Available online at www.sciencedirect.com

Science of
SCIENCE DIRECT?®
@ Computer
< i Programming
ELSEVIER Science of Computer Programming 59 (2006) 147-169

www.elsever.com/locate/scico

Using classic problems to teach Java framework
design

H. Conrad Cunninghaf¥f, Yi Liu2 Cuihua Zhan§

3Department of Computer and Information Science,vdrsity of Mississippi, 201 Weir Hall, University,
MS 38677, USA
bDepartment of Computer and Information Systems, Northwest Vista College, AB 135, San Antonio,
TX 78251, USA

Received 4 October 2004; received in revised form 22 February 2005; accepted 21 March 2005
Available online 8 August 2005

Abstract

All programmers should understand the concafpsoftware families and know the techniques
for constructing them. This paper suggests that classic problems, such as well-known algorithms
and data structures, are good sources for examples to use in a study of software family design. The
paper describes two case studies that can be used to introduce students in a Java software design
course to the construction of software families using software frameworks. The first is the family of
programs that use the well-known divide and conquer algorithmic strategy. The second is the family
of programs that carry out traversals of binary trees.
© 2005 Elsevier B.V. All rights reserved.

Keywods: Software family; Software framework; Hot spot; Design pattern; Divide and conquer; Tree traversal

1. Introduction

In a classic pagr [17] David Parnasobserves, “Variations in application demands,
variations in hardware configurations, and the ever-present opportunity to improve a
program means that software wiitlevitablyexist in many versions”. Parnas proposes that
development of a program should therefore be approached as the development of a whole

* Corresponding author. Tel.: +1 662 915 5358; fax: +1 662 915 5623.
E-mail addresscunningha@cs.olemigsiu (H.C. Cunningham).

0167-6423/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2005.07.009

http://www.elsevier.com/locate/scico

148 H.C. Cunningham et al. / Science ob@puter Programming 59 (2006) 147-169

family of related programs. He defines aogram family as a set of programs “whose
common properties are so extensive that it is advantageous to study the common properties
of the programs before analyzing individual members”. If programmers can recognize and
exploit these “common aspects and predicted variabilitiezf]| the resulting software can

be constructed to reuse code for the common parts and to enable convenient adaptation
of the variable parts for specific circumstances. In a 2001 artidg Parnas observes

that there is “growing acaddminterest and some evidence of real industrial success in
applying this idea,” yet “the majority of industrial programmers seem to ignore it in their
rush to produce code”. He warngd, “if you are developing a family of programs, you

must do so consciously, or you will incur unnecessary long-term costs”. If software families
are to become pervasive, future industrial programmers (i.e., students) need to learn to
design and construct them effectively. This is an important challenge for computing science
and software engineering curricula.

How can we respond to this challenge within a college course? The general form of
software family is called adtware product line A sdtware product line is “a collection
of systems sharing a managed set of features constructed from a common set of core
software assets”]]. These assets include a common software architecture shared by
the products and a set of reusable software compondifs Foftware product lines in
their full generality are difficult to teach in the setting of a college course because their
design may require extensive knowledge of the application domain and use of special-
purpose languages and tool]. However, the form of sftware fanily called asoftware
framework is more accessible. A framework is essentially the reusable skeleton of a
sditware product line implemented entirely in an object-oriented programming language.
The common aspects are expressed by a set of abstract and concrete “classes that cooperate
closely with each other and togethembody a reusable solutior?][to problems in the
application domain. The framework can bestamized to a specific member of the family
by “plugging in” appropriate subclasses at Hupported points of variability. Frameworks
are more accessible to students because thaigees build upon standhobject-oriented
concepts that students are taught in undergraduate courses.

How can we introduce students to the concept of software frameworks? Some advocate
that teaching of frameworks be integraténto the introductory computing science
saguence. For example, they might be used to introduce a generalization of sorting
algorithms [L5] or to provide a new approach to teaching the standard introductory data
structues material 23]. They might also provide interesting programming examples and
exercises to reinforce object-oriented programming concepts and introduce design patterns
into the introductory sequencé,14,16]. Some textbooks use standard Java libraries such
as the Collections, Swing, and input/output frameworks and case studies such as drawing
padsas examples to illustrate the concepts and technidiigs [

There are at least four levels of understanding of software frameworks that students
need to develop. First, because frameworksarenally implemented in an object-oriented
language such as Java, students must understand the applicable language concepts, which
include inheritance, polymorphism, encapsulation, and delegation. Second, they need to
understand the framework concepts and techniques sufficiently well to use frameworks
to build their own custom applications. Third, students should be able to do detailed
design and implementation of frameworks for which the common and variable aspects

H.C. Cunningham et al. / Science ob@puter Programming 59 (2006) 147-169 149

are already known. Fourth, they need to learn to analyze a potential family, identify its
possible common and variable aspects, antuate alternative framework architectures.

In teaching the framework concepts, instars must devise appropriate case studies.
They wish to use several interesting and realistic, but well-focused, examples and exercises
to illustrate the framework techniques. However, building a good framework requires
an extensive understanding of the application domain addressed by the framework.
Because students come to a course with diverse backgrounds and experiences, it may
take considerable time for students to come to a sufficient understanding of an application
domain to design a framework. This paper takes the view that various classic problems,
sweh as standard algorithms and data structures, are useful in introducing framework
concepts and programming techniques when little time is available to spend on the domain
analysis. This approach might be used in a dedicated course on software fabilfjes [
in teaching modules within an advanced Jpuagramming or software design course.

Sectbns 2and 3 of this paper seek to address aspects of the second and third levels
of understanding noted above—teaching thecemts so that students can use an existing
framework and so that they can develop their own frameworks given an analysis of the
points of commondity and variability in the family.Section 2introduces the technical
concepts and techniques for construction and use of framev®eksion 3Jllustrates these
concepts and techniques using a case study that develops a framework for the family
of divide and conquer algorithms and applies it to develop a quicksort applicajon [
The case study assumes that the students have a basic understanding of object-oriented
programming using Java and understand concepts such as inheritance, polymorphism,
delegation, recursion, and sorting.

Sectbns 4 and 5 seek to address aspects of the fourth level of framework under-
standing—teaching students how to analyze potential families and identify the common
and variable aspectSection 4dintroduces the techniques for systematically generalizing
an application to discover the points of variabilifection 5illustrates these concepts
using binary tree traversals as the basis for a faniifij.[This fanily of applications
includes merhers ranging from standard preorder, postorder, and in-order traversals to
more complicated computations carried out by navigating through binary tree structures in
a custom ranner.

Section 6discusses related work, ase:ction 7summarizes the paper and gives a few
observations about use of the techniques in a college course.

