
Science of Computer Programming 59 (2006) 147–169

www.elsevier.com/locate/scico

Using classic problems to teach Java framework
design

H. Conrad Cunninghama,∗, Yi Liu a, Cuihua Zhangb

aDepartment of Computer and Information Science, University of Mississippi, 201 Weir Hall, University,
MS 38677, USA

bDepartment of Computer and Information Systems, Northwest Vista College, AB 135, San Antonio,
TX 78251, USA

Received 4 October 2004; received in revised form 22 February 2005; accepted 21 March 2005
Available online 8 August 2005

Abstract

All programmers should understand the concept of software families and know the techniques
for constructing them. This paper suggests that classic problems, such as well-known algorithms
and data structures, are good sources for examples to use in a study of software family design. The
paper describes two case studies that can be used to introduce students in a Java software design
course to the construction of software families using software frameworks. The first is the family of
programs that use the well-known divide and conquer algorithmic strategy. The second is the family
of programs that carry out traversals of binary trees.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Software family; Software framework; Hot spot; Design pattern; Divide and conquer; Tree traversal

1. Introduction

In a classic paper [17] David Parnasobserves, “Variations in application demands,
variations in hardware configurations, and the ever-present opportunity to improve a
program means that software willinevitablyexist in many versions”. Parnas proposes that
development of a program should therefore be approached as the development of a whole

∗ Corresponding author. Tel.: +1 662 915 5358; fax: +1 662 915 5623.
E-mail address:cunningha@cs.olemiss.edu (H.C. Cunningham).

0167-6423/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2005.07.009

http://www.elsevier.com/locate/scico

148 H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169

family of related programs. He defines a program family as a set of programs “whose
common properties are so extensive that it is advantageous to study the common properties
of the programs before analyzing individual members”. If programmers can recognize and
exploit these “common aspects and predicted variabilities” [24], the resulting software can
be constructed to reuse code for the common parts and to enable convenient adaptation
of the variable parts for specific circumstances. In a 2001 article [18], Parnas observes
that there is “growing academic interest and some evidence of real industrial success in
applying this idea,” yet “the majority of industrial programmers seem to ignore it in their
rush to produce code”. He warns [18], “if you are developing a family of programs, you
must do so consciously, or you will incur unnecessary long-term costs”. If software families
are to become pervasive, future industrial programmers (i.e., students) need to learn to
design and construct them effectively. This is an important challenge for computing science
and software engineering curricula.

How can we respond to this challenge within a college course? The general form of
software family is called asoftware product line. A software product line is “a collection
of systems sharing a managed set of features constructed from a common set of core
software assets” [1]. These assets include a common software architecture shared by
the products and a set of reusable software components [10]. Software product lines in
their full generality are difficult to teach in the setting of a college course because their
design may require extensive knowledge of the application domain and use of special-
purpose languages and tools [24]. However, the form of software family called asoftware
framework is more accessible. A framework is essentially the reusable skeleton of a
software product line implemented entirely in an object-oriented programming language.
The common aspects are expressed by a set of abstract and concrete “classes that cooperate
closely with each other and together embody a reusable solution” [2] to problems in the
application domain. The framework can be customized to a specific member of the family
by “plugging in” appropriate subclasses at thesupported points of variability. Frameworks
are more accessible to students because the techniques build upon standard object-oriented
concepts that students are taught in undergraduate courses.

How can we introduce students to the concept of software frameworks? Some advocate
that teaching of frameworks be integrated into the introductory computing science
sequence. For example, they might be used to introduce a generalization of sorting
algorithms [15] or to provide a new approach to teaching the standard introductory data
structures material [23]. They might also provide interesting programming examples and
exercises to reinforce object-oriented programming concepts and introduce design patterns
into the introductory sequence [13,14,16]. Some textbooks use standard Java libraries such
as the Collections, Swing, and input/output frameworks and case studies such as drawing
padsas examples to illustrate the concepts and techniques [12].

There are at least four levels of understanding of software frameworks that students
need to develop. First, because frameworks arenormally implemented in an object-oriented
language such as Java, students must understand the applicable language concepts, which
include inheritance, polymorphism, encapsulation, and delegation. Second, they need to
understand the framework concepts and techniques sufficiently well to use frameworks
to build their own custom applications. Third, students should be able to do detailed
design and implementation of frameworks for which the common and variable aspects

H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169 149

are already known. Fourth, they need to learn to analyze a potential family, identify its
possible common and variable aspects, and evaluate alternative framework architectures.

In teaching the framework concepts, instructors must devise appropriate case studies.
They wish to use several interesting and realistic, but well-focused, examples and exercises
to illustrate the framework techniques. However, building a good framework requires
an extensive understanding of the application domain addressed by the framework.
Because students come to a course with diverse backgrounds and experiences, it may
takeconsiderable time for students to come to a sufficient understanding of an application
domain to design a framework. This paper takes the view that various classic problems,
such as standard algorithms and data structures, are useful in introducing framework
concepts and programming techniques when little time is available to spend on the domain
analysis. This approach might be used in a dedicated course on software families [5,7] or
in teaching modules within an advanced Javaprogramming or software design course.

Sections 2and3 of this paper seek to address aspects of the second and third levels
of understanding noted above—teaching the concepts so that students can use an existing
framework and so that they can develop their own frameworks given an analysis of the
points of commonality and variability in the family.Section 2introduces the technical
concepts and techniques for construction and use of frameworks.Section 3illustrates these
concepts and techniques using a case study that develops a framework for the family
of divide and conquer algorithms and applies it to develop a quicksort application [6].
The case study assumes that the students have a basic understanding of object-oriented
programming using Java and understand concepts such as inheritance, polymorphism,
delegation, recursion, and sorting.

Sections 4 and 5 seek to address aspects of the fourth level of framework under-
standing—teaching students how to analyze potential families and identify the common
and variable aspects.Section 4introduces the techniques for systematically generalizing
an application to discover the points of variability.Section 5illustrates these concepts
using binary tree traversals as the basis for a family [11]. This family of applications
includes members ranging from standard preorder, postorder, and in-order traversals to
more complicated computations carried out by navigating through binary tree structures in
a custom manner.

