
Antonio Carta

antonio.carta@unipi.it

Multiple Tasks and Multiple
Agents

Ph.D. course on Collective Machine Intelligence

Antonio Carta
University of Pisa
Antonio.carta@unipi.it

Outline

• Multi-Task Learning

• Task-Incremental Learning

• Federated Learning

• Continual Federated Learning

• Multiple CL Agents

Methods:

• Task-aware Architectural Methods

• Knowledge Distillation

2

Multi-Task Learning
Joint training on multiple tasks

3

What is a Task?

• task: 𝒯𝑖 ≜ 𝑝𝑖 𝐱 , 𝑝𝑖 𝐲 ∣ 𝐱 , ℒ𝑖 ,
• True data-generating distribution 𝑝𝑖 𝑥, 𝑦

• loss ℒ𝑖 ← this is the evaluation loss function, not necessarily the
training loss function

• usually, we have to some samples 𝒟i = 𝐱, 𝐲 𝑘 ∼ 𝑝𝑖 𝑥, 𝑦

• Examples:
• Different data: objects, classes, backgrounds, objectives, …

• Different problems: classification, detection, segmentation, …

Problem Statement

MTL Objective:

min𝜃𝑠ℎ,𝜃1,…,𝜃𝑇 σ𝑖=1
𝑇 ℒ𝑖 𝜃𝑠ℎ, 𝜃𝑖 , 𝒟𝑖

• solve all the tasks concurrently

• share knowledge between tasks (𝜃𝑠ℎ)

• Separate task-specific components when
necessary (𝜃𝑖)

• exploit tasks relationships to converge faster
and generalize better

Critical Assumption:

• tasks share some common structure
• helps learning multiple tasks jointly
• it may also cause interference!

REMINDER: Transfer and Interference

• Positive Transfer: training tasks jointly (i.e. sharing weights)
improves the performance on the single tasks
• if the tasks are small the joint solution is more robust and less prone to

overfitting

• Negative Transfer:
• Sometimes independent models are better
• cross-task interference, different rates of learning
• representational capacity, MT nets need to be bigger

Yu et al. Gradient Surgery for Multi-Task Learning. 2020

Naive MTL Optimization

Naive MT-SGD

Until convergence:

• sample tasks

• sample examples for each task

• SGD step: forward → backward → descent step (for all samples)

• NOTE: we implicitly balance over tasks instead of over samples

• NOTE: losses may have different magnitudes (e.g. in regression
problems)

MTL Objective

• weighted objective min𝜃 σ𝑖=1
𝑇 𝑤𝑖 ℒ𝑖 𝜃, 𝒟𝑖

• how to choose the weights?
• a predefined relative importance

• balancing amount of data

• heuristics
• gradient of similar magnitudes (Chen et al. GradNorm. ICML 2018)

• optimize for the worst task

Weight Sharing - Task Conditioning

Task-specific and task-agnostic
parameters control transfer

min𝜃𝑠ℎ,𝜃1,…,𝜃𝑇 ෍

𝑖=1

𝑇

ℒ𝑖 𝜃𝑠ℎ, 𝜃𝑖 , 𝒟𝑖

• shared layers with simple task
conditioning such as sum,
concatenation, multiplication with
task embedding 𝑧 or gating with
task label 𝑧

• Complex and adaptive forms of
task conditioning are possible

Sum conditioning cat conditioning

Multiplicative conditioning

S, Ruder et a.l "Latent multi-task architecture learning". AAAI 2019
https://distill.pub/2018/feature-wise-transformations/

Task-Incremental Learning
Continual Learning with Architectural Methods

10

Task-Incremental Learning

• We want to solve task-incremental learning: learning multiple
tasks incrementally

• We can exploit task labels to design task-aware model
architectures

• GOAL: knowledge transfer with minimal interference

11

Modular Architectures

Idea:

• split the networks into several modules

• Connect modules to enable transfer

• Freeze/mask module to limit forgetting

Opportunities

• Explicit separation between task-specific and shared components

• Eliminate forgetting (with freezing / task-specific components)

Challenges

• Limiting memory growth

• Requirements of task labels

• Forward transfer is impacted by some solutions (freezing / task-
specific components)

Conflicting requirements: a good method needs to balance memory
occupation, eliminate forgetting, promoting forward transfer.