2. Framework construction and use

In beginning programming classes students are taught to focus on a specific problem
and write a program to solve that problenhigis appropriate becaabeginning students
need to learn a particular programming language and grasp specific, concrete programming
skills. However, as students gain more expade in programming, they should be taught
to work at hgher levels of abstraction. Instructors need to shift the students’ focus to
techniques for building a software family.

In building a software family, it is important to separate concerns. We must separate the
aspects of the design that are common to all family members from those aspects that are

150 H.C. Cunningham et al. / Science ob@puter Programming 59 (2006) 147-169

Abstract Base Class
o o
Hookmethod
[[1
Concrete Class1 Concrete Class2 Concrete Class3
Hookmethod Hookmethod Hookmethod

Fig. 1. Hot spot subsystem.

specific to one family member. Furthermpvee must sparate the various common and
variable aspects from each other and consttiem independently, one at a time. We use
the termdrozenspotto denote a common (or shared) aspect of the familyrartdpotto
denote a variable aspect of the famiBZ].

A software frameworks a generic application that allows the creation of different
specific applications from a familR[]. It is an abstract design that can be reused within a
whole application domain. In a framework, the frozen spots of the family are represented
by a set of abstract and concrete base classes that collaborate in some structure. A behavior
that is common to all members of the family is implemented by a fixed, contnetglate
metodin a bag class. A hot pot is represented by a group of abstiagbk methodsA
template method calls a hook method to invoke a function that is specific to one family
member.

A hot spot is realized in a framework ashat spot subsysteni hot spot subsystem
typically consists of an abstract base classcrete subclasses of that base class, and
perhaps other tated classes2P]. The hook methods of the abstract base class define the
interface to the alternative implementats of the hot spot. The subclasses of the base
class implement the hook methods appropriately for a particular choice for a hot spot.
Fig. 1shows a UML class diagnaof ahot spot subsystem.

There are two principles for framework construction—unification and separajon [

The unification principleuses inheritance to implement the hot spot subsystem. Both the
template methods and hook methods are defined in the same abstract base class. The hook
methods are implemented in subclasses of the base cldsg. [f) thehot spot subsystem

for the unification approach consists of the abstract base class and its subclasses. The
separation principleuses delegation to implement the hot spot subsystem. The template
methods are implemented in a concrete context class; the hook methods are defined in
a eparate abstract class and implemented in its subclasses. The template methods thus
delegate work to an instance of the subclass that implements the hook methBids.lin

the hot spot subsystem for the separation approach consists of both the client (context)
class and the abstract base class and its subclasses.

A framework is a system that is designed with generality and reuse in mind; and
design patterns9], which are well-established solutions to program design problems
that commonly occur in practice, are thetdlhectual bols for achieving the desired
level of generality and reuse. Two design patterns, corresponding to the two framework
construction principles, are useful in implementation of the frameworks.

H.C. Cunningham et al. / Science ob@puter Programming 59 (2006) 147-169 151

The Templde Method patterruses the unification prindig. In using this pattern, a
designer should “define the skeleton of an algorithm in an operation, deferring some
steps to a subclass” to allow a programmer to “redefine the steps in an algorithm without
changing the algorithm’s structure9][It captures the commonalities in the template
method in a base class while encapsulating the differences as implementations of hook
methods in subclasses, thus ensuring that the basic structure of the algorithm remains the
same §].

The Strategy patterruses the separatiorripciple. In using this pattern, a designer
should “define a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algarithiary independently from the clients that use
it” [9]. It extends the behavior of a client class by calling methods in another class.
The common aspects (template methods) are captured in the concrete methods of the
client; the variable aspects (hook methods) are declared in the abstract Strategy class and
implemented by its subclasses. The behavior of the client class can thus be changed by
supplying it with instances of different Strategy subclasses.

What is the primary difference between the two construction principles in practice? To
introduce new behaviors for hook methods, the aaifon principle requires programmers
to implement a new subclass of the base class defining the template methods. This kind
of extension by overriding often requires detailed knowledge of the base class, but it is
otherwise relatively straightforward for programmers to understand and implement. The
unification principle results in efficient but inflexible execution. To introduce new hook
method behavior in a framework that uses the separation principle, the client code needs
to instantiate an object from a class that has hook methods with the desired behaviors
and supply it to the class containing the template methods. If the needed hook behaviors
have been implemented previously, then the programmer must just choose an appropriate
implementation from the component library. If the needed hook behaviors have not been
implemented, then the progmmer must implement an appropriate new class. This class
is sometimes more difficult to implement thahe euivalent unification solution, but
its implementation usually requires less knowledge of the internal details of the class
containing the template methods. An application of a framework that uses the separation
principle may executelightly less efficiently than a unification-based framework, but
separation may enable the application todelf at runtime by merely changing object
references{]. In the next section, wexamine a snple software fenily and consider
framework designs based on each of these design principles.

3. Divide and conquer framework

To illustrate the construction and use of a framework, we can use the family of divide
and conquer algorithms as an example of a software family. diidle and conquer
technique solves a problem by recursively dividing it into one or more subproblems of the
sane type, solving each subpreiph independently, and then combining the subproblem
solutions to obtain a solution for the originalglem. Well-known algorithms that use this
technique include quicksort, mergesort, and binary search. Since this algorithmic strategy
can be applied to a whole set of problems ofraikir type, divide and conquer, in addition

152 H.C. Cunningham et al. / Science ob@puter Programming 59 (2006) 147-169

function solve (Problem p) returns Solution
{ if isSimple(p)
return simplySolve(p);
else
sp[] = decompose(p);
for (i= 0; i < sp.length; i = i+1)
sol[i] = solve(splil);
return combine(sol);

Fig. 2. Divide and conquer pseudo-code.

to its meaningful influence in algorithms, ges well thepurpose of examining a software
family.

The pseudo-code for the divide and conquer technique for a proplésnshown
in Fig. 2 as it might be presented in an undergraduate algorithms textbook. In this
pseudo-code fragment, functiosblve() represents a template method because its
implementation is the same for all algorithms in the family. However, functions
isSimple(), simplySolve (), decompose (), andcombine () represent hook methods
because their implementations vary among tifferent family members. For example,
the simplySolve () function for quicksort is quite different from that for mergesort.
For mergsort, thecombine () function performs the major work whil@ecompose ()
is simple. The opposite holds for quicksort and binary search.

The remainder of this section illustrates the construction and use of a divide and
conquer framework. First, we examine how tmstruct a framework using the unification
principle; then we apply this framework to develop an application using the quicksort
algorithm. Finally, we look at how the framework can be implemented using the separation
principle.

