Functional Languages

Previous chapters of this text have focused largely on imperative
programming languages. In the current chapter and the next we emphasize func-
tional and logic languages instead. While imperative languages are far more widely
used, “industrial-strength” implementations exist for both functional and logic
languages, and both models have commercially important applications. Lisp has
traditionally been popular for the manipulation of symbolic data, particularly in
the field of artificial intelligence. In recent years functional languages—statically
typed ones in particular—have become increasingly popular for scientific and
business applications as well. Logic languages are widely used for formal specifi-
cations and theorem proving and, less widely, for many other applications.

Of course, functional and logic languages have a great deal in common with
their imperative cousins. Naming and scoping issues arise under every model.
So do types, expressions, and the control-flow concepts of selection and recursion.
All languages must be scanned, parsed, and analyzed semantically. In addition,
functional languages make heavy use of subroutines—more so even than most
von Neumann languages—and the notions of concurrency and nondeterminacy
are as common in functional and logic languages as they are in the imperative
case.

As noted in Chapter 1, the boundaries between language categories tend to
be rather fuzzy. One can write in a largely functional style in many imperative
languages, and many functional languages include imperative features (assign-
ment and iteration). The most common logic language—Prolog—provides cer-
tain imperative features as well. Finally, it is easy to build a logic programming
system in most functional programming languages.

Because of the overlap between imperative and functional concepts, we have
had occasion several times in previous chapters to consider issues of partic-
ular importance to functional programming languages. Most such languages
depend heavily on polymorphism (the implicit parametric kind—Sections 3.5.3
and ©)7.2.4). Most make heavy use of lists (Section 7.8). Several, historically,
were dynamically scoped (Sections 3.3.6 and ©)3.4.2). All employ recursion
(Section 6.6) for repetitive execution, with the result that program behav-
ior and performance depend heavily on the evaluation rules for parameters

Programming Language Pragmatics. DOI: 10.1016/B978-0-12-374514-9.00021-5
Copyright © 2009 by Elsevier Inc. All rights reserved. 5 o 5

506

Chapter 10 Functional Languages

(Section 6.6.2). All have a tendency to generate significant amounts of tempo-
rary data, which their implementations reclaim through garbage collection
(Section 7.7.3).

Our chapter begins with a brief introduction to the historical origins of the
imperative, functional, and logic programming models. We then enumerate fun-
damental concepts in functional programming and consider how these are realized
in the Scheme dialect of Lisp. More briefly, we also consider Caml, Common Lisp,
Erlang, Haskell, ML, Miranda, pH, Single Assignment C, and Sisal. We pay partic-
ular attention to issues of evaluation order and higher-order functions. For those
with an interest in the theoretical foundations of functional programming, we
provide (on the PLP CD) an introduction to functions, sets, and the lambda cal-
culus. The formalism helps to clarify the notion of a “pure” functional language,
and illuminates the differences between the pure notation and its realization in
more practical programming languages.

Historical Origins

To understand the differences among programming models, it can be helpful to
consider their theoretical roots, all of which predate the development of electronic
computers. The imperative and functional models grew out of work undertaken
by mathematicians Alan Turing, Alonzo Church, Stephen Kleene, Emil Post, and
others in the 1930s. Working largely independently, these individuals developed
several very different formalizations of the notion of an algorithm, or effective
procedure, based on automata, symbolic manipulation, recursive function defini-
tions, and combinatorics. Over time, these various formalizations were shown to
be equally powerful: anything that could be computed in one could be computed
in the others. This result led Church to conjecture that any intuitively appealing
model of computing would be equally powerful as well; this conjecture is known
as Church’s thesis.

Turing’s model of computing was the Turing machine, an automaton reminis-
cent of a finite or pushdown automaton, but with the ability to access arbitrary
cells of an unbounded storage “tape.” The Turing machine computes in an im-
perative way, by changing the values in cells of its tape, just as a high-level imper-
ative program computes by changing the values of variables. Church’s model
of computing is called the lambda calculus. It is based on the notion of para-
meterized expressions (with each parameter introduced by an occurrence of the

I Alan Turing (1912-1954), for whom the Turing Award is named, was a British mathematician,
philosopher, and computer visionary. As intellectual leader of Britain’s cryptanalytic group during
World War II, he was instrumental in cracking the German “Enigma” code and turning the tide
of the war. He also laid the theoretical foundations of modern computer science, conceived the
general purpose electronic computer, and pioneered the field of Artificial Intelligence. Persecuted
as a homosexual after the war, stripped of his security clearance, and sentenced to “treatment”
with drugs, he committed suicide.

10.2 Functional Programming Concepts 507

letter A—hence the notation’s name).” Lambda calculus was the inspiration for
functional programming: one uses it to compute by substituting parameters into
expressions, just as one computes in a high level functional program by passing
arguments to functions. The computing models of Kleene and Post are more
abstract,and do notlend themselves directly to implementation as a programming
language.

The goal of early work in computability was not to understand computers
(aside from purely mechanical devices, computers did not exist) but rather to
formalize the notion of an effective procedure. Over time, this work allowed
mathematicians to formalize the distinction between a constructive proof (one
that shows how to obtain a mathematical object with some desired property)
and a nonconstructive proof (one that merely shows that such an object must
exist, perhaps by contradiction, or counting arguments, or reduction to some
other theorem whose proof is nonconstructive). In effect, a program can be seen
as a constructive proof of the proposition that, given any appropriate inputs,
there exist outputs that are related to the inputs in a particular, desired way.
Euclid’s algorithm, for example, can be thought of as a constructive proof of
the proposition that every pair of non-negative integers has a greatest common
divisor.

Logic programming is also intimately tied to the notion of constructive proofs,
but at a more abstract level. Rather than write a general constructive proof that
works for all appropriate inputs, the logic programmer writes a set of axioms
that allow the computer to discover a constructive proof for each particular set of
inputs. We will consider logic programming in more detail in Chapter 11.

Functional Programming Concepts

In a strict sense of the term, functional programming defines the outputs of a
program as a mathematical function of the inputs, with no notion of internal
state, and thus no side effects. Among the languages we consider here, Miranda,
Haskell, pH, Sisal, and Single Assignment C are purely functional. Erlang is nearly
so. Most others include imperative features. To make functional programming
practical, functional languages provide a number of features that are often missing
in imperative languages, including:

First-class function values and higher-order functions
Extensive polymorphism

2 Alonzo Church (1903-1995) was a member of the mathematics faculty at Princeton University
from 1929 to 1967, and at UCLA from 1967 to 1990. While at Princeton he supervised the
doctoral theses of, among many others, Alan Turing, Stephen Kleene, Michael Rabin, and Dana
Scott. His codiscovery, with Turing, of uncomputable problems was a major breakthrough in
understanding the limits of mathematics.

508

Chapter 10 Functional Languages

List types and operators

Structured function returns

Constructors (aggregates) for structured objects
Garbage collection

In Section 3.6.2 we defined a first-class value as one that can be passed as a
parameter, returned from a subroutine, or (in alanguage with side effects) assigned
into a variable. Under a strict interpretation of the term, first-class status also
requires the ability to create (compute) new values at run time. In the case of sub-
routines, this notion of first-class status requires nested lambda expressions that
can capture values (with unlimited extent) defined in surrounding scopes. Sub-
routines are second-class values in most imperative languages, but first-class values
(in the strict sense of the term) in all functional programming languages. A higher-
order function takes a function as an argument, or returns a function as a result.

Polymorphism is important in functional languages because it allows a func-
tion to be used on as general a class of arguments as possible. As we have seen in
Sections 7.1 and 7.2.4, Lisp and its dialects are dynamically typed, and thus inher-
ently polymorphic, while ML and its relatives obtain polymorphism through the
mechanism of type inference. Lists are important in functional languages because
they have a natural recursive definition, and are easily manipulated by operating
on their first element and (recursively) the remainder of the list. Recursion is
important because in the absence of side effects it provides the only means of
doing anything repeatedly.

Several of the items in our list of functional language features (recursion, struc-
tured function returns, constructors, garbage collection) can be found in some
but not all imperative languages. Fortran 77 has no recursion, nor does it allow
structured types (i.e., arrays) to be returned from functions. Pascal and early
versions of Modula-2 allow only simple and pointer types to be returned from
functions. As we saw in Section 7.1.5, several imperative languages, including Ada,
C, and Fortran 90, provide aggregate constructs that allow a structured value to
be specified in-line. In most imperative languages, however, such constructs are
lacking or incomplete. C# 3.0 and several scripting languages—Python and Ruby
among them—provide aggregates capable of representing an (unnamed) func-
tional value (a lambda expression), but few imperative languages are so expressive.
A pure functional language must provide completely general aggregates: because
there is no way to update existing objects, newly created ones must be initialized
“all at once.” Finally, though garbage collection is increasingly common in imper-
ative languages, it is by no means universal, nor does it usually apply to the local
variables of subroutines, which are typically allocated in the stack. Because of
the desire to provide unlimited extent for first-class functions and other objects,
functional languages tend to employ a (garbage-collected) heap for all dynam-
ically allocated data (or at least for all data for which the compiler is unable to
prove that stack allocation is safe).

Because Lisp was the original functional language, and is probably still the most
widely used, several characteristics of Lisp are commonly, though inaccurately,

EXAMPLE IOI

The read-eval-print loop

10.3 A Review/Overview of Scheme 509

described as though they pertained to functional programming in general. We
will examine these characteristics (in the context of Scheme) in Section 10.3. They
include:

Homogeneity of programs and data: A program in Lisp is itself a list, and can
be manipulated with the same mechanisms used to manipulate data.

Self-definition: The operational semantics of Lisp can be defined elegantly in
terms of an interpreter written in Lisp.

Interaction with the user through a “read-eval-print” loop.

Many programmers—probably most—who have written significant amounts
of software in both imperative and functional styles find the latter more aestheti-
cally appealing. Moreover experience with a variety of large commercial projects
(see the Bibliographic Notes at the end of the chapter) suggests that the absence
of side effects makes functional programs significantly easier to write, debug, and
maintain than their imperative counterparts. When passed a given set of argu-
ments, a pure function can always be counted on to return the same results. Issues
of undocumented side effects, misordered updates, and dangling or (in most cases)
uninitialized references simply don’t occur. At the same time, most implemen-
tations of functional languages still fall short in terms of portability, richness of
library packages, interfaces to other languages, and debugging and profiling tools.
We will return to the tradeoffs between functional and imperative programming
in Section 10.7.

