
	 1	

Advanced Programming [AP-2021]
Detailed Syllabus
Andrea Corradini

This document lists the topics presented along the course using the PDF slides published on
the course web page [http://pages.di.unipi.it/corradini/Didattica/AP-21/]. The reading
material consists of the slides presented during the course AND of the additional documents
listed below for each topic.
[Note: The topics marked [Optional] will not asked by the lecturer during the oral exam,
unless they are chosen by the student].

1. Languages and Abstract Machines. Compilation and interpretation schemes.

[Chapter 1 [http://pages.di.unipi.it/corradini/Didattica/AP-21/DOCS/GM-ch1.pdf] of
book Programming Languages: Principles and Paradigms, by Maurizio Gabbrielli and
Simone Martini.]

2. Runtime Systems and Introduction to the JVM

a. JVM internals
[JVM Internals, by J.D. Bloom, http://blog.jamesdbloom.com/JVMInternals.html]

b. The JVM Instruction Set
[Java Code To Byte Code - Part One, by J.D. Bloom,
http://blog.jamesdbloom.com/JavaCodeToByteCode_PartOne.html]

c. [Optional] See also [Chapter 2 of The Java Virtual Machine Specification, Java SE
8 Edition https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf]

3. Software Components
a. An introduction to Software Components

[Chapters 1, and 4 of [COMP]1 - Software Components: Beyond Object-Oriented
Programming. C. Szyperski, D. Gruntz, S. Murer, Addison-Wesley, 2002.]

b. Software Components: the Sun approach, JavaBeans
[Sections 14.1 (p. 261-269), 14.3 (p. 284-293) of [COMP]1]
[Sections 1, 2, 6, 7, 8 of The JavaBeans API Specification,
http://pages.di.unipi.it/corradini/Didattica/AP-21/DOCS/JBS.101.pdf]

c. Reflection in Java
[The Java Tutorial on the Reflection API,
https://docs.oracle.com/javase/tutorial/reflect/index.html excluding Arrays and
Enumerated Types.]

d. Annotations in Java
[The Java Tutorial on the Reflection API,
https://docs.oracle.com/javase/tutorial/java/annotations/index.html

e. Software Components: the .NET framework by Microsoft
[Sections 15.1, 15.11, and 15.12 of [COMP]1]

f. Frameworks and Inversion of Control: Decoupling components; Dependency
Injections; IoC Containers

	
1	Selected	chapters	of	book	[COMP]	can	be	downloaded	from	the	course	web	page.	

	 2	

[Inversion of Control, by Martin Flowers,
https://martinfowler.com/bliki/InversionOfControl.html]
[Inversion of Control Containers and the Dependency Injection pattern, by Martin
Flowers, https://martinfowler.com/articles/injection.html]

g. On designing Software Frameworks
[Using classic problems to teach Java framework design, by H.C. Cunningham, Yi
Liu and C. Zhang, Science of Computer Programming 59 (2006),
http://pages.di.unipi.it/corradini/Didattica/AP-21/DOCS/FrameworkDesign.pdf]

4. Polymorphism

a. A classification of Polymorphism
b. Polymorphism in C++: inclusion polymorphism and templates

[Overloads and Templates in C++
http://www.cplusplus.com/doc/tutorial/functions2/]
[Inclusion polymorphism in C++,
http://www.cplusplus.com/doc/tutorial/polymorphism/]
[Templates in C++, http://www.cplusplus.com/doc/oldtutorial/templates/]

c. Java Generics, Type bounds and subtyping, Subtyping and arrays in Java,
Wildcards, Type erasure
[Java Generics https://docs.oracle.com/javase/tutorial/java/generics/index.html]

d. The Standard Template Library: an overview
[The Standard Template Library Tutorial, by Johannes Weidl: Page 4, 12 and parts
of Chapter 4 "Learning STL",
http://pages.di.unipi.it/corradini/Didattica/AP-21/DOCS/stl-tutorial-Weidl.pdf],

e. Generics and inheritance: invariance, covariance and contravariance in Java and
other languages
[Covariance and Contravariance in C#,
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/covariance-contravariance/
]
[Covariance and Contravariance in Scala,
http://blog.kamkor.me/Covariance-And-Contravariance-In-Scala]