3.1. Constructing a framework using unification

If the unification principle and Template Meid pattern are used ttrgcture the divide
and conquer framework, then the template methetve () is a concrete nmtbod defined
in an abstract class; the definitions of the four hook methods are deferred to a concrete
subclass whose purpose is to implement a specific algorithm.

Fig. 3 shows adesign for a divide and conquer framework expressed as a Unified
Modeling Language (UML) class diagram. The family includes three members:
QuickSort, MergeSort, and BinarySearch. Method solve() is a final method in
the bag classDivConqTemplate. It is shared among all the classes. Hook methods
isSimple(), simplySolve (), decompose (), andcombine () are abstract methods in
the base class; they are overridden in each concrete subglaskgort, MergeSort,
andBinarySearch).

To generalize the divide and conquer framekyave introduce the two auxiliary types
Problem andSolution. Problem is a type that represents the problem to be solved by
the algorithm.Solution is a type that represents the udsreturned by the algorithm.

In Java, we define these types using tag fiategs (i.e., interfaces without any methods)

H.C. Cunningham et al. / Science ob@puter Programming 59 (2006) 147-169 153

DivCongTemplate
Abstract
Class
— %final solve() [——-—1
Divide Conquer 7®abstract isSimple()
¥ abstract simpySolve()
@®abstract decompose()
7@ abstract combine()

A

Quicksort MergeSort BinarySearch
7®isSimple() ®isSimple() ®isSimple()
P simplySolve() ¥ simplySolve() ¥ simplySolve()
7¥decompose() 7 decompose() % decompose()
7®combine() 7% combine() _-| #¥combine()
\\\ T ////
N | P
SN | -
Concrete
Class

Fig. 3. Template method for divide and conquer.

abstract public class DivConqTemplate
{ public final Solution solve(Problem p)
{ Problem[] pp;
if (isSimple(p)){ return simplySolve(p); }
else { pp = decompose(p); }
Solution[] ss = new Solution[pp.length];
for(int i=0; i < pp.length; i++)
{ ssli] = solve(pplil); }
return combine(p,ss);
}
abstract protected boolean isSimple (Problem p);
abstract protected Solution simplySolve (Problem p);
abstract protected Problem[] decompose (Problem p);
abstract protected Solution combine(Problem p,Solution[] ss);

Fig. 4. Template method framework implementation.

as follows:

public interface Problem {};
public interface Solution {};

Given the auxiliary types above, we define the abstract Template Method class
DivConqTemplate as shown irFig. 4 We gereralize thecombine () method to take both
the description of the problem and the subproblem solution array as arguments. The divide

154 H.C. Cunningham et al. / Science ob@puter Programming 59 (2006) 147-169

public class QuickSortDesc implements Problem, Solution
{ public QuickSortDesc(int[Jarr, int first, int last)
{ this.arr = arr; this.first = first; this.last = last; }
public int getFirst () { return first; }
public int getlast () { return last; }
private int[] arr; // instance data
private int first, last;

Fig. 5. QuicksorProblem andSolution implementation.

and conquer framework thus consists of therConqTemplate class and th@roblem
andSolution interfaces. We can now consider an application built using this framework
library.

3.2. Building an application of the framework

In using a traditional procedure or class library, a client's program is in control of the
computation; it “calls down” to code from the library. However, frameworks usually exhibit
aninversn of control Theframework’s code is in controffdhe conputation; itstemplate
methods “call down” to the client-supplied hoolethods. This section illustrates the use
of the divide and conquer framework to build a quicksort application.

Quicksrt is an in-place sort of a sequence of values. The description of a problem
consists of the sequence of values andgtesiors for the beginning and ending elements
of the segment to be sortedo Bimgify the presentation, we limit its scope to integer
arrays. Therefore, it is sufficient to identify a problem by the array and the beginning and
ending indices of the unsorted segment. Similarly, a solution can be identified by the array
and the beginning and ending indices of the sorted segment. This similarity between the
Problem andSolution descriptions enables us to use the same object to describe both a
problem and its corresponding solution. Thus, we introduce the glaiskSortDesc to
define the needed descriptor objects as showAigns. Given the @finitions for base class
DivConqTemplate and auxiliary clasquickSortDesc, we can implement the concrete
subclasQQuickSort as shown irFig. 6.

In a teaching module using this case studyhtibe framework (i.e., the abstract class)
and the framework application (i.e., the ireplentation of quicksort) can be presented
to the students sdhat they can discern the collaborations and relationships among the
classes clearly. However, a clear distion must be made between the framework and
its application. As an exergg, the sidents can be assigned the task of modifying the
quicksort application to handle more general kinds of objects. Other algorithms such as
mergesort and binary search should also be assigned as exercises. The amount of work
that each hook method has to do differs frame specific algorithm to another. In the
quicksort implementation, most of the work is done in keompose () method, which
implements the splitting or pivoting operation of quicksort. In mergesort, however, more
work will be done in thecombine () operation because it must carry out the merge phase
of the mergesort algorithm.

H.C. Cunningham et al. / Science ob@puter Programming 59 (2006) 147-169 155

public class QuickSort extends DivConqTemplate
{ protected boolean isSimple (Problem p)
{ return (((QuickSortDesc)p).getFirst() >=
((QuickSortDesc)p) .getLast());

}
protected Solution simplySolve (Problem p)
{ return (Solution) p ; }

protected Problem[] decompose (Problem p)
{ int first = ((QuickSortDesc)p).getFirst();

int last = ((QuickSortDesc)p).getLast();
int[] a = ((QuickSortDesc)p).getArr (Q);
int x = a[first]; // pivot value

int sp = first;

for (int i = first + 1; i <= last; i++)

{ if (alil < %) { swap (a, ++sp, 1); } }
swap (a, first, sp);

Problem[] ps = new QuickSortDesc[2];

ps[0] = new QuickSortDesc(a,first,sp-1);
ps[1] = new QuickSortDesc(a,sp+1l,last);
return ps;

}
protected Solution combine (Problem p, Solution[] ss)
{ return (Solution) p; }
private void swap (int [] a, int first, int last)
{ int temp = alfirst];
a[first] = allast];
al[last] = temp;

Fig. 6. Quicksort application.

