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Deep Continual Learning

Fundamental concepts and current focus



Lifelong Learning Artificial Agents

Al Agent Architecture
(Russel & Norvig, 1995 - 2022)

Our goals:
1. Incremental Learning: knowledge @

and skills accumulation and re-use .

2. Fast Adaptation: adapt to ever- t_
changing environments 20 5

actuators


https://aima.cs.berkeley.edu/

A Long-Desired Objective

* Incremental learning with rule-based
systems (Diederich, 1987)

open world m==  continual
e Forgetting in Neural Networks (French, E soocor oo £ I
1989) | = fewanor . g
3 15000 - = mull.i—.Lask E‘
* Incremental learning with Kernel Machines 3. v -I 2, 100- I
S wes continual ml =
(Tat-Jun, 1999) ; 100 - litelong _ll § I
. - _E i. —E 200- oy N [
e Continual Learning (Ring, 1998) S o000- =5 5 T
: esgdesailll = | oaagitilIHANNN
¢ Lifelong Learning (Thrun’ 1998) . 2[]‘(][]_::;2(]%[]EE===2EI[]----2[T].E. =2(T2!} " 2(?[]!}-.. ZEE} 2010 2(]‘1;’: 2[]‘2(]
] o Year Year
¢ Dataset Shift (Quionero-Candela, 2008)
: : . Figure 1: Per year machine learning publications. Left: cumulative amount of papers across key-
[ ] -
Never Endmg Learning (MItChE", 2009) words with continuous components that influence continual learning practice, see Section 2. Right:
e Concept Drift Adaptation (Ditzler, 2015) increasing use of “continual” machine learning, demonstrating a shift in use of terminology with re-
! spect to the preceding emphasis on the term “lifelong”. Data queried using the Microsoft Academic
° Deep Continual Lea rning (Kirkpatrick, Graph utilities (Sinha et al., 2015) based on keyword occurrence in the abstract.
2016)

e Lifelong (Language) Learning (Liu, 2018)

CLEVA-Compass: A Continual Learning EValuation Assessment Compass to Promote Research Transparency and Comparability, Martin Mundt et al. preprint, 2021 6



https://arxiv.org/abs/2110.03331
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Dealing with Non-Stationary

Environments

“The world is changing and we must change with it" - Ragnar Lothbrok



What is Concept Drift (CD)?

What it is: U SES8E8ES
» A change in the real world ant. gl slslulslals _—
 Affects the input/output ] B 80 00008

distribution ant EI 88 868 © -
* Disrupt the model’s predictions — 28 T LLL

What it's not:

1 ssses
 It's not noise == 18880 08088

recurring

* It's not outliers
Fig. 3. Types of concept drift

Figure: V. Lemaire et al. «A Survey on Supervised Classification on Data Streams” 8




CD - A Probabilistic Definition

 Given an input x4, x,, ..., x; of class y we can apply bayes
theorem:

p(y)p(xe|y)
p(x¢)

» p(y) is the prior for the output class (concept)

* p(x;|y) the conditional probability

* Why do we care?
« Different causes for changes in each term
« Different consequences (do we need to retrain our model?)

p(ylxs) =



Dataset Shift Nomenclature

Notation:
X covariates/input features
* y class/target variable
* p(y, X) joint distribution

« sometimes the x— y relationship is referred with the generic term
“concept”

The nomenclature is based on causal assumptions:

« Xx—Yy problems: class label is causally determined by input. Example:
credit card fraud detection

« y—X problems: class label determines input. Example: medical
diagnosis

Moreno-Torres, Jose G., Troy Raeder, Rocio Alaiz-Rodriguez, Nitesh V. Chawla, and Francisco Herrera. “A Unifying View on Dataset
Shift in Classification.” Pattern Recognition 45, no. 1 (January 2012): 521-30. https.//doi.org/10.1016/j.patcog.2011.06.019. 10



https://doi.org/10.1016/j.patcog.2011.06.019

Dataset Shift Nomenclature

Dataset Shift: p;,.,(x,v) # ps: (%, V)
 Informally: any change in the distribution is a shift

Covariate shift: happens in X—Y problems when

* PrraY1x%) = prse(1x) @and perq (x) # pese (%)
« informally: the input distribution changes, the input->output relationship does not

Prior probability shift: happens in Y—X problems when

* Prra(x|y) = pese(xly) and pera () # prse(¥)
 Informally: output->input relationship is the same but the probability of each class is changed

Concept shift:

¢ Dira V%) # pese (V%) @nd prrq (x) = pegp(x) in X—Y problems.

* Pera(X1Y) # Prse(xy) @and iy (y) = pese(¥) in Y—>X problems.
« Informally: the «concept» (i.e. the class)

Moreno-Torres, Jose G., Troy Raeder, Rocio Alaiz-Rodriguez, Nitesh V. Chawla, and Francisco Herrera. “A Unifying View on Dataset Shift in
Classification.” Pattern Recognition 45, no. 1 (January 2012): 521-30. https.//doi.org/10.1016/j.patcog.2011.06.079.
Dataset Shift in Machine Learning, J. Qui'nonero-Candela et al. MIT Press, 2008.

