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Outline

• Multi-Task Learning

• Task-Incremental Learning

• Federated Learning

• Continual Federated Learning

• Multiple CL Agents

Methods:

• Task-aware Architectural Methods

• Knowledge Distillation

2



Multi-Task Learning
Joint training on multiple tasks
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What is a Task?

• task: 𝒯𝑖 ≜ 𝑝𝑖 𝐱 , 𝑝𝑖 𝐲 ∣ 𝐱 , ℒ𝑖 ,
• True data-generating distribution 𝑝𝑖 𝑥, 𝑦

• loss ℒ𝑖 ← this is the evaluation loss function, not necessarily the 
training loss function

• usually, we have to some samples 𝒟i = 𝐱, 𝐲 𝑘 ∼ 𝑝𝑖 𝑥, 𝑦

• Examples:
• Different data: objects, classes, backgrounds, objectives, …

• Different problems: classification, detection, segmentation, …



Problem Statement

MTL Objective:

min𝜃𝑠ℎ,𝜃1,…,𝜃𝑇 σ𝑖=1
𝑇 ℒ𝑖 𝜃𝑠ℎ, 𝜃𝑖 , 𝒟𝑖

• solve all the tasks concurrently

• share knowledge between tasks (𝜃𝑠ℎ)

• Separate task-specific components when 
necessary (𝜃𝑖)

• exploit tasks relationships to converge faster 
and generalize better

Critical Assumption:

• tasks share some common structure
• helps learning multiple tasks jointly
• it may also cause interference!

                                    

                                              



REMINDER: Transfer and Interference

• Positive Transfer: training tasks jointly (i.e. sharing weights) 
improves the performance on the single tasks
• if the tasks are small the joint solution is more robust and less prone to 

overfitting

• Negative Transfer: 
• Sometimes independent models are better 
• cross-task interference, different rates of learning 
• representational capacity, MT nets need to be bigger

Yu et al. Gradient Surgery for Multi-Task Learning. 2020



Naive MTL Optimization

Naive MT-SGD 

Until convergence:

• sample tasks

• sample examples for each task

• SGD step: forward → backward → descent step (for all samples)

• NOTE: we implicitly balance over tasks instead of over samples

• NOTE: losses may have different magnitudes (e.g. in regression 
problems)



MTL Objective

• weighted objective min𝜃 σ𝑖=1
𝑇 𝑤𝑖 ℒ𝑖 𝜃, 𝒟𝑖

• how to choose the weights?
• a predefined relative importance

• balancing amount of data

• heuristics
• gradient of similar magnitudes (Chen et al. GradNorm. ICML 2018)

• optimize for the worst task



Weight Sharing - Task Conditioning

Task-specific and task-agnostic 
parameters control transfer

min𝜃𝑠ℎ,𝜃1,…,𝜃𝑇 ෍

𝑖=1

𝑇

ℒ𝑖 𝜃𝑠ℎ, 𝜃𝑖 , 𝒟𝑖

• shared layers with simple task 
conditioning such as sum, 
concatenation, multiplication with 
task embedding 𝑧 or gating with 
task label 𝑧

• Complex and adaptive forms of 
task conditioning are possible

Sum conditioning cat conditioning

Multiplicative conditioning

S, Ruder et a.l "Latent multi-task architecture learning". AAAI 2019
https://distill.pub/2018/feature-wise-transformations/



Task-Incremental Learning
Continual Learning with Architectural Methods
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Task-Incremental Learning

• We want to solve task-incremental learning: learning multiple 
tasks incrementally

• We can exploit task labels to design task-aware model 
architectures

• GOAL: knowledge transfer with minimal interference
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Modular Architectures

Idea: 

• split the networks into several modules

• Connect modules to enable transfer

• Freeze/mask module to limit forgetting

Opportunities

• Explicit separation between task-specific and shared components

• Eliminate forgetting (with freezing / task-specific components)

Challenges

• Limiting memory growth

• Requirements of task labels

• Forward transfer is impacted by some solutions (freezing / task-
specific components)

Conflicting requirements: a good method needs to balance memory 
occupation, eliminate forgetting, promoting forward transfer.
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Base Model: Multi-Head

Multi-Head architectures have:

• a shared feature extractor

• a separate linear classifier (head) for 
each task

• the correct head is selected for each 
example via multiplicative gating

• The multi-head architecture is one of the 
big advantages of having task labels. 

