Chapter 7

Run-Time Environments

A compiler must accurately implement the abstractions embodied in the source-
language definition. These abstractions typically include the concepts we dis-
cussed in Section 1.6 such as names, scopes, bindings, data types, operators,
procedures, parameters, and flow-of-control constructs. The compiler must co-
operate with the operating system and other systems software to support these
abstractions on the target machine.

To do so, the compiler creates and manages a run-time environment in which
it assumes its target programs are being executed. This environment deals with
a variety of issues such as the layout and allocation of storage locations for the
objects named in the source program, the mechanisms used by the target pro-
gram to access variables, the linkages between procedures, the mechanisms for
passing parameters, and the interfaces to the operating system, input/output
devices, and other programs.

The two themes in this chapter are the allocation of storage locations and
access to variables and data. We shall discuss memory management in some
detail, including stack allocation, heap management, and garbage collection. In
the next chapter, we present techniques for generating target code for many
common language constructs.

7.1 Storage Organization

From the perspective of the compiler writer, the executing target program runs
in its own logical address space in which each program value has a location. The
management and organization of this logical address space is shared between
the compiler, operating system, and target machine. The operating system
maps the logical addresses into physical addresses, which are usually spread
throughout memory.

The run-time representation of an object program in the logical address
space consists of data and program areas as shown in Fig. 7.1. A compiler for a
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language like C++ on an operating system like Linux might subdivide memory
in this way.

Code
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Heap

f

Free Memory

!

Stack

Figure 7.1: Typical subdivision of run-time memory into code and data areas

Throughout this book, we assume the run-time storage comes in blocks of
contiguous bytes, where a byte is the smallest unit of addressable memory. A
byte is eight bits and four bytes form a machine word. Multibyte objects are
stored in consecutive bytes and given the address of the first byte.

As discussed in Chapter 6, the amount of storage needed for a name is de-
termined from its type. An elementary data type, such as a character, integer,
or float, can be stored in an integral number of bytes. Storage for an aggre-
gate type, such ag an array or structure, must be large enough to hold all its
components.

The storage layout for data objects is strongly influenced by the addressing
constraints of the target machine. On many machines, instructions to add
integers may expect integers to be aligned, that is, placed at an address divisible
by 4. Although an array of ten characters needs only enough bytes to hold ten
characters, a compiler may allocate 12 bytes to get the proper alignment, leaving
2 bytes unused. Space left unused due to alignment considerations is referred
to as padding. When space is at a premium, a compiler may pack data so that
no padding is left; additional instructions may then need to be executed at run
time to position packed data so that it can be operated on as if it were properly
aligned.

The size of the generated target code is fixed at compile time, so the com-
piler can place the executable target code in a statically determined area Code,
usually in the low end of memory. Similarly, the size of some program data
objects, such as global constants, and data generated by the compiler, such as
information to support garbage collection, may be known at compile time, and
these data objects can be placed in another statically determined area called
Static. One reason for statically allocating as many data objects as possible is
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that the addresses of these objects can be compiled into the target code. In
early versions of Fortran, all data objects could be allocated statically.

To maximize the utilization of space at run time, the other two areas, Stack
and Heap, are at the opposite ends of the remainder of the address space. These
areas are dynamic; their size can change as the program executes. These areas
grow towards each other as needed. The stack is used to store data structures
called activation records that get generated during procedure calls.

In practice, the stack grows towards lower addresses, the heap towards
higher. However, throughout this chapter and the next we shall assume that
the stack grows towards higher addresses so that we can use positive offsets for
notational convenience in all our examples.

As we shall see in the next section, an activation record is used to store
information about the status of the machine, such as the value of the program
counter and machine registers, when a procedure call occurs. When control
returns from the call, the activation of the calling procedure can be restarted
after restoring the values of relevant registers and setting the program counter
to the point immediately after the call. Data objects whose lifetimes are con-
tained in that of an activation can be allocated on the stack along with other
information associated with the activation.

Many programming languages allow the programmer to allocate and deal-
locate data under program control. For example, C has the functions malloc
and free that can be used to obtain and give back arbitrary chunks of stor-
age. The heap is used to manage this kind of long-lived data. Section 7.4 will
discuss various memory-management algorithms that can be used to maintain
the heap.

7.1.1 Static Versus Dynamic Storage Allocation

The layout and allocation of data to memory locations in the run-time envi-
ronment are key issues in storage management. These issues are tricky because
the same name in a program text can refer to multiple locations at run time.
The two adjectives static and dynamic distinguish between compile time and
run time, respectively. We say that a storage-allocation decision is static, if it
can be made by the compiler looking only at the text of the program, not at
what the program does when it executes. Conversely, a decision is dynamic if
it can be decided only while the program is running. Many compilers use some
combination of the following two strategies for dynamic storage allocation:

1. Stack storage. Names local to a procedure are allocated space on a stack.
We discuss the “run-time stack” starting in Section 7.2. The stack sup-
ports the normal call/return policy for procedures.

2. Heap storage. Data that may outlive the call to the procedure that cre-
ated it is usually allocated on a “heap” of reusable storage. We discuss
heap management starting in Section 7.4. The heap is an area of virtual
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memory that allows objects or other data elements to obtain storage when
they are created and to return that storage when they are invalidated.

To support heap management, “garbage collection” enables the run-time
system to detect useless data elements and reuse their storage, even if the pro-
grammer does not return their space explicitly. Automatic garbage collection
is an essential feature of many modern languages, despite it being a difficult
operation to do efficiently; it may not even be possible for some languages.

7.2 Stack Allocation of Space

Almost all compilers for languages that use procedures, functions, or methods
as units of user-defined actions manage at least part of their run-time memory
as a stack. Each time a procedure' is called, space for its local variables is
pushed onto a stack, and when the procedure terminates, that space is popped
off the stack. As we shall see, this arrangement not only allows space to be
shared by procedure calls whose durations do not overlap in time, but it allows
us to compile code for a procedure in such a way that the relative addresses of its
nonlocal variables are always the same, regardless of the sequence of procedure
calls.

7.2.1 Activation Trees

Stack allocation would not be feasible if procedure calls, or activations of pro-
cedures, did not nest in time. The following example illustrates nesting of
procedure calls.

Example 7.1: Figure 7.2 contains a sketch of a program that reads nine inte-
gers into an array a and sorts them using the recursive quicksort algorithm.
The main function has three tasks. It calls read Array, sets the sentinels, and
then calls quicksort on the entire data array. Figure 7.3 suggests a sequence of
calls that might result from an execution of the program. In this execution, the
call to partition(1,9) returns 4, so a[1] through a[3] hold elements less than its
chosen separator value v, while the larger elements are in a[5] through a[9]. O

In this example, as is true in general, procedure activations are nested in
time. If an activation of procedure p calls procedure ¢, then that activation of
g must end before the activation of p can end. There are three common cases:

1. The activation of ¢ terminates normally. Then in essentially any language,
control resumes just after the point of p at which the call to ¢ was made.

2. The activation of g, or some procedure ¢ called, either directly or indi-
rectly, aborts; i.e., it becomes impossible for execution to continue. In
that case, p ends simultaneously with gq.

IRecall we use “procedure” as a generic term for function, procedure, method, or subrou-
tine.



7.2. STACK ALLOCATION OF SPACE 431

int al11];
void readArray() { /* Reads 9 integers into a[l], ...,a[9]. */
int i;

}
int partition(int m, int n) {
/* Picks a separator value v, and partitions a[m .. n] so that
a[m..p — 1] are less than v, a[p] = v, and a[p + 1..n] are
equal to or greater than v. Returns p. */

}
void quicksort(int m, int n) {
int i;
if (@ > m) {
i = partition(m, n);
quicksort(m, i-1);
quicksort(i+1, n);
}
}
main() {
readArray();
al0] = -9999;
al[10] = 9999;
quicksort(1,9);
}

Figure 7.2: Sketch of a quicksort program

3. The activation of ¢ terminates because of an exception that ¢ cannot han-
dle. Procedure p may handle the exception, in which case the activation
of ¢ has terminated while the activation of p continues, although not nec-
essarily from the point at which the call to ¢ was made. If p cannot handle
the exception, then this activation of p terminates at the same time as the
activation of ¢, and presumably the exception will be handled by some
other open activation of a procedure.

We therefore can represent the activations of procedures during the running
of an entire program by a tree, called an activation tree. Each node corresponds
to one activation, and the root is the activation of the “main” procedure that
initiates execution of the program. At a node for an activation of procedure p,
the children correspond to activations of the procedures called by this activation
of p. We show these activations in the order that they are called, from left to
right. Notice that one child must finish before the activation to its right can
begin.
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A Version of Quicksort

The sketch of a quicksort program in Fig. 7.2 uses two auxiliary functions
readArray and partition. The function readArray is used only to load the
data into the array a. The first and last elements of a are not used for
data, but rather for “sentinels” set in the main function. We assume a[0]
is set to a value lower than any possible data value, and a[10] is set to a
value higher than any data value.

The function partition divides a portion of the array, delimited by the
arguments m and n, so the low elements of a[m] through a[n] are at the
beginning, and the high elements are at the end, although neither group is
necessarily in sorted order. We shall not go into the way partition works,
except that it may rely on the existence of the sentinels. One possible
algorithm for partition is suggested by the more detailed code in Fig. 9.1.

 Recursive procedure quicksort first decides if it needs to sort more
than one element of the array. Note that one element is always “sorted,”
so quicksort has nothing to do in that case. If there are elements to sort,
quicksort first calls partition, which returns an index i to separate the low
and high elements. These two groups of elements are then sorted by two
recursive calls to quicksort.

Example 7.2: One possible activation tree that completes the sequence of
calls and returns suggested in Fig. 7.3 is shown in Fig. 7.4. Functions are
represented by the first letters of their names. Remember that this tree is only
one possibility, since the arguments of subsequent calls, and also the number of
calls along any branch is influenced by the values returned by partition. 0O

The use of a run-time stack is enabled by several useful relationships between
the activation tree and the behavior of the program:

1. The sequence of procedure calls corresponds to a preorder traversal of the
activation tree.

2. The sequence of returns corresponds to a postorder traversal of the acti-
vation tree.

3. Suppose that control lies within a particular activation of some procedure,
corresponding to a node N of the activation tree. Then the activations
that are currently open (live) are those that correspond to node N and its
ancestors. The order in which these activations were called is the order
in which they appear along the path to NV, startlng at the root, and they
will return in the reverse of that order.
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enter main()
enter readArray()
leave readArray()
enter quicksort(1,9)
enter partition(1,9)
leave partition(1,9)
enter quicksort(1,3)

leave quicksort(1,3)
enter quicksort(5,9)

leave quicksort(5,9)

leave quicksort(1,9)
leave main()

Figure 7.3: Possible activations for the program of Fig. 7.2

q(5,9)

e PARN

p(1,3) ¢(1,0) q(2,3) »(5,9) q(5,5) ¢(7,9)
N N
p(2,3) q(2,1) q(3,3) »(7,9) q(7,7) q(9,9)

Figure 7.4: Activation tree representing calls during an execution of quicksort

7.2.2 Activation Records

Procedure calls and returns are usually managed by a run-time stack called the
control stack. Each live activation has an activation record (sometimes called a
frame) on the control stack, with the root of the activation tree at the bottom,
and the entire sequence of activation records on the stack corresponding to the
path in the activation tree to the activation where control currently resides.
The latter activation has its record at the top of the stack.

Example 7.3: If control is currently in the activation q(2,3) of the tree of
Fig. 7.4, then the activation record for ¢(2, 3) is at the top of the control stack.
Just below is the activation record for ¢(1,3), the parent of ¢(2,3) in the tree.
Below that is the activation record ¢(1,9), and at the bottom is the activation
record for m, the main function and root of the activation tree. O
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We shall conventionally draw control stacks with the bottom of the stack
higher than the top, so the elements in an activation record that appear lowest
on the page are actually closest to the top of the stack.

The contents of activation records vary with the language being imple-
mented. Here is a list of the kinds of data that might appear in an activation
record (see Fig. 7.5 for a summary and possible order for these elements):

Actual parameters

Temporaries

Figure 7.5: A general activation record

1. Temporary values, such as those arising from the evaluation of expres-
sions, in cases where those temporaries cannot be held in registers.

2. Local data belonging to the procedure whose activation record this is.

3. A saved machine status, with information about the state of the machine
just before the call to the procedure. This information typically includes
the return address (value of the program counter, to which the called
procedure must return) and the contents of registers that were used by
the calling procedure and that must be restored when the return occurs.

4. An “access link” may be needed to locate data needed by the called proce-
dure but found elsewhere, e.g., in another activation record. Access links
are discussed in Section 7.3.5.

5. A control link, pointing to the activation record of the caller.

6. Space for the return value of the called function, if any. Again, not all
called procedures return a value, and if one does, we may prefer to place
that value in a register for efficiency.

7. The actual parameters used by the calling procedure. Commonly, these
values are not placed in the activation record but rather in registers, when
possible, for greater efficiency. However, we show a space for them to be
completely general.
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Example 7.4: Figure 7.6 shows snapshots of the run-time stack as control
flows through the activation tree of Fig. 7.4. Dashed lines in the partial trees
go to activations that have ended. Since array a is global, space is allocated for
it before execution begins with an activation of procedure main, as shown in
Fig. 7.6(a).

integer a[11] integer o[11]

main main main main

/
A T
integer i

(a) Frame for main (b) 7 is activated
integer a[l1] integer af11]

main man masin main
1 integerm | integer m, n

r  g(1,9) 4(1,9) r /q/(l,Q) 4(1,9)
| integeri - | integeri

p(1,9) ¢(1,3)

y eIl
4 i

1’(1’?;) q(1,0) q(1,3)

integer 4

(c) r has been popped and ¢(1,9) pushed (d) Control returns to ¢(1,3)
Figure 7.6: Downward-growing stack of activation records

When control reaches the first call in the body of main, procedure r is
activated, and its activation record is pushed onto the stack (Fig. 7.6(b)). The
activation record for r contains space for local variable 7. Recall that the top of
stack is at the bottom of diagrams. When control returns from this activation,
its record is popped, leaving just the record for main on the stack.

Control then reaches the call to ¢ (quicksort) with actual parameters 1 and
9, and an activation record for this call is placed on the top of the stack, as in
Fig. 7.6(c). The activation record for ¢ contains space for the parameters m
and n and the local variable i, following the general layout in Fig. 7.5. Notice
that space once used by the call of r is reused on the stack. No trace of data
local to 7 will be available to ¢(1,9). When ¢(1,9) returns, the stack again has
only the activation record for main.

Several activations occur between the last two snapshots in Fig. 7.6. A
recursive call to ¢(1,3) was made. Activations p(1,3) and ¢(1,0) have begun
and ended during the lifetime of ¢(1,3), leaving the activation record for ¢(1, 3)



436 CHAPTER 7. RUN-TIME ENVIRONMENTS

on top (Fig. 7.6(d)). Notice that when a procedure is recursive, it is normal to
have several of its activation records on the stack at the same time. O

7.2.3 Calling Sequences

Procedure calls are implemented by what are known as calling sequences, which
consists of code that allocates an activation record on the stack and enters
information into its fields. A return sequence is similar code to restore the state
of the machine so the calling procedure can continue its execution after the call.

Calling sequences and the layout of activation records may differ greatly,
even among implementations of the same language. The code in a calling se-
quence is often divided between the calling procedure (the “caller”) and the
procedure it calls (the “callee”). There is no exact division of run-time tasks
between caller and callee; the source language, the target machine, and the op-
erating system impose requirements that may favor one solution over another.
In general, if a procedure is called from n different points, then the portion of
the calling sequence assigned to the caller is generated n times. However, the
portion assigned to the callee is generated only once. Hence, it is desirable to
put as much of the calling sequence into the callee as possible — whatever the
callee can be relied upon to know. We shall see, however, that the callee cannot
know everything.

When designing calling sequences and the layout of activation records, the
following principles are helpful:

1. Values communicated between caller and callee are generally placed at the
beginning of the callee’s activation record, so they are as close as possible
to the caller’s activation record. The motivation is that the caller can
compute the values of the actual parameters of the call and place them
on top of its own activation record, without having to create the entire
activation record of the callee, or even to know the layout of that record.
Moreover, it allows for the use of procedures that do not always take
the same number or type of arguments, such as C’s printf function.
The callee knows where to place the return value, relative to its own
activation record, while however many arguments are present will appear
sequentially below that place on the stack.

2. Fixed-length items are generally placed in the middle. From Fig. 7.5, such
items typically include the control link, the access link, and the machine
status fields. If exactly the same components of the machine status are
saved for each call, then the same code can do the saving and restoring
for each. Moreover, if we standardize the machine’s status information,
then programs such as debuggers will have an easier time deciphering the
stack contents if an error occurs.

3. Items whose size may not be known early enough are placed at the end
of the activation record. Most local variables have a fixed length, which
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can be determined by the compiler by examining the type of the variable.
However, some local variables have a size that cannot be determined until
the program executes; the most common example is a dynamically sized
array, where the value of one of the callee’s parameters determines the
length of the array. Moreover, the amount of space needed for tempo-
raries usually depends on how successful the code-generation phase is in
keeping temporaries in registers. Thus, while the space needed for tem-
poraries is eventually known to the compiler, it may not be known when
the intermediate code is first generated.

4. We must locate the top-of-stack pointer judiciously. A common approach
is to have it point to the end of the fixed-length fields in the activation
record. Fixed-length data can then be accessed by fixed offsets, known to
the intermediate-code generator, relative to the top-of-stack pointer. A
consequence of this approach is that variable-length fields in the activation
records are actually “above” the top-of-stack. Their offsets need to be
calculated at run time, but they too can be accessed from the top-of-
stack pointer, by using a positive offset.