3.3. Constructing a framework using separation

As an alternative to the above design, we can use the separation principle and Strategy
pattern to implement a divide and conquer framework. The UML class diagram for this ap-
proach is shown ifrig. 7. The tempate method is implemented in the (concrete) context
classDivConqContext as shown irFig. 8 The hook methods are defined in the (abstract)
Strategy clasBivCongStrategy as shown irFig. 9. The context class delegates the hook
method calls to a reference to tmstance of the Strategy class that it stores internally. Note
that the Strategy approach is more flexible than the Template Method approach in that it is
possible to switch Strategy objects dynamically by usingsthed1gorithm() method of
the context class. Constructing an applicatibthe Stratgy-based framework for Quick-
sortrequires that we implement a subclass of the abstract Bias¥®nqgStrategy that is
quite similar to theQuickSort class used in the unification framework (showrkig. 6).

The divide and conquer family of algorithms is a simple example that can be used
to illustrate both approaches to framework design. It consists of a set of algorithms that
should be known to the students. Hence, the application domain should be easy to explain.
In the associated project, students can be given the framework and asked to construct

156

H.C. Cunningham et al. / Science ob@puter Programming 59 (2006) 147-169

DivCongContext DivConqStrategy Abstract
_| Strategy
@solve() > 2| %abstract isSimple() T
@ setAlgorithm() @abstract simplySolve()
%abstract decompose()
d @abstract combine()

Context ﬁ

N
| |

QuickSort MergeSort BinarySearch
@isSimple() @isSimple() @isSimple()
@simplySolve() @simplySolve() @simplySolve()
@decompose() %decompose() %decompose()
“combine() L %combine() _| ®combine()

N, e
\\\\ : ,///

N, | v

N
Concrete
Strategy

Fig. 7. Strategy pattern forndde and conquer framework.

public final class DivConqContext
public DivCongContext (DivCongStrategy dc)

{

{

this.dc = dc; T

public Solution solve (Problem p)

{

}

Problem[] pp;

if (dc.isSimple(p)) { return dc.simplySolve(p); }
else { pp = dc.decompose(p); }
Solution[] ss = new Solution[pp.length];

for (int i = 0; i < pp.length; i++)

{ ss[i] = solve(pplil); 1}

return dc.combine(p, ss);

public void setAlgorithm (DivCongStrategy dc)

{

this.dc = dc; ¥

private DivCongStrategy dc;

Fig. 8. Strategy context class implementation.

abstract public class DivCongStrategy

abstract public boolean isSimple (Problem p);

abstract public Solution simplySolve (Problem p);

abstract public Problem[] decompose (Problem p);

abstract public Solution combine(Problem p, Solution[] ss);

{

Fig. 9. Strategy ofaict abstract class.

H.C. Cunningham et al. / Science ob@puter Programming 59 (2006) 147-169 157

applications. This requires an understanding of the framework’s design at a level sufficient
for using it, without requiring the students to develop their own framework abstractions.
However, the studds also need experience in identifying the hot spots and developing the
needed framework abstractions. We consitiesé generalizatiorteps in the following
sections.

4. Framework development by generalization

Framework design inveks incrematally evolving a design rather than discovering it
in one single step. Typically, this evolution is a process of examining existing designs for
family members, identifying the frozen spots anatt spots of the family, and generalizing
the piogram structure to enable reuse of the code for frozen spots and use of different
implementations for each hot spot. This gelization may be done in an informal, organic
manner as codified by Roberts and Johnson in the Patterns for Evolving Frameb@rks [
or it may be done using more systematic techniques.

Schmid’ssystematic generalizatiomethodology is one techniquéd] that eks to
identify the hot spots a priori and construct a framework systematically. This methodology
identifies the following steps for construction of a framew®@g]{

e creation of a fixed application model,
e hot spot analysis and specification,
e hot spot high-level design,

e generalization transformation.

In Schmid’s approach, the fixed application model is an object-oriented design for a
specific application within the family. Once a complete model exists, the framework
designer analyzes the model and the domain to discover and specify the hot spots. The
designer begins by asking which of the featuséthe application are characteristic of all
applications in the domain (i.e., frozen spots) and which need to be made flexible (i.e.,
hot spots). Guided by appropriate design patte#hsthe designer then replaces a fixed,
specialized class at a hot spot by an abstract bksss. The hot spot’s features are accessed
through the common interface of the abstract class. However, the design of the hot spot
subsystem enables different concrete subclasses of the base class to be used to provide the
variart behaviors.

Another systematic approach i&inction generalization[20]. Where Schmid's
methodology generalizes the class structure of the design for an application, the function
generalization approach generalizes the fuomal structure of a prototype application to
produce a generic applicatiod]] It introduces the hot spot alattionsinto the design by
replacing concrete operations by more gehalbatiact operations or perhaps by replacing
concrete data types by more abstract types. These abstract entities become “parameters”
of the generalized functions. That is, the generalized functions are higher-order, having
explicit or implicit parameters that are themselves functions. After generalizing the various
hot spots of the application, the resulting generalized functions are used to generate a
framework in an object-oriented language such as Java.

The case study in the next section explains the thinking process that a designer may
use in analyzing and designing a framework. It uses an informal technique motivated by
Schmid'’s systematic generalization and by function generalization.

158 H.C. Cunningham et al. / Science ob@puter Programming 59 (2006) 147-169

Component j BinTree
~~d *abstract accept()

%abstract getValue()

% abstract getlLeft()
%abstract getRight() *
%abstract setValue()
$abstract setLeft()

%abstract setRight() -
Composite j
Leaf ﬁ A

/
/
/
/

Nil Node

\\

1

Fig. 10. Binary tree using Composite design pattern.

5. Binary treetraversal framework

As a case studgn framework generalization, considanother classic problem, a binary
tree traversall1]. This case study seeks to address aspects of the fourth level of framework
understanding described 8ection —learning to analyze potential software families to
identify the frozen and hot spots—as well esnforcing and extending the students’
understanding of the principles and@iques for constructing frameworks.

A binary treeis a herarchical structure that is commonly taught in a lower-level
undergraduate data structures course in a computing science curriculum. In this case
study, we implement the binary tree with tiBanTree class hierarchy, which is a
structure designed according to ti@mnposite design patterp9] as shown inFig. 10.

The Composite pattern “lets clients treat individual objects and compositions of objects
uniformly” [9]. Class BinTree has the Component base-class role in the pattern
implementaibn, subclas$iode has the Composite role, and subclaigd has the Leaf

role. Nil is also implemented according to tiséngleton patterri9], which guarantees
exadly one instance existgig. 11 shows the Javeode for theBinTree class hierarchy.

A traversalis a g/stematic technique for “visiting” all the nodes in a tree. One common
traversal tebnique for a binary tree is th@eorder traversal This is a dgth-first traversal,
that is, it accesses a node’s children before it accesses the node’s siblings. The preorder
traversal can be expressed by a recursive procedure as follows:

procedure preorder(t)

{ if t null, then return;
perform visit action for root node of tree t;
preorder (left subtree of t);
preorder(right subtree of t);

}

The visit action varies from application to another. ThinTree hierarchy inFig. 11
supports a simple preorder traversal operatiarorder () that merely prints a node’s
value whentiis visited.