• We can also have task-dependent hidden 
layers (architectural methods)

Now we also want a task-aware feature 
extractor!



Progressive Neural Networks (PNN)

A Basic Modular Architecture

• Column: Each new task adds its own 
“column” of features to each layer

• Adapter: New columns are connected 
to all the previous one via adapter

• Inference: task labels are used to 
activate the correct columns

Progressive Neural Networks, Rusu et al. 2016. 14



PNN – Column

Column: Each new task adds its own 
“column” of features to each layer
• Each column is connected to all the 

previous ones
• After training the column is frozen
• Inference: use task labels to activate the 

correct columns

Progressive Neural Networks, Rusu et al. 2016. 15

Connections to 
previous columns

PNN Column

PNN Column

previous 
columns



Pros and Cons

• Good forward transfer: each task can re-use previous columns

• Inhibits forgetting by freezing columns

• Poor scaling in memory size: quadratic due to adapters

• Requires task labels

Two open problems:

• How do we limit the memory growth?

• How do we choose which column to activate if don’t have task 
labels?

16



Memory Growth: PNN Columns can be compressed

Progressive Neural Networks, Rusu et al. 2016. 17

Good news: most of the capacity is not used!
• We can reduce the size of new columns over time
• We can compress them (e.g. after training)



Task Inference

• Modular architecture + task inference to remove need for task 
labels

• Task Inference: classifier that given an input predicts the task 
label

• Often predicting the task label is easier than predicting the 
class.
• Example: identifying a language (task inference) is easier than 

predicting the next word of an incomplete sentence (solving the task).
• We can use a proxy signal: reconstruction error, pattern of activations, 

…
• We can use a simple classifier, easier to train continually

18



Expert Gate

IDEA: Modular network with gating 
and task inference

• Expert: a module of the network 
trained on a single task

• Gate: an undercomplete 
autoencoder for each task

• Inference: use the expert model 
associated with the most 
confident autoencoder

Aljundi, Rahaf, Punarjay Chakravarty, and Tinne Tuytelaars. “Expert Gate: Lifelong Learning with a Network of Experts.”, CVPR 2017 19



Expert Gate: Gate

• Pretrained Input Features: input 𝑥 to the 
expert and autoencoder is the output of 
the last CONV layer of AlexNet pretrained 
on ImageNet

• Gate Architecture: standardization + an 
undercomplete autoencoder for each task

• Inference: use the expert model 
associated with the most confident 
autoencoder
• 𝒆𝒓𝒊 reconstruction error for task 𝑖
• 𝒕 temperature

• Limitations:
• Requires pretrained network
• The reconstruction error is not always a 

good task predictor. Autoencoders are very 
good at reconstructing unseen data.

Aljundi, Rahaf, Punarjay Chakravarty, and Tinne Tuytelaars. “Expert Gate: Lifelong Learning with a Network of Experts.”, CVPR 2017 20



Masking – Motivations

increase the memory occupation 
over time

• We know that deep networks are 
overparameterized

• SOLUTION: use a fixed large 
network and select a subset of 
units for each task

• ADVANTAGES: 
• Similar to modular networks but less 

expensive
• Binary masks are easy to compress
• Induces sparsity

Image from Supermasks in Superposition, Wortsman et al. 2020. 21



Motivations – Lottery Ticket Hypothesis

WARNING: This is just a hypothesis, not a formal theorem

PROBLEMS: 

• How do we optimize binary masks during continual learning?

• How do we do task inference?

Frankle, Jonathan, and Michael Carbin. “The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks,” ICLR 2019 22

HYPOTHESIS - Lottery Ticket Hypothesis: 
dense, randomly-initialized, feed-forward networks contain subnetworks 
(winning tickets) that—when trained in isolation–reach test accuracy 
comparable to the original network in a similar number of iterations



Masking with Pruning Methods

We can use pruning methods to find a mask

Magnitude Pruning

• Train a network

• Sort the weights in a layer by their absolute magnitude

• Cut the lowest p% 

Variation: Iterative Magnitude Pruning (IMP), where the process 
is repeated multiple times, each time pruning p% and retraining.

PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning, Mallya et al 2017. 23



PackNet

Magnitude Pruning, task-aware

• Model: masked layers

• Inference: use task labels to choose mask.

• Training:
• start from a Pretrained Model.
• for each task:

• Finetune: the weights of the dense network (unmasked) on the new task 
• frozen parameters are fixed

• Pruning: prune away a certain fraction of the weights of the network, i.e. set them to zero
• Retrain: to regain accuracy after pruning (half epochs)
• Freeze: Task parameters are frozen.

PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning, Mallya et al 2017. 24

• 1.5× more expensive than simple finetuning



Task Inference with Sparse Models (SupSup)

• After training, we have one mask 
(model) for each task

• In a task-agnostic setting, how do we 
choose the task label?

• Good heuristic: select the most 
confident model
• WARNING: Keep in mind that neural 

networks may be highly overconfident, 
so this method doesn’t always work

• We can use the entropy to measure 
the confidence

Image source: wikimedia
Supermasks in Superposition, Wortsman et al. 2020. 25

Entropy Eq:

The entropy measures 
can be used to measure 
the confidence. For 
example, the entropy of 
a coin flip is maximal 
when p(H)= 0.5



SupSup – Superposition

Superposition: a weighted sum of all the masks

• An approximation of the ensemble output

• 𝐩 𝛼 = 𝑓 𝐱,𝑊 ⊙ σ𝑖=1
𝑘 𝛼𝑖𝑀

𝑖

• Requires a single forward pass

ONE-SHOT TASK INFERENCE:

• (1) Compute 𝐩 𝛼

• (2) Compute gradient with respect to entropy 
and do an SGD step on 𝛼

• (3) Choose the mask s.t. argmax 𝑖 −
𝜕ℋ 𝐩 𝛼

𝜕𝛼𝑖
• This is a single step of SGD
• You could optimize 𝛼 until convergence but one 

step is sufficient

26

1 2 3



Conclusion

• We can solve TIL with
• Architectural methods that expand the model over time

• Sparse models

• Good solutions to prevent forgetting but poor transfer
• Some methods are just a smart version of the basic ensemble of 

independent models

• Task inference removes the requirements of task labels
• Input-based task predictors

• Confidence-based task inference

27



Federated Continual Learning
with slides from Valerio De Caro

28



Goal

• Learn with a large number of devices

• Learning algorithm is controlled by a centralized server

• There is a common goal (e.g. learning a single or multiple 
tasks)

For simplicity, we focus on the learning problem and ignore

• Communication costs

• Implementation issues

• Infrastructural issues

29



Cloud-Edge Continuum• A PLETHORA OF AVAILABLE RESOURCES FOR RUNNING ML TASKS

Cloud

Fog

Edge

• Thousands of nodes
• Massive computational 
resources 
• High Bandwidth, low latency
• Permanent availability

• Millions of nodes

• Moderate computational 
resources 

• Moderate bandwidth and latency

• High availability

• Billions of nodes

• Low computational resources 

• Low bandwidth and high latency

• Limited availability

• Inherently prolific data source

30

Cloud-Edge Continuum



Distributed vs Federated

31

• Distributed Learning:

• Cloud-scale resources

• All the data available on cloud

• It’s your usual learning process, 
just scaled up and faster

• Federated Learning:
• Semantic and system heterogeneity

• Leverages the whole continuum, 
optimizing the utilization of the available 
resources

• Complies with privacy constraints

= Data is regulated by Privacy



Federated Learning

32

𝐹𝐸𝑅𝑀 𝐱 =෍

𝑖=1

|𝒞|

𝑝𝑖𝐹𝑖
𝐸𝑅𝑀 𝐱 𝐹𝑖

𝐸𝑅𝑀 𝐱 = 1
|𝐷𝑖|

෍

𝜉∈𝐷𝑖

𝑓𝑖(𝐱, 𝜉)

• Learning a global model consists in minimizing the following 
function: 𝐹 𝐱 = 𝔼𝑖∼𝒫[𝐹𝑖 𝐱 ] 𝐹𝑖 𝐱 = 𝔼𝜉∼𝒟𝑖[𝑓𝑖 𝐱, 𝜉 ]

Client Distribution: denotes 
client availability and 
resources, i.e., system 
heterogeneity

Local Data Distribution: denotes 
heterogeneity of local data across 

clients, i.e., statistical 
heterogeneity

*Thus, we approximate the learning problem by Empirical Risk Minimization:

Unobservable
*

Approximates system 
heterogeneity and statistical 

heterogeneity

No data points are fed to 
𝐹𝐸𝑅𝑀 𝐱 , thus there is no 
direct evaluation of the global 
model

!