A Review/Overview of Scheme

Most Scheme implementations employ an interpreter that runs a “read-eval-print”
loop. The interpreter repeatedly reads an expression from standard input (gener-
ally typed by the user), evaluates that expression, and prints the resulting value. If
the user types

(+ 3 4)
the interpreter will print

7
If the user types

7

the interpreter will also print

7

510 Chapter 10 Functional Languages

EXAMPLE | 02

Significance of parentheses

EXAMPLE I 0.3

Quoting

EXAMPLE I 0.4

Dynamic typing

(The number 7 is already fully evaluated.) To save the programmer the need to
type an entire program verbatim at the keyboard, most Scheme implementations
provide a load function that reads (and evaluates) input from a file:

(load "my_Scheme_program")

As we noted in Section 6.1, Scheme (like all Lisp dialects) uses Cambridge Polish
notation for expressions. Parentheses indicate a function application (or in some
cases the use of a macro). The first expression inside the left parenthesis indi-
cates the function; the remaining expressions are its arguments. Suppose the user

types
((+ 3 4)

When it sees the inner set of parentheses, the interpreter will call the function +,
passing 3 and 4 as arguments. Because of the outer set of parentheses, it will then
attempt to call 7 as a zero-argument function—a run-time error:

eval: 7 is not a procedure

Unlike the situation in almost all other programming languages, extra parentheses
change the semantics of Lisp/Scheme programs.

(+ 3 4) e
((+ 3 4)) = error

Here the = means “evaluates to.” This symbol is not a part of the syntax of
Scheme itself.

One can prevent the Scheme interpreter from evaluating a parenthesized
expression by quoting it:

(quote (+ 3 4)) = (+ 3 4)

Here the result is a three-element list. More commonly, quoting is specified with
a special shorthand notation consisting of a leading single quote mark:

'(+34) — (+34)

Though every expression has a type in Scheme, that type is generally not deter-
mined until run time. Most predefined functions check dynamically to make sure
that their arguments are of appropriate types. The expression

(if (> a 0) (+ 2 3) (+ 2 "foo"))

will evaluate to 5 if a is positive, but will produce a run-time type clash error if
a is negative or zero. More significantly, as noted in Section 3.5.3, functions that
make sense for arguments of multiple types are implicitly polymorphic:

EXAMPLE IO.S

Type predicates

EXAMPLE |0.6

Liberal syntax for symbols

EXAMPLE |0.7

Lambda expressions

10.3 A Review/Overview of Scheme 511

(define min (lambda (a b) (if (< a b) a b)))

The expression (min 123 456) will evaluate to 123; (min 3.14159 2.71828)
will evaluate to 2.71828.

User-defined functions can implement their own type checks using predefined
type predicate functions:

(boolean? x) ; is x a Boolean?

(char? x) ; is x a character?

(string? x) ; is x a string?

(symbol? x) ; is x a symbol?

(number? x) ; is x a number?

(pair? x) ; is x a (not necessarily proper) pair?
(1ist? x) ; is x a (proper) list?

(This is not an exhaustive list.)

A symbol in Scheme is comparable to what other languages call an identifier.
The lexical rules for identifiers vary among Scheme implementations, but are in
general much looser than they are in other languages. In particular, identifiers are
permitted to contain a wide variety of punctuation marks:

(symbol? ’x$_V:&=*!) — #t

The symbol #t represents the Boolean value true. False is represented by #£. Note
the use here of quote (’); the symbol begins with x.

To create a function in Scheme one evaluates a lambda expression:*

(lambda (x) (* x x)) = function

The first “argument” to lambda is a list of formal parameters for the func-
tion (in this case the single parameter x). The remaining “arguments” (again
just one in this case) constitute the body of the function. As we shall see in
Section 10.4, Scheme differentiates between functions and so-called special forms
(lambda among them), which resemble functions but have special evaluation
rules. Strictly speaking, only functions have arguments, but we will also use the
term informally to refer to the subexpressions that look like arguments in a special
form.

A lambda expression does not give its function a name; this can be done using
let or define (to be introduced in the next subsection). In this sense, a 1ambda

3 A word of caution for readers familiar with Common Lisp: A lambda expression in Scheme
evaluates to a function. A lambda expression in Common Lisp s a function (or, more accurately,
is automatically coerced to be a function, without evaluation). The distinction becomes important
whenever lambda expressions are passed as parameters or returned from functions: they must
be quoted in Common Lisp (with function or #’) to prevent evaluation. Common Lisp also
distinguishes between a symbol’s value and its meaning as a function; Scheme does not: if a
symbol represents a function, then the function is the symbol’s value.

512 Chapter 10 Functional Languages

EXAMPLE | 08

Function evaluation

EXAMPLE | 09

If expressions

exampee [0.10
Nested scopes with let

expression is like the aggregates that we used in Section 7.1.5 to specify array or
record values.

When a function is called, the language implementation restores the referencing
environment that was in effect when the lambda expression was evaluated (like
all languages with static scope and first-class, nested subroutines, Scheme employs
deep binding). It then augments this environment with bindings for the formal
parameters and evaluates the expressions of the function body in order. The value
of the last such expression (most often there is only one) becomes the value
returned by the function:

((lambda (x) (* x x)) 3) =— 9
Simple conditional expressions can be written using if:

(if (< 23) 45) = 4
(if #f 2 3) — 3

In general, Scheme expressions are evaluated in applicative order, as described in
Section 6.6.2. Special forms such as lambda and if are exceptions to this rule.
The implementation of if checks to see whether the first argument evaluates to
#t. If so, it returns the value of the second argument, without evaluating the third
argument. Otherwise it returns the value of the third argument, without evaluating
the second. We will return to the issue of evaluation order in Section 10.4.

10.3.] Bindings

Names can be bound to values by introducing a nested scope:

(let ((a 3)
(b 4)
(square (lambda (x) (* x x)))
(plus +))
(sqrt (plus (square a) (square b)))) = 5.0

The special form let takes two or more arguments. The first of these is a list
of pairs. In each pair, the first element is a name and the second is the value
that the name is to represent within the remaining arguments to let. Remaining
arguments are then evaluated in order; the value of the construct as a whole is the
value of the final argument.

The scope of the bindings produced by let is let’s second argument only:

(let ((a 3))
(et ((a 4)
(b a))
(+ab))) =7

EXAMPLE IOI I

Global bindings with
define

EXAMPLE IO IZ

Basic list operations

10.3 A Review/Overview of Scheme 513

Here b takes the value of the outer a. The way in which names become visible
“all at once” at the end of the declaration list precludes the definition of recursive
functions. For these one employs letrec:

(letrec ((fact
(lambda (n)
(if (=n 1) 1
(* n (fact (- n 1)))))))
(fact 5)) = 120

There is also a Let* construct in which names become visible “one at a time” so
that later ones can make use of earlier ones, but not vice versa.

As noted in Section 3.3, Scheme is statically scoped. (Common Lisp is also
statically scoped. Most other Lisp dialects are dynamically scoped.) While let
and letrec allow the user to create nested scopes, they do not affect the meaning
of global names (names known at the outermost level of the Scheme interpreter).
For these Scheme provides a special form called define that has the side effect of
creating a global binding for a name:

(define hypot
(lambda (a b)
(sqrt (+ (x a a) (x b b)))))
(hypot 3 4) = 5

[0.3.2 Lists and Numbers

Like all Lisp dialects, Scheme provides a wealth of functions to manipulate lists.
We saw many of these in Section 7.8; we do not repeat them all here. The three
most important are car, which returns the head of a list, cdr (“coulder”), which
returns the rest of the list (everything after the head), and cons, which joins a
head to the rest of a list:

(car ’(2 3 4)) = 2
(cdr °(2 3 4)) = (3 4)
(cons 2 (3 4)) — (2 3 4)

Also useful is the null? predicate, which determines whether its argument is the
empty list. Recall that the notation ’ (2 3 4) indicates a proper list, in which the
final element is the empty list:

(cdr 7 (2)) = O
(cons 2 3) = (2 . 3) ; an improper list

For fast access to arbitrary elements of a sequence, Scheme provides a vector
type that is indexed by integers, like an array, and may have elements of het-
erogeneous types, like a record. Interested readers are referred to the Scheme
manual [SDFT07] for further information.

514 Chapter 10 Functional Languages

EXAMPLE |0 |3

List search functions

EXAMPLE |0.|4

Searching association lists

Scheme also provides a wealth of numeric and logical (Boolean) functions
and special forms. The language manual describes a hierarchy of five numeric
types: integer, rational, real, complex, and number. The last two levels are
optional: implementations may choose not to provide any numbers that are not
real. Most but not all implementations employ arbitrary-precision representations
of both integers and rationals, with the latter stored internally as (numerator,
denominator) pairs.

10.3.3 Equality Testing and Searching

Scheme provides several different equality-testing functions. For numerical com-
parisons, = performs type conversions where necessary (e.g., to compare an
integer and a floating-point number). For general-purpose use, eqv? performs
a shallow comparison, while equal? performs a deep (recursive) comparison,
using eqv? at the leaves. The eq? function also performs a shallow compari-
son, and may be cheaper than eqv? in certain circumstances (in particular, eq?
is not required to detect the equality of discrete values stored in different loca-
tions, though it may in some implementations). Further details were presented in
Section 7.10.

