
Antonio Carta

antonio.carta@unipi.it

Continual Learning Beyond 
Catastrophic Forgetting in 

Class-Incremental Scenarios

CoLLAs 2023 Tutorial

Vincenzo Lomonaco
University of Pisa, ContinualAI
vincenzo.lomonaco@unipi.it

Antonio Carta
University of Pisa

Antonio.carta@unipi.it



2

Pervasive AI Lab @ UniPi



3
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Part I

Deep Continual Learning
Fundamental concepts and current focus
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Lifelong Learning Artificial Agents

Our goals:

1. Incremental Learning: knowledge 
and skills accumulation and re-use

2. Fast Adaptation: adapt to ever-
changing environments 

AI Agent Architecture

(Russel & Norvig, 1995 - 2022)

Environment
1

Environment

𝑛

𝑖

https://aima.cs.berkeley.edu/
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A Long-Desired Objective 

• Incremental learning with rule-based 
systems (Diederich, 1987)

• Forgetting in Neural Networks (French, 
1989)

• Incremental learning with Kernel Machines 
(Tat-Jun, 1999)

• Continual Learning (Ring, 1998)

• Lifelong Learning (Thrun, 1998)

• Dataset Shift (Quiñonero-Candela, 2008)

• Never-Ending Learning (Mitchell, 2009)

• Concept Drift Adaptation (Ditzler, 2015)

• Deep Continual Learning (Kirkpatrick, 
2016)

• Lifelong (Language) Learning (Liu, 2018)

CLEVA-Compass: A Continual Learning EValuation Assessment Compass to Promote Research Transparency and Comparability, Martin Mundt et al. preprint, 2021

https://arxiv.org/abs/2110.03331


Dealing with Non-Stationary 
Environments
“The world is changing and we must change with it" - Ragnar Lothbrok
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What is Concept Drift (CD)?

What it is:

• A change in the real world

• Affects the input/output 
distribution

• Disrupt the model’s predictions

What it’s not:

• It’s not noise

• It’s not outliers

Figure: V. Lemaire et al. «A Survey on Supervised Classification on Data Streams” 8



CD – A Probabilistic Definition 

• Given an input 𝑥1, 𝑥2, … , 𝑥𝑡 of class 𝑦 we can apply bayes 
theorem:

𝑝 𝑦 𝑥𝑡 =
𝑝 𝑦 𝑝 𝑥𝑡 𝑦

𝑝 𝑥𝑡
• 𝑝 𝑦  is the prior for the output class (concept)

• 𝑝 𝑥𝑡 𝑦  the conditional probability

• Why do we care?
• Different causes for changes in each term

• Different consequences (do we need to retrain our model?)

9



Dataset Shift Nomenclature

Notation:
• x covariates/input features

• y class/target variable

• p(y, x) joint distribution

• sometimes the x→ y relationship is referred with the generic term 
“concept“

The nomenclature is based on causal assumptions:
• x→y problems: class label is causally determined by input. Example: 

credit card fraud detection

• y→x problems: class label determines input. Example: medical 
diagnosis

Moreno-Torres, Jose G., Troy Raeder, Rocío Alaiz-Rodríguez, Nitesh V. Chawla, and Francisco Herrera. “A Unifying View on Dataset 
Shift in Classification.” Pattern Recognition 45, no. 1 (January 2012): 521–30. https://doi.org/10.1016/j.patcog.2011.06.019. 10

https://doi.org/10.1016/j.patcog.2011.06.019


Dataset Shift Nomenclature

Dataset Shift: 𝑝𝑡𝑟𝑎 𝑥, 𝑦 ≠ 𝑝𝑡𝑠𝑡 𝑥, 𝑦

• Informally: any change in the distribution is a shift

Covariate shift: happens in X→Y problems when 

• 𝑝𝑡𝑟𝑎 𝑦 𝑥 = 𝑝𝑡𝑠𝑡 𝑦 𝑥  and 𝑝𝑡𝑟𝑎 𝑥 ≠ 𝑝𝑡𝑠𝑡(𝑥)