Federated Averaging

33

A Naïve approach to Federated Optimization [McMahan et al., 2017]  

𝒘𝑡
1 𝒘𝑡

2 𝒘𝑡
3

𝒘𝑡′
1 𝒘𝑡′

2 𝒘𝑡′
3

𝑆𝑡

𝒘𝑡 𝒘𝑡′



Federated Continual Learning

Federated Continual Learning

• Multiple Clients

• Each learning from a stream of tasks (assume task labels are 
available)

• We can have local forgetting (client, local model) and global 
forgetting (server, global model)

34



Continual Federated Learning

[1] G. Legate et al. “Re-Weighted Softmax Cross-Entropy to Control Forgetting in Federated Learning.” CoLLAs ‘23 35

• FL methods fail in simple heterogeneous settings.
• Local forgetting happens in heterogeneous FL if the local models are not aggregated often 

enough, resulting in a local drift and forgetting of the global knowledge.
Open question: can continual learning improve federated learning in heterogeneous settings?
• [1] proposes WSM loss, a weighted cross-entropy to mitigate this problem



FedWeIt

We can use task-incremental 
architectures just like we did for TIL!

• Objectives:
• Minimize communication
• Exploit task similarity
• Avoid task interference
• Define a different model for each 

client (clients may share only part of 
the model)

• Modularized task-based model:
• Global parameters
• Local base parameters
• Task-adaptive parameters

J. Yoon et al. “Federated Continual Learning with Weighted Inter-Client Transfer.” ICML ‘21 36

Local client model:



Limitations of Federated Learning

• Requires frequent communication to aggregate models

• Only useful if clients are solving the same tasks

• Requires a server to orchestrate the learning algorithm

• More in general, the server is in control
• What happens if we remove this assumption and assume that each 

device is an independent entity?

• Can we share knowledge between devices?

• How can we do the model aggregation?

37



Towards Multiple Agents

38



Asynchronous and Independent Agents

Multiple agents:

• Learn tasks independently

• Do not have a single centralized server that 
orchestrates learning

• Want to «learn from each other» if possible, 
but at a minimal cost

• Related work: A Call to Build Models Like We Build Open-
Source Software, Colin Raffel https://colinraffel.com/blog/a-
call-to-build-models-like-we-build-open-source-software.html

39

https://colinraffel.com/blog/a-call-to-build-models-like-we-build-open-source-software.html
https://colinraffel.com/blog/a-call-to-build-models-like-we-build-open-source-software.html


Multi-Agent Continual Learning

In a multi-agent setting, agents can “talk” 
to each other and share knowledge.

Desiderata

● Reuse of expert knowledge

● Efficient and decentralized learning

● Independent agents (unlike federated 
learning)

● Privacy (at will)

40



Ex-Model Continual Learning

Let’s focus on the problem of «knowledge consolidation»
Instead of data, at each learning experience 

the model receives an expert model.
We want to aggregate the models together

41
Ex-Model: Continual Learning From a Stream of Trained Models.  Antonio Carta, Andrea Cossu, Vincenzo 

Lomonaco, Davide Bacciu; CLVISION@CVPRW, 2022



Ex-Model CL

• Model aggregation is the critical 
missing component in 
heterogeneous FL!
• We know how to train the local 

model (continual learning)
• We know how to aggregate 

homogeneous models as long as 
the aggregation is frequent 
enough (homogeneous federated 
learning)

• If we can aggregate independent 
models (Ex-Model CL)
• we can train on multiple tasks in 

parallel
• Without frequent synchnonous 

aggregations
• Allows decentralized training
• related to model patching [1]

A. Carta. “Ex-Model: Continual Learning From a Stream of Trained Models,” CLVISION ‘22
[1] Raffel, Colin. “Building Machine Learning Models Like Open Source Software.” Communications of the ACM 2023 42



Functional Regularization
How to share pretrained knowledge

43



Functional Regularization

• we have access to a model 𝑓𝑖−1
𝐶𝐿  (the 

previous model) that learned 
experiences 𝑆𝑡𝑟𝑎𝑖𝑛[1: 𝑖 − 1]

• IDEA: let’s replicate the old model 
behavior and update it only on the 
new examples

• PROBLEMS:
• What objective do we use?