Parameters and returned value T
E _C_'o_n—tv:o_l _lz_n;c ______________ Caller’s
. activation
| __Links and saved status | record
Temporaries and local data
Caller’s
responsibility
Parameters and returned value
N Con_tro_l lz';zk _____________ Callee’s
Links and saved status acrtézg;cg)n
topsp —» T " T T Tt oo TS To o os oo Callee’s
Temporaries and local data responsibility

Figure 7.7: Division of tasks between caller and callee

An example of how caller and callee might cooperate in managing the stack
is suggested by Fig. 7.7. A register top_sp points to the end of the machine-
status field in the current top activation record. This position within the callee’s
activation record is known to the caller, so the caller can be made responsible
for setting top_sp before control is passed to the callee. The calling sequence
and its division between caller and callee is as follows:

1. The caller evaluates the actual parameters.
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2. The caller stores a return address and the old value of top_sp into the
callee’s activation record. The caller then increments top_sp to the po-
sition shown in Fig. 7.7. That is, top_sp is moved past the caller’s local
data and temporaries and the callee’s parameters and status fields.

3. The callee saves the register values and other status information.
4. The callee initializes its local data and begins execution.
A suitable, corresponding return sequence is:

1. The callee places the return value next to the parameters, as in Fig. 7.5.

2. Using information in the machine-status field, the callee restores top_sp
and other registers, and then branches to the return address that the
caller placed in the status field.

3. Although top_sp has been decremented, the caller knows where the return
value is, relative to the current value of top_sp; the caller therefore may
use that value.

The above calling and return sequences allow the number of arguments of
the called procedure to vary from call to call (e.g., as in C’s printf function).
Note that at compile time, the target code of the caller knows the number and
types of arguments it is supplying to the callee. Hence the caller knows the size
of the parameter area. The target code of the callee, however, must be prepared
to handle other calls as well, so it waits until it is called and then examines the
parameter field. Using the organization of Fig. 7.7, information describing the
parameters must be placed next to the status field, so the callee can find it.
For example, in the printf function of C, the first argument describes the
remaining arguments, so once the first argument has been located, the caller
can find whatever other arguments there are.

7.2.4 Variable-Length Data on the Stack

The run-time memory-management system must deal frequently with the allo-
cation of space for objects the sizes of which are not known at compile time,
but which are local to a procedure and thus may be allocated on the stack. In
modern languages, objects whose size cannot be determined at compile time are
allocated space in the heap, the storage structure that we discuss in Section 7.4.
However, it is also possible to allocate objects, arrays, or other structures of
unknown size on the stack, and we discuss here how to do so. The reason to
prefer placing objects on the stack if possible is that we avoid the expense of
garbage collecting their space. Note that the stack can be used only for an
object if it is local to a procedure and becomes inaccessible when the procedure
returns.

A common strategy for allocating variable-length arrays (i.e., arrays whose
size depends on the value of one or more parameters of the called procedure) is
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shown in Fig. 7.8. The same scheme works for objects of any type if they are
local to the procedure called and have a size that depends on the parameters
of the call.

In Fig. 7.8, procedure p has three local arrays, whose sizes we suppose cannot
be determined at compile time. The storage for these arrays is not part of the
activation record for p, although it does appear on the stack. Only a pointer
to the beginning of each array appears in the activation record itself. Thus,
when p is executing, these pointers are at known offsets from the top-of-stack
pointer, so the target code can access array elements through these pointers.

Control link and saved status T
_______________________ Activation record
_______ Pointer toa______ for p

________ Pointer to b______ Y

________ Pointer toc______ _\
Array a

_______________________ ]
Array b Arrays of p
Array c

\ Control link and saved status Activation record for

top_sp —®y """ ----m-o--------d procedure q called by p
Arrays of ¢

top =
Figure 7.8: Access to dynamically allocated arrays

Also shown in Fig. 7.8 is the activation record for a procedure ¢, called by p.
The activation record for q begins after the arrays of p, and any variable-length
arrays of g are located beyond that.

Access to the data on the stack is through two pointers, top and top_sp.
Here, top marks the actual top of stack; it points to the position at which
the next activation record will begin. The second, top_sp is used to find local,
fixed-length fields of the top activation record. For consistency with Fig. 7.7,
we shall suppose that top_sp points to the end of the machine-status field. In
Fig. 7.8, top_sp points to the end of this field in the activation record for gq.
From there, we can find the control-link field for ¢, which leads us to the place
in the activation record for p where top_sp pointed when p was on top.

The code to reposition top and top_sp can be generated at compile time,
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in terms of sizes that will become known at run time. When ¢ returns, top_sp
can be restored from the saved control link in the activation record for ¢q. The
new value of top is (the old unrestored value of) top_sp minus the length of the
machine-status, control and access link, return-value, and parameter fields (as
in Fig. 7.5) in ¢’s activation record. This length is known at compile time to
the caller, although it may depend on the caller; if the number of parameters
can vary across calls to gq.

7.2.5 Exercises for Section 7.2

Exercise 7.2.1: Suppose that the program of Fig. 7.2 uses a partition function
that always picks a[m] as the separator v. Also, when the array a[m],... ,a[n]
is reordered, assume that the order is preserved as much as possible. That is,
first come all the elements less than v, in their original order, then all elements
equal to v, and finally all elements greater than v, in their original order.

a) Draw the activation tree when the numbers 9,8,7,6,5,4, 3,2, 1 are sorted.

b) What is the largest number of activation records that ever appear together
on the stack?

Exercise 7.2.2: Repeat Exercise 7.2.1 when the initial order of the numbers
is 1,3,5,7,9,2,4,6,8.

Exercise 7.2.3: In Fig. 7.9 is C code to compute Fibonacci numbers recur-
sively. Suppose that the activation record for f includes the following elements
in order: (return value, argument n, local s, local t); there will normally be
other elements in the activation record as well. The questions below assume
that the initial call is f(5).

a) Show the complete activation tree.

b) What does the stack and its activation records look like the first time f(1)
is about to return?

! ¢) What does the stack and its activation records look like the fifth time
f(1) is about to return?

Exercise 7.2.4: Here is a sketch of two C functions f and g:

int f(int x) { int i; .-- return i+1; --- }
int g(int y) { int j; --- £(j+1) --- }

That is, function g calls f. Draw the top of the stack, starting with the acti-
vation record for g, after g calls f, and f is about to return. You can consider
only return values, parameters, control links, and space for local variables; you
do not have to consider stored state or temporary or local values not shown in
the code sketch. However, you should indicate:
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int f(int n) {

int t, s;

if (n < 2) return 1;
s = f(n-1);

t = £(n-2);

return s+t;

Figure 7.9: Fibonacci program for Exercise 7.2.3

a) Which function creates the space on the stack for each element?
b) Which function writes the value of each element?

c) To which activation record does the element belong?

Exercise 7.2.5: In a language that passes parameters by reference, there is a
function f(z,y) that does the following;

x=x+1; y =y + 2; return x+y;
If a is assigned the value 3, and then f(a,a) is called, what is returned?
Exercise 7.2.6: The C function f is defined by:

int f(int x, *py, **ppz) {
*xkppz += 1; *py += 2; x += 3; return x+y+z;

}

Variable a is a pointer to b; variable b is a pointer to ¢, and c is an integer
currently with value 4. If we call f(c, b, a), what is returned?

7.3 Access to Nonlocal Data on the Stack

In this section, we consider how procedures access their data. Especially im-
portant is the mechanism for finding data used within a procedure p but that
does not belong to p. Access becomes more complicated in languages where
procedures can be declared inside other procedures. We therefore begin with
the simple case of C functions, and then introduce a language, ML, that permits
both nested function declarations and functions as “first-class objects;” that is,
functions can take functions as arguments and return functions as values. This
capability can be supported by modifying the implementation of the run-time
stack, and we shall consider several options for modifying the stack frames of
Section 7.2.
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7.3.1 Data Access Without Nested Procedures

In the C family of languages, all variables are defined either within a single
function or outside any function (“globally”). Most importantly, it is impossible
to declare one procedure whose scope is entirely within another procedure.
Rather, a global variable v has a scope consisting of all the functions that follow
the declaration of v, except where there is a local definition of the identifier v.
Variables declared within a function have a scope consisting of that function
only, or part of it, if the function has nested blocks, as discussed in Section 1.6.3.

For languages that do not allow nested procedure declarations, allocation of
storage for variables and access to those variables is simple:

1. Global variables are allocated static storage. The locations of these vari-
ables remain fixed and are known at compile time. So to access any
variable that is not local to the currently executing procedure, we simply
use the statically determined address.

2. Any other name must be local to the activation at the top of the stack.
We may access these variables through the top_sp pointer of the stack.

An important benefit of static allocation for globals is that declared proce-
dures may be passed as parameters or returned as results (in C, a pointer to
the function is passed), with no substantial change in the data-access strategy.
With the C static-scoping rule, and without nested procedures, any name non-
local to one procedure is nonlocal to all procedures, regardless of how they are
activated. Similarly, if a procedure is returned as a result, then any nonlocal
name refers to the storage statically allocated for it.

7.3.2 Issues With Nested Procedures

Access becomes far more complicated when a language allows procedure dec-
larations to be nested and also uses the normal static scoping rule; that is, a
procedure can access variables of the procedures whose declarations surround
its own declaration, following the nested scoping rule described for blocks in
Section 1.6.3. The reason is that knowing at compile time that the declaration
of p is immediately nested within ¢ does not tell us the relative positions of
their activation records at run time. In fact, since either p or ¢ or both may be
recursive, there may be several activation records of p and/or ¢ on the stack.
Finding the declaration that applies to a nonlocal name x in a nested pro-
cedure p is a static decision; it can be done by an extension of the static-scope
rule for blocks. Suppose z is declared in the enclosing procedure ¢. Finding
the relevant activation of ¢ from an activation of p is a dynamic decision; it re-
quires additional run-time information about activations. One possible solution
to this problem is to use “access links,” which we introduce in Section 7.3.5.
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7.3.3 A Language With Nested Procedure Declarations

The C family of languages, and many other familiar languages do not support
nested procedures, so we introduce one that does. The history of nested pro-
cedures in languages is long. Algol 60, an ancestor of C, had this capability,
as did its descendant Pascal, a once-popular teaching language. Of the later
languages with nested procedures, one of the most influential is ML, and it
is this language whose syntax and semantics we shall borrow (see the box on
“More about ML” for some of the interesting features of ML):

e ML is a functional language, meaning that variables, once declared and
initialized, are not changed. There are only a few exceptions, such as the
array, whose elements can be changed by special function calls.

e Variables are defined, and have their unchangeable values initialized, by
a statement of the form:

val (name) = (expression)
e Functions are defined using the syntax:
fun (name) ( (arguments) ) = (body)
e For function bodies we shall use let-statements of the form:
let (list of definitions) in (statements) end

The definitions are normally val or fun statements. The scope of each
such definition consists of all following definitions, up to the in, and all the
statements up to the end. Most importantly, function definitions can be
nested. For example, the body of a function p can contain a let-statement
that includes the definition of another (nested) function ¢. Similarly, ¢
can have function definitions within its own body, leading to arbitrarily
deep nesting of functions.

7.3.4 Nesting Depth

Let us give nesting depth 1 to procedures that are not nested within any other
procedure. For example, all C functions are at nesting depth 1. However, if a
procedure p is defined immediately within a procedure at nesting depth ¢, then
give p the nesting depth ¢ + 1.

Example 7.5: Figure 7.10 contains a sketch in ML of our running quicksort
example. The only function at nesting depth 1 is the outermost function, sort,
which reads an array a of 9 integers and sorts them using the quicksort algo-
rithm. Defined within sort, at line (2), is the array a itself. Notice the form
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More About ML

In addition to being almost purely functional, ML presents a number of
other surprises to the programmer who is used to C and its family.

e ML supports higher-order functions. That is, a function can take
functions as arguments, and can construct and return other func-
tions. Those functions, in turn, can take functions as arguments, to
any level.

e ML has essentially no iteration, as in C’s for- and while-statements,
for instance. Rather, the effect of iteration is achieved by recur-
sion. This approach is essential in a functional language, since
we cannot change the value of an iteration variable like 4 in
“for(i=0; i<10; i++)” of C. Instead, ML would make ¢ a function
argument, and the function would call itself with progressively higher
values of ¢ until the limit was reached.

e ML supports lists and labeled tree structures as primitive data types.

e ML does not require declaration of variable types. Rather, it deduces
types at compile time, and treats it as an error if it cannot. For
example, val x = 1 evidently makes  have integer type, and if we
also see val y = 2*x, then we know y is also an integer.

of the ML declaration. The first argument of array says we want the array
to have 11 elements; all ML arrays are indexed by integers starting with 0, so
this array is quite similar to the C array a from Fig. 7.2. The second argument
of array says that initially, all elements of the array a hold the value 0. This
choice of initial value lets the ML compiler deduce that a is an integer array,
since 0 is an integer, so we never have to declare a type for a.

Also declared within sort are several functions: readArray, exchange, and
quicksort. On lines (4) and (6) we suggest that readArray and ezchange each
access the array a. Note that in ML, array accesses can violate the functional
nature of the language, and both these functions actually change values of a’s
elements, as in the C version of quicksort. Since each of these three functions is
defined immediately within a function at nesting depth 1, their nesting depths
are all 2.

Lines (7) through (11) show some of the detail of quicksort. Local value v,
the pivot for the partition, is declared at line (8). Function partition is defined
at line (9). In line (10) we suggest that partition accesses both the array a
and the pivot value v, and also calls the function ezchange. Since partition is
defined immediately within a function at nesting depth 2, it is at depth 3. Line
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1) fun sort(inputFile, outputFile) =

let
2) val a = array(11,0);
3) fun readArray(inputFile) = - ;
4) e
5) fun exchange(i,j) =
6) A e
7) fun quicksort(m,n) =
let
8) val v = --- ;
9) fun partition(y,z) =
10) B T | A exchange...
in
11) ... a--- v --- partition --- quicksort
end
in
12) --- a --- readArray --- quicksort ---
end;

Figure 7.10: A version of quicksort, in ML style, using nested functions

(11) suggests that quicksort accesses variables a and v, the function partition,
and itself recursively.

Line (12) suggests that the outer function sort accesses a and calls the two
procedures readArray and quicksort. O

7.3.5 Access Links

A direct implementation of the normal static scope rule for nested functions is
obtained by adding a pointer called the access link to each activation record. If
procedure p is nested immediately within procedure ¢ in the source code, then
the access link in any activation of p points to the most recent activation of gq.
Note that the nesting depth of ¢ must be exactly one less than the nesting depth
of p. Access links form a chain from the activation record at the top of the stack
to a sequence of activations at progressively lower nesting depths. Along this
chain are all the activations whose data and procedures are accessible to the
currently executing procedure.

Suppose that the procedure p at the top of the stack is at nesting depth n,,
and p needs to access x, which is an element defined within some procedure ¢
that surrounds p and has nesting depth n,. Note that n, < n,, with equality
only if p and g are the same procedure. To find z, we start at the activation
record for p at the top of the stack and follow the access link n, — n, times,
from activation record to activation record. Finally, we wind up at an activation
record for ¢, and it will always be the most recent (highest) activation record
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for ¢ that currently appears on the stack. This activation record contains the
element z that we want. Since the compiler knows the layout of activation
records, z will be found at some fixed offset from the position in ¢’s activation
record that we can reach by following the last access link.

Example 7.6: Figure 7.11 shows a sequence of stacks that might result from
execution of the function sort of Fig. 7.10. As before, we represent function
names by their first letters, and we show some of the data that might appear in
the various activation records, as well as the access link for each activation. In
Fig. 7.11(a), we see the situation after sort has called readArray to load input
into the array a and then called guicksort(1,9) to sort the array. The access link
from quicksort(1,9) points to the activation record for sort, not because sort
called quicksort but because sort is the most closely nested function surrounding
quicksort in the program of Fig. 7.10.

a a a a
q(1,9) q(1,9) 9(1,9) q(1,9)
access link | access link access link| | access link |
v U T v || v
(a) 9(,3) L a(1,3) | | a(1,3)

access link access link access _li_n!c_
I . v v
(b) | _p(L3) | | _p(L3) |

(d)

Figure 7.11: Access links for finding nonlocal data

In successive steps of Fig. 7.11 we see a recursive call to quicksort(1,3),
followed by a call to partition, which calls exchange. Notice that quicksort(1, 3)’s
access link points to sort, for the same reason that quicksort(1,9)’s does.

In Fig. 7.11(d), the access link for ezchange bypasses the activation records
for quicksort and partition, since exchange is nested immediately within sort.
That arrangement is fine, since ezchange needs to access only the array a, and
the two elements it must swap are indicated by its own parameters ¢ and j. O
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7.3.6 Manipulating Access Links

How are access links determined? The simple case occurs when a procedure
call is to a particular procedure whose name is given explicitly in the procedure
call. The harder case is when the call is to a procedure-parameter; in that
case, the particular procedure being called is not known until run time, and the
nesting depth of the called procedure may differ in different executions of the
call. Thus, let us first consider what should happen when a procedure ¢ calls
procedure p, explicitly. There are three cases:

1. Procedure p is at a higher nesting depth than ¢. Then p must be defined
immediately within ¢, or the call by g would not be at a position that
is within the scope of the procedure name p. Thus, the nesting depth of
p is exactly one greater than that of ¢, and the access link from p must
lead to ¢. It is a simple matter for the calling sequence to include a step
that places in the access link for p a pointer to the activation record of gq.
Examples include the call of quicksort by sort to set up Fig. 7.11(a), and
the call of partition by quicksort to create Fig. 7.11(c).

2. The call is recursive, that is, p = ¢.2 Then the access link for the new acti-
vation record is the same as that of the activation record below it. An ex-
ample is the call of quicksort(1,3) by quicksort(1,9) to set up Fig. 7.11(b).

3. The nesting depth n, of p is less than the nesting depth n, of ¢. In
order for the call within ¢ to be in the scope of name p, procedure ¢
must be nested within some procedure r, while p is a procedure defined
immediately within r. The top activation record for r can therefore be
found by following the chain of access links, starting in the activation
record for g, for ng — np + 1 hops. Then, the access link for p must go to
this activation of r.