• informally: the input distribution changes, the input->output relationship does not

Prior probability shift: happens in Y→X problems when

• 𝑝𝑡𝑟𝑎 𝑥 𝑦 = 𝑝𝑡𝑠𝑡 𝑥 𝑦  and 𝑝𝑡𝑟𝑎 𝑦 ≠ 𝑝𝑡𝑠𝑡 𝑦

• Informally: output->input relationship is the same but the probability of each class is changed

Concept shift:

• 𝑝𝑡𝑟𝑎 𝑦 𝑥 ≠ 𝑝𝑡𝑠𝑡 𝑦 𝑥  and 𝑝𝑡𝑟𝑎 𝑥 = 𝑝𝑡𝑠𝑡 𝑥  in X→Y problems. 

• 𝑝𝑡𝑟𝑎 𝑥 𝑦 ≠ 𝑝𝑡𝑠𝑡 𝑥 𝑦  and 𝑝𝑡𝑟𝑎 𝑦 = 𝑝𝑡𝑠𝑡 𝑦  in Y→X problems.

• Informally: the «concept» (i.e. the class) 

Moreno-Torres, Jose G., Troy Raeder, Rocío Alaiz-Rodríguez, Nitesh V. Chawla, and Francisco Herrera. “A Unifying View on Dataset Shift in 
Classification.” Pattern Recognition 45, no. 1 (January 2012): 521–30. https://doi.org/10.1016/j.patcog.2011.06.019.

Dataset Shift in Machine Learning, J. Qui˜nonero-Candela et al. MIT Press, 2008. 11

https://doi.org/10.1016/j.patcog.2011.06.019


Real vs Virtual Drift

Gama, João, et al. A survey on concept drift adaptation. ACM computing surveys (CSUR) 46.4 (2014): 1-37. 12



Causes of Shifts

Sampling bias:

• The world is fixed but we only see a part of it
• The «visible part» changes over time, causing a shift
• We will also call it virtual drift
• Examples: bias in polls, limited observability of environments, change of domain…

Non-stationary environments:

• The world is continuously changing
• We will also call it real drift
• Examples: weather, financial markets, …

13

Deep Continual Learning has been mostly focus on 
"virtual drifts" and with knowledge accumulation rather 
than adaptation.



Controlled Forgetting: Targeted Stimulation and Dopaminergic Plasticity Modulation for Unsupervised Lifelong Learning in Spiking Neural Networks 14

The Stability-Plasticity Dilemma

Stability-Plasticity Dilemma:

• Remember past concepts

• Learn new concepts

• Generalize

First Problem in Deep Learning:

• Catastrophic Forgetting



Catastrophic Forgetting

15CORe50: a new Dataset and Benchmark for Continuous Object Recognition, V. Lomonaco & D. Maltoni. Conference on Robot Learning (CoRL), 2017.

• A set of new objects 
(classes) each day

• 10 the first day, 5 the 
following

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=rQLINtQAAAAJ&citation_for_view=rQLINtQAAAAJ:zYLM7Y9cAGgC


Deep Continual Learning
Definition, Objectives, Desiderata 

16
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Continual Learning Objectives and Desiderata

Ex-Model: Continual Learning from a Stream of Trained Models, Carta et al, 2021.
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Continual Learning Objectives and Desiderata

Desiderata

• Replay-Free Continual Learning
• Memory and Computationally Bounded
• Task-free Continual Learning
• Online Continual Learning



Continual Learning 
Approaches

19
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Continual Learning Approaches

Continual Learning for Robotics: Definition, Framework, Learning Strategies, Opportunities and Challenges, Lesort et al. Information Fusion, 2020.
A continual learning survey: Defying forgetting in classification tasks. De Lange et al, TPAMI 2021.

https://arxiv.org/abs/1907.00182%C3%B9
https://ieeexplore.ieee.org/document/9349197
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Experience Replay