To search for elements in lists, Scheme provides two sets of functions, each of
which has variants corresponding to the three general-purpose equality pred-
icates. The functions memq, memv, and member take an element and a list as
argument, and return the longest suffix of the list (if any) beginning with the
element:

(memq ’z ’(x y z w)) = (z w)
(memv ’(2) *(x y (2) w)) = #f ; (eq? 7(z) ’(2)) —> #f
(member ’(z2) (x y (2) W) = ((2) w) ; (equal? ’(z) ’(z)) = #t

The memq, memv, and member functions perform their comparisons using eq?,
eqv?, and equal?, respectively. They return #f if the desired element is not
found. It turns out that Scheme’s conditional expressions (e.g., if) treat anything
other than #f as true.* One therefore often sees expressions of the form

(if (memq desired-element list-that-might-contain-it)
The functions assq, assv, and assoc search for values in association lists (oth-

erwise known as A-lists). A-lists were introduced in Section ¢)3.4.2 in the context
of name lookup for languages with dynamic scoping. An A-list is a dictionary

4 One of the more confusing differences between Scheme and Common Lisp is that Common
Lisp uses the empty list () for false, while most implementations of Scheme (including all that
conform to the version 5 standard) treat it as true.

EXAMPLE IO I 5

Multiway conditional
expressions

EXAMPLE |0. I 6

Assignment

EXAMPLE |0. |7

Sequencing

10.3 A Review/Overview of Scheme 515

implemented as a list of pairs.” The first element of each pair is a key of some sort;
the second element is information corresponding to that key. Assq, assv, and
assoc take a key and an A-list as argument, and return the first pair in the list, if
there is one, whose first element is eq?, eqv?, or equal?, respectively, to the key.
If there is no matching pair, #f is returned.

[0.3.4 Control Flow and Assignment

We have already seen the special form if. It has a cousin named cond that resem-
bles a more general if...elsif...else:

(cond
((«32) 1)
(< 43)2)
(else 3)) = 3

The arguments to cond are pairs. They are considered in order from first to last.
The value of the overall expression is the value of the second element of the
first pair in which the first element evaluates to #t. If none of the first elements
evaluates to #t, then the overall value is #£. The symbol else is permitted only as
the first element of the last pair of the construct, where it serves as syntactic sugar
for #t.

Recursion, of course, is the principal means of doing things repeatedly in
Scheme. Many issues related to recursion were discussed in Section 6.6; we do
not repeat that discussion here.

For programmers who wish to make use of side effects, Scheme provides assign-
ment, sequencing, and iteration constructs. Assignment employs the special form
set! and the functions set-car! and set-cdr!:

(let ((x 2) ; initialize x to 2
1 >(a b)) ; initialize 1 to (a b)
(set! x 3) ; assign x the value 3
(set-car! 1 ’(c 4d)) ; assign head of 1 the value (c d)
(set-cdr! 1 ’(e)) ; assign rest of 1 the value (e)
. X = 3
.1 = ((c d) e)

The return values of the various varieties of set! are implementation-depen-
dent.
Sequencing uses the special form begin:

(begin
(display "hi ")
(display "mom"))

5 For clarity, the figures in Section (£)3.4.2 elided the internal structure of the pairs.

516 Chapter 10 Functional Languages

exameie [0.18 Iteration uses the special form do and the function for-each:
Iteration (define iter-fib (lambda (n)
; print the first n+l1 Fibonacci numbers
(do ((1 0 (+ 1 1)) ; initially O, inc’ed in each iteration
(a 0 b) ; initially O, set to b in each iteration
(b1 (+ ab))) ; initially 1, set to sum of a and b
((=1in) b) ; termination test and final value
(display b) ; body of loop
(display " ")))) ; body of loop

(for-each (lambda (a b) (display (* a b)) (newline))
’(2 4 6)
(35 7))

The first argument to do is a list of triples, each of which specifies a new variable,
an initial value for that variable, and an expression to be evaluated and placed in
a fresh instance of the variable at the end of each iteration. The second argument
to do is a pair that specifies the termination condition and the expression to be
returned. At the end of each iteration all new values of loop variables (e.g., a and
b) are computed using the current values. Only after all new values are computed
are the new variable instances created.

The function for-each takes as argument a function and a sequence of lists.
There must be as many lists as the function takes arguments, and the lists must
all be of the same length. For-each calls its function argument repeatedly, pass-
ing successive sets of arguments from the lists. In the example shown here, the
unnamed function produced by the lambda expression will be called on the argu-
ments 2 and 3, 4 and 5, and 6 and 7. The interpreter will print

6

20
42
O

The last line is the return value of for-each, assumed here to be the empty list.
The language definition allows this value to be implementation-dependent; the
construct is executed for its side effects.

DESIGN & IMPLEMENTATION

Iteration in functional programs

It is important to distinguish between iteration as a notation for repeated
execution and iteration as a means of orchestrating side effects. One can in fact
define iteration as syntactic sugar for tail recursion, and Val, Sisal, and pH do
precisely that (with special syntax to facilitate the passing of values from one
iteration to the next). Such a notation may still be entirely side-effect free, that
is, entirely functional. In Scheme, assignment and I/O are the truly imperative
features. We think of iteration as imperative because most Scheme programs
that use it have assignments or I/O in their loops.

EXAMPLE IO. I 9

Evaluating data as code

10.3 A Review/Overview of Scheme 517

Two other control-flow constructs—delay and force—have been mentioned
in previous chapters. Delay and force (Section 6.6.2) permit the lazy evaluation
of expressions. Call-with-current-continuation (call/cc; Section 6.2.2)
allows the current program counter and referencing environment to be saved in
the form of a closure, and passed to a specified subroutine. We will discuss delay
and force further in Section 10.4.

[0.3.5 Programs as Lists

As should be clear by now, a program in Scheme takes the form of a list. In
technical terms, we say that Lisp and Scheme are homoiconic—self-representing.
A parenthesized string of symbols (in which parentheses are balanced) is called
an S-expression regardless of whether we think of it as a program or as a list. In
fact, an unevaluated program is a list, and can be constructed, deconstructed, and
otherwise manipulated with all the usual list functions.

Just as quote can be used to inhibit the evaluation of a list that appears as an
argument in a function call, Scheme provides an eval function that can be used
to evaluate a list that has been created as a data structure:

(define compose
(lambda (f g)
(lambda (x) (£ (g x)))))
((compose car cdr) (1 2 3)) = 2

(define compose2
(lambda (f g)
(eval (list ’lambda ’(x) (list f (list g ’x)))
(scheme-report-environment 5))))
((compose2 car cdr) ’(1 2 3)) = 2

In the first of these declarations, compose takes as arguments a pair of functions
f and g. It returns as result a function that takes as parameter a value x, applies
g to it, then applies £, and finally returns the result. In the second declaration,
compose?2 performs the same function, but in a different way. The function 1ist
returns a list consisting of its (evaluated) arguments. In the body of compose2,
this list is the unevaluated expression (Lambda (x) (f (g x))).When passed to
eval, this list evaluates to the desired function. The second argument of eval
specifies the referencing environment in which the expression is to be evaluated. In
our example we have specified the environment defined by the Scheme version 5
report [ADH"98].

Eval and Apply

The original description of Lisp [MAE"65] included a self-definition of the lan-
guage: code for a Lisp interpreter, written in Lisp. Though Scheme differs in
a number of ways from this early Lisp (most notably in its use of lexical scoping),

518 Chapter 10 Functional Languages

EXAMPLE I 020

Denotational semantics of
Scheme

such a metacircular interpreter can still be written easily [AS96, Chap. 4]. The
code is based on the functions eval and apply. The first of these we have
just seen. The second, apply, takes two arguments: a function and a list. It
achieves the effect of calling the function, with the elements of the list as
arguments.

The functions eval and apply can be defined as mutually recursive. When
passed a number or a string, eval simply returns that number or string. When
passed a symbol, it looks that symbol up in the specified environment and returns
the value to which it is bound. When passed a list it checks to see whether the
first element of the list is one of a small number of symbols that name so-called
primitive special forms, built into the language implementation. For each of these
special forms (lambda, if, define, set!, quote, etc.) eval provides a direct
implementation. For other lists, eval calls itself recursively on each element and
then calls apply, passing as arguments the value of the first element (which must
be a function) and a list of the values of the remaining elements. Finally, eval
returns what apply returned.

When passed a function f and a list of arguments [, apply inspects the inter-
nal representation of f to see whether it is primitive. If so it invokes the built-in
implementation. Otherwise it retrieves (from the representation of f) the refer-
encing environment in which f’s lambda expression was originally evaluated. To
this environment it adds the names of f’s parameters, with values taken from I.
Call this resulting environment e. Next apply retrieves the list of expressions that
make up the body of f. It passes these expressions, together with e, one at a time to
eval. Finally, apply returns what the eval of the last expression in the body of f
returned.

Formalizing Self-Definition

The idea of self-definition—a Scheme interpreter written in Scheme—may seem
a bit confusing unless one keeps in mind the distinction between the Scheme
code that constitutes the interpreter and the Scheme code that the interpreter is
interpreting. In particular, the interpreter is not running itself, though it could run
a copy of itself. What we really mean by “self-definition” is that for all expressions
E, we get the same result by evaluating E under the interpreter I that we get by
evaluating E directly.

Suppose now that we wish to formalize the semantics of Scheme as some as-
yet-unknown mathematical function M that takes a Scheme expression as an
argument and returns the expression’s value. (This value may be a number, a list,
a function, or a member of any of a small number of other domains.) How might
we go about this task? For certain simple strings of symbols we can define a value
directly: strings of digits, for example, map onto the natural numbers. For more
complex expressions, we note that

EXAMPLE |0.2|

Simulating a DFA in
Scheme

10.3 A Review/Overview of Scheme 519

Put another way,
M(I) =M

Suppose now that we let H(F) = F(I) where F can be any function that takes
a Scheme expression as its argument. Clearly

H(M) = M

Our desired function M is said to be a fixed point of H. Because H is well
defined (it simply applies its argument to I), we can use it to obtain a rigorous
definition of M. The tools to do so come from the field of denotational semantics,
a subject beyond the scope of this book.°

10.3.6 Extended Example: DFA Simulation

To conclude our introduction to Scheme, we present a complete program to simu-
late the execution of a DFA (deterministic finite automaton). The code appears in
Figure 10.1. Finite automata details can be found in Sections 2.2 and ©)2.4.1. Here
we represent a DFA as a list of three items: the start state, the transition function,
and a list of final states. The transition function in turn is represented by a list of
pairs. The first element of each pair is another pair, whose first element is a state
and whose second element is an input symbol. If the current state and next input
symbol match the first element of a pair, then the finite automaton enters the state
given by the second element of the pair.