Section 6discusses related work, andSection 7summarizes the paper and gives a few
observations about use of the techniques in a college course.

2. Framework construction and use

In beginning programming classes students are taught to focus on a specific problem
and write a program to solve that problem. This is appropriate becausebeginning students
need to learn a particular programming language and grasp specific, concrete programming
skills. However, as students gain more experience in programming, they should be taught
to work at higher levels of abstraction. Instructors need to shift the students’ focus to
techniques for building a software family.

In building a software family, it is important to separate concerns. We must separate the
aspects of the design that are common to all family members from those aspects that are

150 H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169

Fig. 1. Hot spot subsystem.

specific to one family member. Furthermore, we must separate the various common and
variable aspects from each other and considerthem independently, one at a time. We use
the termsfrozenspot to denote a common (or shared) aspect of the family andhot spotto
denote a variable aspect of the family [22].

A software frameworkis a generic application that allows the creation of different
specific applications from a family [21]. It is an abstract design that can be reused within a
whole application domain. In a framework, the frozen spots of the family are represented
by a set of abstract and concrete base classes that collaborate in some structure. A behavior
that is common to all members of the family is implemented by a fixed, concretetemplate
method in a base class. A hot spot is represented by a group of abstracthook methods. A
template method calls a hook method to invoke a function that is specific to one family
member.

A hot spot is realized in a framework as ahot spot subsystem. A hot spot subsystem
typically consists of an abstract base class,concrete subclasses of that base class, and
perhaps other related classes [22]. The hook methods of the abstract base class define the
interface to the alternative implementations of the hot spot. The subclasses of the base
class implement the hook methods appropriately for a particular choice for a hot spot.
Fig. 1shows a UML class diagram of ahot spot subsystem.

There are two principles for framework construction—unification and separation [8].
Theunification principleuses inheritance to implement the hot spot subsystem. Both the
template methods and hook methods are defined in the same abstract base class. The hook
methods are implemented in subclasses of the base class. InFig. 1, thehot spot subsystem
for the unification approach consists of the abstract base class and its subclasses. The
separation principleuses delegation to implement the hot spot subsystem. The template
methods are implemented in a concrete context class; the hook methods are defined in
a separate abstract class and implemented in its subclasses. The template methods thus
delegate work to an instance of the subclass that implements the hook methods. InFig. 1,
the hot spot subsystem for the separation approach consists of both the client (context)
class and the abstract base class and its subclasses.

A framework is a system that is designed with generality and reuse in mind; and
design patterns [9], which are well-established solutions to program design problems
that commonly occur in practice, are the intellectual tools for achieving the desired
level of generality and reuse. Two design patterns, corresponding to the two framework
construction principles, are useful in implementation of the frameworks.

H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169 151

The Template Method patternuses the unification principle. In using this pattern, a
designer should “define the skeleton of an algorithm in an operation, deferring some
steps to a subclass” to allow a programmer to “redefine the steps in an algorithm without
changing the algorithm’s structure” [9]. It captures the commonalities in the template
method in a base class while encapsulating the differences as implementations of hook
methods in subclasses, thus ensuring that the basic structure of the algorithm remains the
same [8].

The Strategy patternuses the separation principle. In using this pattern, a designer
should “define a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently from the clients that use
it” [9]. It extends the behavior of a client class by calling methods in another class.
The common aspects (template methods) are captured in the concrete methods of the
client; the variable aspects (hook methods) are declared in the abstract Strategy class and
implemented by its subclasses. The behavior of the client class can thus be changed by
supplying it with instances of different Strategy subclasses.

What is the primary difference between the two construction principles in practice? To
introduce new behaviors for hook methods, the unification principle requires programmers
to implement a new subclass of the base class defining the template methods. This kind
of extension by overriding often requires detailed knowledge of the base class, but it is
otherwise relatively straightforward for programmers to understand and implement. The
unification principle results in efficient but inflexible execution. To introduce new hook
method behavior in a framework that uses the separation principle, the client code needs
to instantiate an object from a class that has hook methods with the desired behaviors
and supply it to the class containing the template methods. If the needed hook behaviors
have been implemented previously, then the programmer must just choose an appropriate
implementation from the component library. If the needed hook behaviors have not been
implemented, then the programmer must implement an appropriate new class. This class
is sometimes more difficult to implement than the equivalent unification solution, but
its implementation usually requires less knowledge of the internal details of the class
containing the template methods. An application of a framework that uses the separation
principle may execute slightly less efficiently than a unification-based framework, but
separation may enable the application to adapt itself at runtime by merely changing object
references [8]. In the next section, weexamine a simple software family and consider
framework designs based on each of these design principles.

3. Divide and conquer framework

To illustrate the construction and use of a framework, we can use the family of divide
and conquer algorithms as an example of a software family. Thedivide and conquer
technique solves a problem by recursively dividing it into one or more subproblems of the
same type, solving each subproblem independently, and then combining the subproblem
solutions to obtain a solution for the original problem. Well-known algorithms that use this
technique include quicksort, mergesort, and binary search. Since this algorithmic strategy
can be applied to a whole set of problems of a similar type, divide and conquer, in addition

152 H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169

function solve (Problem p) returns Solution
{ if isSimple(p)

return simplySolve(p);
else

sp[] = decompose(p);
for (i= 0; i < sp.length; i = i+1)

sol[i] = solve(sp[i]);
return combine(sol);

}

Fig. 2. Divide and conquer pseudo-code.

to its meaningful influence in algorithms, serves well thepurpose of examining a software
family.

The pseudo-code for the divide and conquer technique for a problemp is shown
in Fig. 2, as it might be presented in an undergraduate algorithms textbook. In this
pseudo-code fragment, functionsolve() represents a template method because its
implementation is the same for all algorithms in the family. However, functions
isSimple(), simplySolve(), decompose(), andcombine() represent hook methods
because their implementations vary among the different family members. For example,
the simplySolve() function for quicksort is quite different from that for mergesort.
For mergesort, thecombine() function performs the major work whiledecompose()
is simple. The opposite holds for quicksort and binary search.