12

Base Model: Multi-Head

Multi-Head architectures have:

• a shared feature extractor

• a separate linear classifier (head) for
each task

• the correct head is selected for each
example via multiplicative gating

• The multi-head architecture is one of the
big advantages of having task labels.

• We can also have task-dependent hidden
layers (architectural methods)

Now we also want a task-aware feature
extractor!

Progressive Neural Networks (PNN)

A Basic Modular Architecture

• Column: Each new task adds its own
“column” of features to each layer

• Adapter: New columns are connected
to all the previous one via adapter

• Inference: task labels are used to
activate the correct columns

Progressive Neural Networks, Rusu et al. 2016. 14

PNN – Column

Column: Each new task adds its own
“column” of features to each layer
• Each column is connected to all the

previous ones
• After training the column is frozen
• Inference: use task labels to activate the

correct columns

Progressive Neural Networks, Rusu et al. 2016. 15

Connections to
previous columns

PNN Column

PNN Column

previous
columns

Pros and Cons

• Good forward transfer: each task can re-use previous columns

• Inhibits forgetting by freezing columns

• Poor scaling in memory size: quadratic due to adapters

• Requires task labels

Two open problems:

• How do we limit the memory growth?

• How do we choose which column to activate if don’t have task
labels?

16

Memory Growth: PNN Columns can be compressed

Progressive Neural Networks, Rusu et al. 2016. 17

Good news: most of the capacity is not used!
• We can reduce the size of new columns over time
• We can compress them (e.g. after training)

Task Inference

• Modular architecture + task inference to remove need for task
labels

• Task Inference: classifier that given an input predicts the task
label

• Often predicting the task label is easier than predicting the
class.
• Example: identifying a language (task inference) is easier than

predicting the next word of an incomplete sentence (solving the task).
• We can use a proxy signal: reconstruction error, pattern of activations,

…
• We can use a simple classifier, easier to train continually

18

Expert Gate

IDEA: Modular network with gating
and task inference

• Expert: a module of the network
trained on a single task

• Gate: an undercomplete
autoencoder for each task

• Inference: use the expert model
associated with the most
confident autoencoder

Aljundi, Rahaf, Punarjay Chakravarty, and Tinne Tuytelaars. “Expert Gate: Lifelong Learning with a Network of Experts.”, CVPR 2017 19

Expert Gate: Gate

• Pretrained Input Features: input 𝑥 to the
expert and autoencoder is the output of
the last CONV layer of AlexNet pretrained
on ImageNet

• Gate Architecture: standardization + an
undercomplete autoencoder for each task

• Inference: use the expert model
associated with the most confident
autoencoder
• 𝒆𝒓𝒊 reconstruction error for task 𝑖
• 𝒕 temperature

• Limitations:
• Requires pretrained network
• The reconstruction error is not always a

good task predictor. Autoencoders are very
good at reconstructing unseen data.

Aljundi, Rahaf, Punarjay Chakravarty, and Tinne Tuytelaars. “Expert Gate: Lifelong Learning with a Network of Experts.”, CVPR 2017 20

Masking – Motivations

increase the memory occupation
over time

• We know that deep networks are
overparameterized

• SOLUTION: use a fixed large
network and select a subset of
units for each task

• ADVANTAGES:
• Similar to modular networks but less

expensive
• Binary masks are easy to compress
• Induces sparsity

Image from Supermasks in Superposition, Wortsman et al. 2020. 21

Motivations – Lottery Ticket Hypothesis

WARNING: This is just a hypothesis, not a formal theorem

PROBLEMS:

• How do we optimize binary masks during continual learning?

• How do we do task inference?