• What data do we use?

44

Equations in a Multi-Task Scenario
𝑥=input
𝑘=task label
𝑖=task label for new task
𝑓𝐸𝑥𝑝=model for new task

First Eq: copy old CL model on the first i-1 tasks
Second Eq: copy new model on the new task



Knowledge Distillation (KD)

KD: Offline training method to replicate the output of a pretrained model

• Teacher: pretrained model

• Student: the new model that we want to train

KD is a general method with many applications outside CL:

• Example: Reducing the size of a model:
• Example teacher: ResNet101 pretrained on ImageNet
• Example student: ResNet18 trained with KD

Why does it work?

• Supervised training provides hard targets (i.e. the correct class)

• KD provides soft targets, which are more informative
• Example: soft targets encode similarities between classes
• Informally called «dark knowledge»

45



KD Objective – KL-Divergence and MSE

• The KL-Divergence measures the similarity between two 
probability distributions (teacher and student)
• We are measuring the distance between the pdf of the teacher and the 

student

• ො𝑦 teacher, 𝑦 student

• Alternative: MSE between the logits || ො𝑦 − 𝑦||2
2

• Often more robust in CL

46



Learning Without Forgetting (LwF)

LwF implements functional regularization 
with:

• Objective: knowledge distillation

• Data: current data

Key Aspects

• Straightforward application of KD in CL

• Originally designed for Task-Incremental 
settings then extended to single task.

• Efficient: requires only an additional 
forward pass with the teacher.

• Easy to implement and commonly used

Learning without Forgetting, Li et al, TPAMI 2017
Distilling the knowledge in a neural network, Hinton et al, 2015.

Continuous Learning in Single-Incremental Tasks, Maltoni & Lomonaco, Neural Networks, 2019.
47



LwF in Task-Incremental CL

• Multihead: separate output layer 
for each task.

• KD computed on the old head 
using the new data (𝐿𝑜𝑙𝑑)

• CE computed on the new head 
using the new data (𝐿𝑛𝑒𝑤)

Learning without Forgetting, Li et al, TPAMI 2017 48



Weight vs Functional Regularization

• Prior-based methods (EWC) require that the new models don’t 
move «too far» from the previous solutions
• We need a large model or a pretrained one to satisfy this requirement

• It’s only an approximation of the real objective

• Functional regularization is much less restrictive
• The weights can change, as long as the output for the previous units is 

the same

• The output of new units is completely unconstrained

• The previous model provides the exact outputs that we want (no 
approximation)

49



Distillation in Practice

• Even outside CL, KD is 
surprisingly competitive

Implementation «tricks»

• Long aumentation pipelines

• Long training Schedules

• Consistent teacher and student 
inputs (i.e. same augmentation 
for both)

Beyer, Lucas, et al. "Knowledge distillation: A good teacher is patient and consistent." CVPR. 2022. 50



KD as Function Matching

KD is a function matching problem

• For any input, we know exactly what 
output we want
• The data is much less important in this 

problem than in a typical ML problem
• Having diverse data close to the domain 

of interest helps but it’s not a necessity

• KD works with any inputs (with 
different convergence speeds)
• The teacher training data
• Out-of-domain-data with augmentations
• A new task data (like in LwF!!!)