The remainder of this section illustrates the construction and use of a divide and
conquer framework. First, we examine how to construct a framework using the unification
principle; then we apply this framework to develop an application using the quicksort
algorithm. Finally, we look at how the framework can be implemented using the separation
principle.

3.1. Constructing a framework using unification

If the unification principle and Template Method pattern are used to structure the divide
and conquer framework, then the template methodsolve() is a concrete method defined
in an abstract class; the definitions of the four hook methods are deferred to a concrete
subclass whose purpose is to implement a specific algorithm.

Fig. 3 shows a design for a divide and conquer framework expressed as a Unified
Modeling Language (UML) class diagram. The family includes three members:
QuickSort, MergeSort, and BinarySearch. Method solve() is a final method in
the base classDivConqTemplate. It is shared among all the classes. Hook methods
isSimple(), simplySolve(), decompose(), andcombine() are abstract methods in
the base class; they are overridden in each concrete subclass (Quicksort, MergeSort,
andBinarySearch).

To generalize the divide and conquer framework, we introduce the two auxiliary types
Problem andSolution. Problem is a type that represents the problem to be solved by
the algorithm.Solution is a type that represents the result returned by the algorithm.
In Java, we define these types using tag interfaces (i.e., interfaces without any methods)

H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169 153

Fig. 3. Template method for divide and conquer.

abstract public class DivConqTemplate
{ public final Solution solve(Problem p)

{ Problem[] pp;
if (isSimple(p)){ return simplySolve(p); }
else { pp = decompose(p); }
Solution[] ss = new Solution[pp.length];
for(int i=0; i < pp.length; i++)
{ ss[i] = solve(pp[i]); }
return combine(p,ss);

}
abstract protected boolean isSimple (Problem p);
abstract protected Solution simplySolve (Problem p);
abstract protected Problem[] decompose (Problem p);
abstract protected Solution combine(Problem p,Solution[] ss);

}

Fig. 4. Template method framework implementation.

as follows:

public interface Problem {};
public interface Solution {};

Given the auxiliary types above, we define the abstract Template Method class
DivConqTemplate as shown inFig. 4. We generalize thecombine() method to take both
the description of the problem and the subproblem solution array as arguments. The divide

154 H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169

public class QuickSortDesc implements Problem, Solution
{ public QuickSortDesc(int[]arr, int first, int last)

{ this.arr = arr; this.first = first; this.last = last; }
public int getFirst () { return first; }
public int getLast () { return last; }
private int[] arr; // instance data
private int first, last;

}

Fig. 5. QuicksortProblem andSolution implementation.

and conquer framework thus consists of theDivConqTemplate class and theProblem
andSolution interfaces. We can now consider an application built using this framework
library.

3.2. Building an application of the framework

In using a traditional procedure or class library, a client’s program is in control of the
computation; it “calls down” to code from the library. However, frameworks usually exhibit
aninversion of control. Theframework’s code is in control of the computation; itstemplate
methods “call down” to the client-supplied hookmethods. This section illustrates the use
of the divide and conquer framework to build a quicksort application.

Quicksort is an in-place sort of a sequence of values. The description of a problem
consists of the sequence of values and designators for the beginning and ending elements
of the segment to be sorted. To simplify the presentation, we limit its scope to integer
arrays. Therefore, it is sufficient to identify a problem by the array and the beginning and
ending indices of the unsorted segment. Similarly, a solution can be identified by the array
and the beginning and ending indices of the sorted segment. This similarity between the
Problem andSolution descriptions enables us to use the same object to describe both a
problem and its corresponding solution. Thus, we introduce the classQuickSortDesc to
define the needed descriptor objects as shown inFig. 5. Given the definitions for base class
DivConqTemplate and auxiliary classQuickSortDesc, we can implement the concrete
subclassQuickSort as shown inFig. 6.

In a teaching module using this case study, both the framework (i.e., the abstract class)
and the framework application (i.e., the implementation of quicksort) can be presented
to the students so that they can discern the collaborations and relationships among the
classes clearly. However, a clear distinction must be made between the framework and
its application. As an exercise, the students can be assigned the task of modifying the
quicksort application to handle more general kinds of objects. Other algorithms such as
mergesort and binary search should also be assigned as exercises. The amount of work
that each hook method has to do differs fromone specific algorithm to another. In the
quicksort implementation, most of the work is done in thedecompose() method, which
implements the splitting or pivoting operation of quicksort. In mergesort, however, more
work will be done in thecombine() operation because it must carry out the merge phase
of the mergesort algorithm.

H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169 155

public class QuickSort extends DivConqTemplate
{ protected boolean isSimple (Problem p)

{ return (((QuickSortDesc)p).getFirst() >=
((QuickSortDesc)p).getLast());

}
protected Solution simplySolve (Problem p)
{ return (Solution) p ; }
protected Problem[] decompose (Problem p)
{ int first = ((QuickSortDesc)p).getFirst();

int last = ((QuickSortDesc)p).getLast();
int[] a = ((QuickSortDesc)p).getArr ();
int x = a[first]; // pivot value
int sp = first;
for (int i = first + 1; i <= last; i++)
{ if (a[i] < x) { swap (a, ++sp, i); } }
swap (a, first, sp);
Problem[] ps = new QuickSortDesc[2];
ps[0] = new QuickSortDesc(a,first,sp-1);
ps[1] = new QuickSortDesc(a,sp+1,last);
return ps;

}
protected Solution combine (Problem p, Solution[] ss)
{ return (Solution) p; }
private void swap (int [] a, int first, int last)
{ int temp = a[first];

a[first] = a[last];
a[last] = temp;

}
}

Fig. 6. Quicksort application.