Example 7.7: For an example of case (3), notice how we go from Fig. 7.11(c)
to Fig. 7.11(d). The nesting depth 2 of the called function ezchange is one
less than the depth 3 of the calling function partition. Thus, we start at the
activation record for partition and follow 3 — 2+ 1 = 2 access links, which takes
us from partition’s activation record to that of quicksort(1,3) to that of sort.
The access link for exchange therefore goes to the activation record for sort, as
we see in Fig. 7.11(d).

An equivalent way to discover this access link is simply to follow access links
for ny —nyp hops, and copy the access link found in that record. In our example,
we would go one hop to the activation record for quicksort(1,3) and copy its
access link to sort. Notice that this access link is correct for ezchange, even
though ezchange is not in the scope of quicksort, these being sibling functions
nested within sort. O

2ML allows mutually recursive functions, which would be handled the same way.
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7.3.7 Access Links for Procedure Parameters

When a procedure p is passed to another procedure q as a parameter, and ¢q then
calls its parameter (and therefore calls p in this activation of ¢q), it is possible
that g does not know the context in which p appears in the program. If so, it is
impossible for ¢ to know how to set the access link for p. The solution to this
problem is as follows: when procedures are used as parameters, the caller needs
to pass, along with the name of the procedure-parameter, the proper access link
for that parameter.

The caller always knows the link, since if p is passed by procedure r as an
actual parameter, then p must be a name accessible to r, and therefore, r can
determine the access link for p exactly as if p were being called by r directly.
That is, we use the rules for constructing access links given in Section 7.3.6.

Example 7.8: In Fig. 7.12 we see a sketch of an ML function a that has
functions b and ¢ nested within it. Function b has a function-valued parameter
f, which it calls. Function ¢ defines within it a function d, and ¢ then calls b
with actual parameter d.

fun a(x) =
let
fun b(f) =
cee f e s
fun c(y) =
let
fun d(z) =
in
- b ---
end
in
c(1) ---
end;

Figure 7.12: Sketch of ML program that uses function-parameters

Let us trace what happens when a is executed. First, a calls ¢, so we place
an activation record for ¢ above that for a on the stack. The access link for
¢ points to the record for a, since c is defined immediately within a. Then ¢
calls b(d). The calling sequence sets up an activation record for b, as shown in
Fig. 7.13(a).

Within this activation record is the actual parameter d and its access link,
which together form the value of formal parameter f in the activation record
for b. Notice that ¢ knows about d, since d is defined within ¢, and therefore
¢ passes a pointer to its own activation record as the access link. No matter
where d was defined, if ¢ is in the scope of that definition, then one of the three
rules of Section 7.3.6 must apply, and ¢ can provide the link.
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Figure 7.13: Actual parameters carry their access link with them

Now, let us look at what b does. We know that at some point, it uses
its parameter f, which has the effect of calling d. An activation record for d
appears on the stack, as shown in Fig. 7.13(b). The proper access link to place
in this activation record is found in the value for parameter f; the link is to
the activation record for ¢, since ¢ immediately surrounds the definition of d.
Notice that b is capable of setting up the proper link, even though b is not in
the scope of ¢’s definition. O

7.3.8 Displays

One problem with the access-link approach to nonlocal data is that if the nesting
depth gets large, we may have to follow long chains of links to reach the data
we need. A more efficient implementation uses an auxiliary array d, called the
display, which consists of one pointer for each nesting depth. We arrange that,
at all times, d[i] is a pointer to the highest activation record on the stack for
any procedure at nesting depth i. Examples of a display are shown in Fig. 7.14.
For instance, in Fig. 7.14(d), we see the display d, with d[1] holding a pointer
to the activation record for sort, the highest (and only) activation record for a
function at nesting depth 1. Also, d[2] holds a pointer to the activation record
for exchange, the highest record at depth 2, and d[3] points to partition, the
highest record at depth 3.

The advantage of using a display is that if procedure p is executing, and
it needs to access element x belonging to some procedure ¢, we need to look
only in d[i], where 7 is the nesting depth of g; we follow the pointer d[i] to the
activation record for g, wherein z is found at a known offset. The compiler
knows what i is, so it can generate code to access x using d[i] and the offset of
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Figure 7.14: Maintaining the display
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x from the top of the activation record for q. Thus, the code never needs to
follow a long chain of access links.

In order to maintain the display correctly, we need to save previous values
of display entries in new activation records. If procedure p at depth n, is called,
and its activation record is not the first on the stack for a procedure at depth
np, then the activation record for p needs to hold the previous value of d[n,),
while d[n,] itself is set to point to this activation of p. When p returns, and its
activation record is removed from the stack, we restore d[n,] to have its value
prior to the call of p.

Example 7.9: Several steps of manipulating the display are illustrated in
Fig. 7.14. In Fig. 7.14(a), sort at depth 1 has called quicksort(1,9) at depth 2.
The activation record for quicksort has a place to store the old value of d[2],
indicated as saved d[2], although in this case since there was no prior activation
record at depth 2, this pointer is null.

In Fig. 7.14(b), quicksort(1,9) calls quicksort(1,3). Since the activation
records for both calls are at depth 2, we must store the pointer to quicksort(1,9),
which was in d[2], in the record for quicksort(1,3). Then, d[2] is made to point
to quicksort(1,3).

Next, partition is called. This function is at depth 3, so we use the slot d[3]
in the display for the first time, and make it point to the activation record for
partition. The record for partition has a slot for a former value of d[3], but in
this case there is none, so the pointer remains null. The display and stack at
this time are shown in Fig. 7.14(c).

Then, partition calls exchange. That function is at depth 2, so its activa-
tion record stores the old pointer d[2], which goes to the activation record for
quicksort(1,3). Notice that the display pointers “cross”; that is, d[3] points
further down the stack than d[2] does. However, that is a proper situation;
exzchange can only access its own data and that of sort, via d[1]. O

7.3.9 Exercises for Section 7.3

Exercise 7.3.1: In Fig. 7.15 is a ML function main that computes Fibonacci
numbers in a nonstandard way. Function £ib0 will compute the nth Fibonacci
number for any n > 0. Nested within in is fib1, which computes the nth
Fibonacci number on the assumption n > 2, and nested within fib1 is £ib2,
which assumes n > 4. Note that neither £ib1 nor £ib2 need to check for the
basis cases. Show the stack of activation records that result from a call to main,
up until the time that the first call (to £ib0(1)) is about to return. Show the
access link in each of the activation records on the stack.

Exercise 7.3.2: Suppose that we implement the functions of Fig. 7.15 using
a display. Show the display at the moment the first call to £ib0(1) is about to
return. Also, indicate the saved display entry in each of the activation records
on the stack at that time.
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fun main () {

let
fun fib0(n) =
let
fun fibi(n) =
let
fun fib2(n) = fibi(n-1) + fib1(n-2)
in
if n >= 4 then fib2(n)
else fibO(n-1) + £ib0(n-2)
end
in
if n >= 2 then fibil(n)
else 1
end
in
£ib0(4)
end;

Figure 7.15: Nested functions computing Fibonacci numbers

7.4 Heap Management

The heap is the portion of the store that is used for data that lives indefinitely, or
until the program explicitly deletes it. While local variables typically become
inaccessible when their procedures end, many languages enable us to create
objects or other data whose existence is not tied to the procedure activation
that creates them. For example, both C++ and Java give the programmer new
to create objects that may be passed — or pointers to them may be passed —
from procedure to procedure, so they continue to exist long after the procedure
that created them is gone. Such objects are stored on a heap.

In this section, we discuss the memory manager, the subsystem that allo-
cates and deallocates space within the heap; it serves as an interface between
application programs and the operating system. For languages like C or C++
that deallocate chunks of storage manually (i.e., by explicit statements of the
program, such as free or delete), the memory manager is also responsible for
implementing deallocation.

In Section 7.5, we discuss garbage collection, which is the process of finding
spaces within the heap that are no longer used by the program and can therefore
be reallocated to house other data items. For languages like Java, it is the
garbage collector that deallocates memory. When it is required, the garbage
collector is an important subsystem of the memory manager.



7.4. HEAP MANAGEMENT 453

7.4.1 The Memory Manager

The memory manager keeps track of all the free space in heap storage at all
times. It performs two basic functions:

e Allocation. When a program requests memory for a variable or object,?
the memory manager produces a chunk of contiguous heap memory of
the requested size. If possible, it satisfies an allocation request using free
space in the heap; if no chunk of the needed size is available, it seeks to
increase the heap storage space by getting consecutive bytes of virtual
memory from the operating system. If space is exhausted, the memory
manager passes that information back to the application program.

e Deallocation. The memory manager returns deallocated space to the pool
of free space, so it can reuse the space to satisfy other allocation requests.
Memory managers typically do not return memory to the operating sys-
tem, even if the program’s heap usage drops.

Memory management would be simpler if (a) all allocation requests were
for chunks of the same size, and (b) storage were released predictably, say,
first-allocated first-deallocated. There are some languages, such as Lisp, for
which condition (a) holds; pure Lisp uses only one data element — a two-
pointer cell — from which all data structures are built. Condition (b) also
holds in some situations, the most common being data that can be allocated
on the run-time stack. However, in most languages, neither (a) nor (b) holds
in general. Rather, data elements of different sizes are allocated, and there is
no good way to predict the lifetimes of all allocated objects.

Thus, the memory manager must be prepared to service, in any order, allo-
cation and deallocation requests of any size, ranging from one byte to as large
as the program’s entire address space.

Here are the properties we desire of memory managers:

e Space Efficiency. A memory manager should minimize the total heap
space needed by a program. Doing so allows larger programs to run in
a fixed virtual address space. Space efficiency is achieved by minimizing
“fragmentation,” discussed in Section 7.4.4.

e Program Efficiency. A memory manager should make good use of the
memory subsystem to allow programs to run faster. As we shall see in
Section 7.4.2, the time taken to execute an instruction can vary widely
depending on where objects are placed in memory. Fortunately, programs
tend to exhibit “locality,” a phenomenon discussed in Section 7.4.3, which
refers to the nonrandom clustered way in which typical programs access
memory. By attention to the placement of objects in memory, the memory
manager can make better use of space and, hopefully, make the program
run faster.

3In what follows, we shall refer to things requiring memory space as “objects,” even if they
are not true objects in the “object-oriented programming” sense.
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e Low Quverhead. Because memory allocations and deallocations are fre-
quent operations in many programs, it is important that these operations
be as efficient as possible. That is, we wish to minimize the overhead —
the fraction of execution time spent performing allocation and dealloca-
tion. Notice that the cost of allocations is dominated by small requests;
the overhead of managing large objects is less important, because it usu-
ally can be amortized over a larger amount of computation.

7.4.2 The Memory Hierarchy of a Computer

Memory management and compiler optimization must be done with an aware-
ness of how memory behaves. Modern machines are designed.so that program-
mers can write correct programs without concerning themselves with the details
of the memory subsystem. However, the efficiency of a program is determined
not just by the number of instructions executed, but also by how long it takes
to execute each of these instructions. The time taken to execute an instruction
can vary significantly, since the time taken to access different parts of memory
can vary from nanoseconds to milliseconds. Data-intensive programs can there-
fore benefit significantly from optimizations that make good use of the memory
subsystem. As we shall see in Section 7.4.3, they can take advantage of the
phenomenon of “locality” — the nonrandom behavior of typical programs.
The large variance in memory access times is due to the fundamental limi-
tation in hardware technology; we can build small and fast storage, or large and
slow storage, but not storage that is both large and fast. It is simply impos-
sible today to build gigabytes of storage with nanosecond access times, which
is how fast high-performance processors run. Therefore, practically all modern
computers arrange their storage as a memory hierarchy. A memory hierarchy,
as shown in Fig. 7.16, consists of a series of storage elements, with the smaller
faster ones “closer” to the processor, and the larger slower ones further away.
Typically, a processor has a small number of registers, whose contents are
under software control. Next, it has one or more levels of cache, usually made
out of static RAM, that are kilobytes to several megabytes in size. The next
level of the hierarchy is the physical (main) memory, made out of hundreds of
megabytes or gigabytes of dynamic RAM. The physical memory is then backed
up by virtual memory, which is implemented by gigabytes of disks. Upon a
memory access, the machine first looks for the data in the closest (lowest-level)
storage and, if the data is not there, looks in the next higher level, and so on.
Registers are scarce, so register usage is tailored for the specific applications
and managed by the code that a compiler generates. All the other levels of the
hierarchy are managed automatically; in this way, not only is the programming
task simplified, but the same program can work effectively across machines
with different memory configurations. With each memory access, the machine
searches each level of the memory in succession, starting with the lowest level,
until it locates the data. Caches are managed exclusively in hardware, in order
to keep up with the relatively fast RAM access times. Because disks are rela-
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Typical Sizes Typical Access Times
> 2GB { Virtual Memory (Disk) 3 - 15 ms
256MB - 2GB Physical Memory 100 - 150 ns
A
Y
128KB - 4MB 2nd-Level Cache 40 - 60 ns
16 - 64KB 1st-Level Cache 5-10 ns
32 Words Registers (Processor) 1 ns

Figure 7.16: Typical Memory Hierarchy Configurations

tively slow, the virtual memory is managed by the operating system, with the
assistance of a hardware structure known as the “translation lookaside buffer.”

Data is transferred as blocks of contiguous storage. To amortize the cost
of access, larger blocks are used with the slower levels of the hierarchy. Be-
tween main memory and cache, data is transferred in blocks known as cache
lines, which are typically from 32 to 256 bytes long. Between virtual memory
(disk) and main memory, data is transferred in blocks known as pages, typically
between 4K and 64K bytes in size.

7.4.3 Locality in Programs

Most programs exhibit a high degree of locality; that is, they spend most of
their time executing a relatively small fraction of the code and touching only
a small fraction of the data. We say that a program has temporal locality if
the memory locations it accesses are likely to be accessed again within a short
period of time. We say that a program has spatial locality if memory locations
close to the location accessed are likely also to be accessed within a short period
of time.

The conventional wisdom is that programs spend 90% of their time executing
10% of the code. Here is why:

e Programs often contain many instructions that are never executed. Pro-
grams built with components and libraries use only a small fraction of the
provided functionality. Also as requirements change and programs evolve,
legacy systems often contain many instructions that are no longer used.
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Static and Dynamic RAM

Most random-access memory'is dynamic, which means that it is built of
very simple electronic circuits that lose their charge (and thus “forget”
the bit they were storing) in a short time. These circuits need to be
refreshed — that is, their bits read and rewritten — periodically. On
the other hand, static RAM is designed with a more complex circuit for
each bit, and consequently the bit stored can stay indefinitely, until it is
changed. Evidently, a chip can store more bits if it uses dynamic-RAM
circuits than if it uses static-RAM circuits, so we tend to see large main
memories of the dynamic variety, while smaller memories, like caches, are
made from static circuits.

e Only a small fraction of the code that could be invoked is actually executed
in a typical run of the program. For example, instructions to handle
illegal inputs and exceptional cases, though critical to the correctness of
the program, are seldom invoked on any particular run. '

e The typical program spends most of its time executing innermost loops
and tight recursive cycles in a program.

Locality allows us to take advantage of the memory hierarchy of a modern
computer, as shown in Fig. 7.16. By placing the most common instructions and
data in the fast-but-small storage, while leaving the rest in the slow-but-large
storage, we can lower the average memory-access time of a program significantly.

It has been found that many programs exhibit both temporal and spatial
locality in how they access both instructions and data. Data-access patterns,
however, generally show a greater variance than instruction-access patterns.
Policies such as keeping the most recently used data in the fastest hierarchy
work well for common programs but may not work well for some data-intensive
programs — ones that cycle through very large arrays, for example.

We often cannot tell, just from looking at the code, which sections of the
code will be heavily used, especially for a particular input. Even if we know
which instructions are executed heavily, the fastest cache often is not large
enough to hold all of them at the same time. We must therefore adjust the
contents of the fastest storage dynamically and use it to hold instructions that
are likely to be used heavily in the near future.

Optimization Using the Memory Hierarchy

The policy of keeping the most recently used instructions in the cache tends
to work well; in other words, the past is generally a good predictor of future
memory usage. When a new instruction is executed, there is a high proba-
bility that the next instruction also will be executed. This phenomenon is an
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Cache Architectures

How do we know if a cache line is in a cache? It would be too expensive
to check every single line in the cache, so it is common practice to restrict
the placement of a cache line within the cache. This restriction is known
as set associativity. A cache is k-way set associative if a cache line can
reside only in & locations. The simplest cache is a 1-way associative cache,
also known as a direct-mapped cache. In a direct-mapped cache, data with
memory address n can be placed only in cache address n mod s, where s
is the size of the cache. Similarly, a k-way set associative cache is divided
into k sets, where a datum with address n can be mapped only to the
location n mod (s/k) in each set. Most instruction and data caches have
associativity between 1 and 8 When a cache line is brought into the
cache, and all the possible locations that can hold the line are occupied,
it is typical to evict the line that has been the least recently used.

example of spatial locality. One effective technique to improve the spatial lo-
cality of instructions is to have the compiler place basic blocks (sequences of
instructions that are always executed sequentially) that are likely to follow each
other contiguously — on the same page, or even the same cache line, if possi-
ble. Instructions belonging to the same loop or same function also have a high
probability of being executed together.*

We can also improve the temporal and spatial locality of data accesses in
a program by changing the data layout or the order of the computation. For
example, programs that visit large amounts of data repeatedly, each time per-
forming a small amount of computation, do not perform well. It is better if we
can bring some data from a slow level of the memory hierarchy to a faster level
(e.g., disk to main memory) once, and perform all the necessary computations
on this data while it resides at the faster level. This concept can be applied
recursively to reuse data in physical memory, in the caches and in the registers.