Beyer, Lucas, et al. "Knowledge distillation: A good teacher is patient and consistent." CVPR. 2022. 51



KD with a Single Image

Asano, Yuki M., and Aaqib Saeed. "Extrapolating from a single image to a thousand classes using distillation." arXiv preprint (2021). 52



LwF

• We need task boundaries to know when to store the previous 
model

• The data that we use for KD (new data) is different from the one 
we used to train the teacher (old data) 

• Augmentations help KD, even when they distort the image

53



Multi-Agent  
Knowledge Distillation

54



Ex-Model CL

• Model aggregation is the critical 
missing component in 
heterogeneous FL!
• We know how to train the local 

model (continual learning)
• We know how to aggregate 

homogeneous models as long as 
the aggregation is frequent 
enough (homogeneous federated 
learning)

• If we can aggregate independent 
models (Ex-Model CL)
• we can train on multiple tasks in 

parallel
• Without frequent synchnonous 

aggregations
• Allows decentralized training
• related to model patching [1]

A. Carta. “Ex-Model: Continual Learning From a Stream of Trained Models,” CLVISION ‘22
[1] Raffel, Colin. “Building Machine Learning Models Like Open Source Software.” Communications of the ACM 2023 55



ExML Distillation (1)

56

Previous
CL Model (t-1)

Current 
Expert (t)

Previous
Buffer

New Synthetic
Data

New Buffer CL Model (t)

(1) Generate 
Synthetic Data

(2) Update
Buffer

(3) Double KD

Syntethic Data

• Model inversion: 
optimize noise to 
resemble a class

• +natural image prior

• Alternative: ood data



ExML Distillation (2)

57

Previous
CL Model (t-1)

Current 
Expert (t)

Previous
Buffer

New Synthetic
Data

New Buffer CL Model (t)

(1) Generate 
Synthetic Data

(2) Update
Buffer

(3) Double KD

Rehearsal Buffer

• Synthetic data is 
stored in a buffer

• Buffer is updated 
after every 
experience



ExML Distillation (3)

58

Previous
CL Model (t-1)

Current 
Expert (t)

Previous
Buffer

New Synthetic
Data

New Buffer CL Model (t)

(1) Generate 
Synthetic Data

(2) Update
Buffer

(3) Double KD

Double Distillation

• Distillation from 
previous CL model 
and current expert

• Instance-based logits 
normalization to 
avoid bias towards 
one model



Ex-Model Distillation

Ex-Model: Continual Learning from a Stream of Pre-Trained Models. A. Carta, A. Cossu, V. Lomonaco, D. Bacciu. 2021.

https://arxiv.org/abs/2112.06511


ExML – Generated Samples

60

Original Data

OOD Data

Joint MNIST, Model Inversion Joint MNIST, Data Impression

Split MNIST, Model Inversion Split MNIST, Data Impression



ExML - Challenges

• We have only the expert model, not the original training data

• We cannot store all the experts in memory

• Experts are overconfident on out-of-distribution samples

Some of these limitations can be lifted with additional assumptions:

• Access to a subset of the original data

• A shared training protocol

• Sending the model every few epochs instead of only after 
convergence

61



Data-Agnostic Consolidation (DAC)

Split learning into:

• Adaptation: learn new task

• Consolidation: aggregate models

Model consolidation with data-free 
knowledge distillation (DAC)

• Double Knowledge Distillation 
• Teachers: Previous CL model and New 

model
• On the output 
• On the latent activations (Projected)

• Task-incremental method

• Surprisingly, indipendent adaptation + 
sequential consolidation seems better 
than sequential adaptation (i.e. what 
most CL methods are doing)

A. Carta et al. “Projected Latent Distillation for Data-Agnostic Consolidation in Distributed Continual Learning.” arXiv preprint, 2023
62



A single image is enough

Carta, Antonio, et al. "Projected Latent Distillation for Data-Agnostic Consolidation in Distributed Continual Learning." arXiv preprint (2023). 63



Batch Model Consolidation

BMC:

• Regularized adaptation with distillation on the 
latent activations (teacher: base model)

• Replay data for batch consolidation

Sparse consolidation allows asynchronous learning 
in independent agents with light synchronization

I. Fostiropoulos et al. “Batch Model Consolidation: A Multi-Task Model Consolidation Framework.” CVPR ‘23 64



Conclusion
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Opportunities

Training Decentralized CL agents is a more general paradigm than 
federated learning:
Federated Learning requires frequent sync (large bandwidth) and a shared 
single stakeholder training protocol
● assumes homogeneity in the model architecture
● not able to handle non-stationarity
● Federated Learning can be seen a constrained version of Ex-Model Continual 

Learning
● opening the path for Knowledge Sharing between agents.
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