To make this concrete, consider the DFA of Figure 10.2. It accepts all strings of
zeros and ones in which each digit appears an even number of times. To simulate
this machine, we pass it to the function simulate along with an input string. As
it runs, the automaton accumulates as a list a trace of the states through which it
has traveled, ending with the symbol accept or reject. For example, if we type

(simulate
zero-one-even-dfa ; machine description
(00110 1)) ; input string

then the Scheme interpreter will print

(90 g2 g3 92 90 gl reject)

6 Actually, H has an infinite number of fixed points. What we want (and what denotational seman-
tics will give us) is the least fixed point: the one that defines a value for as few strings of symbols as
possible, while still producing the “correct” value for numbers and other simple strings. Another
example of least fixed points appears in Section (£)16.4.2.

520

Chapter 10 Functional Languages

(define simulate
(lambda (dfa input)
(cons (current-state dfa) ; start state
(if (null? input)
(if (infinal? dfa) ’(accept) ’(reject))
(simulate (move dfa (car input)) (cdr input))))))

;; access functions for machine description:
(define current-state car)
(define transition-function cadr)
(define final-states caddr)
(define infinal?
(lambda (dfa)
(memq (current-state dfa) (final-states dfa))))

(define move
(lambda (dfa symbol)
(let ((cs (current-state dfa)) (trans (transition-function dfa)))

(list
(if (eq? cs ’error)
’error
(let ((pair (assoc (list cs symbol) trans)))
(if pair (cadr pair) ’error))) ; new start state
trans ; same transition function
(final-states dfa))))) ; same final states

Figure [0.1 Scheme program to simulate the actions of a DFA. Given a machine description
and an input symbol i, function move searches for a transition labeled i from the start state to
some new state s. It then returns a new machine with the same transition function and final states,
but with s as its “start” state. The main function, simulate, tests to see if it is in a final state. If
not, it passes the current machine description and the first symbol of input to move, and then
calls itself recursively on the new machine and the remainder of the input. The functions cadr
and caddr are defined as (lambda (x) (car (cdr x))) and (lambda (x) (car (cdr (cdr
x)))), respectively. Scheme provides a large collection of such abbreviations.

If we change the input string to 010010, the interpreter will print

(90 92 93 g1 g3 g2 g0 accept)

\/CHECK YOUR UNDERSTANDING

|. What mathematical formalism underlies functional programming?

). List several distinguishing characteristics of functional programming lan-
guages.

3. Briefly describe the behavior of the Lisp/Scheme read-eval-print loop.
4. What is a first-class value?

5. Explain the difference between let, let*, and letrec in Scheme.

EXAMPLE |0.22

Applicative and
normal-order evaluation

10.4 Evaluation Order Revisited 521

Start 1
()
0 0

(define zero-one-even-dfa

’(q0 ; start state
(((q0 0) g2) ((q0 1) q1) ((q1l 0) q3) ((ql 1) qO) ; transition fn
((@2 0) q0) ((g2 1) g3) ((g3 0) q1) ((q3 1) g2))

(q0))) ; final states

Figure 10.2 DFA to accept all strings of zeros and ones containing an even number of each.
At the bottom of the figure is a representation of the machine as a Scheme data structure, using
the conventions of Figure 10.1.

6. Explain the difference between eq?, eqv?, and equal?.

1. Describe three ways in which Scheme programs can depart from a purely
functional programming model.

8. What is an association list?
9. What does it mean for a language to be homoiconic?
[0. What is an S-expression?

[1. Outline the behavior of eval and apply.

Evaluation Order Revisited

In Section 6.6.2 we observed that the subcomponents of many expressions can
be evaluated in more than one order. In particular, one can choose to evaluate
function arguments before passing them to a function, or to pass them unevalu-
ated. The former option is called applicative-order evaluation; the latter is called
normal-order evaluation. Like most imperative languages, Scheme uses applicative
order in most cases. Normal order, which arises in the macros and call-by-name
parameters of imperative languages, is available in special cases.
Suppose, for example, that we have defined the following function:

(define double (lambda (x) (+ x x)))

Evaluating the expression (double (* 3 4)) in applicative order (as Scheme
does), we have

522 Chapter 10 Functional Languages

EXAMPLE I 023

Normal-order avoidance of
unnecessary work

(double (* 3 4))
—> (double 12)
= (+ 12 12)
= 24

Under normal-order evaluation we would have

(double (*x 3 4))
= (+ (x 3 4) (x 3 4))
= (+ 12 (* 3 4))
= (+ 12 12)
— 24

Here we end up doing extra work: normal order causes us to evaluate (x 3 4)
twice.

In other cases, applicative-order evaluation can end up doing extra work.
Suppose we have defined the following:

(define switch (lambda (x a b c)
(cond ((< x 0) a)
((=x0) b)
(>x0) e

Evaluating the expression (switch -1 (+ 1 2) (+ 2 3) (+ 3 4)) in applicative
order, we have

(switch -1 (+ 1 2) (+ 2 3) (+ 3 4))

—> (switch -1 3 (+ 2 3) (+ 3 4))
=— (switch -1 3 5 (+ 3 4))
— (switch -1 3 5 7)
—> (cond ((< -1 0) 3)
((= -1 0) 5
(> -10) 7N
— (cond (#t 3)
((= -1 0) 5
(> -10) 7))
— 3

(Here we have assumed that cond is built in, and evaluates its arguments lazily,
even though switch is doing so eagerly.) Under normal-order evaluation we
would have

(switch -1 (+ 1 2) (+ 2 3) (+ 3 4))

= (cond ((< -10) (+12))
((=-10 (+23))
((>-10 (+34)

= (cond (#t (+ 1 2))
((=-10 (+23))
((>-10 (+34))

— (+12)

— 3

10.4 Evaluation Order Revisited 523

Here normal-order evaluation avoids evaluating (+ 2 3) or (+ 3 4). (In this
case, we have assumed that arithmetic and logical functions such as + and < are
built in, and force the evaluation of their arguments.)

In our overview of Scheme we have differentiated on several occasions between
special forms and functions. Arguments to functions are always passed by shar-
ing (Section 8.3.1), and are evaluated before they are passed (i.e., in applicative
order). Arguments to special forms are passed unevaluated—in other words, by
name. Each special form is free to choose internally when (and if) to evaluate
its parameters. Cond, for example, takes a sequence of unevaluated pairs as
arguments. It evaluates their cars internally, one at a time, stopping when it
finds one that evaluates to #t.

Together, special forms and functions are known as expression types in Scheme.
Some expression types are primitive, in the sense that they must be built into
the language implementation. Others are derived; they can be defined in terms
of primitive expression types. In an eval/apply-based interpreter, primitive
special forms are built into eval; primitive functions are recognized by apply. We
have seen how the special form lambda can be used to create derived functions,
which can be bound to names with let. Scheme provides an analogous special
form, syntax-rules, that can be used to create derived special forms. These
can then be bound to names with define-syntax and let-syntax. Derived
special forms are known as macros in Scheme, but unlike most other macros,
they are hygienic—lexically scoped, integrated into the language’s semantics, and
immune from the problems of mistaken grouping and variable capture described
in Section 3.7. Like C++ templates (Section ©)8.4.4), Scheme macros are Turing
complete. They behave like functions whose arguments are passed by name (Sec-
tion ©)8.3.2) instead of by sharing. They are implemented, however, via logical
expansion in the interpreter’s parser and semantic analyzer, rather than by delayed
evaluation with thunks.

[0.4.] Strictness and Lazy Evaluation

Evaluation order can have an effect not only on execution speed, but on pro-
gram correctness as well. A program that encounters a dynamic semantic error
or an infinite regression in an “unneeded” subexpression under applicative-order
evaluation may terminate successfully under normal-order evaluation. A (side-
effect-free) function is said to be strict if it is undefined (fails to terminate, or
encounters an error) when any of its arguments is undefined. Such a function can
safely evaluate all its arguments, so its result will not depend on evaluation order.
A function is said to be nonstrict if it does not impose this requirement—that
is, if it is sometimes defined even when one of its arguments is not. A language
is said to be strict if it is defined in such a way that functions are always strict.
A language is said to be nonstrict if it permits the definition of nonstrict func-
tions. If a language always evaluates expressions in applicative order, then every
function is guaranteed to be strict, because whenever an argument is undefined,

524 Chapter 10 Functional Languages

EXAMPLE I 024

Avoiding work with lazy
evaluation

its evaluation will fail and so will the function to which it is being passed. Contra-
positively, a nonstrict language cannot use applicative order; it must use normal
order to avoid evaluating unneeded arguments. ML and (with the exception of
macros) Scheme are strict. Miranda and Haskell are nonstrict.

Lazy evaluation (as described here—see the footnote on page 276) gives us the
advantage of normal-order evaluation (not evaluating unneeded subexpressions)
while running within a constant factor of the speed of applicative-order evaluation
for expressions in which everything is needed. The trick is to tag every argument
internally with a “memo” that indicates its value, if known. Any attempt to evaluate
the argument sets the value in the memo as a side effect, or returns the value
(without recalculating it) if it is already set.

Returning to the expression of Example 10.22, (double (* 3 4)) will be
compiled as (double (f£)), where f is a hidden closure with an internal side
effect:

(define f
(lambda ()
(let ((done #f) ; memo initially unset

(memo ’())

(code (lambda () (* 3 4))))

(if done memo ; if memo is set, return it
(begin
(set! memo (code)) ; remember value
memo))))) ; and return it

(double (£f))
= (+ (£) (£))

= (+ 12 (£)) ; first call computes value
= (+ 12 12) ; second call returns remembered value
— 24

Here (x 3 4) will be evaluated only once. While the cost of manipulating memos
will clearly be higher than that of the extra multiplication in this case, if we
were to replace (x 3 4) with a very expensive operation, the savings could be
substantial.

DESIGN & IMPLEMENTATION

Lazy evaluation

One of the beauties of a purely functional language is that it makes lazy evalua-
tion a completely transparent performance optimization: the programmer can
think in terms of nonstrict functions and normal-order evaluation, counting
on the implementation to avoid the cost of repeated evaluation. For languages
with imperative features, however, this characterization does not hold: lazy
evaluation is not transparent in the presence of side effects.