7.4.4 Reducing Fragmentation

At the beginning of program execution, the heap is one contiguous unit of free
space. As the program allocates and deallocates memory, this space is broken
up into free and used chunks of memory, and the free chunks need not reside in
a contiguous area of the heap. We refer to the free chunks of memory as holes.
With each allocation request, the memory manager must place the requested
chunk of memory into a large-enough hole. Unless a hole of exactly the right
size is found, we need to split some hole, creating a yet smaller hole.

4As a machine fetches a word in memory, it is relatively inexpensive to prefetch the next
several contiguous words of memory as well. Thus, a common memory-hierarchy feature is
that a multiword block is fetched from a level of memory each time that level is accessed.
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With each deallocation request, the freed chunks of memory are added back
to the pool of free space. We coalesce contiguous holes into larger holes, as the
holes can only get smaller otherwise. If we are not careful, the memory may
end up getting fragmented, consisting of large numbers of small, noncontiguous
holes. It is then possible that no hole is large enough to satisfy a future request,
even though there may be sufficient aggregate free space.

Best-Fit and Next-Fit Object Placement

We reduce fragmentation by controlling how the memory manager places new
objects in the heap. It has been found empirically that a good strategy for mini-
mizing fragmentation for real-life programs is to allocate the requested memory
in the smallest available hole that is large enough. This best-fit algorithm tends
to spare the large holes to satisfy subsequent, larger requests. An alternative,
called first-fit, where an object is placed in the first (lowest-address) hole in
which it fits, takes less time to place objects, but has been found inferior to
best-fit in overall performance.

To implement best-fit placement more efficiently, we can separate free space
into bins, according to their sizes. One practical idea is to have many more bins
for the smaller sizes, because there are usually many more small objects. For
example, the Lea memory manager, used in the GNU C compiler gcc, aligns
all chunks to 8-byte boundaries. There is a bin for every multiple of 8-byte
chunks from 16 bytes to 512 bytes. Larger-sized bins are logarithmically spaced
(i.e., the minimum size for each bin is twice that of the previous bin), and
within each of these bins the chunks are ordered by their size. There is always
a chunk of free space that can be extended by requesting more pages from the
operating system. Called the wilderness chunk, this chunk is treated by Lea as
the largest-sized bin because of its extensibility.

Binning makes it easy to find the best-fit chunk.

o If, as for small sizes requested from the Lea memory manager, there is a
bin for chunks of that size only, we may take any chunk from that bin.

e For sizes that do not have a private bin, we find the one bin that is
allowed to include chunks of the desired size. Within that bin, we can use
either a first-fit or a best-fit strategy; i.e., we either look for and select
the first chunk that is sufficiently large or, we spend more time and find
the smallest chunk that is sufficiently large. Note that when the fit is not
exact, the remainder of the chunk will generally need to be placed in a
bin with smaller sizes.

e However, it may be that the target bin is empty, or all chunks in that
bin are too small to satisfy the request for space. In that case, we simply
repeat the search, using the bin for the next larger size(s). Eventually,
we either find a chunk we can use, or we reach the “wilderness” chunk,
from which we can surely obtain the needed space, possibly by going to
the operating system and getting additional pages for the heap.
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While best-fit placement tends to improve space utilization, it may not be
the best in terms of spatial locality. Chunks allocated at about the same time by
a program tend to have similar reference patterns and to have similar lifetimes.
Placing them close together thus improves the program’s spatial locality. One
useful adaptation of the best-fit algorithm is to modify the placement in the
case when a chunk of the exact requested size cannot be found. In this case, we
use a next-fit strategy, trying to allocate the object in the chunk that has last
been split, whenever enough space for the new object remains in that chunk.
Next-fit also tends to improve the speed of the allocation operation.

Managing and Coalescing Free Space

When an object is deallocated manually, the memory manager must make its
chunk free, so it can be allocated again. In some circumstances, it may also be
possible to combine (coalesce) that chunk with adjacent chunks of the heap, to
form a larger chunk. There is an advantage to doing so, since we can always
use a large chunk to do the work of small chunks of equal total size, but many
small chunks cannot hold one large object, as the combined chunk could.

If we keep a bin for chunks of one fixed size, as Lea does for small sizes,
then we may prefer not to coalesce adjacent blocks of that size into a chunk of
double the size. It is simpler to keep all the chunks of one size in as many pages
as we need, and never coalesce them. Then, a simple allocation/deallocation
scheme is to keep a bitmap, with one bit for each chunk in the bin. A 1 indicates
the chunk is occupied; 0 indicates it is free. When a chunk is deallocated, we
change its 1 to a 0. When we need to allocate a chunk, we find any chunk with
a 0 bit, change that bit to a 1, and use the corresponding chunk. If there are
no free chunks, we get a new page, divide it into chunks of the appropriate size,
and extend the bit vector.

Matters are more complex when the heap is managed as a whole, without
binning, or if we are willing to coalesce adjacent chunks and move the resulting
chunk to a different bin if necessary. There are two data structures that are
useful to support coalescing of adjacent free blocks:

e Boundary Tags. At both the low and high ends of each chunk, whether
free or allocated, we keep vital information. At both ends, we keep a
free/used bit that tells whether or not the block is currently allocated
(used) or available (free). Adjacent to each free/used bit is a count of the
total number of bytes in the chunk.

e A Doubly Linked, Embedded Free List. The free chunks (but not the
allocated chunks) are also linked in a doubly linked list. The pointers for
this list are within the blocks themselves, say adjacent to the boundary
tags at either end. Thus, no additional space is needed for the free list,
although its existence does place a lower bound on how small chunks can
get; they must accommodate two boundary tags and two pointers, even
if the object is a single byte. The order of chunks on the free list is left
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unspecified. For example, the list could be sorted by size, thus facilitating
best-fit placement.

Example 7.10: Figure 7.17 shows part of a heap with three adjacent chunks,
A, B, and C. Chunk B, of size 100, has just been deallocated and returned to
the free list. Since we know the beginning (left end) of B, we also know the
end of the chunk that happens to be immediately to B’s left, namely A in this
example. The free/used bit at the right end of A is currently 0, so A too is free.
We may therefore coalesce A and B into one chunk of 300 bytes.

Chunk 4 Chunk B Chunk C

-+ 10200} | 1200:0]01100 © < 100:0[171200

Figure 7.17: Part of a heap and a doubly linked free list

It might be the case that chunk C, the chunk immediately to B’s right,
is also free, in which case we can combine all of A, B, and C. Note that if
we always coalesce chunks when we can, then there can never be two adjacent
free chunks, so we never have to look further than the two chunks adjacent to
the one being deallocated. In the current case, we find the beginning of C' by
starting at the left end of B, which we know, and finding the total number of
bytes in B, which is found in the left boundary tag of B and is 100 bytes. With
this information, we find the right end of B and the beginning of the chunk to
its right. At that point, we examine the free/used bit of C and find that it is 1
for used; hence, C' is not available for coalescing.

Since we must coalesce A and B, we need to remove one of them from the free
list. The doubly linked free-list structure lets us find the chunks before and after
each of A and B. Notice that it should not be assumed that physical neighbors
A and B are also adjacent on the free list. Knowing the chunks preceding and
following A and B on the free list, it is straightforward to manipulate pointers
on the list to replace A and B by one coalesced chunk. O

Automatic garbage collection can eliminate fragmentation altogether if it
moves all the allocated objects to contiguous storage. The interaction between
garbage collection and memory management is discussed in more detail in Sec-
tion 7.6.4.

7.4.5 Manual Deallocation Requests

We close this section with manual memory management, where the programmer
must explicitly arrange for the deallocation of data, as in C and C++. Ideally,
any storage that will no longer be accessed should be deleted. Conversely, any
storage that may be referenced must not be deleted. Unfortunately, it is hard to
enforce either of these properties. In addition to considering the difficulties with
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manual deallocation, we shall describe some of the techniques programmers use
to help with the difficulties.

Problems with Manual Deallocation

Manual memory management is error-prone. The common mistakes take two
forms: failing ever to delete data that cannot be referenced is called a memory-
leak error, and referencing deleted data is a dangling-pointer-dereference error.

It is hard for programmers to tell if a program will never refer to some stor-
age in the future, so the first common mistake is not deleting storage that will
never be referenced. Note that although memory leaks may slow down the exe-
cution of a program due to increased memory usage, they do not affect program
correctness, as long as the machine does not run out of memory. Many pro-
grams can tolerate memory leaks, especially if the leakage is slow. However, for
long-running programs, and especially nonstop programs like operating systems
or server code, it is critical that they not have leaks.

Automatic garbage collection gets rid of memory leaks by deallocating all
the garbage. Even with automatic garbage collection, a program may still use
more memory than necessary. A programmer may know that an object will
never be referenced, even though references to that object exist somewhere. In
that case, the programmer must deliberately remove references to objects that
will never be referenced, so the objects can be deallocated automatically.

Being overly zealous about deleting objects can lead to even worse problems
than memory leaks. The second common mistake is to delete some storage and
then try to refer to the data in the deallocated storage. Pointers to storage that
has been deallocated are known as dangling pointers. Once the freed storage
has been reallocated to a new variable, any read, write, or deallocation via
the dangling pointer can produce seemingly random effects. We refer to any
operation, such as read, write, or deallocate, that follows a pointer and tries to
use the object it points to, as dereferencing the pointer.

Notice that reading through a dangling pointer may return an arbitrary
value. Writing through a dangling pointer arbitrarily changes the value of the
new variable. Deallocating a dangling pointer’s storage means that the storage
of the new variable may be allocated to yet another variable, and actions on
the old and new variables may conflict with each other.

Unlike memory leaks, dereferencing a dangling pointer after the freed storage
is reallocated almost always creates a program error that is hard to debug. As
a result, programmers are more inclined not to deallocate a variable if they are
not certain it is unreferencable.

A related form of programming error is to access an illegal address. Common
examples of such errors include dereferencing null pointers and accessing an
out-of-bounds array element. It is better for such errors to be detected than to
have the program silently corrupt the results. In fact, many security violations
exploit programming errors of this type, where certain program inputs allow
unintended access to data, leading to a “hacker” taking control of the program
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An Example: Purify

Rational’s Purify is one of the most popular commercial tools that helps
programmers find memory access errors and memory leaks in programs.
Purify instruments binary code by adding additional instructions to check
for errors as the program executes. It keeps a map of memory to indicate
where all the freed and used spaces are. Each allocated object is bracketed
with extra space; accesses to unallocated locations or to spaces between
objects are flagged as errors. This approach finds some dangling pointer
references, but not when the memory has been reallocated and a valid
object is sitting in its place. This approach also finds some out-of-bound
array accesses, if they happen to land in the space inserted at the end of
the objects.

Purify also finds memory leaks at the end of a program execution. It
searches the contents of all the allocated objects for possible pointer values.
Any object without a pointer to it is a leaked chunk of memory. Purify
reports the amount of memory leaked and the locations of the leaked
objects. We may compare Purify to a “conservative garbage collector,”
which will be discussed in Section 7.8.3.

and machine. One antidote is to have the compiler insert checks with every
access, to make sure it is within bounds. The compiler’s optimizer can discover
and remove those checks that are not really necessary because the optimizer
can deduce that the access must be within bounds.

Programming Conventions and Tools

We now present a few of the most popular conventions and tools that have been
developed to help programmers cope with the complexity in managing memory:

e Object ownership is useful when an object’s lifetime can be statically rea-
soned about. The idea is to associate an owmner with each object at all
times. The owner is a pointer to that object, presumably belonging to
some function invocation. The owner (i.e., its function) is responsible for
either deleting the object or for passing the object to another owner. It
is possible to have other, nonowning pointers to the same object; these
pointers can be overwritten any time, and no deletes should ever be ap-
plied through them. This convention eliminates memory leaks, as well as
attempts to delete the same object twice. However, it does not help solve
the dangling-pointer-reference problem, because it is possible to follow a
nonowning pointer to an object that has been deleted.

e Reference counting is useful when an object’s lifetime needs to be deter-
mined dynamically. The idea is to associate a count with each dynamically
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allocated object. Whenever a reference to the object is created, we incre-
ment the reference count; whenever a reference is removed, we decrement
the reference count. When the count goes to zero, the object can no longer
be referenced and can therefore be deleted. This technique, however, does
not catch useless, circular data structures, where a collection of objects
cannot be accessed, but their reference counts are not zero, since they
refer to each other. For an illustration of this problem, see Example 7.11.
Reference counting does eradicate all dangling-pointer references, since
there are no outstanding references to any deleted objects. Reference
counting is expensive because it imposes an overhead on every operation
that stores a pointer.

o Region-based allocation is useful for collections of objects whose lifetimes
are tied to specific phases in a computation. When objects are created to
be used only within some step of a computation, we can allocate all such
objects in the same region. We then delete the entire region once that
computation step completes. This region-based allocation technique has
limited applicability. However, it is very efficient whenever it can be used;
instead of deallocating objects one at a time, it deletes all objects in the
region in a wholesale fashion.

7.4.6 Exercises for Section 7.4

Exercise 7.4.1: Suppose the heap consists of seven chunks, starting at address
0. The sizes of the chunks, in order, are 80, 30, 60, 50, 70, 20, 40 bytes. When
we place an object in a chunk, we put it at the high end if there is enough
space remaining to form a smaller chunk (so that the smaller chunk can easily
remain on the linked list of free space). However, we cannot tolerate chunks
of fewer that 8 bytes, so if an object is almost as large as the selected chunk,
we give it the entire chunk and place the object at the low end of the chunk.
If we request space for objects of the following sizes: 32, 64, 48, 16, in that
order, what does the free space list look like after satisfying the requests, if the
method of selecting chunks is

a) First fit.
b) Best fit.

7.5 Introduction to Garbage Collection

Data that cannot be referenced is generally known as garbage. Many high-level
programming languages remove the burden of manual memory management
from the programmer by offering automatic garbage collection, which deallo-
cates unreachable data. Garbage collection dates back to the initial implemen-
tation of Lisp in 1958. Other significant languages that offer garbage collection
include Java, Perl, ML, Modula-3, Prolog, and Smalltalk.
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In this section, we introduce many of the concepts of garbage collection.
The notion of an object being “reachable” is perhaps intuitive, but we need to
be precise; the exact rules are discussed in Section 7.5.2. We also discuss, in
Section 7.5.3, a simple, but imperfect, method of automatic garbage collection:
reference counting, which is based on the idea that once a program has lost all
references to an object, it simply cannot and so will not reference the storage.

Section 7.6 covers trace-based collectors, which are algorithms that discover
all the objects that are still useful, and then turn all the other chunks of the
heap into free space.

7.5.1 Design Goals for Garbage Collectors

Garbage collection is the reclamation of chunks of storage holding objects that
can no longer be accessed by a program. We need to assume that objects have
a type that can be determined by the garbage collector at run time. From the
type information, we can tell how large the object is and which components of
the object contain references (pointers) to other objects. We also assume that
references to objects are always to the address of the beginning of the object,
never pointers to places within the object. Thus, all references to an object
have the same value and can be identified easily.

A user program, which we shall refer to as the mutator, modifies the col-
lection of objects in the heap. The mutator creates objects by acquiring space
from the memory manager, and the mutator may introduce and drop references
to existing objects. Objects become garbage when the mutator program cannot
“reach” them, in the sense made precise in Section 7.5.2. The garbage collector
finds these unreachable objects and reclaims their space by handing them to
the memory manager, which keeps track of the free space.

A Basic Requirement: Type Safety

Not all languages are good candidates for automatic garbage collection. For a
garbage collector to work, it must be able to tell whether any given data element
or component of a data element is, or could be used as, a pointer to a chunk of
allocated memory space. A language in which the type of any data component
can be determined is said to be type safe. There are type-safe languages like
ML, for which we can determine types at compile time. There are other type-
safe languages, like Java, whose types cannot be determined at compile time,
but can be determined at run time. The latter are called dynamically typed
languages. If a language is neither statically nor dynamically type safe, then it
is said to be unsafe. ‘
Unsafe languages, which unfortunately include some of the most impor-
tant languages such as C and C++, are bad candidates for automatic garbage
collection. In unsafe languages, memory addresses can be manipulated arbi-
trarily: arbitrary arithmetic operations can be applied to pointers to create
new pointers, and arbitrary integers can be cast as pointers: Thus a program
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theoretically could refer to any location in memory at any time. Consequently,
no memory location can be considered to be inaccessible, and no storage can
ever be reclaimed safely.

In practice, most C and C++ programs do not generate pointers arbitrarily,
and a theoretically unsound garbage collector that works well empirically has
been developed and used. We shall discuss conservative garbage collection for
C and C++ in Section 7.8.3.

Performance Metrics

Garbage collection is often so expensive that, although it was invented decades
ago and absolutely prevents memory leaks, it has yet to be adopted by many
mainstream programming languages. Many different approaches have been pro-
posed over the years, and there is not one clearly best garbage-collection algo-
rithm. Before exploring the options, let us first enumerate the performance
metrics that must be considered when designirig a garbage collector.

o Querall Execution Time. Garbage collection can be very slow. It is impor-
tant that it not significantly increase the total run time of an application.
Since the garbage collector necessarily must touch a lot of data, its perfor-
mance is determined greatly by how it leverages the memory subsystem.

e Space Usage. It is important that garbage collection avoid fragmentation
and make the best use of the available memory.

e Pause Time. Simple garbage collectors are notorious for causing pro-
grams — the mutators — to pause suddenly for an extremely long time,
as garbage collection kicks in without warning. Thus, besides minimiz-
ing the overall execution time, it is desirable that the maximum pause
time be minimized. As an important special case, real-time applications
require certain computations to be completed within a time limit. We
must either suppress garbage collection while performing real-time tasks,
or restrict maximum pause time. Thus, garbage collection is seldom used
in real-time applications.

e Program Locality. We cannot evaluate the speed of a garbage collector
solely by its running time. The garbage collector controls the placement
of data and thus influences the data locality of the mutator program. It
can improve a mutator’s temporal locality by freeing up space and reusing
it; it can improve the mutator’s spatial locality by relocating data used
together in the same cache or pages.

