restores the initial state, for a “won” action
that sets the background color of the enable buttons to green (ignoring the disabled buttons), and for
a “disable” action that disables both buttons. Such actions are needed to support the functionalities of
TTTBoard, as explained below, and can be implemented in any way (public methods are accepted,
but event-based communication is more appreciated).

Requirements for the TTTController bean
The TTTController is a bean that has the graphical appearance of a label (e.g., it can extend
JLabel). It has to check that the two players alternate correctly in a game. To this aim, it must be

X

O

X

O

 2

registered as VetoableChangeListener to all the cells of the board. At the beginning it displays
“START GAME”. As for the first move, clicking either X or O on any cell is legal: if X is clicked
then the TTTController displays “NEXT MOVE: O” (dually if O is clicked). During the game,
if the button displays for example “NEXT MOVE: O”, if player X tries to play clicking button X on
a cell, then the state change is vetoed (dually for X and O exchanged).
The controller must also provide support for a “reset” action that restores the initial configuration,
and for a “won” action that sets the background to green and changes the label text to “THE WINNER
IS: Z” where Z is either O or X. Such actions are needed to support the functionalities of
TTTBoard, as explained below, and can be implemented in any way (public methods are accepted,
but event-based communication is more appreciated).

Requirements for the TTTBoard dashboard
The main class of the application is the TTTBoard dashboard, that must be defined as extending
JFrame. It dispays a grid of 3x3 TTTCells, a RESTART button, and a TTTController label
(see Figure 2). The dashboard is registered as PropertyChangeListener to all the cells. After
each move, the dashboard checks if the game is ended because either a (vertical, horizontal, or
diagonal) row has been completed by one player, or because the board is full. In the first case the
winning row is emphasized by setting the background color of the cells in the row to green (interacting
with the relevant cells), the label text is changed to display the winner (interacting with the controller),
and all the buttons of the grid of cells (but those of the wining row) are disabled.
Clicking on the RESTART button at any time must reset all the cells, the controller, and the dashboard
to their initial configurations.

NEXT MOVE: X

O

X

O

X

X

O

X

X

O O

X

O

O

X X

X

O

X

X

O O

X

O

RESTART THE WINNER
IS: X

RESTART

Figure 2: Player X clicks and wins.

 3

Solution format
Three adequately commented source files (TTTCell.java, TTTController.java and
TTTBoard.java) and three corresponding jar archives, plus a short document (in PDF) reporting
the main design decisions.

Exercise 2 (Java Reflection and Annotations) – Testing
algorithms
Note: For this exercise you need to download and unzip the crypto.zip archive distributed
with these instructions.

As you need to protect communications within your software company from hackers, you encharged
an employee to implement a set of cryptographic algorithms. Each algorithm should be implemented
by a Java class providing

1. A constructor taking an encryption key of type String as parameter
2. An encryption method taking a String as parameter and returning the encrypted string
3. A decryption method taking a String as parameter and returning the decrypted string

Unfortunately the employee decided to leave your company for a better job. Before leaving, he
delivered to you the attached folder crypto.zip containg the .class files only and some
auxiliary files, claiming that his obligation was fulfilled. He told you that, at least for some of the
algorithms, the encryption method starts with “enc” and the decryption method with “dec”, and that
the encryption keys to be used were recorded in a file.
Clearly you don't trust completely the programmer anymore, thus you want to test his code. Do the
following:

1. Define a KeyRegistry class, with methods:
o add (Class c, String key): to add a new key for the crypto algorithm class

c
o get (Class c): to get the last key associated with the class c.

2. Write a Java program TestAlgs that takes the parent directory of crypto as a command
line argument (i.e., via argv) and:

o Loads the list of keys in the registry: each line in the file crypto/keys.list is a
space-separated pair made of the class name of the algorithm and the key needed for
such an algorithm

o For each class files in crypto/algos, first check if it is an encryption algorithm,
i.e. it has (1) a public constructor, (2) a method starting with enc and (3) a method
starting with dec, all three with one String parameter.

o If it is not an encryption algorithm just print a corresponding warning on the standard
output.

o Otherwhise test the class as follows, using the secret words in file
crypto/secret.list:

o For each secret word wrd (i.e., each line in file crypto/secret.list), create an
instance of the algorithm using the correspoding key as argument to the constructor.
Next call the encryption method on wrd, producing say encwrd, and then the

 4

decryption method on encwrd obtaining a string decwrd. If decwrd is different
from wrd and it is also not equal to wrd followed by one or more padding characters
#, then print on the standard output, KO: wrd -> encwrd -> decwrd.

Solution format: The Java source files implementing the described algorithm, including at least
KeyRegistry.java and the main class TestAlgs.java.
Sample output: You can compare the output of your solution with file SampleOutput.pdf,
which is the output of a correct solution (containing some non-printable characters).

Exercise 3 – Testing encryption functions, again, with
annotations
Even if the testing program developed in the previous Exercise worked pretty well on some
algorithms, some classes in crypto/algos were not identified as encryption algorithms. From a
colleague of you former employee you learn that he liked very much to use annotations. Therefore,
after inspecting folder crypto/annot, you suspect that also the remaining classes could
implement an encryption algorithm: they use the annotations @Encrypt and @Decrypt to tag the
encryption and the decryption method, respectively.

1. Write a Java program TestAlgsPlus that enriches the testing framework of the previous
exercise in order to test also classes which contain (1) a public constructor, (2) exactly one
method annotated with @Encrypt and (3) exactly one method annotated with @Decrypt,
all three with one String parameter. If necessary, refactor the code of the previous exercise in
order to reuse it as much as possible here.

2. Rewrite the source code of the @Encrypt and @Decrypt annotations, making them visible
at runtime

Solution format: The Java source files Encrypt.java and Decrypt.java defining the two
annotations, and the Java source files implementing the algorithm, including at least
TestAlgsPlus.java.