3.3. Constructing a framework using separation

As an alternative to the above design, we can use the separation principle and Strategy
pattern to implement a divide and conquer framework. The UML class diagram for this ap-
proach is shown inFig. 7. The template method is implemented in the (concrete) context
classDivConqContext as shown inFig. 8. The hook methods are defined in the (abstract)
Strategy classDivConqStrategy as shown inFig. 9. The context class delegates the hook
method calls to a reference to the instance of the Strategy class that it stores internally. Note
that the Strategy approach is more flexible than the Template Method approach in that it is
possible to switch Strategy objects dynamically by using thesetAlgorithm() method of
the context class. Constructing an application of the Strategy-based framework for Quick-
sortrequires that we implement a subclass of the abstract classDivConqStrategy that is
quite similar to theQuickSort class used in the unification framework (shown inFig. 6).

The divide and conquer family of algorithms is a simple example that can be used
to illustrate both approaches to framework design. It consists of a set of algorithms that
should be known to the students. Hence, the application domain should be easy to explain.
In the associated project, students can be given the framework and asked to construct

156 H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169

Fig. 7. Strategy pattern for divide and conquer framework.

public final class DivConqContext
{ public DivConqContext (DivConqStrategy dc)

{ this.dc = dc; }
public Solution solve (Problem p)
{ Problem[] pp;

if (dc.isSimple(p)) { return dc.simplySolve(p); }
else { pp = dc.decompose(p); }
Solution[] ss = new Solution[pp.length];
for (int i = 0; i < pp.length; i++)
{ ss[i] = solve(pp[i]); }
return dc.combine(p, ss);

}
public void setAlgorithm (DivConqStrategy dc)
{ this.dc = dc; }
private DivConqStrategy dc;

}

Fig. 8. Strategy context class implementation.

abstract public class DivConqStrategy
{ abstract public boolean isSimple (Problem p);

abstract public Solution simplySolve (Problem p);
abstract public Problem[] decompose (Problem p);
abstract public Solution combine(Problem p, Solution[] ss);

}

Fig. 9. Strategy object abstract class.

H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169 157

applications. This requires an understanding of the framework’s design at a level sufficient
for using it, without requiring the students to develop their own framework abstractions.
However, the students also need experience in identifying the hot spots and developing the
needed framework abstractions. We consider those generalization steps in the following
sections.

4. Framework development by generalization

Framework design involves incrementally evolving a design rather than discovering it
in one single step. Typically, this evolution is a process of examining existing designs for
family members, identifying the frozen spots andhot spots of the family, and generalizing
the program structure to enable reuse of the code for frozen spots and use of different
implementations for each hot spot. This generalization may be done in an informal, organic
manner as codified by Roberts and Johnson in the Patterns for Evolving Frameworks [19]
or it may be done using more systematic techniques.

Schmid’ssystematic generalizationmethodology is one technique [22] that seeks to
identify the hot spots a priori and construct a framework systematically. This methodology
identifies the following steps for construction of a framework [22]:

• creation of a fixed application model,
• hot spot analysis and specification,
• hot spot high-level design,
• generalization transformation.

In Schmid’s approach, the fixed application model is an object-oriented design for a
specific application within the family. Once a complete model exists, the framework
designer analyzes the model and the domain to discover and specify the hot spots. The
designer begins by asking which of the featuresof the application are characteristic of all
applications in the domain (i.e., frozen spots) and which need to be made flexible (i.e.,
hot spots). Guided by appropriate design patterns [9], the designer then replaces a fixed,
specialized class at a hot spot by an abstract baseclass. The hot spot’s features are accessed
through the common interface of the abstract class. However, the design of the hot spot
subsystem enables different concrete subclasses of the base class to be used to provide the
variant behaviors.

Another systematic approach isfunction generalization[20]. Where Schmid’s
methodology generalizes the class structure of the design for an application, the function
generalization approach generalizes the functional structure of a prototype application to
produce a generic application [4]. It introduces the hot spot abstractionsinto the design by
replacing concrete operations by more general abstract operations or perhaps by replacing
concrete data types by more abstract types. These abstract entities become “parameters”
of the generalized functions. That is, the generalized functions are higher-order, having
explicit or implicit parameters that are themselves functions. After generalizing the various
hot spots of the application, the resulting generalized functions are used to generate a
framework in an object-oriented language such as Java.

The case study in the next section explains the thinking process that a designer may
use in analyzing and designing a framework. It uses an informal technique motivated by
Schmid’s systematic generalization and by function generalization.

158 H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169

Fig. 10. Binary tree using Composite design pattern.

5. Binary tree traversal framework

As a case studyon framework generalization, consider another classic problem, a binary
tree traversal [11]. This case study seeks to address aspects of the fourth level of framework
understanding described inSection 1—learning to analyze potential software families to
identify the frozen and hot spots—as well asreinforcing and extending the students’
understanding of the principles and techniques for constructing frameworks.

A binary tree is a hierarchical structure that is commonly taught in a lower-level
undergraduate data structures course in a computing science curriculum. In this case
study, we implement the binary tree with theBinTree class hierarchy, which is a
structure designed according to theComposite design pattern[9] as shown inFig. 10.
The Composite pattern “lets clients treat individual objects and compositions of objects
uniformly” [9]. Class BinTree has the Component base-class role in the pattern
implementation, subclassNode has the Composite role, and subclassNil has the Leaf
role. Nil is also implemented according to theSingleton pattern[9], which guarantees
exactly one instance exists.Fig. 11shows the Javacode for theBinTree class hierarchy.

A traversalis a systematic technique for “visiting” all the nodes in a tree. One common
traversal technique for a binary tree is thepreorder traversal. This is a depth-first traversal,
that is, it accesses a node’s children before it accesses the node’s siblings. The preorder
traversal can be expressed by a recursive procedure as follows:

procedure preorder(t)
{ if t null, then return;

perform visit action for root node of tree t;
preorder(left subtree of t);
preorder(right subtree of t);

}

The visit action varies from application to another. TheBinTree hierarchy inFig. 11
supports a simple preorder traversal operationpreorder() that merely prints a node’s
value when it is visited.