A basic approach

1. Sample randomly from the 
current experience data

2. Fill your fixed Random 
Memory (RM) 

3. Replace examples 
randomly to maintain an 
approximate equal number 
of examples for experience

Latent Replay for Real-Time Continual Learning. Pellegrini et al. IROS, 2019.

https://arxiv.org/abs/1912.01100


Overcoming catastrophic forgetting in neural 
networks,  Kirkpatrick et al. PNAS, 2017. 22

Elastic Weights Consolidation



Continual Learning 
Benchmarks
Datasets, Scenarios and Evaluation metrics

23



Three scenarios for continual learning, Van de Ven, 2019 24

Continual Learning Scenarios

1. Task-Incremental: every experience is a different task.

1. Class-Incremental: every experience contains examples of different classes of a unique classification problem.

1. Domain-Incremental: every experience contains examples (from a different domain) of the same classes.
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Continual Learning Benchmarks

Current Focus

• Class-Inc / Multi-Task (Often with Task Supervised Signals)
• I.I.D by Parts
• Few Big Tasks
• Unrealistic / Toy Datasets
• Mostly Supervised
• Accuracy

Recent Growing Trend

• Single-Incremental-Task
• High-Dimensional Data Streams (highly non-i.i.d.)
• Natural / Realistic Datasets
• Mostly Unsupervised
• Scalability and Efficiency

Continual Learning for Robotics: Definition, Framework, Learning Strategies, Opportunities and Challenges, Lesort et al. Information Fusion, 2020.
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Continual Learning Evaluation

N. Díaz-Rodríguez, V. Lomonaco et al. Don't forget, there is more than forgetting: new metrics for Continual Learning. CL Workshop, NeurIPS 2018.
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Significant focus on CIL…

60%

25%

14%

1%

2230 hits 934 hits 543 hits ?

Class-Incremental Task-Incremental Domain-Incremental Other

* Hits computed by keywords search (e.g., «class-incremental» and «continual learning» on google scholar on the 13-08-2023) 



Is Class-Incremental Enough 
For Continual Learning?
Short answer: No

«Is Class-Incremental Enough For Continual Learning?», Cossu et al, Frontiers in CS, 2021 28



Deep Class-Incremental Learning: A Survey, Zhou et al. 2015, 
iCaRL: Incremental Classifier and Representation Learning”, Rebuffi, 2017

29

Why CIL? Pros & Cons

Pros:

1. it’s easy to setup 

2. Any static classification benchmark can be 
converted in a CIL benchmark

3. It exacerbate catastrophic forgetting 
problem (often assumed to be the most 
difficult scenario but… it depends on the 
evaluation metrics chosen)

Cons:

1. It is a peculiar / specific problem

2. Quite unrealistic setting for many 
applications
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…a Tiny Portion of CL!

Class-Incremental Learning

Virtual Drifts

Sudden Drifts



https://course.continualai.org 31

More on the basics…



https://unconf.continualai.org 32

ContinualAI Unconf: completely free and virtual!



Part 2 – Beyond CIL
Real World Streams

Metrics and Evaluation

Distributed Continual Learning

33



Towards Realistic Streams
Existing benchmarks with natural streams and controllable simulators

• Benchmarks desiderata

• Real drifts and streaming data

• Simulators and synthetic generators

34



Classic CL Benchmarks

Eli Verwimp et al. 2022. “CLAD: A Realistic Continual Learning Benchmark for Autonomous Driving.” 35



Properties of Real World Streams

Real World Streams

• Gradual and sharp drifts

• New domains and classes 
appear over time

• Repetitions of old domain and 
classes

• Imbalanced distributions

• Real drift changes the objective 
function

• Temporal consistency (e.g. 
video frames)

CIL (as used in popular 
benchmarks)
• Sharp drifts

• New classes

• No repetitions

• Balanced data

• Virtual drift

• No temporal consistency

36



Consequences of Realistic Streams

• Gradual drifts: methods can’t easily freeze old components, 
task/domain inference is more difficult.

• New domains: new classes implicitly provide labels, domains 
don’t.

• Repetitions: methods can’t easily freeze old components.

• Imbalance: reservoir sampling mimics the unbalance in the 
stream.