Frankle, Jonathan, and Michael Carbin. “The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks,” ICLR 2019 22

HYPOTHESIS - Lottery Ticket Hypothesis:
dense, randomly-initialized, feed-forward networks contain subnetworks
(winning tickets) that—when trained in isolation–reach test accuracy
comparable to the original network in a similar number of iterations

Masking with Pruning Methods

We can use pruning methods to find a mask

Magnitude Pruning

• Train a network

• Sort the weights in a layer by their absolute magnitude

• Cut the lowest p%

Variation: Iterative Magnitude Pruning (IMP), where the process
is repeated multiple times, each time pruning p% and retraining.

PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning, Mallya et al 2017. 23

PackNet

Magnitude Pruning, task-aware

• Model: masked layers

• Inference: use task labels to choose mask.

• Training:
• start from a Pretrained Model.
• for each task:

• Finetune: the weights of the dense network (unmasked) on the new task
• frozen parameters are fixed

• Pruning: prune away a certain fraction of the weights of the network, i.e. set them to zero
• Retrain: to regain accuracy after pruning (half epochs)
• Freeze: Task parameters are frozen.

PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning, Mallya et al 2017. 24

• 1.5× more expensive than simple finetuning

Task Inference with Sparse Models (SupSup)

• After training, we have one mask
(model) for each task

• In a task-agnostic setting, how do we
choose the task label?

• Good heuristic: select the most
confident model
• WARNING: Keep in mind that neural

networks may be highly overconfident,
so this method doesn’t always work

• We can use the entropy to measure
the confidence

Image source: wikimedia
Supermasks in Superposition, Wortsman et al. 2020. 25

Entropy Eq:

The entropy measures
can be used to measure
the confidence. For
example, the entropy of
a coin flip is maximal
when p(H)= 0.5

SupSup – Superposition

Superposition: a weighted sum of all the masks

• An approximation of the ensemble output

• 𝐩 𝛼 = 𝑓 𝐱,𝑊 ⊙ σ𝑖=1
𝑘 𝛼𝑖𝑀

𝑖

• Requires a single forward pass

ONE-SHOT TASK INFERENCE:

• (1) Compute 𝐩 𝛼

• (2) Compute gradient with respect to entropy
and do an SGD step on 𝛼

• (3) Choose the mask s.t. argmax 𝑖 −
𝜕ℋ 𝐩 𝛼

𝜕𝛼𝑖
• This is a single step of SGD
• You could optimize 𝛼 until convergence but one

step is sufficient

26

1 2 3

Conclusion

• We can solve TIL with
• Architectural methods that expand the model over time

• Sparse models

• Good solutions to prevent forgetting but poor transfer
• Some methods are just a smart version of the basic ensemble of

independent models

• Task inference removes the requirements of task labels
• Input-based task predictors

• Confidence-based task inference

27

Federated Continual Learning
with slides from Valerio De Caro

28

Goal

• Learn with a large number of devices

• Learning algorithm is controlled by a centralized server

• There is a common goal (e.g. learning a single or multiple
tasks)

For simplicity, we focus on the learning problem and ignore

• Communication costs

• Implementation issues

• Infrastructural issues

29

Cloud-Edge Continuum• A PLETHORA OF AVAILABLE RESOURCES FOR RUNNING ML TASKS

Cloud

Fog

Edge

• Thousands of nodes
• Massive computational
resources
• High Bandwidth, low latency
• Permanent availability

• Millions of nodes

• Moderate computational
resources

• Moderate bandwidth and latency

• High availability

• Billions of nodes

• Low computational resources

• Low bandwidth and high latency

• Limited availability

• Inherently prolific data source

30

Cloud-Edge Continuum

Distributed vs Federated

31

• Distributed Learning:

• Cloud-scale resources

• All the data available on cloud

• It’s your usual learning process,
just scaled up and faster

• Federated Learning:
• Semantic and system heterogeneity

• Leverages the whole continuum,
optimizing the utilization of the available
resources

• Complies with privacy constraints

= Data is regulated by Privacy

Federated Learning

32

𝐹𝐸𝑅𝑀 𝐱 =෍

𝑖=1

|𝒞|

𝑝𝑖𝐹𝑖
𝐸𝑅𝑀 𝐱 𝐹𝑖

𝐸𝑅𝑀 𝐱 = 1
|𝐷𝑖|

෍

𝜉∈𝐷𝑖

𝑓𝑖(𝐱, 𝜉)