EXAMPLE |025

Stream-based program
execution

10.4 Evaluation Order Revisited 525

Lazy evaluation is particularly useful for “infinite” data structures, as described
in Section 6.6.2. It can also be useful in programs that need to examine only a
prefix of a potentially long list (see Exercise 10.10). Lazy evaluation is used for all
arguments in Miranda and Haskell. It is available in Scheme through explicit use
of delay and force. (Recall that the first of these is a special form that creates a
[memo, closure] pair; the second is a function that returns the value in the memo,
using the closure to calculate it first if necessary.) Where normal-order evaluation
can be thought of as function evaluation using call-by-name parameters, lazy
evaluation is sometimes said to employ “call-by-need.” In addition to Miranda
and Haskell, call-by-need can be found in the R scripting language, widely used
by statisticians.

The principal problem with lazy evaluation is its behavior in the presence of
side effects. If an argument contains a reference to a variable that may be modified
by an assignment, then the value of the argument will depend on whether it is
evaluated before or after the assignment. Likewise, if the argument contains an
assignment, values elsewhere in the program may depend on when evaluation
occurs. These problems do not arise in Miranda or Haskell because they are
purely functional: there are no side effects. Scheme leaves the problem up to the
programmer, but requires that every use of a delay-ed expression be enclosed
in force, making it relatively easy to identify the places where side effects are an
issue. ML provides no built-in mechanism for lazy evaluation. The same effect
can be achieved with assignment and explicit functions (Exercise 10.11), but the
code is rather awkward.

[0.4.2 110: Streams and Monads

A major source of side effects can be found in traditional I/O, including the built-
in functions read and display of Scheme: read will generally return a different
value every time it is called, and multiple calls to display, though they never
return a value, must occur in the proper order if the program is to be considered
correct.

One way to avoid these side effects is to model input and output as streams—
unbounded-length lists whose elements are generated lazily. We saw an example of
astream in Section 6.6.2, where we used Scheme’s delay and force to implement
a “list” of the natural numbers. Similar code in ML appears in Exercise 10.11.7

If we model input and output as streams, then a program takes the form

(define output (my_prog input))

When it needs an input value, function my_prog forces evaluation of the car
of input, and passes the cdr on to the rest of the program. To drive execution,

7 Notethat delay and force automatically memoize their stream, so that values are never computed
more than once. Exercise 10.11 asks the reader to write a memoizing version of a nonmemoizing
stream.

526 Chapter 10 Functional Languages

EXAMPLE I 0.26

Interactive I/O with
streams

EXAMPLE I 0.27

Pseudorandom numbers in
Haskell

the language implementation repeatedly forces evaluation of the car of output,
prints it, and repeats:

(define driver (lambda (s)
(if (null? s) ’Q) ; nothing left
(display (car s))
(driver (cdr s)))))
(driver output)

To make things concrete, suppose we want to write a purely functional program
that prompts the user for a sequence of numbers (one at a time!) and prints their
squares. If Scheme employed lazy evaluation of input and output streams (it
doesn’t), then we could write:

(define squares (lambda (s)
(cons "please enter a number\n"
(let ((n (car s)))
(if (eof-object? n) ’ ()
(cons (* n n) (cons #\newline (squares (cdr s)))))))))
(define output (squares input)))

Prompts, inputs, and outputs (i.e., squares) would be interleaved naturally in time.
In effect, lazy evaluation would force things to happen in the proper order: The
car of output is the first prompt. The cadr of output is the first square, a
value that requires evaluation of the car of input. The caddr of output is the
second prompt. The cadddr of output is the second square, a value that requires
evaluation of the cadr of input.

Streams formed the basis of the I/O system in early versions of Haskell. Unfor-
tunately, while they successfully encapsulate the imperative nature of interaction
at a terminal, streams don’t work very well for graphics or random access to files.
They also make it difficult to accommodate I/O of different kinds (since all ele-
ments of a list in Haskell must be of a single type). More recent versions of Haskell
employ a more general concept known as monads. Monads are drawn from a
branch of mathematics known as category theory, but one doesn’t need to under-
stand the theory to appreciate their usefulness in practice. In Haskell, monads are
essentially a clever use of higher-order functions, coupled with a bit of syntactic
sugar, that allow the programmer to chain together a sequence of actions (function
calls) that have to happen in order. The power of the idea comes from the ability
to carry a hidden, structured value of arbitrary complexity from one action to the
next. In many applications of monads, this extra hidden value plays the role of
mutable state: differences between the values carried to successive actions act as
side effects.

As a motivating example somewhat simpler than I/O, consider the possibil-
ity of creating a pseudorandom number generator (RNG) along the lines of
Example 6.42 (page 247). In that example we assumed that rand () would modify
hidden state as a side effect, allowing it to return a different value every time it is

10.4 Evaluation Order Revisited 527

called. This idiom isn’t possible in a pure functional language, but we can obtain
a similar effect by passing the state to the function and having it return new state
along with the random number. This is exactly how the built-in function random
works in Haskell. The following code calls random twice to illustrate its interface.

twoRandomInts :: StdGen -> ([Integer], StdGen)
-- type signature: twoRandomInts is a function that takes an
-- StdGen (the state of the RNG) and returns a tuple containing
-- a list of Integers and a new StdGen.
twoRandomInts gen = let
(randl, gen2) = random gen
(rand2, gen3) = random gen2
in ([randl, rand2], gen3)

main = let

gen = mkStdGen 123 -- new RNG, seeded with 123
ints = fst (twoRandomInts gen) -- extract first element
in print ints -- of returned tuple

Note that gen2, one of the return values from the first call to random, has been
passed as an argument to the second call. Then gen3, one of the return values
from the second call, is returned to main, where it could, if we wished, be passed
to another function. This mechanism works, but it’s far from pretty: copies of
the RNG state must be “threaded through” every function that needs a random
number. This is particularly complicated for deeply nested functions. It is easy to
make a mistake, and difficult to verify that one has not.

Monads provide a more general solution to the problem of threading mutable
state through a functional program. Here is our example rewritten to use Haskell’s
standard I0 monad, which includes a random number generator:

twoMoreRandomInts :: I0 [Integer]

-- twoMoreRandomInts returns a list of Integers. It also

-- implicitly accepts, and returns, all the state of the I0 monad.
twoMoreRandomInts = do

randl <- randomIO

rand2 <- randomIO

return [randl, rand2]

main = do
morelInts <- twoMoreRandomInts
print morelnts

There are several differences here. First, the type of the twoMoreRandomInts
function has become I0 [Integer]. This identifies it as an IO action—a function
that (in addition to returning an explicit list of integers) invisibly accepts and
returns the state of the I0 monad (including the standard RNG). Similarly, the
type of randomIO is I0 Integer. To thread the IO state from one action to the
next, the bodies of twoMoreRandomInts and main use do notation rather than

528 Chapter 10 Functional Languages

EXAMPLE I 0.28

The state of the I0 monad

EXAMPLE | 029

Functional composition of
actions

let. A do block packages a sequence of actions together into a single, compound
action. At each step along the way, it passes the (potentially modified) state of the
monad from one action to the next. It also supports the “assignment” operator,
<-, which separates the explicit return value from the hidden state and opens a
nested scope for its left-hand side, so all values “assigned” earlier in the sequence
are visible to actions later in the sequence.

The return operator in twoMoreRandomInts packages an explicit return value
(in our case, a two-element list) together with the hidden state, to be returned to the
caller. A similar use of return presumably appears inside randomI0. Everything
we have done is purely functional—do and <- are simply syntactic sugar—but the
bookkeeping required to pass the state of the RNG from one invocation of random
to the next has been hidden in a way that makes our code look imperative.

So what does this have to do with I/O? Consider the getChar function, which
reads a character from standard input. Like rand, we expect it to return a different
value every time we call it. Haskell therefore arranges for getChar to be of type
I0 Char: it returns a character, but also accepts, and passes on, the hidden state
of the monad.

In most Haskell monads, hidden state can be explicitly extracted and examined.
The I0 monad, however, is abstract: only part of its state is defined in library
header files; the rest is implemented by the language run-time system. This is
unavoidable, because, in effect, the hidden state of the 10 monad encompasses the
real world. If this state were visible, a program could capture and reuse it, with
the nonsensical expectation that we could “go back in time” and see what the user
would have done in response to a different prompt last Tuesday. Unfortunately, I0
state hiding means that a value of type I0 T is permanently tainted: it can never
be extracted from the monad to produce a “pure T.”

Because I0 actions are just ordinary values, we can manipulate them in the
same way as values of other data types. The most basic output action is putChar,
of type Char -> I0 () (monadic function with an explicit character argument
and no explicit return). Given putChar, we can define putStr:

putStr :: String -> I0 ()
putStr s = sequence_ (map putChar s)

Strings in Haskell are simply lists of characters. The map function takes a function
f and alist] as argument, and returns a list that contains the results of applying f
to the elements of I:

map :: (a->b) -> [a] -> [b]
map £ [1 = [] -- base case
map f (h:t) =f h : map £ t -- tail recursive case
-- ’:’ is like cons in Scheme

The result of map putChar s is a list of actions, each of which prints a character:
it has type [I0 (1. The built-in function sequence_ converts this to a single
action that prints a list. It could be defined as follows.

EXAMPLE |030

Streams and the 1/O monad

10.4 Evaluation Order Revisited 529

sequence_ :: [I0 (O] -> I0 O
sequence_ [] = return () -- base case
sequence_ (a:more) = do a; sequence_ more -- tail recursive case

As before, do provides a convenient way to chain actions together. For brevity, we
have written the actions on a single line, separated by a semicolon.