• Real drift: Replay data may be incorrect.

37



Evaluation with Real vs Virtual Drifts

• Virtual drift 

• sampling bias

• Evaluation on a static test set

• a.k.a. most of the CL research

Image from CLEAR paper 38

• Real drift
• Concept drift. Example: politician roles 

and affiliations to political party
• Evaluation on the next data (e.g. 

prequential evaluation)
• Not a lot of research in CL right now

Example: Data ordered by class (0,0,0,0,0,1,1,1,1…)
• Persistent classifier (predict previous class) is optimal
• The model can (and should) exploit temporal consistency!



Real Drift - CLEAR / Wild-Time

CLEAR

• real-world images with smooth temporal evolution

• Large unlabeled dataset (~7.8M images)

• Prequential evaluation

• Scenario: domain-incremental and semi-supervised

Z. Lin et al. “The CLEAR Benchmark: Continual LEArning on Real-World Imagery” 2021
Yao, Huaxiu et al. “Wild-Time: A Benchmark of in-the-Wild Distribution Shift over Time.” NeurIPS 2022 39

Wild-Time

• 5 datasets with temporal distribution drifts (real drift)

• Temporal metadata

• Eval-Fix: evaluation on static test data

• Eval-Stream: evaluate on the next K timestamps



Real Drift - CLOC – Continual Localization

• Images with geolocalization and 
timestamps
• 9 years of data
• 39M images
• 2M for offline preprocessing
• 712 classes (localization regions)

Z. Cai et al. “Online Continual Learning with Natural Distribution Shifts: An Empirical Study with Visual Data.” ICCV ‘21 40



Temporal Coherence - CoRE50

• Temporally coherent streams

• Domain-incremental, class-
incremental, and repetitions

• CL on-the-edge application:
• Given a pretrained model
• Take a short video of a new object
• Finetune the model

Lomonaco V. and Maltoni D. CORe50: a New Dataset and Benchmark for Continuous Object Recognition. CoRL2017. 41

Continuous Object Recognition
• 50 classes
• Short videos of object manipulation with 

different background
• Temporal coherence from videos

Many scenarios: batch, online, with 
repetitions.



Simulators and Synthetic Data

Driving simulation

• Parameters: 
• new classes
• weather 
• illumination changes

• Temporal consistency

T. Hess et al. “A Procedural World Generation Framework for Systematic Evaluation of Continual Learning.” 2021
H. Hemati et al. “Class-Incremental Learning with Repetition.” CoLLAs ‘23

42

CIR Synthetic Generator

• Start from a static dataset (e.g. CIFAR100)

• Define distribution parameters: stream length, 
class balancing, repetitions, …

• Sample stream with the desired probability

• You can tweak the difficulty of the benchmark and 
check how different methods perform under 
different conditions

Poster session today!



CIR – Results

H. Hemati et al. “Class-Incremental Learning with Repetition.” CoLLAs ‘23 43

Missing class accuracy improves over time, even for naive finetuning

Naive finetuning approaches replay for long streams with repetitions

In unbalanced streams, class-
balanced buffers and reservoir 
sampling are not effective



Recap

• Benchmarks desiderata: gradual drifts, new domains and 
classes, repetitions, temporal coherence, real drift

• Real drifts: Wild-Time, CLEAR, CLOC. Prequential evaluation for 
real drifts

• Streaming data: CoRE50 (and many others)

• Simulators and synthetic generators: allow to control drift and 
evaluate over many different configurations

44



Metrics and Evaluation in 
Online CL
Metrics for online continual learning: cumulative accuracy, continual stability, linear 
probing

Results in online continual learning

Continual hyperparameter selection and robustness

45



Online CL (OCL)

Mandatory:

• Online: data arrives in small mini-batches 
(possibly in a real-time stream). Strong 
constraints on memory and 
computational budget

• Anytime inference: ability to predict at 
every time, even during a drift.