• Learning a global model consists in minimizing the following
function: 𝐹 𝐱 = 𝔼𝑖∼𝒫[𝐹𝑖 𝐱] 𝐹𝑖 𝐱 = 𝔼𝜉∼𝒟𝑖[𝑓𝑖 𝐱, 𝜉]

Client Distribution: denotes
client availability and
resources, i.e., system
heterogeneity

Local Data Distribution: denotes
heterogeneity of local data across

clients, i.e., statistical
heterogeneity

*Thus, we approximate the learning problem by Empirical Risk Minimization:

Unobservable
*

Approximates system
heterogeneity and statistical

heterogeneity

No data points are fed to
𝐹𝐸𝑅𝑀 𝐱 , thus there is no
direct evaluation of the global
model

!

Federated Averaging

33

A Naïve approach to Federated Optimization [McMahan et al., 2017]

𝒘𝑡
1 𝒘𝑡

2 𝒘𝑡
3

𝒘𝑡′
1 𝒘𝑡′

2 𝒘𝑡′
3

𝑆𝑡

𝒘𝑡 𝒘𝑡′

Federated Continual Learning

Federated Continual Learning

• Multiple Clients

• Each learning from a stream of tasks (assume task labels are
available)

• We can have local forgetting (client, local model) and global
forgetting (server, global model)

34

Continual Federated Learning

[1] G. Legate et al. “Re-Weighted Softmax Cross-Entropy to Control Forgetting in Federated Learning.” CoLLAs ‘23 35

• FL methods fail in simple heterogeneous settings.
• Local forgetting happens in heterogeneous FL if the local models are not aggregated often

enough, resulting in a local drift and forgetting of the global knowledge.
Open question: can continual learning improve federated learning in heterogeneous settings?
• [1] proposes WSM loss, a weighted cross-entropy to mitigate this problem

FedWeIt

We can use task-incremental
architectures just like we did for TIL!

• Objectives:
• Minimize communication
• Exploit task similarity
• Avoid task interference
• Define a different model for each

client (clients may share only part of
the model)

• Modularized task-based model:
• Global parameters
• Local base parameters
• Task-adaptive parameters

J. Yoon et al. “Federated Continual Learning with Weighted Inter-Client Transfer.” ICML ‘21 36

Local client model:

Limitations of Federated Learning

• Requires frequent communication to aggregate models

• Only useful if clients are solving the same tasks

• Requires a server to orchestrate the learning algorithm

• More in general, the server is in control
• What happens if we remove this assumption and assume that each

device is an independent entity?

• Can we share knowledge between devices?

• How can we do the model aggregation?

37

Towards Multiple Agents

38

Asynchronous and Independent Agents

Multiple agents:

• Learn tasks independently

• Do not have a single centralized server that
orchestrates learning

• Want to «learn from each other» if possible,
but at a minimal cost

• Related work: A Call to Build Models Like We Build Open-
Source Software, Colin Raffel https://colinraffel.com/blog/a-
call-to-build-models-like-we-build-open-source-software.html

39

https://colinraffel.com/blog/a-call-to-build-models-like-we-build-open-source-software.html
https://colinraffel.com/blog/a-call-to-build-models-like-we-build-open-source-software.html

Multi-Agent Continual Learning

In a multi-agent setting, agents can “talk”
to each other and share knowledge.

Desiderata

● Reuse of expert knowledge

● Efficient and decentralized learning

● Independent agents (unlike federated
learning)

● Privacy (at will)

40

Ex-Model Continual Learning

Let’s focus on the problem of «knowledge consolidation»
Instead of data, at each learning experience

the model receives an expert model.
We want to aggregate the models together

41
Ex-Model: Continual Learning From a Stream of Trained Models. Antonio Carta, Andrea Cossu, Vincenzo

Lomonaco, Davide Bacciu; CLVISION@CVPRW, 2022

Ex-Model CL

• Model aggregation is the critical
missing component in
heterogeneous FL!
• We know how to train the local

model (continual learning)
• We know how to aggregate

homogeneous models as long as
the aggregation is frequent
enough (homogeneous federated
learning)