H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169 159

abstract public class BinTree
{ public void setValue(Object v) { } // mutators

public void setLeft(BinTree l) { } // default
public void setRight(BinTree r) { }
abstract public void preorder(); // traversal
public Object getValue() { return null; } // accessors
public BinTree getLeft() { return null; } // default
public BinTree getRight() { return null; }

}

public class Node extends BinTree
{ public Node(Object v, BinTree l, BinTree r)

{ value = v; left = l; right = r; }
public void setValue(Object v) { value = v; } // mutators
public void setLeft(BinTree l) { left = l; }
public void setRight(BinTree r) { right = r; }
public void preorder() // traversal
{ System.out.println("Visit node with value: " + value);

left.preorder(); right.preorder();
}
public Object getValue() { return value; } // accessors
public BinTree getLeft() { return left; }
public BinTree getRight() { return right; }
private Object value; // instance data
private BinTree left, right;

}

public class Nil extends BinTree
{ private Nil() { } // private to require use of getNil()

public void preorder() { }; // traversal
static public BinTree getNil() { return theNil; } // Singleton
static public BinTree theNil = new Nil();

}

Fig. 11. Binary tree class hierarchy.

Building a softwareframework for binary tree traversals involves the general principles
for framework design. We begin with the simple preorder operation and tree structure given
in Fig. 11and consider the domain of the family and identify the frozen spots and hot spots.

What is the scope of the family of binary tree traversals? The family should include
at least the standard kinds of depth-first traversals (e.g., preorder, postorder, and in-order)
and allow flexible visit actions on the nodes. In general, the visit action will be a function
on the node’s attributes and on the accumulated state of the traversal computed along the
sequence of all the nodes accessed to that pointin the computation. The framework should
enable traversal orders other than the depth first. The framework should also support binary
search trees, but it is not necessary that it support multiway trees or general graphs.

What, then, are the commonalities, that is, frozen spots, that all members of the family
exhibit? Considering the scope and examining the prototype application, we choose the
following frozen spots:

160 H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169

(1) The structure of the tree, as defined by theBinTree hierarchy, cannot be redefined by
clients of the framework.

(2) A traversal accesses every element of the tree once, unless the computation determines
that it can stop before it completes the traversal.

(3) A traversal performs one or more visitactions associated with an access to an element
of the tree.

What are the variabilities—the hot spots—that exist among members of the family
of binary tree traversals? Again considering the scope and examining the prototype
application, we identify the primary hot spots to be the following:

(1) Variability in the visit operation’s action. It should be a function of the current node’s
value and the accumulated result of the visits to the previous nodes in the traversal.

(2) Variability in ordering of the visit action with respect to subtree traversals. That is, the
client should be able to select preorder, postorder, in-order, etc.

(3) Variability in the tree navigation technique. That is, the client should be able to select
node access orders other than left-to-right, depth-first, total traversals.

Now, given these variabilities, we examine how it can be introduced into a framework by
generalizing the prototype application.

5.1. Generalizing the visit action

In this case study, hot spot #1 requires making the visit action a feature that can be
customized by the client of the framework tomeet the specific application’s needs. The
visit action, in general, varies from one application to another. The fact that there are visit
actions associated with the access to an element is a common behavior of the framework.
The visit action itself is the variable behavior that is to be captured in a hot spot subsystem.
As we see inSection 2, we can introduce the variable behavior into a framework using
either the unification principle (e.g., using the Template method pattern) or the separation
principle (e.g., using the Strategy pattern). Because theBinTree structure is afrozen spot
(i.e., cannot be changed by the framework user), we choose to use the Strategy pattern to
implement variable visit behavior. This allows different visit actions to be used with the
same tree structure.

We introduce this hot spot into the traversal program by generalizing the classes in
the BinTree hierarchy to have the Context role in the Strategy pattern. We generalize
the BinTree method preorder to be a template method and define a Strategy
interfacePreorderStrategy for objects that implement the hook methods. The new
implementation ofpreorder must capture the general concept of a preorder traversal but
delegate the specific preorder visit action to a method in a Strategy object. We specify
methodvisitPre on interfacePreorderStrategy as the hook method to encapsulate
the preorder visit action.Furthermore, we define thepreorder method (which had
no arguments in the prototype program) to take two arguments: a “state” object that
accumulates the relevant aspects of the traversal as the nodes are accessed and an instance
of thePreorderStrategy Strategyobject.Fig. 12shows the changes made to the code in
Fig. 11 for this generalization step.

H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169 161

abstract public class BinTree
{ ...

abstract public Object preorder(Object ts, PreorderStrategy v);
...

}

public class Node extends BinTree
{ ...

public Object preorder(Object ts,PreorderStrategy v) //traversal
{ ts = v.visitPre(ts, this);

ts = left.preorder(ts, v);
ts = right.preorder(ts, v);
return ts;

}
...

}

public class Nil extends BinTree
{ ...

public Object preorder(Object ts, PreorderStrategy v)
{ return ts; }
...

}

public interface PreorderStrategy
{ abstract public Object visitPre(Object ts, BinTree t); }

Fig. 12. Binary tree with generalized visit action.

5.2. Generalizing the visit order

In this case study, hot spot #2 requires making the “order” of the visit actions a feature
that can be customized for a specific application. That is, it must be possible to vary the
order of a node’s visit action with respect to the traversals of its children. The framework
should support preorder, postorder, and in-order traversals and perhaps combinations of
those. A good generalization of the three standard traversals is one that potentially performs
a visit action on the node at any of three different points—on first arrival (i.e., a “left” visit),
between the subtree traversals (i.e., a “bottom” visit), and just before departure from the
node (i.e., a “right” visit). This is sometimes called anEuler tour traversal[11].

Weenable the needed variability for this hot spot by generalizing the hot spot subsystem
introduced in the previous step instead of introducing a new hot spot subsystem. We
generalize the behavior of thepreorder methodin the BinTree hierarchy and replace
it by a methodtraverse that encodes the common features of all Euler tour traversals but
delegates the visit actions at the three possible visit points to hook methods defined on the
Strategy object. We also observe that there was no visit action associated with aNil subtree
in the previous versions of the program. In some applications, it might be useful to have
some action associated with a visit to aNil subtree. So we add a fourth hook method for
handling this as a special case. In the framework, we thus replace thePreorderStrategy

162 H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169

abstract public class BinTree
{ ...

abstract public Object traverse(Object ts, EulerStrategy v);
...