H.C. Cunningham et al. / Science ob@puter Programming 59 (2006) 147-169 159

abstract public class BinTree

{ public void setValue(Object v) { } // mutators
public void setLeft(BinTree 1) { } // default
public void setRight(BinTree r) { }
abstract public void preorder(); // traversal

public Object getValue() { return null; } // accessors
public BinTree getLeft() { return null; } // default
public BinTree getRight() { return null; }

}

public class Node extends BinTree
{ public Node(Object v, BinTree 1, BinTree r)
{ wvalue = v; left = 1; right = r; }
public void setValue(Object v) { value = v; } // mutators

public void setLeft(BinTree 1) { left =1; 1}

public void setRight(BinTree r) { right = r; }

public void preorder() // traversal

{ System.out.println("Visit node with value: " + value);
left.preorder(); right.preorder();

}

public Object getValue() { return value; } // accessors

public BinTree getLeft() { return left;
public BinTree getRight() { return right; }
private Object value; // instance data
private BinTree left, right;
}

public class Nil extends BinTree

{ private Nil() { } // private to require use of getNil()
public void preorder() { }; // traversal
static public BinTree getNil() { return theNil; } // Singleton
static public BinTree theNil = new Nil();

Fig. 11. Binary tree class hierarchy.

Building a softwardramework for binary tree traversals involves the general principles
for framework design. We begin with the simple preorder operation and tree structure given
in Fig. 11and consider the domain of the family and identify the frozen spots and hot spots.

What is the scope of the family of binary tree traversals? The family should include
at least the standard kinds of depth-first traversals (e.g., preorder, postorder, and in-order)
and allow flexible visit actions on the nodes. In general, the visit action will be a function
on the node’s attributes and on the accumulatate of the traversal computed along the
saquence of all the nodes accessed to that poitite computation. The framework should
enable traversal orders other than the depth first. The framework should also support binary
search trees, but it is not necessary that it support multiway trees or general graphs.

What, then, are the commonalities, that is, frozen spots, that all members of the family
exhibit? Considering the scope and examining the prototype application, we choose the
following frozen spots:

160 H.C. Cunningham et al. / Science ob@puter Programming 59 (2006) 147-169

(1) The structure of the tree, as defined byBheTree hierarchy, cannot be redefined by
clients of the framework.

(2) Atraversal accesses every element of tee tince, unless the computation determines
that it can stop before it completes the traversal.

(3) A traversal performs one or more visittions associated with an access to an element
of the tree.

What are the variabilities—the hot spots—that exist among members of the family
of binary tree traversals? Again considering the scope and examining the prototype
application, we identify the primary hot spots to be the following:

(1) Variability in the visit operation’s action. It should be a function of the current node’s
value and the accumulated result of the visits to the previous nodes in the traversal.

(2) Variability in ordering of the visit action with respect to subtree traversals. That is, the
client should be able to select preorder, postorder, in-order, etc.

(3) Variability in the tree naigation technique. That is, the client should be able to select
node access orders other than left-ight| depth-first, total traversals.

Now, given these variabilities, we examinevhit can be introduced into a framework by
generalizing the prototype application.

5.1. Generalizing the visit action

In this case study, hot spot #1 requires making the visit action a feature that can be
customized by the client of the framework teeet the specific application’s needs. The
visit action, in general, varies from one application to another. The fact that there are visit
actions associated with the access to an element is a common behavior of the framework.
The visit action itself is the variable behavior that is to be captured in a hot spot subsystem.
As we see inSection 2 we can introduce the variable behavior into a framework using
either the unification principle (e.g., using the Template method pattern) or the separation
principle (e.g., using the Strategy pattern). Becaus®il&ree structure $ afrozen spot
(i.e., cannot be changed by the framework user), we choose to use the Strategy pattern to
implement variable visit behavior. This allows different visit actions to be used with the
same tree sticture.

We introduce this hot spot into the traversal program by generalizing the classes in
the BinTree hierarchy to have the Context role in the Strategy pattern. We generalize
the BinTree method preorder to be a template method and define a Strategy
interfacePreorderStrategy for objects that implement the hook methods. The new
implementation opreorder must capture the general contepa preader traversal but
delegate the specific preorder visit actito a melhod in a Strategy object. We specify
methodvisitPre on interfacePreorderStrategy as the hook method to encapsulate
the preorder visit actionFurthemore, we define thereorder method (which had
no arguments in the prototype program) to take two arguments: a “state” object that
accumulates the relevant aspects of the traversal as the nodes are accessed and an instance
of thePreorderStrategy Strategyobject.Fig. 12 shows the cAnges made to the code in
Fig. 11for this generalization step.

H.C. Cunningham et al. / Science ob@puter Programming 59 (2006) 147-169 161

abstract public class BinTree

{ ...
abstract public Object preorder(Object ts, PreorderStrategy v);
X
public class Node extends BinTree
{ ...
public Object preorder(Object ts,PreorderStrategy v) //traversal
{ ts = v.visitPre(ts, this);
ts = left.preorder(ts, v);
ts = right.preorder(ts, v);
return ts;
}
}
public class Nil extends BinTree
{ ...
public Object preorder(Object ts, PreorderStrategy v)
{ return ts; }
¥

public interface PreorderStrategy
{ abstract public Object visitPre(Object ts, BinTree t); }

Fig. 12. Binary tree with geeralized visit action.

5.2. Generalizing the visit order

In this case study, hot spot #2 requires making the “order” of the visit actions a feature
that can be customized for a specific apgiima. That is, i must be possie to \ary the
order of a node’s visit action with respect to the traversals of its children. The framework
should support preorder, postorder, and in-order traversals and perhaps combinations of
those. A good generalization of the three standard traversals is one that potentially performs
avisit action on the node at any of three different points—on first arrival (i.e., a “left” visit),
between the subtree traversals (i.e., a “bottom” visit), and just before departure from the
node (i.e., a “right” visit). This is sometimes called Bualer tour traversal11].