The entry point of a Haskell program is always the function main. It has type
I0 (). Because Haskell is lazy (nonstrict), the action sequence returned by main
remains hypothetical until the run-time system forces its evaluation. In practice,
Haskell programs tend to have a small top-level structure of I0 monad code that
sequences I/O operations. The bulk of the program—both the computation of
values and the determination of the order in which I/O actions should occur—is then
purely functional. For a program whose I/O can be expressed in terms of streams,
the top-level structure may consist of a single line:

main = interact my_program

Thelibrary function interact is of type (String -> String) -> I0 ().Ittakes
as argument a function from strings to strings (in this case my_program). It calls
this function, passing the contents of standard input as argument, and writes the
result to standard output. Internally, interact uses the function getContents,
which returns the program’s input as a lazily evaluated string: a stream. In a more
sophisticated program, main may orchestrate much more complex I/O actions,
including graphics and random access to files.

DESIGN & IMPLEMENTATION

Monads

Monads are very heavily used in Haskell. The I0 monad serves as the central
repository for imperative language features—not only I/O and random num-
bers, but also mutable global variables and shared-memory synchronization.
Additional monads (with accessible hidden state) support partial functions
and various container classes (lists and sets). When coupled with lazy evalua-
tion, monadic containers in turn provide a natural foundation for backtracking
search, nondeterminism, and the functional equivalent of iterators. (In the list
monad, for example, hidden state can carry the continuation needed to generate
the tail of an infinite list.)

The inability to extract values from the I0 monad reflects the fact that the
physical world is imperative, and that a language that needs to interact with the
physical world in nontrivial ways must include imperative features. Put another
way, the I0 monad (unlike monads in general) is more than syntactic sugar:
by hiding the state of the physical world it makes it possible to express things
that could not otherwise be expressed in a functional way, provided that we are
willing to enforce a sequential evaluation order. The beauty of monads is that
they confine sequentiality to a relatively small fraction of the typical program,
so that side effects cannot interfere with the bulk of the computation.

530 Chapter 10 Functional Languages

EXAMPLE |03 I

Map function in Scheme

EXAMPLE |032

Folding (reduction) in
Scheme

EXAMPLE I 0.33

Combining higher-order
functions

Higher-Order Functions

A function is said to be a higher-order function (also called a functional form) if
it takes a function as an argument, or returns a function as a result. We have
seen several examples already of higher-order functions: call/cc (Section 6.2.2),
for-each (Example 10.18), compose (Example 10.19), and apply (page 518).
We also saw a Haskell version of the higher-order function map in Section 10.4.2.
The Scheme version of map is slightly more general. Like for-each, it takes
as argument a function and a sequence of lists. There must be as many lists
as the function takes arguments, and the lists must all be of the same length.
Map calls its function argument on corresponding sets of elements from the
lists:

(map * (2 4 6) (35 7)) = (6 20 42)

Where for-each is executed for its side effects, and has an implementation-
dependent return value, map is purely functional: it returns a list composed of the
values returned by its function argument.

Programmers in Scheme (or in ML, Haskell, or other functional languages)
can easily define other higher-order functions. Suppose, for example, that we
want to be able to “fold” the elements of a list together, using an associative binary
operator:

(define fold (lambda (f i 1)
(if (null? 1) i ; 1 is commonly the identity element for f
(f (car 1) (fold f i (cdr 1))))))

Now (fold + 0 ’ (1 2 3 4 5)) gives us the sum of the first five natural numbers,
and (fold * 1 °(1 2 3 4 5)) gives us their product.

One of the most common uses of higher-order functions is to build new func-
tions from existing ones:

(define total (lambda (1) (fold + 0 1)))
(total (1 2 3 4 5)) = 15

(define total-all (lambda (1)
(map total 1)))
(total-all ’((1 2 3 4 5)
(2 4 68 10)
(369 12 15))) = (15 30 45)

(define make-double (lambda (f) (lambda (x) (f x x))))
(define twice (make-double +))
(define square (make-double *))

EXAMPLE |034

Partial application with
currying

EXAMPLE |0.35

General-purpose curry
function

EXAMPLE |0.36

Tuples as ML function
arguments

10.5 Higher-Order Functions 531

Currying

A common operation, named for logician Haskell Curry, is to replace a multiargu-
ment function with a function that takes a single argument and returns a function
that expects the remaining arguments:

(define curried-plus (lambda (a) (lambda (b) (+ a b))))

((curried-plus 3) 4) == 7
(define plus-3 (curried-plus 3))
(plus-3 4) == 7

Among other things, currying gives us the ability to pass a “partially applied”
function to a higher-order function:

(map (curried-plus 3) ’(1 2 3)) — (4 5 6)

It turns out that we can write a general-purpose function that “curries” its
(binary) function argument:

(define curry (lambda (f) (lambda (a) (lambda (b) (£ a b)))))
(((curry +) 3) 4) =7
(define curried-plus (curry +))

ML and its descendants (Miranda, Haskell, Caml, F#) make it especially easy to
define curried functions. Consider the following function in ML:

fun plus (a, b) : int = a + b;
==> val plus = fn : int * int -> int

DESIGN & IMPLEMENTATION

Higher-order functions

If higher-order functions are so powerful and useful, why aren’t they more
common in imperative programming languages? There would appear to be
at least two important answers. First, much of the power of first-class func-
tions depends on the ability to create new functions on the fly, and for that
we need a function constructor—something like Scheme’s 1ambda or MLs fn.
Though they appear in certain recent languages, notably Python and C#, func-
tion constructors are a significant departure from the syntax and semantics
of traditional imperative languages. Second, the ability to specify functions as
return values, or to store them in variables (if the language has side effects)
requires either that we eliminate function nesting (something that would again
erode the ability of programs to create functions with desired behaviors on the
fly), or that we give local variables unlimited extent, thereby increasing the cost
of storage management.

532 Chapter 10 Functional Languages

EXAMPLE I 0.37

Optional parentheses on
singleton arguments

EXAMPLE I 038

Simple curried function in
ML

The last line is printed by the ML interpreter, and indicates the inferred type of
plus. The type declaration is required to disambiguate the overloaded + operator.
Though one may think of plus as a function of two arguments, the ML definition
says that all functions take a single argument. What we have declared is a function
that takes a two-element fuple as argument. To call plus, we juxtapose its name
and the tuple that is its argument:

plus (3, 4);
==> val it = 7 : int

The parentheses here are not part of the function call syntax; they delimit the
tuple (3, 4).

We can declare a single-argument function without parenthesizing its formal
argument:

fun twice n : int = n + n;

==> val twice = fn : int -> int
twice 2;

==> val it = 4 : int

We can add parentheses in either the declaration or the call if we want, but because
there is no comma inside, no tuple is implied:

fun double (n) : int = n + n;

twice (2);

==> val it = 4 : int
twice 2;

==> val it = 4 : int
double (2);

==> val it = 4 : int
double 2;

==> val it = 4 : int

Ordinary parentheses can be placed around any expression in ML.
Now consider the definition of a curried function:

fun curried_plus a = fn b : int => a + b;
==> val curried_plus = fn : int -> int -> int

Note the type of curried_plus: int -> int -> int groupsimplicitly as int ->
(int -> int). Where plus is a function mapping a pair (tuple) of integers to an
integer, curried_plus is a function mapping an integer to a function that maps
an integer to an integer:

curried_plus 3;
==> val it = fn : int -> int

EXAMPLE |0.39

Shorthand notation for
currying

examece |0.40
Folding (reduction) in ML

exampLe |0.41
Curried fold in ML

exampre 10.42
Currying in ML vs Scheme

10.5 Higher-Order Functions 533

plus 3;
==> Error: operator domain (int * int) and operand (int) don’t agree

To make it easier to declare functions like curried_plus, ML allows a sequence
of operands in the formal parameter position of a function declaration:

fun curried_plus a b : int = a + b;
==> val curried_plus = fn : int -> int -> int

This form is simply shorthand for the declaration in the previous example; it
does not declare a function of two arguments. Curried_plus has a single formal
parameter, a. Its return value is a function with formal parameter b that in turn
returns a + b.

Using tuple notation, our fold function might be declared as follows
in ML:

fun fold (£, i, 1) =
case 1 of
nil => i
| h::t=>f (h, fold (£, i, t));
==> val fold = fn : (’a * ’b -> ’b) * ’b * ’a list -> ’b

The curried version would be declared as follows:

fun curried_fold £ i 1 =
case 1 of
nil => i
| h::t=>f (h, curried_fold f i t);
==> val fold = fn : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b

curried_fold plus;

==> val it = fn : int -> int list -> int
curried_fold plus O;

==> val it = fn : int list -> int
curried_fold plus 0 [1, 2, 3, 4, 5];

==> val it = 15 : int

Note again the difference in the inferred types of the functions.

It is of course possible to define curried_fold by nesting occurrences
of the explicit fn notation within the function’s body. The shorthand nota-
tion, however, is substantially more intuitive and convenient. Note also that
MLs syntax for function calls—juxtaposition of function and argument—makes
the use of a curried function more intuitive and convenient than it is in
Scheme:

curried_fold plus 0 [1, 2, 3, 4, 5]; (* ML *)
(((curried_fold +) 0) (1 2 3 4 5)) ; Scheme

534 Chapter 10 Functional Languages

EXAMPLE | 043

Declarative
(nonconstructive) function
definition

Theoretical Foundations

Mathematically, a function is a single-valued mapping: it associates every element
in one set (the domain) with (at most) one element in another set (the range). In
conventional notation, we indicate the domain and range of, say, the square root
function by writing

sgrt: R — R
We can also define functions using conventional set notation:
sart = {(x,) 6RXR\y>OAx:y2}

Unfortunately, this notation is nonconstructive: it doesn’t tell us how to compute
square roots. Church designed the lambda calculus to address this limitation.

IN MORE DEPTH

Lambda calculus is a constructive notation for function definitions. We consider
it in more detail on the PLP CD. Any computable function can be written as a
lambda expression. Computation amounts to macro substitution of arguments
into the function definition, followed by reduction to simplest form via simple
and mechanical rewrite rules. The order in which these rules are applied captures
the distinction between applicative and normal-order evaluation, as described
in Section 6.6.2. Conventions on the use of certain simple functions (e.g., the
identity function) allow selection, structures, and even arithmetic to be cap-
tured as lambda expressions. Recursion is captured through the notion of fixed
ponts.