• If we can aggregate independent
models (Ex-Model CL)
• we can train on multiple tasks in

parallel
• Without frequent synchnonous

aggregations
• Allows decentralized training
• related to model patching [1]

A. Carta. “Ex-Model: Continual Learning From a Stream of Trained Models,” CLVISION ‘22
[1] Raffel, Colin. “Building Machine Learning Models Like Open Source Software.” Communications of the ACM 2023 42

Functional Regularization
How to share pretrained knowledge

43

Functional Regularization

• we have access to a model 𝑓𝑖−1
𝐶𝐿 (the

previous model) that learned
experiences 𝑆𝑡𝑟𝑎𝑖𝑛[1: 𝑖 − 1]

• IDEA: let’s replicate the old model
behavior and update it only on the
new examples

• PROBLEMS:
• What objective do we use?

• What data do we use?

44

Equations in a Multi-Task Scenario
𝑥=input
𝑘=task label
𝑖=task label for new task
𝑓𝐸𝑥𝑝=model for new task

First Eq: copy old CL model on the first i-1 tasks
Second Eq: copy new model on the new task

Knowledge Distillation (KD)

KD: Offline training method to replicate the output of a pretrained model

• Teacher: pretrained model

• Student: the new model that we want to train

KD is a general method with many applications outside CL:

• Example: Reducing the size of a model:
• Example teacher: ResNet101 pretrained on ImageNet
• Example student: ResNet18 trained with KD

Why does it work?

• Supervised training provides hard targets (i.e. the correct class)

• KD provides soft targets, which are more informative
• Example: soft targets encode similarities between classes
• Informally called «dark knowledge»

45

KD Objective – KL-Divergence and MSE

• The KL-Divergence measures the similarity between two
probability distributions (teacher and student)
• We are measuring the distance between the pdf of the teacher and the

student

• ො𝑦 teacher, 𝑦 student

• Alternative: MSE between the logits || ො𝑦 − 𝑦||2
2

• Often more robust in CL

46

Learning Without Forgetting (LwF)

LwF implements functional regularization
with:

• Objective: knowledge distillation

• Data: current data

Key Aspects

• Straightforward application of KD in CL

• Originally designed for Task-Incremental
settings then extended to single task.

• Efficient: requires only an additional
forward pass with the teacher.

• Easy to implement and commonly used

Learning without Forgetting, Li et al, TPAMI 2017
Distilling the knowledge in a neural network, Hinton et al, 2015.

Continuous Learning in Single-Incremental Tasks, Maltoni & Lomonaco, Neural Networks, 2019.
47

LwF in Task-Incremental CL

• Multihead: separate output layer
for each task.

• KD computed on the old head
using the new data (𝐿𝑜𝑙𝑑)

• CE computed on the new head
using the new data (𝐿𝑛𝑒𝑤)

Learning without Forgetting, Li et al, TPAMI 2017 48

Weight vs Functional Regularization

• Prior-based methods (EWC) require that the new models don’t
move «too far» from the previous solutions
• We need a large model or a pretrained one to satisfy this requirement

• It’s only an approximation of the real objective

• Functional regularization is much less restrictive
• The weights can change, as long as the output for the previous units is

the same

• The output of new units is completely unconstrained

• The previous model provides the exact outputs that we want (no
approximation)

49

Distillation in Practice

• Even outside CL, KD is
surprisingly competitive

Implementation «tricks»

• Long aumentation pipelines

• Long training Schedules

• Consistent teacher and student
inputs (i.e. same augmentation
for both)

Beyer, Lucas, et al. "Knowledge distillation: A good teacher is patient and consistent." CVPR. 2022. 50

KD as Function Matching

KD is a function matching problem

• For any input, we know exactly what
output we want
• The data is much less important in this

problem than in a typical ML problem
• Having diverse data close to the domain

of interest helps but it’s not a necessity

• KD works with any inputs (with
different convergence speeds)
• The teacher training data
• Out-of-domain-data with augmentations
• A new task data (like in LwF!!!)