Some of these design goals conflict with one another, and tradeoffs must be
made carefully by considering how programs typically behave. Also objects of
different characteristics may favor different treatments, requiring a collector to
use different techniques for different kinds of objects.
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For example, the number of objects allocated is dominated by small objects,
so allocation of small objects must not incur a large overhead. On the other
hand, consider garbage collectors that relocate reachable objects. Relocation is
expensive when dealing with large objects, but less so with small objects.

As another example, in general, the longer we wait to collect garbage in a
trace-based collector, the larger the fraction of objects that can be collected.
The reason is that objects often “die young,” so if we wait a while, many of
the newly allocated objects will become unreachable. Such a collector thus
costs less on the average, per unreachable object collected. On the other hand,
infrequent collection increases a program’s memory usage, decreases its data
locality, and increases the length of the pauses.

In contrast, a reference-counting collector, by introducing a constant over-
head to many of the mutator’s operations, can slow down the overall execution
of a program significantly. On the other hand, reference counting does not cre-
ate long pauses, and it is memory efficient, because it finds garbage as soon
as it is produced (with the exception of certain cyclic structures discussed in
Section 7.5.3).

Language design can also affect the characteristics of memory usage. Some
languages encourage a programming style that generates a lot of garbage. For
example, programs in functional or almost functional programming languages
create more objects to avoid mutating existing objects. In Java, all objects,
other than base types like integers and references, are allocated on the heap
and not the stack, even if their lifetimes are confined to that of one function
invocation. This design frees the programmer from worrying about the lifetimes
of variables, at the expense of generating more garbage. Compiler optimizations
have been developed to analyze the lifetimes of variables and allocate them on
the stack whenever possible.

7.5.2 Reachability

We refer to all the data that can be accessed directly by a program, without
having to dereference any pointer, as the root set. For example, in Java the root
set of a program consists of all the static field members and all the variables
on its stack. A program obviously can reach any member of its root set at
any time. Recursively, any object with a reference that is stored in the field
members or array elements of any reachable object is itself reachable.

Reachability becomes a bit more complex when the program has been op-
timized by the compiler. First, a compiler may keep reference variables in
registers. These references must also be considered part of the root set. Sec-
ond, even though in a type-safe language programmers do not get to manipulate
memory addresses directly, a compiler often does so for the sake of speeding up
the code. Thus, registers in compiled code may point to the middle of an object
or an array, or they may contain a value to which an offset will be applied to
compute a legal address. Here are some things an optimizing compiler can do
to enable the garbage collector to find the correct root set:
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e The compiler can restrict the invocation of garbage collection to only
certain code points in the program, when no “hidden” references exist.

e The compiler can write out information that the garbage collector can
use to recover all the references, such as specifying which registers contain
references, or how to compute the base address of an object that is given
an internal address.

e The compiler can assure that there is a reference to the base address of
all reachable objects whenever the garbage collector may be invoked.

The set of reachable objects changes as a program executes. It grows as new
objects get created and shrinks as objects become unreachable. It is important
to remember that once an object becomes unreachable, it cannot become reach-
able again. There are four basic operations that a mutator performs to change
the set of reachable objects:

e Object Allocations. These are performed by the memory manager, which
returns a reference to each newly allocated chunk of memory. This oper-
ation adds members to the set of reachable objects.

e Parameter Passing and Return Values. References to objects are passed
from the actual input parameter to the corresponding formal parameter,
and from the returned result back to the callee. Objects pointed to by
these references remain reachable.

o Reference Assignments. Assignments of the form u = v, where u and v
are references, have two effects. First, u is now a reference to the object
referred to by v. Aslong as u is reachable, the object it refers to is surely
reachable. Second, the original reference in u is lost. If this reference is
the last to some reachable object, then that object becomes unreachable.
Any time an object becomes unreachable, all objects that are reachable
only through references contained in that object also become unreachable.

o Procedure Returns. As a procedure exits, the frame holding its local
variables is popped off the stack. If the frame holds the only reachable
reference to any object, that object becomes unreachable. Again, if the
now unreachable objects hold the only references to other objects, they
too become unreachable, and so on.

In summary, new objects are introduced through object allocations. Param-
eter passing and assignments can propagate reachability; assignments and ends
of procedures can terminate reachability. As an object becomes unreachable, it
can cause more objects to become unreachable.

There are two basic ways to find unreachable objects. Either we catch the
transitions as reachable objects turn unreachable, or we periodically locate all
the reachable objects and then infer that all the other objects are unreachable.
Reference counting, introduced in Section 7.4.5, is a well-known approximation
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Survival of Stack Objects

When a procedure is called, a local variable v, whose object is allocated
on the stack, may have pointers to v placed in nonlocal variables. These
pointers will continue to exist after the procedure returns, yet the space for
v disappears, resulting in a dangling-reference situation. Should we ever
allocate a local like v on the stack, as C does for example? The answer
is that the semantics of many languages requires that local variables cease
to exist when their procedure returns. Retaining a reference to such a
variable is a programming error, and the compiler is not required to fix
the bug in the program.

to the first approach. We maintain a count of the references to an object, as
the mutator performs actions that may change the reachability set. When the
count goes to zero, the object becomes unreachable. We discuss this approach
in more detail in Section 7.5.3.

The second approach computes reachability by tracing all the references
transitively. A trace-based garbage collector starts by labeling (“marking”) all
objects in the root set as “reachable,” examines iteratively all the references
in reachable objects to find more reachable objects, and labels them as such.
This approach must trace all the references before it can determine any object
to be unreachable. But once the reachable set is computed, it can find many
unreachable objects all at once and locate a good deal of free storage at the same
time. Because all the references must be analyzed at the same time, we have
an option to relocate the reachable objects and thereby reduce fragmentation.
There are many different trace-based algorithms, and we discuss the options in
Sections 7.6 and 7.7.1.

7.5.3 Reference Counting Garbage Collectors

We now consider a simple, although imperfect, garbage collector, based on
reference counting, which identifies garbage as an object changes from being
reachable to unreachable; the object can be deleted when its count drops to
zero. With a reference-counting garbage collector, every object must have a
field for the reference count. Reference counts can be maintained as follows:

1. Object Allocation. The reference count of the new object is set to 1.

2. Parameter Passing. The reference count of each object passed into a
procedure is incremented.

3. Reference Assignments. For statement u = v, where u and v are refer-
ences, the reference count of the object referred to by v goes up by one,
and the count for the old object referred to by v goes down by one.
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4. Procedure Returns. As a procedure exits, all the references held by the
local variables of that procedure activation record must also be decre-
mented. If several local variables hold references to the same object, that
object’s count must be decremented once for each such reference.

5. Transitive Loss of Reachability. Whenever the reference count of an object
becomes zero, we must also decrement the count of each object pointed
to by a reference within the object.

Reference counting has two main disadvantages: it cannot collect unreach-
able, cyclic data structures, and it is expensive. Cyclic data structures are quite
plausible; data structures often point back to their parent nodes, or point to
each other as cross references.

Example 7.11: Figure 7.18 shows three objects with references among them,
but no references from anywhere else. If none of these objects is part of the
root set, then they are all garbage, but their reference counts are each greater
than 0. Such a situation is tantamount to a memory leak if we use reference
counting for garbage collection, since then this garbage and any structures like
it are never deallocated. O

No pointers
from outside

Figure 7.18: An unreachable, cyclic data structure

The overhead of reference counting is high because additional operations are
introduced with each reference assignment, and at procedure entries and exits.
This overhead is proportional to the amount of computation in the program, and
not just to the number of objects in the system. Of particular concern are the
updates made to references in the root set of a program. The concept of deferred
reference counting has been proposed as a means to eliminate the overhead
associated with updating the reference counts due to local stack accesses. That
is, reference counts do not include references from the root set of the program.
An object is not considered to be garbage until the entire root set is scanned
and no references to the object are found.

The advantage of reference counting, on the other hand, is that garbage col-
lection is performed in an incremental fashion. Even though the total overhead
can be large, the operations are spread throughout the mutator’s computation.
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Although removing one reference may render a large number of objects un-
reachable, the operation of recursively modifying reference counts can easily be
deferred and performed piecemeal across time. Thus, reference counting is par-
ticularly attractive algorithm when timing deadlines must be met, as well as for
interactive applications where long, sudden pauses are unacceptable. Another
advantage is that garbage is collected immediately, keeping space usage low.

Figure 7.19: A network of objects

7.5.4 Exercises for Section 7.5

Exercise 7.5.1: What happens to the reference counts of the objects in Fig.
7.19 if:

a) The pointer from A to B is deleted.
b) The pointer from X to A is deleted.
c) The node C is deleted.

Exercise 7.5.2: What happens to reference counts when the pointer from A
to D in Fig. 7.20 is deleted?

7.6 Introduction to Trace-Based Collection

Instead of collecting garbage as it is created, trace-based collectors run periodi-
cally to find unreachable objects and reclaim their space. Typically, we run the
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Figure 7.20: Another network of objects

trace-based collector whenever the free space is exhausted or its amount drops
below some threshold.

We begin this section by introducing the simplest “mark-and-sweep” gar-
bage collection algorithm. We then describe the variety of trace-based algo-
rithms in terms of four states that chunks of memory can be put in. This
section also contains a number of improvements on the basic algorithm, includ-
ing those in which object relocation is a part of the garbage-collection function.

7.6.1 A Basic Mark-and-Sweep Collector

Mark-and-sweep garbage-collection algorithms are straightforward, stop-the-
world algorithms that find all the unreachable objects, and put them on the list
of free space. Algorithm 7.12 visits and “marks” all the reachable objects in the
first tracing step and then “sweeps” the entire heap to free up unreachable ob-
jects. Algorithm 7.14, which we consider after introducing a general framework
for trace-based algorithms, is an optimization of Algorithm 7.12. By using an
additional list to hold all the allocated objects, it visits the reachable objects
only once.

Algorithm 7.12: Mark-and-sweep garbage collection.

INPUT: A root set of objects, a heap, and a free list, called Free, with all the
unallocated chunks of the heap. As in Section 7.4.4, all chunks of space are
marked with boundary tags to indicate their free/used status and size.

OUTPUT: A modified Free list after all the garbage has been removed.

METHOD: The algorithm, shown in Fig. 7.21, uses several simple data struc-
tures. List Free holds objects known to be free. A list called Unscanned, holds
objects that we have determined are reached, but whose successors we have not
yet considered. That is, we have not scanned these objects to see what other
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/* marking phase */
1) set the reached-bit to 1 and add to list Unscanned each object
referenced by the root set;

2) while (Unscanned # 0) {
3) remove some object o from Unscanned;
4) for (each object o' referenced in o) {
5) if (¢’ is unreached; i.e., its reached-bit is 0) {
6) set the reached-bit of o' to 1;
7) put o' in Unscanned;
}
}
}
/* sweeping phase */
8) Free = ();
9) for (each chunk of memory o in the heap) {
10) if (o is unreached, i.e., its reached-bit is 0) add o to Free;
11) else set the reached-bit of o to 0;
}

Figure 7.21: A Mark-and-Sweep Garbage Collector

objects can be reached through them. The Unscanned list is empty initially.
Additionally, each object includes a bit to indicate whether it has been reached
(the reached-bit). Before the algorithm begins, all allocated objects have the
reached-bit set to 0.

In line (1) of Fig. 7.21, we initialize the Unscanned list by placing there all
the objects referenced by the root set. The reached-bit for these objects is also
set to 1. Lines (2) through (7) are a loop, in which we, in turn, examine each
object o that is ever placed on the Unscanned list.

The for-loop of lines (4) through (7) implements the scanning of object o.
We examine each object o' for which we find a reference within o. If o’ has
already been reached (its reached-bit is 1), then there is no need to do anything
about o; it either has been scanned previously, or it is on the Unscanned list
to be scanned later. However, if o’ was not reached already, then we need to
set its reached-bit to 1 in line (6) and add o' to the Unscanned list in line (7).
Figure 7.22 illustrates this process. It shows an Unscanned list with four objects.
The first object on this list, corresponding to object o in the discussion above,
is in the process of being scanned. The dashed lines correspond to the three
kinds of objects that might be reached from o:

1. A previously scanned object that need not be scanned again.
2. An object currently on the Unscanned list.

3. An item that is reachable, but was previously thought to be unreached.
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Unscanned

Free and unreached objects
reached bit = 0

Unscanned and previously scanned objects
reached bit = 1

Figure 7.22: The relationships among objects during the marking phase of a
mark-and-sweep garbage collector

Lines (8) through (11), the sweeping phase, reclaim the space of all the
objects that remain unreached at the end of the marking phase. Note that
these will include any objects that were on the Free list originally. Because the
set of unreached objects cannot be enumerated directly, the algorithm sweeps
through the entire heap. Line (10) puts free and unreached objects on the
Free list, one at a time. Line (11) handles the reachable objects. We set their
reached-bit to 0, in order to maintain the proper preconditions for the next
execution of the garbage-collection algorithm. O

7.6.2 Basic Abstraction

All trace-based algorithms compute the set of reachable objects and then take
the complement of this set. Memory is therefore recycled as follows:

a) The program or mutator runs and makes allocation requests.
b) The garbage collector discovers reachability by tracing.

c) The garbage collector reclaims the storage for unreachable objects.

This cycle isillustrated in Fig. 7.23 in terms of four states for chunks of memory:
Free, Unreached, Unscanned, and Scanned. The state of a chunk might be stored
in the chunk itself, or it might be implicit in the data structures used by the
garbage-collection algorithm.

While trace-based algorithms may differ in their implementation, they can
all be described in terms of the following states:

1. Free. A chunk is in the Free state if it is ready to be allocated. Thus, a
Free chunk must not hold a reachable object.

2. Unreached. Chunks are presumed unreachable, unless proven reachable by
tracing. A chunk is in the Unreached state at any point during garbage
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allocate
Free Unreached

(a) Before tracing: action of mutator

Unreached

reached from
root set

pointers
scanned

" Unscanned

(b) Discovering reachability by tracing

deallocate
Q’ﬁ:ﬁ/ Unreached

-

e ’ready for
next collection

(c) Reclaiming storage

Figure 7.23: States of memory in a garbage collection cycle

collection if its reachability has not yet been established. Whenever a
chunk is allocated by the memory manager, its state is set to Unreached
as illustrated in Fig. 7.23(a). Also, after a round of garbage collection,
the state of a reachable object is reset to Unreached to get ready for the
next round; see the transition from Scannedto Unreached, which is shown
dashed to emphasize that it prepares for the next round.

Unscanned. Chunks that are known to be reachable are either in state
Unscanned or state Scanned. A chunk is in the Unscanned state if it is
known to be reachable, but its pointers have not yet been scanned. The
transition to Unscanned from Unreached occurs when we discover that a
chunk is reachable; see Fig. 7.23(Db).

Scanned. Every Unscanned object will eventually be scanned and tran-
sition to the Scanned state. To scan an object, we examine each of the
pointers within it and follow those pointers to the objects to which they
refer. If a reference is to an Unreached object, then that object is put in
the Unscanned state. When the scan of an object is completed, that object
is placed in the Scanned state; see the lower transition in Fig. 7.23(b). A
Scanned object can only contain references to other Scannedor Unscanned
objects, and never to Unreached objects.
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When no objects are left in the Unscanned state, the computation of reach-
ability is complete. Objects left in the Unreached state at the end are truly
unreachable. The garbage collector reclaims the space they occupy and places
the chunks in the Free state, as illustrated by the solid transition in Fig. 7.23(c).
To get ready for the next cycle of garbage collection, objects in the Scanned state
are returned to the Unreached state; see the dashed transition in Fig. 7.23(c).
Again, remember that these objects really are reachable right now. The Un-
reachable state is appropriate because we shall want to start all objects out
in this state when garbage collection next begins, by which time any of the
currently reachable objects may indeed have been rendered unreachable.

Example 7.13: Let us see how the data structures of Algorithm 7.12 relate
to the four states introduced above. Using the reached-bit and membership on
lists Free and Unscanned, we can distinguish among all four states. The table
of Fig. 7.24 summarizes the characterization of the four states in terms of the
data structure for Algorithm 7.12. O

STATE ON Free ON Unscanned REACHED-BIT
Free Yes No 0
Unreached No No 0
Unscanned No Yes 1
Scanned No No 1

Figure 7.24: Representation of states in Algorithm 7.12

7.6.3 Optimizing Mark-and-Sweep

The final step in the basic mark-and-sweep algorithm is expensive because there
is no easy way to find only the unreachable objects without examining the entire
heap. An improved algorithm, due to Baker, keeps a list of all allocated objects.
To find the set of unreachable objects, which we must return to free space, we
take the set difference of the allocated objects and the reached objects.

Algorithm 7.14: Baker’s mark-and-sweep collector.

N
INPUT: A root set of objects, a heap, a free list Free, and a list of allocated
objects, which we refer to as Unreached.

OUTPUT: Modified lists Free and Unreached, which holds allocated objects.

METHOD: In this algorithm, shown in Fig. 7.25, the data structure for garbage
collection is four lists named Free, Unreached, Unscanned, and Scanned, each
of which holds all the objects in the state of the same name. These lists may
be implemented by embedded, doubly linked lists, as was discussed in Sec-
tion 7.4.4. A reached-bit in objects is not used, but we assume that each object
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contains bits telling which of the four states it is in. Initially, Free is the free
list maintained by the memory manager, and all allocated objects are on the
Unreached list (also maintained by the memory manager as it allocates chunks
to objects).