Functional Programming in Perspective

Side-effect—free programming is a very appealing idea. As discussed in Sections
6.1.2 and 6.3, side effects can make programs both hard to read and hard to
compile. By contrast, the lack of side effects makes expressions referentially trans-
parent—independent of evaluation order. Programmers and compilers of a purely
functional language can employ equational reasoning, in which the equivalence of
two expressions at any point in time implies their equivalence at all times. Equa-
tional reasoning in turn is highly appealing for parallel execution: In a purely
functional language, the arguments to a function can safely be evaluated in paral-
lel with each other. In a lazy functional language, they can be evaluated in parallel
with (the beginning of) the function to which they are passed. We will consider
these possibilities further in Section 12.4.5.

10.7 Functional Programming in Perspective 535

Unfortunately, there are common programming idioms in which the canonical
side effect—assignment—plays a central role. Critics of functional programming
often point to these idioms as evidence of the need for imperative language
features. I/O is one example. We have seen (in Section 10.4) that sequential
access to files can be modeled in a functional manner using streams. For graph-
ics and random file access we have also seen that the monads of Haskell can
cleanly isolate the invocation of actions from the bulk of the language, and
allow the full power of equational reasoning to be applied to both the compu-
tation of values and the determination of the order in which I/O actions should
occur.

Other commonly cited examples of “naturally imperative” idioms include:

Initialization of complex structures: The heavy reliance on lists in Lisp, ML, and
Haskell reflects the ease with which functions can build new lists out of the
components of old lists. Other data structures—multidimensional arrays in
particular—are much less easy to put together incrementally, particularly if
the natural order in which to initialize the elements is not strictly row-major
or column-major.

Summarization: Many programs include code that scans a large data structure
or a large amount of input data, counting the occurrences of various items
or patterns. The natural way to keep track of the counts is with a dictionary
data structure in which one repeatedly updates the count associated with the
most recently noticed key.

In-place mutation: In programs with very large data sets, one must economize
as much as possible on memory usage, to maximize the amount of data that
will fit in memory or the cache. Sorting programs, for example, need to sort
in place, rather than copying elements to a new array or list. Matrix-based
scientific programs, likewise, need to update values in place.

These last three idioms are examples of what has been called the trivial update
problem. If the use of a functional language forces the underlying implementation
to create a new copy of the entire data structure every time one of its elements
must change, then the result will be very inefficient. In imperative programs, the
problem is avoided by allowing an existing structure to be modified in place.
One can argue that while the trivial update problem causes trouble in
Lisp and its relatives, it does not reflect an inherent weakness of functional
programming per se. What is required for a solution is a combination of
convenient notation—to access arbitrary elements of a complex structure—and
an implementation that is able to determine when the old version of the structure
will never be used again, so it can be updated in place instead of being copied.
Sisal, pH, and Single Assignment C (SAC) combine array types and iterative
syntax with purely functional semantics. The iterative constructs are defined as
syntactic sugar for tail-recursive functions. When nested, these constructs can eas-
ily be used to initialize a multidimensional array. The semantics of the language
say that each iteration of the loop returns a new copy of the entire array. The com-
piler can easily verify, however, that the old copy is never used after the return, and

536

Chapter 10 Functional Languages

can therefore arrange to perform all updates in place. Similar optimizations could
be performed in the absence of the imperative syntax, but require somewhat more
complex analysis. Cann reports that the Livermore Sisal compiler was able to elim-
inate 99 to 100% of all copy operations in standard numeric benchmarks [Can92].
Scholz reports performance for SAC competitive with that of carefully optimized
modern Fortran programs [Sch03].

Significant strides in both the theory and practice of functional programming
have been made in recent years. Wadler [Wad98b] argued in the late 1990s that the
principal remaining obstacles to the widespread adoption of functional languages
were social and commercial, not technical: most programmers have been trained in
animperativestyle;softwarelibrariesand developmentenvironmentsfor functional
programming are not yet as mature as those of their imperative cousins. Experience
over the past decade appears to have borne out this characterization: with the
development of better tools and a growing body of practical experience, functional
languages have begun to see much wider use. Functional features have also begun
to appear in such mainstream imperative languages as C#, Python, and Ruby.

\/CHECK YOUR UNDERSTANDING

|2. What is the difference between normal-order and applicative-order evaluation?
What is lazy evaluation?

I3. What is the difference between a function and a special form in Scheme?
[4. What does it mean for a function to be strict?

I5. What is memoization?

DESIGN & IMPLEMENTATION

Side effects and compilation

As noted in Section 10.2, side-effect freedom has a strong conceptual appeal:
it frees the programmer from concern over undocumented access to nonlo-
cal variables, misordered updates, aliases, and dangling pointers. Side-effect
freedom also has the potential, at least in theory, to allow the compiler to
generate faster code: like aliases, side effects often preclude the caching of val-
ues in registers (Section 3.5.1) or the use of constant and copy propagation
(Sections ©)16.3 and ©)16.4).

So what are the technical obstacles to generating fast code for functional
programs? The trivial update problem is certainly a challenge, as is the cost
of heap management for values with unlimited extent. Type checking imposes
significant run-time costs in languages descended from Lisp, but not in those
descended from ML. Memoization is expensive in Miranda and Haskell, though
so-called strictness analysis may allow the compiler to eliminate it in cases where
applicative order evaluation is provably equivalent. These challenges are all the
subject of continuing research.

10.8 Summary and Concluding Remarks 537

[6. How can one accommodate I/O in a purely functional programming model?

I7. What is a higher-order function (also known as a functional form)? Give three
examples.

I8. What is currying? What purpose does it serve in practical programs?
[9. What is the trivial update problem in functional programming?
20. Summarize the arguments for and against side-effect—free programming.

21. Why do functional languages make such heavy use of lists?

Summary and Concluding Remarks

In this chapter we have focused on the functional model of computing. Where
an imperative program computes principally through iteration and side effects
(i.e., the modification of variables), a functional program computes principally
through substitution of parameters into functions. We began by enumerating a
list of key issues in functional programming, including first-class and higher-
order functions, polymorphism, control flow and evaluation order, and support
for list-based data. We then turned to a concrete example—the Scheme dialect of
Lisp—to see how these issues may be addressed in a programming language. We
also considered, more briefly, ML and its descendants: Miranda, Haskell, Caml,
and F#.

For imperative programming languages, the underlying formal model is often
taken to be a Turing machine. For functional languages, the model is the lambda
calculus. Both models evolved in the mathematical community as a means of for-
malizing the notion of an effective procedure, as used in constructive proofs. Aside
from hardware-imposed limits on arithmetic precision, disk and memory space,
and so on, the full power of lambda calculus is available in functional languages.
While a full treatment of the lambda calculus could easily consume another book,
we provided an overview on the PLP CD. We considered rewrite rules, evaluation
order, and the Church-Rosser theorem. We noted that conventions on the use
of very simple notation provide the computational power of integer arithmetic,
selection, recursion, and structured data types.

For practical reasons, many functional languages extend the lambda calculus
with additional features, including assignment, I/O, and iteration. Lisp dialects,
moreover, are homoiconic: programs look like ordinary data structures, and can
be created, modified, and executed on the fly.

Lists feature prominently in most functional programs, largely because they
can easily be built incrementally, without the need to allocate and then modify
state as separate operations. Many functional languages provide other structured
data types as well. In Sisal and Single Assignment C, an emphasis on iterative

538 Chapter 10 Functional Languages

syntax, tail-recursive semantics, and high-performance compilers allows multidi-
mensional array-based functional programs to achieve performance comparable
to that of imperative programs.

10.1

10.2

10.3

10.4

10.5

10.6

Exercises

Is the define primitive of Scheme an imperative language feature? Why
or why not?

It is possible to write programs in a purely functional subset of an imper-
ative language such as C, but certain limitations of the language quickly
become apparent. What features would need to be added to your favorite
imperative language to make it genuinely useful as a functional language?
(Hint: what does Scheme have that C lacks?)

Explain the connection between short-circuit Boolean expressions and
normal-order evaluation. Why is cond a special form in Scheme, rather
than a function?

Write a program in your favorite imperative language that has the same
input and output as the Scheme program of Figure 10.1. Can you make
any general observations about the usefulness of Scheme for symbolic
computation, based on your experience?

Suppose we wish to remove adjacent duplicate elements from a list (e.g.,
after sorting). The following Scheme function accomplishes this goal:

(define unique
(lambda (L)
(cond
((null? L) L)
((null? (cdr L)) L)
((eqv? (car L) (car (cdr L))) (unique (cdr L)))
(else (cons (car L) (unique (cdr L)))))))

Write a similar function that uses the imperative features of Scheme to
modify L “in place,” rather than building a new list. Compare your function
to the code above in terms of brevity, conceptual clarity, and speed.

Write tail-recursive versions of the following:

(a) ;; compute integer log, base 2
;; (number of bits in binary representation)
;; works only for positive integers
(define log2
(lambda (n)
(if (=n 1) 0 (+ 1 (log2 (quotient (+ n 1) 2))))))

10.7

10.8

10.9

10.10

10.9 Exercises 539

(b) ;3 find minimum element in a list
(define min
(lambda (1)
(cond
((qul1? 1) *O)
((null? (cdr 1)) (car 1))
(#t (let ((a (car 1))
(b (min (cdr 1))))
(if (< b a) ba))))

Write purely functional Scheme functions to

() return all rotations of a given list. For example, (rotate ’(a b c d
e)) shouldreturn ((abcde) (bcdea) (cdeab) (dea
b c) (e a b c d)) (in some order).

(b) return a list containing all elements of a given list that satisfy a given
predicate. For example, (filter (lambda (x) (< x5)) (3958
2 4 7)) should return (3 2 4).

Write a purely functional Scheme function that returns a list of all
permutations of a given list. For example, given (a b c¢) it should return
(a@bc) (bac) (bca) (achb) (cab) (cba)) (in some
order).

Modify the Scheme program of Figure 10.1 to simulate an NFA (nondeter-
ministic finite automaton), rather than a DFA. (The distinction between
these automata is described in Section 2.2.1.) Since you cannot “guess” cor-
rectly in the face of a multivalued transition function, you will need either
to use explicitly coded backtracking to search for an accepting series of
moves (if there is one), or keep track of all possible states that the machine
could be in at a given point in time.