Desiderata:

• Task-Agnostic: task labels are not 
available

• Boundary-agnostic: does not need 
knowledge about drifts (a.k.a. task-free)
• Many OCL methods are NOT boundary-

agnostic
• CIL settings provide trivial boundaries 

(class labels)

Image from Mathias Delange et. al, Continual Evaluation for Lifelong Learning: Identifying the stability gap, ICLR 2023 46

Red diamonds = task boundaries



Replay-based Online CL

A. Soutif et al. “A Comprehensive Empirical Evaluation on Online Continual Learning“  2023 47



Online CL – Desiderata

• Knowledge Accumulation: the model 
should improve over time
• At any point in time
• High average accuracy but also fast 

adaptation

• Continual Stability: the model should not 
forget previous knowledge
• At any point in time
• We often assume virtual drifts when 

measuring stability

• Representation Quality: the latent 
representations should improve over time
• A weaker form of knowledge 

accumulation/stability
• Can be evaluated on out-of-distribution data 

or self-supervised models

A. Soutif et al. “A Comprehensive Empirical Evaluation on Online Continual Learning“  2023 48

Red diamonds = task boundaries



Knowledge Accumulation

• Average Anytime Accuracy: accuracy 
along the entire curve.

• Do not confuse with
• Avg accuracy at the end of training (final 

diamond)
• Avg at task boundaries (avg of 

diamonds)

Notation:

• 𝑓𝑖 model at time 𝑖

• 𝐸𝑖 experience 𝑖

• 𝐴 𝐸𝑖 , 𝑓𝑖 accuracy of model 𝑓𝑖 for 
experience 𝐸𝑖

Lucas Caccia et. al, New Insights on Reducing Abrupt Representation Change in Online Continual Learning, ICLR 2022 49

Red diamonds = task boundaries

Average accuracy of 
data seen up to now

Average along the 
training curve



Cumulative Accuracy and Forgetting

• In class-incremental settings, the drop 
in accuracy comes from

1. Forgetting
2. Harder task because we have more 

classes

• Cumulative Accuracy isolates (1) by 
using only the logits of units seen up 
to training on the evaluation data 
(mask newer units).

A. Soutif–Cormerais et al. “On the Importance of Cross-Task Features for Class-Incremental Learning,” 50

Red diamonds = task boundaries

Average accuracy of 
data seen up to now

Average along the 
training curve



Continual Stability

• Observe the behavior of the accuracy during training (curve from one diamond to the next)

• CL methods forget and re-learn old experiences during training

• This phenomenon is masked with the typical metrics measured only at boundaries (red 
diamonds)

[1] Mathias Delange et. al, Continual Evaluation for Lifelong Learning: Identifying the stability gap, ICLR 2023
[2] Lucas Caccia et. al, New Insights on Reducing Abrupt Representation Change in Online Continual Learning, ICLR 2022 51



Stability Metrics

Worst-Case ACC: trade-off 
between the accuracy on 
iteration 𝑡 of current task 𝑇𝑘
and the worst-case metric 
min-ACC𝑇𝑘 for previous tasks

Mathias Delange et. al, Continual Evaluation for Lifelong Learning: Identifying the stability gap, ICLR 2023
Figure from A. Soutif et al. «Improving Online Continual Learning Performance and Stability with Temporal Ensembles” CoLLAs ’23

52



Knowledge Accumulation and Linear Probing

• Forgetting may result from a misaligned classifier

• Easy to fix (e.g. finetune only the linear classifier on replay 
buffer) if the representations are good

• Linear probing measures the quality of the representation
• Train linear classifier with the current feature extractor using replay 

data

• Evaluate the accuracy of the classifier

• useful for continual self-supervised models and continual 
pretraining

53



OCL Results

A. Soutif et al. “A Comprehensive Empirical Evaluation on Online Continual Learning“  2023 54



OCL Results

A. Soutif et al. “A Comprehensive Empirical Evaluation on Online Continual Learning“  2023 55



Continual Stability - Temporal Ensembles

Exponential Moving Average of the weights (EMA) mitigates the 
stability gap

• Separate training and evaluation model

• Fixes stability only at evaluation time. Training model is still unstable

• Cheap and online method

Open question: how to fix stability gap during training.