1)  Scanned = 0;
2)  Unscanned = set of objects referenced in the root set;
3) while (Unscanned # 0) {

4) move object o from Unscanned to Scanned;

5) for (each object o’ referenced in o) {

6) if (o' is in Unreached)

7) move o' from Unreached to Unscanned;

}
}
8) Free = Free U Unreached;
9) Unreached = Scanned;

Figure 7.25: Baker’s mark-and-sweep algorithm

Lines (1) and (2) initialize Scanned to be the empty list, and Unscanned to
have only the objects reached from the root set. Note that these objects were
presumably on the list Unreached and must be removed from there. Lines (3)
through (7) are a straightforward implementation of the basic marking algo-
rithm, using these lists. That is, the for-loop of lines (5) through (7) examines
the references in one unscanned object o, and if any of those references o’ have
not yet been reached, line (7) changes o’ to the Unscanned state.

At the end, line (8) takes those objects that are still on the Unreached list
and deallocates their chunks, by moving them to the Free list. Then, line (9)
takes all the objects in state Scanned, which are the reachable objects, and
reinitializes the Unreached list to be exactly those objects. Presumably, as the
memory manager creates new objects, those too will be added to the Unreached
list and removed from the Free list. O

In both algorithms of this section, we have assumed that chunks returned
to the free list remain as they were before deallocation. However, as discussed
in Section 7.4.4, it is often advantageous to combine adjacent free chunks into
larger chunks. If we wish to do so, then every time we return a chunk to the
free list, either at line (10) of Fig. 7.21 or line (8) of Fig. 7.25, we examine the
chunks to its left and right, and merge if one is free.

7.6.4 Mark-and-Compact Garbage Collectors

Relocating collectors move reachable objects around in the heap to eliminate
memory fragmentation. It is common that the space occupied by reachable ob-
jects is much smaller than the freed space. Thus, after identifying all the holes,
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instead of freeing them individually, one attractive alternative is to relocate all
the reachable objects into one end of the heap, leaving the entire rest of the
heap as one free chunk. After all, the garbage collector has already analyzed
every reference within the reachable objects, so updating them to point to the
new locations does not require much more work. These, plus the references in
the root set, are all the references we need to change.

Having all the reachable objects in contiguous locations reduces fragmen-
tation of the memory space, making it easier to house large objects. Also, by
making the data occupy fewer cache lines and pages, relocation improves a pro-
gram’s temporal and spatial locality, since new objects created at about the
same time are allocated nearby chunks. Objects in nearby chunks can bene-
fit from prefetching if they are used together. Further, the data structure for
maintaining free space is simplified; instead of a free list, all we need is a pointer
free to the beginning of the one free block.

Relocating collectors vary in whether they relocate in place or reserve space
ahead of time for the relocation:

e A mark-and-compact collector, described in this section, compacts objects
in place. Relocating in place reduces memory usage.

e The more efficient and popular copying collector in Section 7.6.5 moves
objects from one region of memory to another. Reserving extra space for
relocation allows reachable objects to be moved as they are discovered.

The mark-and-compact collector in Algorithm 7.15 has three phases:

1. First is a marking phase, similar to that of the mark-and-sweep algorithms
described previously.

2. Second, the algorithm scans the allocated section of the heap and com-
putes a new address for each of the reachable objects. New addresses are
assigned from the low end of the heap, so there are no holes between reach-
able objects. The new address for each object is recorded in a structure
called NewLocation.

3. Finally, the algorithm copies objects to their new locations, updating all
references in the objects to point to the corresponding new locations. The
needed addresses are found in NewLocation.

Algorithm 7.15: A mark-and-compact garbage collector.

INPUT: A root set of objects, a heap, and free, a pointer marking the start of
free space.

OUTPUT: The new value of pointer free.

METHOD: The algorithm is in Fig. 7.26; it uses the following data structures:

1. An Unscanned list, as in Algorithm 7.12.
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2. Reached bits in all objects, also as in Algorithm 7.12. To keep our de-
scription simple, we refer to objects as “reached” or “unreached,” when
we mean that their reached-bit is 1 or 0, respectively. Initially, all objects
are unreached.

3. The pointer free, which marks the beginning of unallocated space in the
heap.

4. The table NewLocation. This structure could be a hash table, search tree,
or another structure that implements the two operations:

(a) Set NewLocation(o) to a new address for object o.
(b) Given object o, get the value of NewLocation(o).

We shall not concern ourselves with the exact structure used, although
you may assume that NewLocation is a hash table, and therefore, the
“set” and “get” operations are each performed in average constant time,
independent of how many objects are in the heap.

The first, or marking, phase of lines (1) through (7) is essentially the same
as the first phase of Algorithm 7.12. The second phase, lines (8) through (12),
visits each chunk in the allocated part of the heap, from the left, or low end. As
a result, chunks are assigned new addresses that increase in the same order as
their old addresses. This ordering is important, since when we relocate objects,
we can do so in a way that assures we only move objects left, into space that
was formerly occupied by objects we have moved already.

Line (8) starts the free pointer at the low end of the heap. In this phase,
we use free to indicate the first available new address. We create a new address
only for those objects o that are marked as reached. Object o is given the next
available address at line (10), and at line (11) we increment free by the amount
of storage that object o requires, so free again points to the beginning of free
space.

In the final phase, lines (13) through (17), we again visit the reached objects,
in the same from-the-left order as in the second phase. Lines (15) and (16)
replace all internal pointers of a reached object o by their proper new values,
using the NewLocation table to determine the replacement. Then, line (17)
moves the object o, with the revised internal references, to its new location.
Finally, lines (18) and (19) retarget pointers in the elements of the root set that
are not themselves heap objects, e.g., statically allocated or stack-allocated
objects. Figure 7.27 suggests how the reachable objects (those that are not
shaded) are moved down the heap, while the internal pointers are changed to
point to the new locations of the reached objects. O

7.6.5 Copying collectors

A copying collector reserves, ahead of time, space to which the objects can
move, thus breaking the dependency between tracing and finding free space.
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/* mark */
1) Unscanned = set of objects referenced by the root set;
2) while (Unscanned # 0) {

3) remove object o from Unscanned;
4) - for (each object o' referenced in o) {
5) if (o' is unreached) {
6) mark o' as reached;
7 put o on list Unscanned;
}
}
}

/* compute new locations */
8) free = starting location of heap storage;
9) for (each chunk of memory o in the heap, from the low end) {
0) if (o is reached {
1) NewLocation(o) = free;
2) free = free + sizeof(0);

}

}

/* retarget references and move reached objects */
13) for (each chunk of memory o in the heap, from the low end) {

14) if (o is reached) {
15) for (each reference o.r in o)
16) o.r = NewLocation(o.r);
17) copy o to NewLocation(o);
}

} -
18) for (each reference r in the root set)
19) r = NewLocation(r);

Figure 7.26: A Mark-and-Compact Collector

The memory space is partitioned into two semispaces, A and B. The mutator
allocates memory in one semispace, say A, until it fills up, at which point the
mutator is stopped and the garbage collector copies the reachable objects to
the other space, say B. When garbage collection completes, the roles of the
semispaces are reversed. The mutator is allowed to resume and allocate objects
in space B, and the next round of garbage collection moves reachable objects
to space A. The following algorithm is due to C. J. Cheney.

Algorithm 7.16: Cheney’s copying collector.

INPUT: A root set of objects, and a heap consisting of the From semispace,
containing allocated objects, and the To semispace, all of which is free.
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7 S~ free

~—-- free

Figure 7.27: Moving reached objects to the front of the heap, while preserving
internal pointers

OUTPUT: At the end, the T'o semispace holds the allocated objects. A free
pointer indicates the start of free space remaining in the To semispace. The
From semispace is completely free.

METHOD: The algorithm is shown in Fig. 7.28. Cheney’s algorithm finds
reachable objects in the From semispace and copies them, as soon as they are
reached, to the To semispace. This placement groups related objects together
and may improve spatial locality. ,

Before examining the algorithm itself, which is the function CopyingCollec-
tor in Fig. 7.28, consider the auxiliary function LookupNewLocation in lines (11)
through (16). This function takes an object o and finds a new location for it
in the To space if o has no location there yet. All new locations are recorded
in a structure NewLocation, and a value of NULL indicates o has no assigned
location.? As in Algorithm 7.15, the exact form of structure NewLocation may
vary, but it is fine to assume that it is a hash table.

If we find at line (12) that o has no location, then it is assigned the beginning
of the free space within the To semispace, at line (13). Line (14) increments
the free pointer by the amount of space taken by o, and at line (15) we copy o
from the From space to the To space. Thus, the movement of objects from one
semispace to the other occurs as a side effect, the first time we look up the new
location for the object. Regardless of whether the location of o was or was not
previously established, line (16) returns the location of o in the To space.

Now, we can consider the algorithmi itself. Line (2) establishes that none of
the objects in the From space have new addresses yet. At line (3), we initialize
two pointers, unscanned and free, to the beginning of the To semispace. Pointer
free will always indicate the beginning of free space within the To space. As we
add objects to the To space, those with addresses below unscanned will be in
the Scanned state, while those between unscanned and free are in the Unscanned

51n a typical data structure, such as a hash table, if o is not assigned a location, then there
simply would be no mention of it in the structure.
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1)  CopyingCollector () {

2) for (all objects o in From space) NewLocation(o) =NULL;
3) unscanned = free = starting address of To space;

4) for (each reference r in the root set)

5) replace r with LookupNewLocation(r);

6) while (unscanned # free) {

) o = object at location unscanned;
8) for (each reference o.r within o)
9) o.r = LookupN ewLocation(o.r);
0) unscanned = unscanned + sizeof(o);

}

/* Look up the new location for object if it has been moved. */
/* Place object in Unscanned state otherwise. */
11)  LookupNewLocation(o) {

12) ~if (NewLocation(o) = NULL) {

13) NewLocation(o) = free,

14) ‘ free = free + sizeof(0);

15) copy o to NewLocation(o);
}

16) return NewLocation(o);

}

Figure 7.28: A Copying Garbage Collector

state. Thus, free always leads unscanned, and when the latter catches up to
the former, there are no more Unscanned objects, and we are done with the
garbage collection. Notice that we do our work within the To space, although
all references within objects examined at line (8) lead us back to the From
space.

Lines (4) and (5) handle the objects reachable from the root set. Note that
as a side effect, some of the calls to LookupNewLocation at line (5) will increase
free, as chunks for these objects are allocated within To. Thus, the loop of lines
(6) through (10) will be entered the first time it is reached, unless there are no
objects referenced by the root set (in which case the entire heap is garbage).
This loop then scans each of the objects that has been added to To and is in the
Unscanned state. Line (7) takes the next unscanned object, o. Then, at lines
(8) and (9), each reference within o is translated from its value in the From
semispace to its value in the To semispace. Notice that, as a side effect, if a
reference within o is to an object we have not reached previously, then the call
to LookupNewLocation at line (9) creates space for that object in the To space
and moves the object there. Finally, line (10) increments unscanned to point
to the next object, just beyond o in the To space. O
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7.6.6 Comparing Costs

Cheney’s algorithm has the advantage that it does not touch any of the un-
reachable objects. On the other hand, a copying garbage collector must move
the contents of all the reachable objects. This process is especially expensive for
large objects and for long-lived objects that survive multiple rounds of garbage
collection. We can summarize the running time of each of the four algorithms
described in this section, as follows. Each estimate ignores the cost of processing
the root set.

e Basic Mark-and-Sweep (Algorithm 7.12): Proportional to the number of
chunks in the heap.

e Baker’s Mark-and-Sweep (Algorithm 7.14): Proportional to the number
of reached objects.

e Basic Mark-and-Compact (Algorithm 7.15): Proportional to the number
of chunks in the heap plus the total size of the reached objects.

e Cheney’s Copying Collector (Algorithm 7.16): Proportional to the total

size of the reached objects.

7.6.7 Exercises for Section 7.6
Exercise 7.6.1: Show the steps of a mark-and-sweep garbage collector on
a) Fig. 7.19 with the pointer A — B deleted.
b) Fig. 7.19 with the pointer A — C deleted.
c) Fig. 7.20 with the pointer A — D deleted.
d) Fig. 7.20 with the object B deleted.

Exercise 7.6.2: The Baker mark-and-sweep algorithm moves objects among
four lists: Free, Unreached, Unscanned, and Scanned. For each of the object
networks of Exercise 7.6.1, indicate for each object the sequence of lists on
which it finds itself from just before garbage collection begins until just after it
finishes.

Exercise 7.6.3: Suppose we perform a mark-and-compact garbage collection
on each of the networks of Exercise 7.6.1. Also, suppose that

i. Each object has size 100 bytes, and

ti. Initially, the nine objects in the heap are arranged in alphabetical order,
starting at byte 0 of the heap.

What is the address of each object after garbage collection?
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Exercise 7.6.4: Suppose we execute Cheney’s copying garbage collection al-
gorithm on each of the networks of Exercise 7.6.1. Also, suppose that

i. Each object has size 100 bytes,

11. The unscanned list is managed as a queue, and when an object has more
than one pointer, the reached objects are added to the queue in alpha-
betical order, and

111. The From semispace starts at location 0, and the To semispace starts at
location 10,000.

What is the value of NewLocation(o) for each object o that remains after garbage
collection?

7.7 Short-Pause Garbage Collection

Simple trace-based collectors do stop-the-world-style garbage collection, which
may introduce long pauses into the execution of user programs. We can reduce
the length of the pauses by performing garbage collection one part at a time.
We can divide the work in time, by interleaving garbage collection with the
mutation, or we can divide the work in space by collecting a subset of the
garbage at a time. The former is known as incremental collection and the
latter is known as partial collection.

An incremental collector breaks up the reachability analysis into smaller
units, allowing the mutator to run between these execution units. The reachable
set changes as the mutator executes, so incremental collection is complex. As
we shall see in Section 7.7.1, finding a slightly conservative answer can make
tracing more eflicient.

The best known of partial-collection algorithms is generational garbage col-
lection; it partitions objects according to how long they have been allocated
and collects the newly created objects more often because they tend to have a
shorter lifetime. An alternative algorithm, the train algorithm, also collects a
subset of garbage at a time, and is best applied to more mature objects. These
two algorithms can be used together to create a partial collector that handles
younger and older objects differently. We discuss the basic algorithm behind
partial collection in Section 7.7.3, and then describe in more detail how the
generational and train algorithms work.

Ideas from both incremental and partial collection can be adapted to cre-
ate an algorithm that collects objects in parallel on a multiprocessor; see Sec-
tion 7.8.1.

7.7.1 Incremental Garbage Collection

Incremental collectors are conservative. While a garbage collector must not
collect objects that are not garbage, it does not have to collect all the garbage
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in each round. We refer to the garbage left behind after collection as floating
garbage. Of course it is desirable to minimize floating garbage. In particular,
an incremental collector should not leave behind any garbage that was not
reachable at the beginning of a collection cycle. If we can be sure of such
a collection guarantee, then any garbage not collected in one round will be
collected in the next, and no memory is leaked because of this approach to
garbage collection.

In other words, incremental collectors play it safe by overestimating the set
of reachable objects. They first process the program’s root set atomically, with-
out interference from the mutator. After finding the initial set of unscanned
objects, the mutator’s actions are interleaved with the tracing step. During this
period, any of the mutator’s actions that may change reachability are recorded
succinctly, in a side table, so that the collector can make the necessary ad-
justments when it resumes execution. If space is exhausted before tracing com-
pletes, the collector completes the tracing process, without allowing the mutator
to execute. In any event, when tracing is done, space is reclaimed atomically.

Precision of Incremental Collection

Once an object becomes unreachable, it is not possible for the object to become
reachable again. Thus, as garbage collection and mutation proceed, the set of
reachable objects can only

1. Grow due to new objects allocated after garbage collection starts, and

2. Shrink by losing references to allocated objects.

Let the set of reachable objects at the beginning of garbage collection be R;
let New be the set of allocated objects during garbage collection, and let Lost
be the set of objects that have become unreachable due to lost references since
tracing began. The set of objects reachable when tracing completes is

(R U New) — Lost.

It is expensive to reestablish an object’s reachability every time a mutator
loses a reference to the object, so incremental collectors do not attempt to
collect all the garbage at the end of tracing. Any garbage left behind — floating
garbage — should be a subset of the Lost objects. Expressed formally, the set
S of objects found by tracing must satisfy

(R U New) — Lost C S C (R U New)

Simple Incremental Tracing

We first describe a straightforward tracing algorithm that finds the upper bound
R U New. The behavior of the mutator is modified during the tracing as follows:
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¢ All references that existed before garbage collection are preserved; that is,
before the mutator overwrites a reference, its old value is remembered and
treated like an additional unscanned object containing just that reference.

e All objects created are considered reachable immediately and are placed
in the Unscanned state.

This scheme is conservative but correct, because it finds R, the set of all the
objects reachable before garbage collection, plus New, the set of all the newly
allocated objects. However, the cost is high, because the algorithm intercepts
all write operations and remembers all the overwritten references. Some of this
work is unnecessary because it may involve objects that are unreachable at the
end of garbage collection. We could avoid some of this work and also improve
the algorithm’s precision if we could detect when the overwritten references
point to objects that are unreachable when this round of garbage collection
ends. The next algorithm goes fairly far in these two directions.

7.7.2 Incremental Reachability Analysis

If we interleave the mutator with a basic tracing algorithm, such as Algo-
rithm 7.12, then some reachable objects may be misclassified as unreachable.
The problem is that the actions of the mutator can violate a key invariant of
the algorithm; namely, a Scanned object can only contain references to other
Scanned or Unscanned objects, never to Unreached objects. Consider the fol-
lowing scenario:

1. The garbage collector finds object 0; reachable and scans the pointers
within o1, thereby putting 0, in the Scanned state.

2. The mutator stores a reference to an Unreached (but reachable) object o
into the Scanned object 0;. It does so by copying a reference to o from
an object oy that is currently in the Unreached or Unscanned state.

3. The mutator loses the reference to o in object oz. It may have overwrit-
ten o2’s reference to o before the reference is scanned, or o2 may have
become unreachable and never have reached the Unscanned state to have
its references scanned.

Now, o is reachable through object o1, but the garbage collector may have seen
neither the reference to o in 0; nor the reference to o in o0s.