}

public class Node extends BinTree
{ ...

public Object traverse(Object ts, EulerStrategy v) // traversal
{ ts = v.visitLeft(ts,this); // upon arrival from above

ts = left.traverse(ts,v);
ts = v.visitBottom(ts,this); // upon return from left
ts = right.traverse(ts,v);
ts = v.visitRight(ts,this); // upon completion
return ts;

}
...

}

public class Nil extends BinTree
{ ...

public Object traverse(Object ts, EulerStrategy v)
{ return v.visitNil(ts,this); }
...

}

public interface EulerStrategy
{ abstract public Object visitLeft(Object ts, BinTree t);

abstract public Object visitBottom(Object ts, BinTree t);
abstract public Object visitRight(Object ts, BinTree t);
abstract public Object visitNil(Object ts, BinTree t);

}

Fig. 13. Binary tree with Euler traversal.

interfacefrom the previous program with a newEulerStrategy interface that defines the
new hook methods.Fig. 13 shows the changes made to the code inFig. 11 to incorporate
the Euler tour traversal order for the visit actions.

5.3. Generalizing the tree navigation

In this case study, hot spot #3 requires making the navigation of the tree structure a
feature that can be customized to meet the needs of a specific application. In particular,
it should enable variability in the order in which nodes are accessed. For example, the
framework should support breadth-first traversals as well as depth-first traversals. As we
consider this generalization step, two of the frozen spots are of relevance:

(1) TheBinTree hierarchy cannot be modified by clients of the framework.
(2) A traversal must access every element of the tree once, unless the computation

determines that it can stop before it completes the traversal.

H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169 163

In the previous version of the binary tree traversal framework, the traversal technique is
implemented directly by thetraverse method of theBinTree hierarchy. The navigation
technique implemented by this method must be made a customizable feature of the
framework. However, because a client of the framework cannot modify theBinTree class
or its subclasses, we must use the separation principle to implement the tree navigation
subsystem. We could again use the Strategy pattern. However, another design pattern is
more applicable to this situation—theVisitor pattern[9].

The intent of the Visitor pattern is to enable the functionality of an object structure to be
extended without modifying the structure’s code. The Visitor pattern does this by putting
the new functionality in a separate class. Objects of this Visitor class access the elements
of the object structure to carry out the desired new computation. An element of the object
structure then calls back to the Visitor’s method corresponding to the element’s type. This
“double-dispatching” uses polymorphism to avoid explicit checks on the type of an object.
The Visitor pattern is quite compatible with object structures designed according to the
Composite design pattern.

In the binary tree traversal framework design, we assign theBinTree class hierarchy
the role of the Element hierarchy in the Visitor pattern’s description [9], and we introduce
a BinTreeVisitor interface to take on the role of the Visitor class in the description.
We alsogeneralize thetraverse method of theBinTree hierarchy and replace it by the
accept method for the Visitor pattern. Theaccept method of aBinTree element takes
a BinTreeVisitor object and delegates the work of the traversal back to an appropriate
method of that visitor object. This method applies the appropriate binary tree visit actions
and navigates through the tree as needed for the application. TheBinTreeVisitor
interface has methods namedvisit with overloaded implementations for each subclass
in theBinTree hierarchy. The constraint on the framework given by frozen spot #2 (i.e., to
access each node once) becomes a requirement upon the designer of the visitor classes that
implementBinTreeVisitor. Fig. 14 illustrates the class structure of a traversal program
based on the Visitor design pattern.Fig. 15shows the Java code for the traversal program.

The Visitor framework has two levels. The upper level of the framework is characterized
by the Visitor pattern as described above. However, the specific designs for the Visitor
objects themselves may be small frameworks. Consider a program to carry out an
Euler tour traversal. We can choose to design a concrete classEulerTourVisitor
that implements theBinTreeVisitor interface. Similar to the design for hot spot #2’s
traverse method, this class delegates the specific traversal visit actions to a Strategy
object of typeEulerStrategy. Fig. 16 illustrates the class structure of this lower-level
design.Fig. 17shows its implementation in Java.

The binary tree traversal framework is quite general. It supports a large set of binary tree
algorithms. For example, it is possible using this framework to implement a “mapping”
operation on trees. That is, itis feasible to implement a program that changes the value
stored at every node of a tree by applying a mapping function to the previous value.
Such a program can either beimplemented directly as aBinTreeVisitor or as a
customization of the Euler tour traversal framework. It is also possible to implement a
breadth-first traversal operation by implementing an appropriateBinTreeVisitor class.
Other interesting applications of the framework might be to use it to implement programs
for binary search trees.

164 H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169

Fig. 14. Binary tree Visitor framework.

Programming projects accompanyinguse of this case study in a course can
require development of various applications or require the design of new kinds of
BinTreeVisitor subsystems. Instructors can also ask the students to apply the analysis
and design techniques to other possible families.

As with the divide and conquer algorithms, binary tree structures and algorithms are
well known to computing scienceand software engineering students. Use of this case study
in an upper-level undergraduate course shouldnot require an extensive explanation of the
domain of the framework. However, this case study, and the application of the techniques to
other problems, does require considerable thought and analysis on the part of the students.
It is not a trivial activity for students to discover a sequence of generalization steps and
effective hot spot abstractions that are appropriate for a large family of programs.