5. Functional Programming

a. Introduction to functional programming
[Section 10.1 and 10.2 of Chapter 10 of Programming Language Pragmatics, by
Michael Scott, 3rd edition.
http://pages.di.unipi.it/corradini/Didattica/AP-21/DOCS/Scott-ch10.pdf]

b. [Optional] A digression on the lambda-calculus [Introduction to Lambda
Calculus, http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf]

c. Call by need in Haskell

6. Haskell
a. Introduction to Haskell, Laziness, Basic and compounds types, Patterns and

declarations, Function declarations
[Introduction to Haskell, by John C. Mitchell,
http://pages.di.unipi.it/corradini/Didattica/AP-21/DOCS/Ch5.pdf]
[An excellent tutorial on Haskell: http://learnyouahaskell.com, Sections

	 3	

“Introduction” and “Starting out”]
[Basic Types and Type Classes:
http://learnyouahaskell.com/types-and-typeclasses]
[Functions in Haskell: http://learnyouahaskell.com/syntax-in-functions]

b. List comprehension, Algebraic Data Types, Higher-order functions, Recursion
[Recursion: http://learnyouahaskell.com/recursion]
[Higher-order functions: http://learnyouahaskell.com/higher-order-functions]

c. Type classes in Haskell
[Type Classes in Haskell, by John C. Mitchell,
http://pages.di.unipi.it/corradini/Didattica/AP-21/DOCS/Ch7.pdf]

d. The Maybe constructor and composition of partial functions
e. Monads in Haskell

[A very short tutorial on Monads
http://www.idryman.org/blog/2014/01/23/yet-another-monad-tutorial/]
[Monads as Containers, https://wiki.haskell.org/Monads_as_containers]
[Monads as Computations, https://wiki.haskell.org/Monads_as_computation]

f. [Optional] The IO Monad
https://en.wikibooks.org/wiki/Haskell/Understanding_monads/IO
https://wiki.haskell.org/IO_inside

7. Functional programming in Java 8

a. Lambdas in Java 8
[Lambda Expressions in Java
http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html]

b. The Stream API in Java 8
[Aggregate Operations in Java
https://docs.oracle.com/javase/tutorial/collections/streams/index.html]

8. An overview of the Rust programming language
[RUST on Wikipedia: https://en.wikipedia.org/wiki/Rust_(programming_language)]
[Introduction to Rust, slides by Haozhong Zhang,
http://pages.di.unipi.it/corradini/Didattica/AP-21/DOCS/IntroToRUST.pptx]

a. Ownership and Borrowing
[Sections 4.1 and 4.2 of: https://doc.rust-lang.org/book/index.html]

9. Scripting Languages and Python

a. [Optional] Overview of Scripting Languages
[Scripting Languages, by Michael Scott,
http://pages.di.unipi.it/corradini/Didattica/AP-21/DOCS/Scott-ch13.pdf]

b. Introduction to Python: Basic and Sequence Datatypes, Dictionaries, Control
Structures, List Comprehension
[The Python Tutorial: till Section 4.5 and Section 5,
http://docs.python.org/tutorial/]

c. Python: Function definition, Positional and keyword arguments of functions,
Functional Programming in Python, Iterators and Generators, Using higher
order functions: Decorators
[The Python Tutorial: Defining Functions, Sections 4.6 and 4.7,

	 4	

https://docs.python.org/3.7/tutorial/controlflow.html - defining-functions]
[Primer on Python Decorators,
https://realpython.com/blog/python/primer-on-python-decorators/]

d. Python: Classes and Instances, Single and Multiple Inheritance, Magic Methods
for operator overloading, Modules definition and importing
[The Python Tutorial: Sections 6 and 9, http://docs.python.org/tutorial/]

e. The Global Interpreter Lock (GIL).
[Inside the Python GIL, by David Beazley:
http://pages.di.unipi.it/corradini/Didattica/AP-21/DOCS/InsideThePythonGIL.pdf
]