The key to a more precise, yet correct, incremental trace is that we must
note all copies of references to currently unreached objects from an object that
has not been scanned to one that has. To intercept problematic transfers of
references, the algorithm can modify the mutator’s action during tracing in any
of the following ways:
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o Write Barriers. Intercept writes of references into a Scanned object o1,
when the reference is to an Unreached object o. In this case, classify o
as reachable and place it in the Unscanned set. Alternatively, place the
written object o; back in the Unscanned set so we can rescan it.

e Read Barriers. Intercept the reads of references in Unreached or Un-
scanned objects. Whenever the mutator reads a reference to an object o
from an object in either the Unreached or Unscanned state, classify o as
reachable and place it in the Unscanned set.

o Transfer Barriers. Intercept the loss of the original reference in an Un-
reached or Unscanned object. Whenever the mutator overwrites a ref-
erence in an Unreached or Unscanned object, save the reference being
overwritten, classify it as reachable, and place the reference itself in the
Unscanned set.

None of the options above finds the smallest set of reachable objects. If the
tracing process determines an object to be reachable, it stays reachable even
though all references to it are overwritten before tracing completes. That is,
the set of reachable objects found is between (R U New) — Lost and (R U New).

Write barriers are the most efficient of the options outlined above. Read
barriers are more expensive because typically there are many more reads than
there are writes. Transfer barriers are not competitive; because many objects
“die young,” this approach would retain many unreachable objects.

Implementing Write Barriers

We can implement write barriers in two ways. The first approach is to re-
member, during a mutation phase, all new references written into the Scanned
objects. We can place all these references in a list; the size of the list is propor-
tional to the number of write operations to Scanned objects, unless duplicates
are removed from the list. Note that references on the list may later be over-
written themselves and potentially could be ignored.

The second, more efficient approach is to remember the locations where the
writes occur. We may remember them as a list of locations written, possibly
with duplicates eliminated. Note it is not important that we pinpoint the
exact locations written, as long as all the locations that have been written are
rescanned. Thus, there are several techniques that allow us to remember less
detail about exactly where the rewritten locations are.

e Instead of remembering the exact address or the object and field that is
written, we can remember just the objects that hold the written fields.

e We can divide the address space into fixed-size blocks, known as cards,
and use a bit array to remember the cards that have been written into.
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e We can choose to remember the pages that contain the written locations.
We can simply protect the pages containing Scanned objects. Then, any
writes into Scanned objects will be detected without executing any ex-
plicit instructions, because they will cause a protection violation, and the
operating system will raise a program exception.

In general, by coarsening the granularity at which we remember the written
locations, less storage is needed, at the expense of increasing the amount of
rescanning performed. In the first scheme, all references in the modified objects
will have to be rescanned, regardless of which reference was actually modified.
In the last two schemes, all reachable objects in the modified cards or modified
pages need to be rescanned at the end of the tracing process.

Combining Incremental and Copying Techniques

The above methods are sufficient for mark-and-sweep garbage collection. Copy-
ing collection is slightly more complicated, because of its interaction with the
mutator. Objects in the Scanned or Unscanned states have two addresses, one
in the From semispace and one in the To semispace. As in Algorithm 7.16, we
must keep a mapping from the old address of an object to its relocated address.

There are two choices for how we update the references. First, we can have
the mutator make all the changes in the From space, and only at the end of
garbage collection do we update all the pointers and copy all the contents over
to the To space. Second, we can instead make changes to the representation in
the To space. Whenever the mutator dereferences a pointer to the From space,
the pointer is translated to a new location in the T'o space if one exists. All the
pointers need to be translated to point to the To space in the end.

7.7.3 Partial-Collection Basics

The fundamental fact is that objects typically “die young.” It has been found
that usually between 80% and 98% of all newly allocated objects die within a
few million instructions, or before another megabyte has been allocated. That
is, objects often become unreachable before any garbage collection is invoked.
Thus, is it quite cost effective to garbage collect new objects frequently.

Yet, objects that survive a collection once are likely to survive many more
collections. With the garbage collectors described so far, the same mature
objects will be found to be reachable over and over again and, in the case
of copying collectors, copied over and over again, in every round of garbage
collection. Generational garbage collection works most frequently on the area
of the heap that contains the youngest objects, so it tends to collect a lot of
garbage for relatively little work. The train algorithm, on the other hand, does
not spend a large proportion of time on young objects, but it does limit the
pauses due to garbage collection. Thus, a good combination of strategies is
to use generational collection for young objects, and once an object becomes
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sufficiently mature, to “promote” it to a separate heap that is managed by the
train algorithm.

We refer to the set of objects to be collected on oneround of partial collection
as the target set and the rest of the objects as the stable set. Ideally, a partial
collector should reclaim all objects in the target set that are unreachable from
the program’s root set. However, doing so would require tracing all objects,
which is what we try to avoid in the first place. Instead, partial collectors
conservatively reclaim only those objects that cannot be reached through either
the root set of the program or the stable set. Since some objects in the stable
set may themselves be unreachable, it is possible that we shall treat as reachable
some objects in the target set that really have no path from the root set.

We can adapt the garbage collectors described in Sections 7.6.1 and 7.6.4 to
work in a partial manner by changing the definition of the “root set.” Instead of
referring to just the objects held in the registers, stack and global variables, the
root set now also includes all the objects in the stable set that point to objects
in the target set. References from target objects to other target objects are
traced as before to find all the reachable objects. We can ignore all pointers to
stable objects, because these objects are all considered reachable in this round
of partial collection.

To identify those stable objects that reference target objects, we can adopt
techniques similar to those used in incremental garbage collection. In incremen-
tal collection, we need to remember all the writes of references from scanned
objects to unreached objects during the tracing process. Here we need to re-
member all the writes of references from the stable objects to the target objects
throughout the mutator’s execution. Whenever the mutator stores into a sta-
ble object a reference to an object in the target set, we remember either the
reference or the location of the write. We refer to the set of objects holding
references from the stable to the target objects as the remembered set for this
set of target objects. As discussed in Section 7.7.2, we can compress the repre-
sentation of a remembered set by recording only the card or page in which the
written object is found.

Partial garbage collectors are often implemented as copying garbage collec-
tors. Noncopying collectors can also be implemented by using linked lists to
keep track of the reachable objects. The “generational” scheme described below
is an example of how copying may be combined with partial collection.

7.7.4 Generational Garbage Collection

Generational garbage collection is an effective way to exploit the property that
most objects die young. The heap storage in generational garbage collection is
separated into a series of partitions. We shall use the convention of numbering
them 0,1,2,...,n, with the lower-numbered partitions holding the younger
objects. Objects are first created in partition 0. When this partition fills up,
it is garbage collected, and its reachable objects are moved into partition 1.
Now, with partition 0 empty again, we resume allocating new objects in that
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partition. When partition 0 again fills,® it is garbage collected and its reachable
objects copied into partition 1, where they join the previously copied objects.
This pattern repeats until partition 1 also fills up, at which point garbage
collection is applied to partitions 0 and 1.

In general, each round of garbage collection is applied to all partitions num-
bered ¢ or below, for some i; the proper ¢ to choose is the highest-numbered
partition that is currently full. Each time an object survives a collection (i.e.,
it is found to be reachable), it is promoted to the next higher partition from
the one it occupies, until it reaches the oldest partition, the one numbered n.

Using the terminology introduced in Section 7.7.3, when partitions ¢ and
below are garbage collected, the partitions from 0 through ¢ make up the target
set, and all partitions above ¢ comprise the stable set. To support finding root
sets for all possible partial collections, we keep for each partition 7 a remembered
set, consisting of all the objects in partitions above i that point to objects in set
i. The root set for a partial collection invoked on set i includes the remembered
sets for partition ¢ and below.

In this scheme, all partitions below i are collected whenever we collect i.
There are two reasons for this policy:

1. Since younger generations contain more garbage and are collected more
often anyway, we may as well collect them along with an older generation.

2. Following this strategy, we need to remember only the references pointing
from an older generation to a newer generation. That is, neither writes
to objects in the youngest generation nor promoting objects to the next
generation causes updates to any remembered set. If we were to collect
a partition without a younger one, the younger generation would become
part of the stable set, and we would have to remember references that
point from younger to older generations as well.

In summary, this scheme collects younger generations more often, and col-
lections of these generations are particularly cost effective, since “objects die
young.” Garbage collection of older generations takes more time, since it in-
cludes the collection of all the younger generations and contains proportionally
less garbage. Nonetheless, older generations do need to be collected once in
a while to remove unreachable objects. The oldest generation holds the most
mature objects; its collection is expensive because it is equivalent to a full collec-
tion. That is, generational collectors occasionally require that the full tracing
step be performed and therefore can introduce long pauses into a program’s

execution. An alternative for handling mature objects only is discussed next.

6Technically, partitions do not “fill,” since they can be expanded with additional disk
blocks by the memory manager, if desired. However, there is normally a limit on the size of a
partition, other than the last. We shall refer to reaching this limit as “filling” the partition.
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7.7.5 The Train Algorithm

While the generational approach is very efficient for the handling of immature
objects, it is less efficient for the mature objects, since mature objects are moved
every time there is a collection involving them, and they are quite unlikely to
be garbage. A different approach to incremental collection, called the train
algorithm, was developed to improve the handling of mature objects. It can be
used for collecting all garbage, but it is probably better to use the generational
approach for immature objects and, only after they have survived a few rounds
of collection, “promote” them to another heap, managed by the train algorithm.
Another advantage to the train algorithm is that we never have to do a complete
garbage collection, as we do occasionally for generational garbage collection.

To motivate the train algorithm, let us look at a simple example of why it is
necessary, in the generational approach, to have occasional all-inclusive rounds
of garbage collection. Figure 7.29 shows two mutually linked objects in two
partitions ¢ and j, where j > 4. Since both objects have pointers from outside
their partition, a collection of only partition 4 or only partition j could never
collect either of these objects. Yet they may in fact be part of a cyclic garbage
structure with no links from the outside. In general, the “links” between the
objects shown may involve many objects and long chains of references.

Partition ¢ Partition j

] =

Figure 7.29: A cyclic structure across partitions that may be cyclic garbage

In generational garbage collection, we eventually collect partition j, and
since i < j, we also collect i at that time. Then, the cyclic structure will be
completely contained in the portion of the heap being collected, and we can
tell if it truly is garbage. However, if we never have a round of collection that
includes both i and j, we would have a problem with cyclic garbage, just as we
did with reference counting for garbage collection.

The train algorithm uses fixed-length partitions, called cars; a car might be
a single disk block, provided there are no objects larger than disk blocks, or the
car size could be larger, but it is fixed once and for all. Cars are organized into
trains. There is no limit to the number of cars in a train, and no limit to the
number of trains. There is a lexicographic order to cars: first order by train
number, and within a train, order by car number, as in Fig. 7.30.

There are two ways that garbage is collected by the train algorithm:

e The first car in lexicographic order (that is, the first remaining car of the
first remaining train) is collected in one incremental garbage-collection
step. This step is similar to collection of the first partition in the gener-
ational algorithm, since we maintain a “remembered” list of all pointers



7.7. SHORT-PAUSE GARBAGE COLLECTION 491

Train 1 car 11 car 12
Train 2 car 21 car 22 car 23 car 24
Train 3 car 31 car 32 car 33

Figure 7.30: Organization of the heap for the train algorithm

from outside the car. Here, we identify objects with no references at all,
as well as garbage cycles that are contained completely within this car.
Reachable objects in the car are always moved to some other car, so each
garbage-collected car becomes empty and can be removed from the train.

e Sometimes, the first train has no external references. That is, there are
no pointers from the root set to any car of the train, and the remembered
sets for the cars contain only references from other cars in the train, not
from other trains. In this situation, the train is a huge collection of cyclic
garbage, and we delete the entire train.

Remembered Sets

We now give the details of the train algorithm. Each car has a remembered set
consisting of all references to objects in the car from

a) Objects in higher-numbered cars of the same train, and

b) Objects in higher-numbered trains.

In addition, each train has a remembered set consisting of all references from
higher-numbered trains. That is, the remembered set for a train is the union of
the remembered sets for its cars, except for those references that are internal
to the train. It is thus possible to represent both kinds of remembered sets
by dividing the remembered sets for the cars into “internal” (same train) and
“external” (other trains) portions.

Note that references to objects can come from anywhere, not just from
lexicographically higher cars. However, the two garbage-collection processes
deal with the first car of the first train, and the entire first train, respectively.
Thus, when it is time to use the remembered sets in a garbage collection, there
is nothing earlier from which references could come, and therefore there is no
point in remembering references to higher cars at any time. We must be careful,
of course, to manage the remembered sets properly, changing them whenever
the mutator modifies references in any object.
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Managing Trains

Our objective is to draw out of the first train all objects that are not cyclic
garbage. Then, the first train either becomes nothing but cyclic garbage and is
therefore collected at the next round of garbage collection, or if the garbage is
not cyclic, then its cars may be collected one at a time.

We therefore need to start new trains occasionally, even though there is no
limit on the number of cars in one train, and we could in principle simply add
new cars to a single train, every time we needed more space. For example, we
could start a new train after every k object creations, for some k. That is, in
general, a new object is placed in the last car of the last train, if there is room,
or in a new car that is added to the end of the last train, if there is no room.
However, periodically, we instead start a new train with one car, and place the
new object there.

Garbage Collecting a Car

The heart of the train algorithm is how we process the first car of the first
train during a round of garbage collection. Initially, the reachable set is taken
to be the objects of that car with references from the root set and those with
references in the remembered set for that car. We then scan these objects as
in a mark-and-sweep collector, but we do not scan any reached objects outside
the one car being collected. After this tracing, some objects in the car may
be identified as garbage. There is no need to reclaim their space, because the
entire car is going to disappear anyway.

However, there are likely to be some reachable objects in the car, and these
must be moved somewhere else. The rules for moving an object are:

e If there is a reference in the remembered set from any other train (which
will be higher-numbered than the train of the car being collected), then
move the object to one of those trains. If there is room, the object can
go in some existing car of the train from which a reference emanates, or
it can go in a new, last car if there is no room.

e If there is no reference from other trains, but there are references from
the root set or from the first train, then move the object to any other car
of the same train, creating a new, last car if there is no room. If possible,
pick a car from which there is a reference, to help bring cyclic structures
to a single car.

After moving all the reachable objects from the first car, we delete that car.

Panic Mode

There is one problem with the rules above. In order to be sure that all garbage
will eventually be collected, we need to be sure that every train eventually
becomes the first train, and if this train is not cyclic garbage, then eventually
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all cars of that train are removed and the train disappears one car at a time.
However, by rule (2) above, collecting the first car of the first train can produce
a new last car. It cannot produce two or more new cars, since surely all the
objects of the first car can fit in the new, last car. However, could we be in a
situation where each collection step for a train results in a new car being added,
and we never get finished with this train and move on to the other trains?

The answer is, unfortunately, that such a situation is possible. The problem
arises if we have a large, cyclic, nongarbage structure, and the mutator manages
to change references in such a way that we never see, at the time we collect
a car, any references from higher trains in the remembered set. If even one
object is removed from the train during the collection of a car, then we are OK,
since no new objects are added to the first train, and therefore the first train
will surely run out of objects eventually. However, there may be no garbage
at all that we can collect at a stage, and we run the risk of a loop where we
perpetually garbage collect only the current first train.

To avoid this problem, we need to behave differently whenever we encounter
a futile garbage collection, that is, a car from which not even one object can be
deleted as garbage or moved to another train. In this “panic mode,” we make
two changes:

1. When a reference to an object in the first train is rewritten, we maintain
the reference as a new member of the root set.

2. When garbage collecting, if an object in the first car has a reference from
the root set, including dummy references set up by point (1), then we
move that object to another train, even if it has no references from other
trains. It is not important which train we move it to, as long as it is not
the first train.

In this way, if there are any references from outside the first train to objects
in the first train, these references are considered as we collect every car, and
eventually some object will be removed from that train. We can then leave panic
mode and proceed normally, sure that the current first train is now smaller than
it was.

7.7.6 Exercises for Section 7.7

Exercise 7.7.1: Suppose that the network of objects from Fig. 7.201is managed
by an incremental algorithm that uses the four lists Unreached, Unscanned,
Scanned, and Free, as in Baker’s algorithm. To be specific, the Unscanned list
is managed as a queue, and when more than one object is to be placed on this list
due to the scanning of one object, we do so in alphabetical order. Suppose also
that we use write barriers to assure that no reachable object is made garbage.
Starting with A and B on the Unscanned list, suppose the following events
occur:

i. A is scanned.
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i1. The pointer A — D is rewritten to be A — H.
191. B is scanned.
iv. D is scanned.

v. The pointer B — C' is rewritten to be B — 1.

Simulate the entire incremental garbage collection, assuming no more pointers
are rewritten. Which objects are garbage? Which objects are placed on the
Free list?

Exercise 7.7.2: Repeat Exercise 7.7.1 on the assumption that

a) Events (i7) and (v) are interchanged in order.
b) Events (i7) and (v) occur before (i), (ii7), and (iv).

Exercise 7.7.3: Suppose the heap consists of exactly the nine cars on three
trains shown in Fig. 7.30 (i.e., ignore the ellipses). Object o in car 11 has
references from cars 12, 23, and 32. When we garbage collect car 11, where
might o wind up?

Exercise 7.7.4: Repeat Exercise 7.7.3 for the cases that o has

a) Only references from cars 22 and 31.

b) No references other than from car 11.

Exercise 7.7.5: Suppose the heap consists of exactly the nine cars on three
trains shown in Fig. 7.30 (i.e., ignore the ellipses). We are currently in panic
mode. Object oy in car 11 has only one reference, from object o2 in car 12. That
reference is rewritten. When we garbage collect car 11, what could happen to
01?