Beyer, Lucas, et al. "Knowledge distillation: A good teacher is patient and consistent." CVPR. 2022. 51

KD with a Single Image

Asano, Yuki M., and Aaqib Saeed. "Extrapolating from a single image to a thousand classes using distillation." arXiv preprint (2021). 52

LwF

• We need task boundaries to know when to store the previous
model

• The data that we use for KD (new data) is different from the one
we used to train the teacher (old data)

• Augmentations help KD, even when they distort the image

53

Multi-Agent
Knowledge Distillation

54

Ex-Model CL

• Model aggregation is the critical
missing component in
heterogeneous FL!
• We know how to train the local

model (continual learning)
• We know how to aggregate

homogeneous models as long as
the aggregation is frequent
enough (homogeneous federated
learning)

• If we can aggregate independent
models (Ex-Model CL)
• we can train on multiple tasks in

parallel
• Without frequent synchnonous

aggregations
• Allows decentralized training
• related to model patching [1]

A. Carta. “Ex-Model: Continual Learning From a Stream of Trained Models,” CLVISION ‘22
[1] Raffel, Colin. “Building Machine Learning Models Like Open Source Software.” Communications of the ACM 2023 55

ExML Distillation (1)

56

Previous
CL Model (t-1)

Current
Expert (t)

Previous
Buffer

New Synthetic
Data

New Buffer CL Model (t)

(1) Generate
Synthetic Data

(2) Update
Buffer

(3) Double KD

Syntethic Data

• Model inversion:
optimize noise to
resemble a class

• +natural image prior

• Alternative: ood data

ExML Distillation (2)

57

Previous
CL Model (t-1)

Current
Expert (t)

Previous
Buffer

New Synthetic
Data

New Buffer CL Model (t)

(1) Generate
Synthetic Data

(2) Update
Buffer

(3) Double KD

Rehearsal Buffer

• Synthetic data is
stored in a buffer

• Buffer is updated
after every
experience

ExML Distillation (3)

58

Previous
CL Model (t-1)

Current
Expert (t)

Previous
Buffer

New Synthetic
Data

New Buffer CL Model (t)

(1) Generate
Synthetic Data

(2) Update
Buffer

(3) Double KD

Double Distillation

• Distillation from
previous CL model
and current expert

• Instance-based logits
normalization to
avoid bias towards
one model

Ex-Model Distillation

Ex-Model: Continual Learning from a Stream of Pre-Trained Models. A. Carta, A. Cossu, V. Lomonaco, D. Bacciu. 2021.

https://arxiv.org/abs/2112.06511

ExML – Generated Samples

60

Original Data

OOD Data

Joint MNIST, Model Inversion Joint MNIST, Data Impression

Split MNIST, Model Inversion Split MNIST, Data Impression

ExML - Challenges

• We have only the expert model, not the original training data

• We cannot store all the experts in memory

• Experts are overconfident on out-of-distribution samples

Some of these limitations can be lifted with additional assumptions:

• Access to a subset of the original data

• A shared training protocol

• Sending the model every few epochs instead of only after
convergence

61

Data-Agnostic Consolidation (DAC)

Split learning into:

• Adaptation: learn new task

• Consolidation: aggregate models

Model consolidation with data-free
knowledge distillation (DAC)

• Double Knowledge Distillation
• Teachers: Previous CL model and New

model
• On the output
• On the latent activations (Projected)

• Task-incremental method

• Surprisingly, indipendent adaptation +
sequential consolidation seems better
than sequential adaptation (i.e. what
most CL methods are doing)

A. Carta et al. “Projected Latent Distillation for Data-Agnostic Consolidation in Distributed Continual Learning.” arXiv preprint, 2023
62

A single image is enough

Carta, Antonio, et al. "Projected Latent Distillation for Data-Agnostic Consolidation in Distributed Continual Learning." arXiv preprint (2023). 63

Batch Model Consolidation

BMC:

• Regularized adaptation with distillation on the
latent activations (teacher: base model)