56A. Soutif et al. «Improving Online Continual Learning Performance and Stability with Temporal Ensembles” CoLLAs ’23

Check the 
poster for 
more 
details!



Continual Hyperparameter Selection

• Most researchers perform a full 
hyperparameter selection on the entire 
validation stream.
• It’s not a CL method and it’s suboptimal 

because optimal parameters may vary over 
time

• Some methods are quite sensitive to 
hyperparameters (e.g. EWC)

Existing methods:

• [1] finds optimal stability-plasticity tradeoff 
at each step. Assumes that a single 
hyperparameter controls the tradeoff 
monotonically (e.g. regularization strength)

• [2] uses reinforcement learning to find 
optimal parameters. Online RL (bandit)

• [3] uses only the first part of the validation 
stream

[1] M. De Lange et al. “A Continual Learning Survey: Defying Forgetting in Classification Tasks.” TPAMI 2022
[2] Y. Liu et al. “Online Hyperparameter Optimization for Class-Incremental Learning.” AAAI ’23

[3] A. Chaudhry et al. “Efficient Lifelong Learning with A-GEM.” 2019
57



Robust CL Methods

• Alternative to Continual 
Hyperparameter Selection: 
design robust models!

• Example: SiM4C
• Use a single inner update step
• Use exact gradient instead of 

first-order approximation

• Results: 
• Higher accuracy
• No need for additional 

hyperparameter selection
• Easy to plug into existing 

methods
• Works in continual-meta and 

meta-continual learning

E. Cetin et al. «A Simple Recipe to Meta-Learn Forward and Backward Transfer “, ICCV ‘23 58

Omniglot



Real-Time / Infinite Memory / Finite Compute

• Memory is cheap, compute is 
expensive
• CL methods are designed for finite 

memory usage. Often unrealistic
• The “privacy argument” is not very strong, 

because trained models can leak data

• Alternative: real-time, infinite 
memory, bounded computational 
cost
• Real-time constraints. Methods need to 

skip data if they are not fast enough

• Results: Experience Replay 
outperforms CL methods

Y. Ghunaim et al. “Real-Time Evaluation in Online Continual Learning: A New Hope.” CVPR ’23
A. Prabhu et al. “Computationally Budgeted Continual Learning: What Does Matter?” CVPR ‘23

59



Conclusion

Unsolved CL questions:

• Continual stability

• Robustness to stream parameters

• Continual hyperparameter selection (and robustness)

• Compute-bounded continual learning

60



Beyond Single CL Agents
Continual pretraining

Distributed continual agents

61



Two Perspectives

Continual Pretraining of Large 
Models

Asynchronous and Independent 
Continual Learning Agents

62



Continual Pretraining

• Continual Pretraining 
is the problem of 
efficiently updating a 
large pretrained model

• Forgetting Control 
Task: we don’t want to 
forget general 
knowledge

• Downstream Task: we 
want to improve on 
domain-specific tasks

Cossu, A., et al. "Continual Pre-Training Mitigates Forgetting in Language and Vision."  2022. 63



Pretraining Results

Cossu, A., et al. "Continual Pre-Training Mitigates Forgetting in Language and Vision."  2022. 64

Evaluation on the 
Forgetting Control Task

Forgetting is limited even with finetuning.
Dynamic vocabulary expansion (NT) slightly 

improves the performance.

fast
adaptation

Self-supervised pretraining is more 
robust than supervised methods 
(result for vision in the paper)



Self-Supervised CL

• Distillation loss maps 
old representations in a 
new projected space

• SSL tricks such as heavy 
augmentations and SSL 
losses

• Linear probing 
evaluation

A. Gomez-Villa et al. “Continually Learning Self-Supervised Representations With Projected Functional Regularization,” CLVISION ‘22
E. Fini et al. “Self-Supervised Models Are Continual Learners.” CVPR ‘22