6. Related work

The thesis of this paper is that classic problems, such as those related to classic
algorithms and data structures, are helpfulexamples for instructors to use in teaching
computing science and software engineering students techniques for the design of software
families. This paper describes two relatively simple examples designed to help teach both
the use and construction of the type of software family called a software framework. The

H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169 165

abstract public class BinTree
{ public void setValue(Object v) { } // mutators

public void setLeft(BinTree l) { } // default
public void setRight(BinTree r) { }
abstract public void accept(BinTreeVisitor v); // accept Visitor
public Object getValue() { return null; } // accessors
public BinTree getLeft() { return null; } // default
public BinTree getRight() { return null; }

}

public class Node extends BinTree
{ public Node(Object v, BinTree l, BinTree r)

{ value = v; left = l; right = r; }
public void setValue(Object v) { value = v; } // mutators
public void setLeft(BinTree l) { left = l; }
public void setRight(BinTree r) { right = r; }
// accept a Visitor object
public void accept(BinTreeVisitor v) { v.visit(this); }
public Object getValue() { return value; } // accessors
public BinTree getLeft() { return left; }
public BinTree getRight() { return right; }
private Object value; // instance data
private BinTree left, right;

}

public class Nil extends BinTree
{ private Nil() { } // private to require use of getNil()

// accept a Visitor object
public void accept(BinTreeVisitor v) { v.visit(this); }
static public BinTree getNil() { return theNil; } // Singleton
static public BinTree theNil = new Nil();

}

public interface BinTreeVisitor
{ abstract void visit(Node t);

abstract void visit(Nil t);
}

Fig. 15. Binary tree using Visitor pattern.

examples are aimed at advanced Java programming or software design courses in which
students have not been previously exposed to frameworks in a significant way. The goal is
to improve the students’ abilities to construct and use abstractions in the design of software
families.

Some advocate that use of frameworks be integrated into the introductory computing
science sequence, e.g., into the data structures course [23]. In this approach, the
understanding and use of standard data structure frameworks replace many of the
traditional topics, which focus on the construction of data structures and algorithms. The
availability of standard libraries such as the Java Collections framework makes this a viable
approach. The argument is that when students enter the workplace, they more often face

166 H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169

Fig. 16. Euler tour traversal Visitor framework.

public class EulerTourVisitor implements BinTreeVisitor
{ public EulerTourVisitor(EulerStrategy es, Object ts)

{ this.es = es; this.ts = ts; }
public void setVisitStrategy(EulerStrategy es) // mutators
{ this.es = es; }
public void setResult(Object r) { ts = r; }
public void visit(Node t) // Visitor hookimplementations
{ ts = es.visitLeft(ts,t); // upon first arrival from above

t.getLeft().accept(this);
ts = es.visitBottom(ts,t); // upon return from left
t.getRight().accept(this);
ts = es.visitRight(ts,t); // upon completion of this node

}
public void visit(Nil t) { ts = es.visitNil(ts,t); }
public Object getResult(){ return ts; } // accessor
private EulerStrategy es; // encapsulates state changing ops
private Object ts; // traversal state

}

public interface EulerStrategy
{ abstract public Object visitLeft(Object ts, BinTree t);

abstract public Object visitBottom(Object ts, BinTree t);
abstract public Object visitRight(Object ts, BinTree t);
abstract public Object visitNil(Object ts, BinTree t);

}

Fig. 17. Euler tour traversal Visitor.

the task of using standard components to build systems than that of writing programs in
which they re-implement basic data structures and algorithms. Although it is appropriate
that we cultivate the use of high-level abstractions, we should be careful not to abandon
teaching of the intellectual fundamentals of computing science in a desire to train better
technicians.

Others have constructed small softwareframeworks that are useful in pedagogical
settings. Of particular interest is the work by Nguyen and Wong. In work similar to the

H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169 167

divide and conquer example in this paper, they use the Template Method and Strategy
patterns and the divide and conquer algorithmic approach to develop a generalized sorting
framework [15]. They believe that their design not only gives students “a concrete way
of unifying seemingly disparate sorting algorithms but also” helps them understand the
algorithms “at the proper level of abstraction”. In an interesting design, they extend
their framework to measure algorithm performance in a non-intrusive way by using the
Decorator design pattern.

The goal of the divide and conquer framework in this paper differs from the goal of
Nguyen and Wong’s sorting framework. This paper focuses on teaching framework use
and construction. The case study seeks to support any divide and conquer algorithm, not
just sorting. The use of sorting algorithms to demonstrate the framework was incidental.
However, future development of the divide and conquer framework can benefit from the
design techniques illustrated by Nguyen and Wong.

In [13], Nguyen and Wong describe an interesting framework design that decouples
recursive data structures from the algorithms that manipulate them. The design uses the
State and Visitor design patterns to achieve the separation. In subsequent work, using the
Strategy and Factory Method patterns, they extend this framework to enable lazy evaluation
of the linear structures [14].

Nguyen and Wong’s binary search tree framework in [13] has some similarities to
the binary tree traversal framework in this paper. Their work seeks to teach students in
introductory data structures courses to encapsulate “variant and invariant behaviors” in
separate classes and use well-defined “communication protocols” to combine them into an
application program. The use of design patterns, such as Visitor and State, is central to
their design technique. The binary tree traversal case study in this paper has a similar goal
in the context of teaching students how to design and construct frameworks in general.
However, this paper approaches the design as the systematic application of a sequence
of generalizing transformations to a prototypeapplication. This systematic technique first
identifies a point of variation and then chooses a design pattern that is effective in providing
the needed flexibility.

While this paper uses design patterns in teaching the construction of frameworks,
Christensen approaches the task from the other side [3]. He expresses concern that the
conventional “catalogue-like” approaches to teaching design patterns “leave the impression
that they are isolated solutions to independent problems”. To overcome this misconception,
he advocates the use of well-designed frameworks to teach the effective use of design
patterns. He emphasizes that “a framework makes it clear that design patterns work
together, and that patterns really define roles” rather than classes. He laments that “the
subject of frameworks is sadly overlooked in teaching”. The work in this paper seeks to
help remedy that situation.

7. Conclusion

The first author has used the divide and conquer example and related programming
exercises three times in Java-based courses on software architecture. They are effective
in introducing students to the basic principles of framework construction and use if care

168 H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169

is taken to distinguish the framework from its application. However, other exercises are
needed to help students learn to separate the variable and common aspects of a program
family and to define appropriate abstractinterfaces for the variable aspects.

The binary tree traversal framework case study and a similar case study on a
cosequential processing framework [4,20] are designed to illustrate techniques that can
help expand the ability of students to discover appropriate framework abstractions. The
first author has used the cosequential processing problem (but not the case study) as the
basis for a term project in a Java-based course on software engineering [5,7]. It proved
to be a problem that challenged the students. However, the students’ feedback indicated
that more explicit attention should be paid to teaching systematic techniques for hot spot
analysis and design.