We enable the needed variability for this hot spot by generalizing the hot spot subsystem
introduced in the previous step instead of introducing a new hot spot subsystem. We
generalize the behavior of thereorder methodin the BinTree hierarchy and replace
it by a methodtraverse that encodes the common features of all Euler tour traversals but
delegates the visit actions at the three possible visit points to hook methods defined on the
Strategy object. We also observe that there was no visit action associatediwitbubtree
in the prevous versions of the program. In some applications, it might be useful to have
some action associated with a visit toial subtree. So we add a fourth hook method for
handling this as a special case. In the framework, we thus replatedbederStrategy

162 H.C. Cunningham et al. / Science ob@puter Programming 59 (2006) 147-169

abstract public class BinTree

{ ...
abstract public Object traverse(Object ts, EulerStrategy v);
}
public class Node extends BinTree
{ ...
public Object traverse(Object ts, EulerStrategy v) // traversal
{ ts = v.visitLeft(ts,this); // upon arrival from above
ts = left.traverse(ts,v);
ts = v.visitBottom(ts,this); // upon return from left
ts = right.traverse(ts,v);
ts = v.visitRight(ts,this); // upon completion
return ts;
}
}
public class Nil extends BinTree
{ ...
public Object traverse(Object ts, EulerStrategy v)
{ return v.visitNil(ts,this); }
}

public interface EulerStrategy

{ abstract public Object visitLeft(Object ts, BinTree t);
abstract public Object visitBottom(Object ts, BinTree t);
abstract public Object visitRight(Object ts, BinTree t);
abstract public Object visitNil(Object ts, BinTree t);

Fig. 13. Binary tree with Euler traversal.

interfacefrom the previous program with a nénlerStrategy interface that defines the
new hook methods:ig. 13 shows the canges made to the codefiig. 11 to incorporate
the Euler bur traversal order for the visit actions.

5.3. Generalizing the tree navigation

In this case study, hot spot #3 requires making the navigation of the tree structure a
feature that can be customized to meet the seddh sgcific application. In particular,
it should enable variability in the order in which nodes are accessed. For example, the
framework should support breadth-first traversals as well as depth-first traversals. As we
consider this generalization step, two of the frozen spots are of relevance:

(1) TheBinTree hierarchy cannot be modified by clients of the framework.
(2) A traversal must access every elemehttloe tree once, unless the computation
deternines that it can stop before it completes the traversal.

H.C. Cunningham et al. / Science ob@puter Programming 59 (2006) 147-169 163

In the previous version of the binary tree traversal framework, the traversal technique is
implemented directly by theraverse method of theBinTree hierarchy. The navigation
technique implemented by this method must be made a customizable feature of the
framework. However, because a client of the framework cannot modifyith®ree class
or its subclasses, we must use the separation principle to implement the tree navigation
subsystem. We could again use the Strategy pattern. However, another design pattern is
more applicale to this situation—th&isitor pattern[9].

The intent of the Visitor pattern is to enable the functionality of an object structure to be
extended without modifying the structure’s cod#e Visitor pattern does this by putting
the new functionality in a separate class. Objects of this Visitor class access the elements
of the object structure to carry out the desired new computation. An element of the object
structure then calls back to the Visitor's method corresponding to the element’s type. This
“double-dispatching” uses polymorphism to avoid explicit checks on the type of an object.
The Visitor pattern is quite aopatible with object structes designed according to the
Conyposite design pattern.

In the binary tree traversal framework design, we assigrBthdree class hierarchy
the role of the Element hierarchy in the Visitor pattern’s descript®ngnd we introduce
aBinTreeVisitor interface to take on the role of the Visitor class in the description.
We alsogeneralize theraverse method of theBinTree hierarchy and replace it by the
accept method for the Vigor pattern. Theaccept method of aBinTree element takes
aBinTreeVisitor object and delegates the work of the traversal back to an appropriate
method of that visitor object. This method applies the appropriate binary tree visit actions
and navigates through the tree as needed for the applicationBIdiEreeVisitor
interface has methods namedsit with overloaded implemeations for each subclass
intheBinTree hierarchy. The constraint on the framework given by frozen spot #2 (i.e., to
access each node once) becomes a requirement updesigner of the visitor classes that
implementBinTreeVisitor. Fig. 14illustrates the class structure of a traversal program
based on the Visitodesign @ttern.Fig. 15shows the Javaodle for the traversal program.

The Visitor framework has two levels. The upper level of the framework is characterized
by the Visitor pattern as described above. However, the specific designs for the Visitor
objects themselves may be small framekgo Consider a program to carry out an
Euler tour traversal. We can choose to design a concrete ElalssrTourVisitor
that implements th@inTreeVisitor interface. Similar to the design for hot spot #2’s
traverse method, this class delegates the specific traversal visit actions to a Strategy
object of typeEulerStrategy. Fig. 16 illustrates the class structure of this lower-level
design.Fig. 17 shows its implementation in Java.

The binary tree traversal framework is quite general. It supports a large set of binary tree
algorithms. For example, it is possible using this framework to implement a “mapping”
operation on trees. That is,i# feasible to implement a pgram that changes the value
stored at every node of a tree by applying a mapping function to the previous value.
Such a program can either bmplemented directly as &inTreeVisitor or as a
customization of the Euler tour traversal framework. It is also possible to implement a
breadth-first traversal operatidy implementing an appropria®inTreeVisitor class.

Other interesting applicatns of the framework might be to use it to implement programs
for binary search trees.

164 H.C. Cunningham et al. / Science ob@puter Programming 59 (2006) 147-169

Client ﬁ Visitor j
<<abstract Interface>> | 1

BinTreeVisitorTest CInToeNISior

¥abstract visit() Concrete
Concrete Visitor
Visitor A 4

/
/

\\ _-

EulerTourVisitor MappingVisitor Breadth FirstVisitor

BinTree (Element)

%abstract accept() uses
%abstract getValue()
@abstract getLeft()

% abstract getRight()
% abstract setValue()

S - @ abstract setleft()
oncrete ®abstract setRight()
Element

Nil Node

Fig. 14. Binary tree Visitor framework.

Programming projects accompanyingse of this case study in a course can
require development of various applications or require the design of new kinds of
BinTreeVisitor subsystems. Instructors can also ask the students to apply the analysis
and design techniques to other possible families.

As with the dvide and conquer algorithms, binary tree structures and algorithms are
well known to computing scien@nd software engineering students. Use of this case study
in an upper-level undergraduate course showidrequire an extensive explanation of the
domain of the framework. However, this case study, and the application of the techniques to
other problems, does require considerabtaight and analysis on the part of the students.

It is not a trivial activity for students to discover a sequence of generalization steps and
effective hot spot abstractions that are appropriate for a large family of programs.