7.8 Advanced Topics in Garbage Collection

We close our investigation of garbage collection with brief treatments of four
additional topics:

1. Garbage collection in parallel environments.
. Partial relocations of objects.

2
3. Garbage collection for languages that are not type-safe.
4

. The interaction between programmer-controlled and automatic garbage
collection.
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7.8.1 Parallel and Concurrent Garbage Collection

Garbage collection becomes even more challenging when applied to applications
running in parallel on a multiprocessor machine. It is not uncommon for server
applications to have thousands of threads running at the same time; each of
these threads is a mutator. Typically, the heap will consist of gigabytes of
memory.

Scalable garbage-collection algorithms must take advantage of the presence
of multiple processors. We say a garbage collector is parallel if it uses multiple
threads; it is concurrent if it runs simultaneously with the mutator.

We shall describe a parallel, and mostly concurrent, collector that uses a
concurrent and parallel phase that does most of the tracing work, and then a
stop-the-world phase that guarantees all the reachable objects are found and re-
claims the storage. This algorithm introduces no new basic concepts in garbage
collection per se; it shows how we can combine the ideas described so far to
create a full solution to the parallel-and-concurrent collection problem. How-
ever, there are some new implementation issues that arise due to the nature
of parallel execution. We shall discuss how this algorithm coordinates multiple
threads in a parallel computation using a rather common work-queue model.

To understand the design of the algorithm we must keep in mind the scale
of the problem. Even the root set of a parallel application is much larger,
consisting of every thread’s stack, register set and globally accessible variables.
The amount of heap storage can be very large, and so is the amount of reachable
data. The rate at which mutations take place is also much greater.

To reduce the pause time, we can adapt the basic ideas developed for in-
cremental analysis to overlap garbage collection with mutation. Recall that an
incremental analysis, as discussed in Section 7.7, performs the following three
steps:

1. Find the root set. This step is normally performed atomically, that is,
with the mutator(s) stopped.

2. Interleave the tracing of the reachable objects with the execution of the
mutator(s). In this period, every time a mutator writes a reference that
points from a Scanned object to an Unreached object, we remember that
reference. As discussed in Section 7.7.2, we have options regarding the
granularity with which these references are remembered. In this section,
we shall assume the card-based scheme, where we divide the heap into
sections called “cards” and maintain a bit map indicating which cards are
dirty (have had one or more references within them rewritten).

3. Stop the mutator(s) again to rescan all the cards that may hold references
to unreached objects.

For a large multithreaded application, the set of objects reached by the root
set can be very large. It is infeasible to take the time and space to visit all such
objects while all mutations cease. Also, due to the large heap and the large
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number of mutation threads, many cards may need to be rescanned after all
objects have been scanned once. It is thus advisable to scan some of these cards
in parallel, while the mutators are allowed to continue to execute concurrently.

To implement the tracing of step (2) above, in parallel, we shall use multiple
garbage-collecting threads concurrently with the mutator threads to trace most
of the reachable objects. Then, to implement step (3), we stop the mutators
and use parallel threads to ensure that all reachable objects are found.

The tracing of step (2) is carried out by having each mutator thread per-
form part of the garbage collection, along with its own work. In addition, we
use threads that are dedicated purely to collecting garbage. Once garbage col-
lection has been initiated, whenever a mutator thread performs some memory-
allocation operation, it also performs some tracing computation. The pure
garbage-collecting threads are put to use only when a machine has idle cycles.
As in incremental analysis, whenever a mutator writes a reference that points
from a Scanned object to an Unreached object, the card that holds this reference
is marked dirty and needs to be rescanned.

Here is an outline of the parallel, concurrent garbage-collection algorithm.

1. Scan the root set for each mutator thread, and put all objects directly
reachable from that thread into the Unscanned state. The simplest incre-
mental approach to this step is to wait until a mutator thread calls the
memory manager, and have it scan its own root set if that has not already
been done. If some mutator thread has not called a memory allocation
function, but all the rest of tracing is done, then this thread must be
interrupted to have its root set scanned.

2. Scan objects that are in the Unscanned state. To support parallel com-
putation, we use a work queue of fixed-size work packets, each of which
holds a number of Unscanned objects. Unscanned objects are placed in
work packets as they are discovered. Threads looking for work will de-
queue these work packets and trace the Unscanned objects therein. This
strategy allows the work to be spread evenly among workers in the tracing
process. If the system runs out of space, and we cannot find the space to
create these work packets, we simply mark the cards holding the objects
to force them to be scanned. The latter is always possible because the bit
array holding the marks for the cards has already been allocated.

3. Scan the objects in dirty cards. When there are no more Unscanned ob-
jects left in the work queue, and all threads’ root sets have been scanned,
the cards are rescanned for reachable objects. As long as the mutators
continue to execute, dirty cards continue to be produced. Thus, we need
to stop the tracing process using some criterion, such as allowing cards to
be rescanned only once or a fixed number of times, or when the number
of outstanding cards is reduced to some threshold. As a result, this paral-
lel and concurrent step normally terminates before completing the trace,
which is finished by the final step, below.
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4. The final step gu:irantees that all reachable objects are marked as reached.
With all the mutators stopped, the root sets for all the threads can now
be found quickly using all the processors in the system. Because the
reachability of most objects has been traced, only a small number of
objects are expected to be placed in the Unscanned state. All the threads
then participate in tracing the rest of the reachable objects and rescanning
all the cards.

It is important that we control the rate at which tracing takes place. The
tracing phase is like a race. The mutators create new objects and new references
that must be scanned, and the tracing tries to scan all the reachable objects and
rescan the dirty cards generated in the meanwhile. It is not desirable to start
the tracing too much before a garbage collection is needed, because that will
increase the amount of floating garbage. On the other hand, we cannot wait
until the memory is exhausted before the tracing starts, because then mutators
will not be able to make forward progress and the situation degenerates to that
of a stop-the-world collector. Thus, the algorithm must choose the time to
commence the collection and the rate of tracing appropriately. An estimate
of the mutation rate from previous cycles of collection can be used to help in
the decision. The tracing rate is dynamically adjusted to account for the work
performed by the pure garbage-collecting threads.

7.8.2 Partial Object Relocation

As discussed starting in Section 7.6.4, copying or compacting collectors are ad-
vantageous because they eliminate fragmentation. However, these collectors
have nontrivial overheads. A compacting collector requires moving all objects
and updating all the references at the end of garbage collection. A copying
collector figures out where the reachable objects go as tracing proceeds; if trac-
ing is performed incrementally, we need either to translate a mutator’s every
reference, or to move all the objects and update their references at the end.
Both options are very expensive, especially for a large heap.

We can instead use a copying generational garbage collector. It is effective in
collecting immature objects and reducing fragmentation, but can be expensive
when collecting mature objects. We can use the train algorithm to limit the
amount of mature data analyzed each time. However, the overhead of the train
algorithm is sensitive to the size of the remembered set for each partition.

There is a hybrid collection scheme that uses concurrent tracing to reclaim
all the unreachable objects and at the same time moves only a part of the
objects. This method reduces fragmentation without incurring the full cost of
relocation in each collection cycle.

1. Before tracing begins, choose a part of the heap that will be evacuated.

2. As the reachable objects are marked, also remember all the references
pointing to objects in the designated area.



498 CHAPTER 7. RUN-TIME ENVIRONMENTS

3. When tracing is complete, sweep the storage in parallel to reclaim the
space occupied by unreachable objects.

4. Finally, evacuate the reachable objects occupying the designated area and
fix up the references to the evacuated objects.

7.8.3 Conservative Collection for Unsafe Languages

As discussed in Section 7.5.1, it is impossible to build a garbage collector that is
guaranteed to work for all C and C++ programs. Since we can always compute
an address with arithmetic operations, no memory locations in C and C++ can
ever be shown to be unreachable. However, many C or C++ programs never
fabricate addresses in this way. It has been demonstrated that a conservative
garbage collector — one that does not necessarily discard all garbage — can be
built to work well in practice for this class of programs.

A conservative garbage collector assumes that we cannot fabricate an ad-
dress, or derive the address of an allocated chunk of memory without an ad-
dress pointing somewhere in the same chunk. We can find all the garbage in
programs satisfying such an assumption by treating as a valid address any bit
pattern found anywhere in reachable memory, as long as that bit pattern may
be construed as a memory location. This scheme may classify some data erro-
neously as addresses. It is correct, however, since it only causes the collector to
be conservative and keep more data than necessary.

Object relocation, requiring all references to the old locations be updated to
point to the new locations, is incompatible with conservative garbage collection.
Since a conservative garbage collector does not know if a particular bit pattern
refers to an actual address, it cannot change these patterns to point to new
addresses.

Here is how a conservative garbage collector works. First, the memory
manager is modified to keep a data map of all the allocated chunks of memory.
This map allows us to find easily the starting and ending boundary of the chunk
of memory that spans a certain address. The tracing starts by scanning the
program’s root set to find any bit pattern that looks like a memory location,
without worrying about its type. By looking up these potential addresses in the
data map, we can find the starting addresses of those chunks of memory that
might be reached, and place them in the Unscanned state. We then scan all the
unscanned chunks, find more (presumably) reachable chunks of memory, and
place them on the work list until the work list becomes empty. After tracing
is done, we sweep through the heap storage using the data map to locate and
free all the unreachable chunks of memory.

7.8.4 Weak References

Sometimes, programmers use a language with garbage collection, but also wish
to manage memory, or parts of memory, themselves. That is, a programmer
may know that certain objects are never going to be accessed again, even though
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references to the objects remain. An example from compiling will suggest the
problem.

Example 7.17: We have seen that the lexical analyzer often manages a sym-
bol table by creating an object for each identifier it sees. These objects may
appear as lexical values attached to leaves of the parse tree representing those
identifiers, for instance. However, it is also useful to create a hash table, keyed
by the identifier’s string, to locate these objects. That table makes it easier for
the lexical analyzer to find the object when it encounters a lexeme that is an
identifier.

When the compiler passes the scope of an identifier I, its symbol-table
object no longer has any references from the parse tree, or probably any other
intermediate structure used by the compiler. However, a reference to the object
is still sitting in the hash table. Since the hash table is part of the root set of the
compiler, the object cannot be garbage collected. If another identifier with the
same lexeme as I is encountered, then it will be discovered that I is out of scope,
and the reference to its object will be deleted. However, if no other identifier
with this lexeme is encountered, then I’s object may remain as uncollectable,
yet useless, throughout compilation. O

If the problem suggested by Example 7.17 is important, then the compiler
writer could arrange to delete from the hash table all references to objects as
soon as their scope ends. However, a technique known as weak references allows
the programmer to rely on automatic garbage collection, and yet not have the
heap burdened with reachable, yet truly unused, objects. Such a system allows
certain references to be declared “weak.” An example would be all the references
in the hash table we have been discussing. When the garbage collector scans
an object, it does not follow weak references within that object, and does not
make the objects they point to reachable. Of course, such an object may still
be reachable if there is another reference to it that is not weak.

7.8.5 Exercises for Section 7.8

Exercise 7.8.1: In Section 7.8.3 we suggested that it was possible to garbage
collect for C programs that do not fabricate expressions that point to a place
within a chunk unless there is an address that points somewhere within that
same chunk. Thus, we rule out code like

p = 12345;
X = *p;

because, while p might point to some chunk accidentally, there could be no other
pointer to that chunk. On the other hand, with the code above, it is more likely
that p points nowhere, and executing that code will result in a segmentation
fault. However, in C it is possible to write code such that a variable like p is
guaranteed to point to some chunk, and yet there is no pointer to that chunk.
Write such a program.
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7.9 Summary of Chapter 7

4 Run-Time Organization. To implement the abstractions embodied in the
source language, a compiler creates and manages a run-time environment
in concert with the operating system and the target machine. The run-
time environment has static data areas for the object code and the static
data objects created at compile time. It also has dynamic stack and heap
areas for managing objects created and destroyed as the target program

- executes.

4 Control Stack. Procedure calls and returns are usually managed by a run-
time stack called the control stack. We can use a stack because procedure
calls or activations nest in time; that is, if p calls ¢, then this activation
of ¢ is nested within this activation of p.

4 Stack Allocation. Storage for local variables can allocated on a run-time
stack for languages that allow or require local variables to become inacces-
sible when their procedures end. For such languages, each live activation
has an activation record (or frame) on the control stack, with the root of
the activation tree at the bottom, and the entire sequence of activation
records on the stack corresponding to the path in the activation tree to
the activation where control currently resides. The latter activation has
its record at the top of the stack.

4 Access to Nonlocal Data on the Stack. For languages like C that do not
allow nested procedure declarations, the location for a variable is either
global or found in the activation record on top of the run-time stack. For
languages with nested procedures, we can access nonlocal data on the
stack through access links, which are pointers added to each activation
record. The desired nonlocal data is found by following a chain of access
links to the appropriate activation record. A display is an auxiliary array,
used in conjunction with access links, that provides an efficient short-cut
alternative to a chain of access links.

¢ Heap Management. The heap is the portion of the store that is used for
data that can live indefinitely, or until the program deletes it explicitly.
The memory manager allocates and deallocates space within the heap.
Garbage collection finds spaces within the heap that are no longer in use
and can therefore be reallocated to house other data items. For languages
that require it, the garbage collector is an important subsystem of the
memory manager.

4 Eaxploiting Locality. By making good use of the memory hierarchy, mem-
ory managers can influence the run time of a program. The time taken to
access different parts of memory can vary from nanoseconds to millisec-
onds. Fortunately, most programs spend most of their time executing a
relatively small fraction of the code and touching only a small fraction of
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the data. A program has temporal locality if it is likely to access the same
memory locations again soon; it has spatial locality if it is likely to access
nearby memory locations soon.

Reducing Fragmentation. As the program allocates and deallocates mem-
ory, the heap may get fragmented, or broken into large numbers of small
noncontiguous free spaces or holes. The best fit strategy — allocate the
smallest available hole that satisfies a request — has been found empir-
ically to work well. While best fit tends to improve space utilization, it
may not be best for spatial locality. Fragmentation can be reduced by
combining or coalescing adjacent holes.

Manual Deallocation. Manual memory management has two common
failings: not deleting data that can not be referenced is a memory-leak
error, and referencing deleted data is a dangling-pointer-dereference error.

Reachability. Garbage is data that cannot be referenced or reached. There
are two basic ways of finding unreachable objects: either catch the tran-
sition as a reachable object turns unreachable, or periodically locate all
reachable objects and infer that all remaining objects are unreachable.

Reference-Counting Collectors maintain a count of the references to an ob-
ject; when the count transitions to zero, the object becomes unreachable.
Such collectors introduce the overhead of maintaining references and can
fail to find “cyclic” garbage, which consists of unreachable objects that
reference each other, perhaps through a chain of references.

Trace-Based Garbage Collectors iteratively examine or trace all references
to find reachable objects, starting with the root set consisting of objects
that can be accessed directly without having to dereference any pointers.

Mark-and-Sweep Collectors visit and mark all reachable objects in a first
tracing step and then sweep the heap to free up unreachable objects.

Mark-and-Compact Collectors improve upon mark-and-sweep; they relo-
cate reachable objects in the heap to eliminate memory fragmentation.

Copying Collectors break the dependency between tracing and finding
free space. They partition the memory into two semispaces, A and B.
Allocation requests are satisfied from one semispace, say A, until it fills
up, at which point the garbage collector takes over, copies the reachable
objects to the other space, say B, and reverses the roles of the semispaces.

Incremental Collectors. Simple trace-based collectors stop the user pro-
gram while garbage is collected. Incremental collectors interleave the
actions of the garbage collector and the mutator or user program. The
mutator can interfere with incremental reachability analysis, since it can
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change the references within previously scanned objects. Incremental col-
lectors therefore play it safe by overestimating the set of reachable objects;
any “floating garbage” can be picked up in the next round of collection.

4 Partial Collectors also reduce pauses; they collect a subset of the garbage
at a time. The best known of partial-collection algorithms, generational
garbage collection, partitions objects according to how long they have
been allocated and collects the newly created objects more often because
they tend to have shorter lifetimes. An alternative algorithm, the train
algorithm, uses fixed length partitions, called cars, that are collected into
trains. Each collection step is applied to the first remaining car of the first
remaining train. When a car is collected, reachable objects are moved out
to other cars, so this car is left with garbage and can be removed from
the train. These two algorithms can be used together to create a partial
collector that applies the generational algorithm to younger objects and
the train algorithm to more mature objects.

7.10 References for Chapter 7

In mathematical logic, scope rules and parameter passing by substitution date
back to Frege [8]. Church’s lambda calculus {3] uses lexical scope; it has been
used as a model for studying programming languages. Algol 60 and its succes-
sors, including C and Java, use lexical scope. Once introduced by the initial
implementation of Lisp, dynamic scope became a feature of the language; Mc-
Carthy [14] gives the history.

Many of the concepts related to stack allocation were stimulated by blocks
and recursion in Algol 60. The idea of a display for accessing nonlocals in
a lexically scoped language is due to Dijkstra [5]. A detailed description of
stack allocation, the use of a display, and dynamic allocation of arrays appears
in Randell and Russell [16]. Johnson and Ritchie [10] discuss the design of a
calling sequence that allows the number of arguments of a procedure to vary
from call to call.

Garbage collection has been an active area of investigation; see for example
Wilson [17]. Reference counting dates back to Collins [4]. Trace-based collection
dates back to McCarthy [13], who describes a mark-sweep algorithm for fixed-
length cells. The boundary-tag for managing free space was designed by Knuth
in 1962 and published in [11].

Algorithm 7.14 is based on Baker [1]. Algorithm 7.16 is based on Cheney’s [2]
nonrecursive version of Fenichel and Yochelson’s [7] copying collector.

Incremental reachability analysis is explored by Dijkstra et al. [6]. Lieber-
man and Hewitt [12] present a generational collector as an extension of copying
collection. The train algorithm began with Hudson and Moss [9].

1. Baker, H. G. Jr., “The treadmill: real-time garbage collection without
motion sickness,” ACM SIGPLAN Notices 27:3 (Mar., 1992), pp. 66—70.
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