In summary, software frameworks and design patterns are important concepts that
students should learn in an advanced programming or software design course. These
concepts may seem very abstract to the students, and, therefore, we need to start with
familiar, non-daunting problems. This paper suggests the use of classic problems such
as divide and conquer algorithms and binary tree traversals as examples to provide a
familiar, simple and understandable environment in which students can better understand
the framework concepts. Design patterns,suchas the Template Method pattern and the
Strategy pattern, are illustrated through the design of these simple frameworks. Since
students are familiar with the algorithms and data structures and may have implemented
them, they can concentrate on thedesign process more instead of the coding process and
thus learn more effectively how to design a framework and build a program family.

Acknowledgements

The work of Cunningham and Liu was supported, in part, by a grant from Acxiom
Corporation titled “The Acxiom Laboratory for Software Architecture and Component
Engineering (ALSACE)”. Liu’s work was also supported by University of Mississippi
Graduate School Summer Research and Dissertation Fellowships. The authors thank Will
Vaughan, Pallavi Tadepalli, and anonymous referee #1 for making several comments and
suggestions that led to improvements in this paper.

References

[1] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, Addison-Wesley, 1998.
[2] T. Budd, An Introduction Object-Oriented Programming, 3rd edition, Addison-Wesley, 2002.
[3] H.B. Christensen, Frameworks: Putting design patterns into perspective, in: Proceedings of the SIGCSE

Conference on Innovation and Technology in Computer Science Education, ITiCSE, ACM, 2004,
pp. 142–145.

[4] H.C. Cunningham, P. Tadepalli, Using function generalization to design a cosequential processing
framework, Tech. Rep. UMCIS-2004-22, Department ofComputer and Information Science, University
of Mississippi, December 2004.

[5] H.C. Cunningham, Y. Liu, C. Zhang, Keeping secrets within a family: Rediscovering Parnas, in: Proceedings
of the Software Engineering Research and Practice (SERP) Conference, CSREA Press, 2004, pp. 712–718.

[6] H.C. Cunningham, Y. Liu, C. Zhang, Using the divide and conquer strategy to teach Java framework design,
in: Proceedings of the International Conference on the Principles and Practice of Programming in Java,
PPPJ, 2004, pp. 40–45.

H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169 169

[7] H.C. Cunningham, P. Tadepalli, Y. Liu, Secrets, hot spots,and generalization: Preparing students to design
software families, Journal of Computing Sciences in Colleges 20 (6) (2005) 74–82.

[8] M. Fontoura, W. Pree, B. Rumpe, The UML Profile for Framework Architectures, Addison-Wesley, 2002.
[9] E. Gamma, R. Helm, R. Johnson, J. Vlissides, DesignPatterns: Elements of Reusable Object-Oriented

Software, Addison-Wesley, 1995.
[10] G.C. Gannod, R.R. Lutz, An approach to architecturalanalysis of product lines, in: Proceedings of the 22nd

International Conference on Software Engineering, ICSE 00, 2000, pp. 548–557.
[11] M.T. Goodrich, R. Tamassia, Data Structures and Algorithms in Java, 3rd edition, Wiley, 2004.
[12] X. Jia, Object-Oriented Software Development using Java: Principles, Patterns, and Frameworks, Addison-

Wesley, 2000.
[13] D. Nguyen, S.B. Wong, Patterns for decoupling data structures and algorithms, in: Proceedings of ACM

SIGCSE Technical Symposium, 1999, pp. 87–91.
[14] D. Nguyen, S.B. Wong, Design patterns for lazyevaluation, in: Proceedings of ACM SIGCSE Technical

Symposium, 2000, pp. 21–25.
[15] D. Nguyen, S.B. Wong, Design patterns for sorting, in: Proceedings of ACM SIGCSE Technical

Symposium, 2001, pp. 263–267.
[16] D. Nguyen, S.B. Wong, Design patterns for games,in: Proceedings of ACM SIGCSE Technical Symposium,

2002, pp. 126–130.
[17] D.L. Parnas, On the design and development of program families, IEEE Transactions on Software

Engineering SE-2 (1) (1976) 1–9.
[18] D. Parnas, Software design, in: D.M. Hoffman, D.M. Weiss (Eds.), Software Fundamentals: Collected

Papers by David L. Parnas, Addison-Wesley, 2001, pp. 137–142.
[19] D. Roberts, R. Johnson, Patterns for evolving frameworks, in: R. Martin, D. Riehle, F. Buschmann (Eds.),

Pattern Languages of Program Design 3, Addison-Wesley, 1998, pp. 471–486.
[20] P. Tadepalli, H.C. Cunningham, Using function generalization with Java to design a cosequential framework,

in: Proceedings of the Conference on Applied Research in Information Technology, Acxiom Laboratory for
Applied Research, 2005, pp. 95–101.

[21] H.A. Schmid, Systematic framework design by generalization, Communications of the ACM 40 (10) (1997)
48–51.

[22] H.A. Schmid, Framework design by systematic generalization, in: M.E. Fayad, D.C. Schmidt, R.E. Johnson
(Eds.), Building Application Frameworks: Object-Oriented Foundations of Framework Design, Wiley,
1999, pp. 353–378.

[23] J. Tenenberg, A framework approach to teaching data structures, in: Proceedings of ACM SIGCSE Technical
Symposium, 2003, pp. 210–214.

[24] D.M. Weiss, C.T.R. Lai, Software Product-Line Engineering: A Family-Based Software Development
Process, Addison-Wesley, 1999.

	Using classic problems to teach Java framework design
	Introduction
	Framework construction and use
	Divide and conquer framework
	Constructing a framework using unification
	Building an application of the framework
	Constructing a framework using separation

	Framework development by generalization
	Binary tree traversal framework
	Generalizing the visit action
	Generalizing the visit order
	Generalizing the tree navigation

	Related work
	Conclusion
	Acknowledgements
	References