6. Related work

The thesis of this paper is that classiolplems, such as those related to classic
algorithms and data structures, are helgfhmples for instructors to use in teaching
computing science and software engineering students techniques for the design of software
families. This paper describes two relatively simple examples designed to help teach both
the use and construction of the type of software family called a software framework. The

H.C. Cunningham et al. / Science ob@puter Programming 59 (2006) 147-169 165

abstract public class BinTree
{ public void setValue(Object v) { } // mutators
public void setLeft(BinTree 1) { } // default
public void setRight(BinTree r) { }
abstract public void accept(BinTreeVisitor v); // accept Visitor
public Object getValue() { return null; } // accessors
public BinTree getLeft() { return null; } // default
public BinTree getRight() { return null; }
}

public class Node extends BinTree
{ public Node(Object v, BinTree 1, BinTree r)
{ wvalue = v; left = 1; right = r; }
public void setValue(Object v) { value = v; } // mutators
public void setLeft(BinTree 1) { left =1; 1}
public void setRight(BinTree r) { right = r; }
// accept a Visitor object
public void accept(BinTreeVisitor v) { v.visit(this); }
public Object getValue() { return value; } // accessors
public BinTree getLeft() { return left;
public BinTree getRight() { return right; }
private Object value; // instance data

private BinTree left, right;
}

public class Nil extends BinTree
{ oprivate Nil() { } // private to require use of getNil()
// accept a Visitor object
public void accept(BinTreeVisitor v) { v.visit(this); }
static public BinTree getNil() { return theNil; } // Singleton
static public BinTree theNil = new Nil();
}

public interface BinTreeVisitor
{ abstract void visit(Node t);
abstract void visit(Nil t);

}

Fig. 15. Binary tree umg Visitor pattern.

exampés are aimed at advanced Java programming or software design courses in which
students have not been previously exposed to framewaorks in a significant way. The goal is
to improve the students’ abilities to construct and use abstractions in the design of software
families.

Same advocate that use of frameworks be integrated into the introductory computing
science sguence, e.g., into the data structures cour2g. [In this approach, the
understanding and use of standard data structure frameworks replace many of the
traditional bpics, which focus on the construction of data structures and algorithms. The
availability of standard libraries such as the Java Collections framework makes this a viable
approach. The argument is that when sttdeenter the workplace, they more often face

166 H.C. Cunningham et al. / Science ob@puter Programming 59 (2006) 147-169

GRAE <<abstract Interface>>
EulerStrategy Strategy ﬁ

<,
~,

EulerTourVisitor % abstract visitLeft()

% abstract visitBottom()
% abstract visitRight()
% abstract visitNil()

Concrete
_| Strategy
VisitParen =

Fig. 16. Euler tour traveal Vigtor framework.

public class EulerTourVisitor implements BinTreeVisitor
{ public EulerTourVisitor(EulerStrategy es, Object ts)
{ this.es = es; this.ts = ts; }
public void setVisitStrategy(EulerStrategy es) // mutators
{ this.es = es; }
public void setResult(Object r) { ts = r; }
public void visit(Node t) // Visitor hookimplementations
{ ts = es.visitLeft(ts,t); // upon first arrival from above
t.getLeft () .accept(this);
ts = es.visitBottom(ts,t); // upon return from left
t.getRight () .accept (this);
ts = es.visitRight(ts,t); // upon completion of this node
}
public void visit(Nil t) { ts = es.visitNil(ts,t); }
public Object getResult(){ return ts; } // accessor
private EulerStrategy es; // encapsulates state changing ops
private Object ts; // traversal state

}

public interface EulerStrategy

{ abstract public Object visitLeft(Object ts, BinTree t);
abstract public Object visitBottom(Object ts, BinTree t);
abstract public Object visitRight(Object ts, BinTree t);
abstract public Object visitNil(Object ts, BinTree t);

Fig. 17. Euler tour mversal \&itor.

the task of using standard components to build systems than that of writing programs in
which they re-implement basic data structures and algorithms. Although it is appropriate
that we cultivate the use of high-level abstractions, we should be careful not to abandon
teaching of the intellectual fundamentals @feputing science in a desire to train better
technicians.

Others have constructed small softwdrameworks that are useful in pedagogical
sdtings. Of particular interest is the work by Nguyen and Wong. In work similar to the

H.C. Cunningham et al. / Science ob@puter Programming 59 (2006) 147-169 167

divide and conquer example in this paper, they use the Template Method and Strategy
patterns and the divide and conquer algorithmic approach to develop a generalized sorting
framework [L5]. They believe that their design not only gives students “a concrete way
of unifying seemingly disparate sorting algorithms but also” helps them understand the
algorithms “at the proper level of abstraction”. In an interesting design, they extend
their framework to measure algorithm performance in a non-intrusive way by using the
Decorator design pattern.

The goal of the divide and conquer framaWwan this paper differs from the goal of
Nguyen and Wong'’s sorting framework. This paper focuses on teaching framework use
and construction. The case study seeks to support any divide and conquer algorithm, not
just sorting. The use of sorting algorithms to demonstrate the framework was incidental.
However, future development of the divide and conquer framework can benefit from the
design techniques illustted by Nguyen and Wong.

In [13], Nguyen and Wong describe an interesting framework design that decouples
recursive data structures from the algorithms that manipulate them. The design uses the
State and Visitor design patterns to achieve the separation. In subsequent work, using the
Strategy and Factory Method patterns, they extend this framework to enable lazy evaluation
of the linear structureslf].

Nguyen and Wong’s binary search tree framework i8] [has some similarities to
the binary tree traversal framework in this paper. Their work seeks to teach students in
introductory data structures courses to encapsulate “variant and invariant behaviors” in
separate classes and use well-defined “communication protocols” to combine them into an
application program. The use of design patte such as Visitor and State, is central to
their design technique.he binary tree traversal casedy in this paper &s a similar goal
in the context of teaching students how to desand construct frameworks in general.
However, this papergproaches the design as the systémapplication of a sequence
of generalizing transformations to a prototyggeplication. This systematic technique first
identifies a point of variation and then chooses a design pattern that is effective in providing
the needed flexibility.

While this paper uses design patterns @aching the construction of frameworks,
Christensen appexhes the task from the other sidd.[He expresses concern that the
conventional “catalogue-like” approachesg¢athing design patterns “leave the impression
that they are isolated solotis to independent problems”. To overcome this misconception,
he advocates the use of well-designed frameworks to teach the effective use of design
patterns. He emphasizes that “a framework makes it clear that design patterns work
together, and that patterns really define rolegher han classes. He laments that “the
subject of frameworks is sadly overlooked igaiching”. The work in this paper seeks to
help remedy tht situation.

7. Conclusion

The first author has used the divide and conquer example and related programming
exerises three times in Java-based coursesaftware architecture. They are effective
in introducing students to the basic principles of framework construction and use if care

168 H.C. Cunningham et al. / Science ob@puter Programming 59 (2006) 147-169

is taken to distinguish the framework from its application. However, other exercises are
needed to help students learn to separfa¢eviriable and common aspects of a program
family and to define appropriate abstratterfaces for the variable aspects.