Consider the problem of determining whether two trees have the same
fringe: the same set of leaves in the same order, regardless of internal
structure. An obvious way to solve this problem is to write a function
flatten that takes a tree as argument and returns an ordered list of its
leaves. Then we can say

(define same-fringe
(lambda (T1 T2)
(equal (flatten T1) (flatten T2))))

Write a straightforward version of flatten in Scheme. How efficient is
same-fringe when the trees differ in their first few leaves? How would
your answer differ in a language like Haskell, which uses lazy evaluation
for all arguments? How hard is it to get Haskell’s behavior in Scheme, using
delay and force?

540 Chapter 10 Functional Languages

10.11

10.12

We can use encapsulation within functions to delay evaluation in ML:

datatype ’a delayed_list =

pair of ’a * ’a delayed_list

| promise of unit -> ’a * ’a delayed_list;
fun head (pair (h, r)) = h

| head (promise (f)) = let val (a, b)
fun rest (pair (h, 1)) =

| rest (promise (f))

f () in a end;

=

let val (a, b)

f () in b end;
Now given

fun next_int (n) = (n, promise (fn () => next_int (n + 1)));
val naturals = promise (fn () => next_int (1));

we have
head (naturals) = 1
head (rest (naturals)) == 2
head (rest (rest (naturals))) = 3

The delayed list naturals is effectively of unlimited length. It will be
computed out only as far as actually needed. If a value is needed more
than once, however, it will be recomputed every time. Show how to use
pointers and assignment (Example 7.78, page 351) to memoize the values
of a delayed_list, so that elements are computed only once.

In Example 10.26 we showed how to implement interactive I/O in terms of
the lazy evaluation of streams. Unfortunately, our code would not work as
written, because Scheme uses applicative-order evaluation. We can make
it work, however, with calls to delay and force.

Suppose we define input to be a function that returns an “istream”—a
promise that when forced will yield a pair, the cdr of which is an istream:

(define input (lambda () (delay (cons (read) (input)))))

Now we can define the driver to expect an “ostream”—an empty list or a
pair, the cdr of which is an ostream:

(define driver
(lambda (s)
(if (null? s) 0O
(display (car s))
(driver (force (cdr s))))))

Note the use of force.

Show how to write the function squares so that it takes an istream as
argument and returns an ostream. You should then be able to type (driver
(squares (input))) and see appropriate behavior.

10.13

10.14

10.15

10.16

10.9 Exercises 541

Write new versions of cons, car, and cdr that operate on streams. Using
them, rewrite the code of the previous exercise to eliminate the calls to
delay and force. Note that the stream version of cons will need to avoid
evaluating its second argument; you will need to learn how to define macros
(derived special forms) in Scheme.

Write the standard quicksort algorithm in Scheme, without using any
imperative language features. Be careful to avoid the trivial update prob-
lem; your code should run in expected time # log #.

Rewrite your code using arrays (you will probably need to consult a
Scheme manual for further information). Compare the running time and
space requirements of your two sorts.

Write insert and find routines that manipulate binary search trees in
Scheme (consult an algorithms text if you need more information). Explain
why the trivial update problem does not impact the asymptotic perfor-
mance of insert.

Write an LL(1) parser generator in purely functional Scheme. If you consult
Figure 2.23, remember that you will need to use tail recursion in place of
iteration. Assume that the input CFG consists of a list of lists, one per
nonterminal in the grammar. The first element of each sublist should be
the nonterminal; the remaining elements should be the right-hand sides
of the productions for which that nonterminal is the left-hand side. You
may assume that the sublist for the start symbol will be the first one in the
list. If we use quoted strings to represent grammar symbols, the calculator
grammar of Figure 2.15 would look like this:

>(("program" ("stmt_list" "3"))
("stmt_list" ("stmt" "stmt_list") ())
("stmt" ("id" ":=" "expr") ("read" "id") ("write" "expr"))
("expr" ("term" "term_tail"))
("term" ("factor" "factor_tail"))
("term_tail" ("add_op" "term" "term_tail") ())
("factor_tail" ("mult_op" "factor" "FT") ())
("add_op" ("+") ("-"))
("mult_op" ("x") ("/"))
("factor" ("id") ("number") ("(" "expr" ")")))

Your output should be a parse table that has this same format, except that
every right-hand side is replaced by a pair (a two-element list) whose first
element is the predict set for the corresponding production, and whose
second element is the right-hand side. For the calculator grammar, the
table looks like this:

(("program" (("$$" "id" "read" "write") ("stmt_list" "3")))
("stmt_list"

(("id" "read" "write") ("stmt" "stmt_list"))

s ON

542

Chapter 10 Functional Languages

10.17

("stmt"

(("ig") ("id" ":=" "expr"))

(("read") ("read" "id"))

(("write") ("write" "expr")))

("expr" (("(" "id" "number") ("term" "term_tail")))
("term" (("(" "id" "number") ("factor" "factor_tail")))
("term_tail"

"+ m=") ("add_op" "term" "term_tail"))

(("g$" ") "id" "read" "write") ()))
("factor_tail"

(= on/")y ("mult_op" "factor" "factor_tail"))
((rggn mynm mgn n_wowign vread" "write") ())
("add_op" (("+") ("+")) (("=") ("=-")))

("mult_op" (("*") ("x")) (("/") ("/")))

("factor"

((rid") ("id"))

(("number") ("number"))

((u(n) (u(u "expr" n)u))))

(Hint: you may want to define a right_context function that takes
a nonterminal B as argument and returns a list of all pairs (A, (),
where A is a nonterminal and (3 is a list of symbols, such that for some
potentially different list of symbols o, A — « B (3. This function is
useful for computing FOLLOW sets. You may also want to build a tail-
recursive function that recomputes FIRST and FOLLOW sets until they con-
verge. You will find it easier if you do not include ¢ in either set, but
rather keep a separate estimate, for each nonterminal, of whether it may
generate e€.)

Write an ML version of the code in Figure 10.1. Alternatively (or in addi-
tion), solve Exercises 10.9, 10.10, 10.14, 10.15, or 10.16 in ML.

© 10.18-10.21 In More Depth.

10.22

10.23

10.24

Explorations

Read the original self-definition of Lisp [MAE " 65]. Compare it to a similar
definition of Scheme [AS96, Chap. 4]. What is different? What has stayed
the same? What is built into apply and eval in each definition? What do
you think of the whole idea? Does a metacircular interpreter really define
anything, or is it “circular reasoning”?

Read the Turing Award lecture of John Backus [Bac78], in which he argues
for functional programming. How does his FP notation compare to the
Lisp and ML language families?

Learn more about monads in Haskell. Pay particular attention to the
definition of lists. Explain the relationship of the list monad to list

10.11 Bibliographic Notes 543

comprehensions (Example 7.94), iterators, continuations (Section 6.2.2),
and backtracking search.

[0.25 Read ahead and learn about transactional memory (Section 12.4.4). Then
read up on STM Haskell [HMPHO5]. Explain how monads facilitate the
serialization of updates to locations shared between threads.

[0.26 We have seen that Lisp and ML include such imperative features as assign-
ment and iteration. How important are these? What do languages like
Haskell give up (conversely, what do they gain) by insisting on a purely
functional programming style? In a similar vein, what do you think of
attempts in several recent imperative languages (notably Python and C#—
see the sidebar on page 531) to facilitate functional programming with
function constructors and unlimited extent?

[0.27 Investigate the compilation of functional programs. What special issues
arise? What techniques are used to address them? Starting places for your
search might include the compiler texts of Appel [App97], Wilhelm and
Maurer [WM95], and Grune et al. [GBJLO1].

© 10.28—10.30 In More Depth.

Bibliographic Notes

Lisp, the original functional programming language, dates from the work of
McCarthy and his associates in the late 1950s. Bibliographic references for Caml,
Erlang, Haskell, Lisp, Miranda, ML, Scheme, Single Assignment C, and Sisal can
be found in Appendix A. Historically important dialects of Lisp include Lisp
1.5 [MAET65], MacLisp [Moo78] (no relation to the Apple Macintosh), and
Interlisp [TM81].

The book by Abelson and Sussman [AS96], long used for introductory pro-
gramming classes at MIT and elsewhere, is a classic guide to fundamental pro-
gramming concepts, and to functional programming in particular. Additional
historical references can be found in the paper by Hudak [Hud89], which surveys
the field from the point of view of Haskell.

The lambda calculus was introduced by Church in 1941 [Chu4l]. A classic
reference is the text of Curry and Feys [CF58]. Barendregt’s book [Bar84] is a
standard modern reference. Michaelson [Mic89] provides an accessible introduc-
tion to the formalism, together with a clear explanation of its relationship to
Lisp and ML. Stansifer [Sta95, Sec. 7.6] provides a good informal discussion and
correctness proof for the fixed-point combinator Y (see Exercise ¢)10.9).

John Backus, one of the original developers of Fortran, argued forcefully for
a move to functional programming in his 1977 Turing Award lecture [Bac78].
His functional programming notation is known as FP. Peyton Jones [Pey87,
Pey92], Wilhelm and Maurer [WM95, Chap. 3], Appel [App97, Chap. 15],
and Grune et al. [GBJLO1, Chap. 7] discuss the implementation of functional

544

Chapter 10 Functional Languages

languages. Peyton Jones’s paper on the “awkward squad” [Pey01] is widely con-
sidered the definitive introduction to monads in Haskell.

While Lisp dates from the early 1960s, it is only in recent years that functional
languages have seen widespread use in large commercial systems. Wadler [Wad98a,
Wad98b] describes the situation as of the late 1990s, when the tide began to turn.
Descriptions of many subsequent projects can be found in the proceedings of
the Commercial Users of Functional Programming workshop (cufp.galois.com),
held annually since 2004. The Journal of Functional Programming also publishes
a special category of articles on commercial use. Armstrong reports [Arm07]
that the Ericsson AXD301, a telephone switching system comprising more than
two million lines of Erlang code, has achieved an astonishing “nine nines” level of
reliability—the equivalent of less than 32 ms of downtime per year.