65



Continual Federated Learning

[1] G. Legate et al. “Re-Weighted Softmax Cross-Entropy to Control Forgetting in Federated Learning.” CoLLAs ‘23 66

• FL methods fail in simple heterogeneous settings.
• Local forgetting happens in heterogeneous FL if the local models are not aggregated often 

enough, resulting in a local drift and forgetting of the global knowledge.
Open question: can continual learning improve federated learning in heterogeneous settings?
• [1] proposes WSM loss, a weighted cross-entropy to mitigate this problem

Not my paper,
But this is also 
a CoLLas paper



FedWeIt

• Objectives:
• Minimize communication

• Exploit task similarity

• Avoid task interference

• Modularized task-based 
model:
• Global parameters

• Local base parameters

• Task-adaptive parameters

J. Yoon et al. “Federated Continual Learning with Weighted Inter-Client Transfer.” ICML ‘21 67

Local client model:



Ex-Model CL

• Model aggregation is the critical 
missing component in 
heterogeneous FL!
• We know how to train the local 

model (continual learning)
• We know how to aggregate 

homogeneous models as long as 
the aggregation is frequent 
enough (homogeneous federated 
learning)

• If we can aggregate independent 
models (Ex-Model CL)
• we can train on multiple tasks in 

parallel
• Without frequent synchnonous 

aggregations
• Allows decentralized training
• related to model patching [1]

A. Carta. “Ex-Model: Continual Learning From a Stream of Trained Models,” CLVISION ‘22
[1] Raffel, Colin. “Building Machine Learning Models Like Open Source Software.” Communications of the ACM 2023 68



Data-Agnostic Consolidation (DAC)

Split learning into:

• Adaptation: learn new task

• Consolidation: aggregate models

Model consolidation with data-free 
knowledge distillation (DAC)

• Double Knowledge Distillation 
• Teachers: Previous CL model and New 

model
• On the output 
• On the latent activations (Projected)

• Task-incremental method

• Surprisingly, indipendent adaptation + 
sequential consolidation seems better 
than sequential adaptation (i.e. what 
most CL methods are doing)

A. Carta et al. “Projected Latent Distillation for Data-Agnostic Consolidation in Distributed Continual Learning.” arXiv preprint, 2023
69



Batch Model Consolidation

BMC:

• Regularized adaptation with distillation on the 
latent activations (teacher: base model)

• Replay data for batch consolidation

Sparse consolidation allows asynchronous learning 
in independent agents with light synchronization

I. Fostiropoulos et al. “Batch Model Consolidation: A Multi-Task Model Consolidation Framework.” CVPR ‘23 70



Conclusion

71



Main Message

The goal of Continual Learning is to understand how to design 
machine learning models that learn over time

• on a constrained budget (memory/compute/real-time requirements)
• with non-stationary data

• The goal is much wider than «class-incremental learning» or 
«finetuning a pretrained model»

• We need to push towards more realistic settings
• Toy data is fine for research, toy settings not so much
• CL metrics can be misleading and very easy to abuse
• Good solutions already exist!

72



Open Challenges

• CL Benchmarks:
• Real drifts and prequential evaluation
• Exploitation of temporal coherence
• Real-time training with infinite memory

• CL Robustness to
• stream parameters
• (continual) hyperparameter selection
• stability gap

• Beyond Single Agents
• continual pretraining
• ex-model / distributed continual learning

73



CL and Reproducibility - Avalanche

• PyTorch library for continual learning  https://avalanche.continualai.org/
• A community effort with >30 CL methods, >60 contributors
• Easy to use and extend

• Reproducible baselines: https://github.com/ContinualAI/continual-
learning-baselines

• CIR: https://github.com/HamedHemati/CIR

• OCL survey: https://github.com/albinsou/ocl_survey

A. Carta et al. “Avalanche: A PyTorch Library for Deep Continual Learning.” 2023 74

https://avalanche.continualai.org/
https://github.com/ContinualAI/continual-learning-baselines
https://github.com/ContinualAI/continual-learning-baselines
https://github.com/HamedHemati/CIR
https://github.com/albinsou/ocl_survey
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