The binary tree traversal framework case study and a similar case study on a
cosequential processing frameworkZ0] are designed to illustrate techniques that can
hdp expand the ability of students to discover appropriate framework abstractions. The
first author has used the cosequential processing problem (but not the case study) as the
basis for a term project in a Java-based course on software enginegifhdt[proved
to be a problem that @ilenged the students. However, the students’ feedback indicated
that more explicit attention should be paateaching systematic techniques for hot spot
analysis and design.

In summary, software frameworks and design patterns are important concepts that
students should learn in an advanced programming or software design course. These
concepts may seem very abstract to the sttgJeand, therefore, we need to start with
familiar, non-daunting problems. This paperggests the use of classic problems such
as divide and conquer algorithms and binary tree traversals as examples to provide a
familiar, simple and understandable enviraemhin which students can better understand
the framework concepts. Design pattersgchas the Template Method pattern and the
Strategy pattern, are illustrated through thesign of these simple frameworks. Since
students are familiar with the algorithms and data structures and may have implemented
them, they can concentrate thedesign process more instead of the coding process and
thus learn more effectivelydw to desgn a framework and build a program family.

Acknowledgements

The work of Cunningham and Liu was supported, in part, by a grant from Acxiom
Corporation titled “The Acxiom Laboratoryor Software Architecture and Component
Engineering (ALSACE)". Liu’s work was also supported by University of Mississippi
Graduate School Summer Research and Dissertation Fellowships. The authors thank Will
Vaughan, Pallavi Tadepalli, and anonymous reée#1 for making several comments and
suggestions that led to improvements in this paper.

References

[1] L. Bass, P. Clements, R. Kazman, Software frecture in Practice, Addison-Wesley, 1998.

[2] T.Budd, An Introduction Object-Oriented &gramming, 3rd edition, Addison-Wesley, 2002.

[3] H.B. Christensen, Frameworks: Putting design patterns into perspective, in: Proceedings of the SIGCSE
Conference on Innovation and Technology inn@uter Science Education, ITICSE, ACM, 2004,
pp. 142-145.

[4] H.C. Cunningham, P. Tadepalli, Using function gealeation to design a cosequential processing
framework, Tech. Rep. UMCIS-2004-22, DepartmentCafmputer and Informatio Science, University
of Mississippi, December 2004.

[5] H.C. Cunningham, Y. Liu, C. Zhang, Keeping secrets withfamily: Rediscovering Parnas, in: Proceedings
of the Software Engineering Rearch and Practice (SERP) Cerénce, CSREA Press, 2004, pp. 712-718.

[6] H.C. Cunningham, Y. Liu, C. Zhang, Using the dieiand conquer strategy to teach Java framework design,
in: Proceedings of the International Conference am Btinciples and Practice of Programming in Java,
PPPJ, 2004, pp. 40-45.

H.C. Cunningham et al. / Science ob@puter Programming 59 (2006) 147-169 169

[7] H.C. Cunningham, P. Tadepalli, Y. Liu, Secrets, hot spatg] generalization: Preparing students to design
sdtware families, Journal of Computing Sciences in Colleges 20 (6) (2005) 74-82.

[8] M. Fontoura, W. Pree, B. Rumpe, The UML Profile feramework Architectures, Addison-Wesley, 2002.

[9] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Destgiterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1995.

[10] G.C. Gannod, R.R. Lutz, An approach to architectaralysis of product lines, in: Proceedings of the 22nd
International Conference on Swefire Engineering, ICSE 00, 2000, pp. 548-557.

[11] M.T. Goodrich, R. Tamassia, Data Structures and Algorithms in Java, 3rd edition, Wiley, 2004.

[12] X. Jia, Obgct-Oriented Software Development using Javandiples, Patterns, and Frameworks, Addison-
Wesley, 2000.

[13] D. Nguyen, S.B. Wong, Patterns for decouplingaddtuctures and algorithms, in: Proceedings of ACM
SIGCSE Technical Symposium, 1999, pp. 87-91.

[14] D. Nguyen, S.B. Wong, Design patterns for laayaluation, in: Proceedings of ACM SIGCSE Technical
Symposium, 2000, pp. 21-25.

[15] D. Nguyen, S.B. Wong, Design patterns forrtggy, in: Proceedings of ACM SIGCSE Technical
Symposium, 2001, pp. 263-267.

[16] D. Nguyen, S.B. Wong, Design patterns for ganiesProceedings of ACM SIGCSE Technical Symposium,
2002, pp. 126-130.

[17] D.L. Parnas, On the design and development of program families, IEEE Transactions on Software
Engineering SE-2 (1) (1976) 1-9.

[18] D. Parnas, Software design, in: D.M. Hoffman, D.M. Weiss (Eds.), Software Fundamentals: Collected
Pepers by David L. Parnas, Addison-Wesley, 2001, pp. 137-142.

[19] D. Roberts, R. Johnson, Patterms évolving frameworks, in: R. Martin, D. Riehle, F. Buschmann (Eds.),
Pdtern Languages of Program Design 3, Addison-Wesley, 1998, pp. 471-486.

[20] P. Tadepalli, H.C. Cunningham, Using function genegtlon with Java to design a cosequential framework,
in: Proceedings of the Conference on Applied Resear Information Technology, Acxiom Laboratory for
Applied Research, 2005, pp. 95-101.

[21] H.A. Schmid, Systematic framework design bygealization, Communicaths of the ACM 40 (10) (1997)
48-51.

[22] H.A. Schmid, Framework design by systematic gatieation, in: M.E. Fayad, D.C. Schmidt, R.E. Johnson
(Eds.), Building Application Frameworks: Obje@tiented Foundations of Framework Design, Wiley,
1999, pp. 353-378.

[23] J. Tenenberg, A framework approach to teaching data structures, in: Proceedings of ACM SIGCSE Technical
Symposium, 2003, pp. 210-214.

[24] D.M. Weiss, C.T.R. Lai, Software Product-Linen@ineering: A Family-Based Software Development
Process, Addison-Wesley, 1999.

	Using classic problems to teach Java framework design
	Introduction
	Framework construction and use
	Divide and conquer framework
	Constructing a framework using unification
	Building an application of the framework
	Constructing a framework using separation

	Framework development by generalization
	Binary tree traversal framework
	Generalizing the visit action
	Generalizing the visit order
	Generalizing the tree navigation

	Related work
	Conclusion
	Acknowledgements
	References