• Replay data for batch consolidation

Sparse consolidation allows asynchronous learning
in independent agents with light synchronization

I. Fostiropoulos et al. “Batch Model Consolidation: A Multi-Task Model Consolidation Framework.” CVPR ‘23 64

Conclusion

65

Opportunities

Training Decentralized CL agents is a more general paradigm than
federated learning:
Federated Learning requires frequent sync (large bandwidth) and a shared
single stakeholder training protocol
● assumes homogeneity in the model architecture
● not able to handle non-stationarity
● Federated Learning can be seen a constrained version of Ex-Model Continual

Learning
● opening the path for Knowledge Sharing between agents.

	Diapositiva 1: Multiple Tasks and Multiple Agents
	Diapositiva 2: Outline
	Diapositiva 3: Multi-Task Learning
	Diapositiva 4: What is a Task?
	Diapositiva 5: Problem Statement
	Diapositiva 6: REMINDER: Transfer and Interference
	Diapositiva 7: Naive MTL Optimization
	Diapositiva 8: MTL Objective
	Diapositiva 9: Weight Sharing - Task Conditioning
	Diapositiva 10: Task-Incremental Learning
	Diapositiva 11: Task-Incremental Learning
	Diapositiva 12: Modular Architectures
	Diapositiva 13: Base Model: Multi-Head
	Diapositiva 14: Progressive Neural Networks (PNN)
	Diapositiva 15: PNN – Column
	Diapositiva 16: Pros and Cons
	Diapositiva 17: Memory Growth: PNN Columns can be compressed
	Diapositiva 18: Task Inference
	Diapositiva 19: Expert Gate
	Diapositiva 20: Expert Gate: Gate
	Diapositiva 21: Masking – Motivations
	Diapositiva 22: Motivations – Lottery Ticket Hypothesis
	Diapositiva 23: Masking with Pruning Methods
	Diapositiva 24: PackNet
	Diapositiva 25: Task Inference with Sparse Models (SupSup)
	Diapositiva 26: SupSup – Superposition
	Diapositiva 27: Conclusion
	Diapositiva 28: Federated Continual Learning
	Diapositiva 29: Goal
	Diapositiva 30: Cloud-Edge Continuum
	Diapositiva 31: Distributed vs Federated
	Diapositiva 32: Federated Learning
	Diapositiva 33: Federated Averaging
	Diapositiva 34: Federated Continual Learning
	Diapositiva 35: Continual Federated Learning
	Diapositiva 36: FedWeIt
	Diapositiva 37: Limitations of Federated Learning
	Diapositiva 38: Towards Multiple Agents
	Diapositiva 39: Asynchronous and Independent Agents
	Diapositiva 40: Multi-Agent Continual Learning
	Diapositiva 41: Ex-Model Continual Learning
	Diapositiva 42: Ex-Model CL
	Diapositiva 43: Functional Regularization
	Diapositiva 44: Functional Regularization
	Diapositiva 45: Knowledge Distillation (KD)
	Diapositiva 46: KD Objective – KL-Divergence and MSE
	Diapositiva 47: Learning Without Forgetting (LwF)
	Diapositiva 48: LwF in Task-Incremental CL
	Diapositiva 49: Weight vs Functional Regularization
	Diapositiva 50: Distillation in Practice
	Diapositiva 51: KD as Function Matching
	Diapositiva 52: KD with a Single Image
	Diapositiva 53: LwF
	Diapositiva 54: Multi-Agent Knowledge Distillation
	Diapositiva 55: Ex-Model CL
	Diapositiva 56: ExML Distillation (1)
	Diapositiva 57: ExML Distillation (2)
	Diapositiva 58: ExML Distillation (3)
	Diapositiva 59: Ex-Model Distillation
	Diapositiva 60: ExML – Generated Samples
	Diapositiva 61: ExML - Challenges
	Diapositiva 62: Data-Agnostic Consolidation (DAC)
	Diapositiva 63: A single image is enough
	Diapositiva 64: Batch Model Consolidation
	Diapositiva 65: Conclusion
	Diapositiva 66: Opportunities