11



https://doi.org/10.1016/j.patcog.2011.06.019

Real vs Virtual Drift

Original data Real concept drift Virtual drift
A .,.. - A ‘ I o
00, ©° |oo. . 0® 20,5858
.aFOO - -y E}I‘jér ..:fgg
I: O‘O '::* D OO ..I,r:
® o O ®

p(y|X) changes  p(X) changes, but not p(y|X)

Gama, Jodo, et al. A survey on concept drift adaptation. ACM computing surveys (CSUR) 46.4 (2014): 1-37. 12



Causes of Shifts

Sampling bias:

« The world is fixed but we only see a part of it

» The «visible part» changes over time, causing a shift

« We will also call it virtual drift

« Examples: bias in polls, limited observability of environments, change of domain...

Non-stationary environments:

« The world is continuously changing
« We will also call it real drift
« Examples: weather, financial markets, ...

R ~—— e — e
Deep Continual Learning has been mostly focus on
"virtual drifts" and with knowledge accumulation rather
than adaptation.

TEE———

13



The Stability-Plasticity Dilemma

First learning
class/task: ‘A’

Stability-Plasticity Dilemma:

i Remember past concepts Switching to
class/task: ‘B’ @

pIdu oo,

* Learn new concepts

* Generalize y A
\"\l \x ax ® \ o)

S x\ 00 s) 08" o
D - ] D) -

- : - - -
0 {

b"':’ - b-';‘» @ ’fu

First Problem in Deep Learning:

Citastrophic forgetiing Catastrophic interference.  Lifelong learning.
g.

° Catastrophlc Fo rgettlng Neurons forget task ‘A.° Knowledge from both Remembers old task
tasks corrupted. and learns new task.
x : Reference vector neurons : Previous position

Controlled Forgetting: Targeted Stimulation and Dopaminergic Plasticity Modulation for Unsupervised Lifelong Learning in Spiking Neural Networks 14



Catastrophic Forgetting

Mid-CaffeNet Confusion Matrix
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i1

e A set of new objects
(classes) each day

e 10 the first day, 5 the
following

CORe50: a new Dataset and Benchmark for Continuous Object Recognition, V. Lomonaco & D. Maltoni. Conference on Robot Learning (CoRL), 2017. 15



https://scholar.google.com/citations?view_op=view_citation&hl=en&user=rQLINtQAAAAJ&citation_for_view=rQLINtQAAAAJ:zYLM7Y9cAGgC
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Deep Continual Learning

Definition, Objectives, Desiderata

16



Continual Learning Objectives and Desiderata

In continual learning (CL) data arrives in a streaming fash-
ion as a (possibly infinite) sequence of learning experiences
S = e1,...,e,. For asupervised classification problem,
each experience e; consists of a batch of samples D*. where
cach sample is a tuple (x%.yL) of input and target, respec-
tively, and the labels y;. are from the set )*, which is a subset
of the entire universe of classes ). Usually D? is split into a
separate train set D}, . and test set Dj,,.

A continual learning algorithm A“’ is a function with
the following signature:

ACL: ( zC_Ll: ir'ain!Mé—lsli> — <.f1CL?Mi> (l)

where [ is the model learned after training on experience
e;, M, a buffer of past knowledge, such as previous samples
or activations, stored from the previous experiences and
usually of fixed size. The term {; is a task label which may
be used to identify the correct data distribution.

The objective of a CL algorithm is to minimize the loss
L g over the entire stream of data S

" 1 T o
Eﬁr( J'(fh*'”) o Tii Z Erl',':”(- l'(l'..L': D‘:(',q.f) (2)
Z ‘D:l"..‘-}f| =1
=1

IlDIr'.'.'f

|
)Cl"..’ffp( .1(;,:‘“‘-. D;rfsr) - Z ﬁ( :(; L("’-’: )-. ”:‘ )*
j=1

where the loss £(f¢%(a), y) is computed on a single sample
(@, y), such as cross-entropy in classification problems.

Task 1 Task 2 Task 3 Task 4 Task 5
first  second first  second first  second first  second first  second
class  class class  class class  class class  class class  class
A A A A A
: 4 : -
€4 € €; e €5

Ex-Model: Continual Learning from a Stream of Trained Models, Carta et al, 2021.

17




Continual Learning Objectives and Desiderata

In continual learning (CL) data arrives in a streaming fash-
ion as a (possibly infinite) sequence of learning experiences
S = e1,...,e,. For asupervised classification problem,
each experience e; consists of a batch of samples D*. where
cach sample is a tuple (x%.yL) of input and target, respec-
tively, and the labels y;. are from the set )*, which is a subset
of the entire universe of classes ). Usually D? is split into a
separate train set D}, . and test set Dj,,.

A continual learning algorithm A“’ is a function with
the following signature:

ACL: ( zC_Ll: ir'ainsMé—lsli> — <.f1CL?Mi> (l)

where [ is the model learned after training on experience
e;, M, a buffer of past knowledge, such as previous samples
or activations, stored from the previous experiences and
usually of fixed size. The term {; is a task label which may
be used to identify the correct data distribution.

The objective of a CL algorithm is to minimize the loss
L s over the entire stream ol data S:

‘Cﬁ'(- ':(;lh*'”) ~ n Z f’r'.f"p(. f,_IL-. D;(',qf) (2)
Z ‘D;nsf| i=1
i=1

IlDIr'.'lf

|
Loop(fS5 Dio) = Y LT )00, (3)
i=1

where the loss £(f¢%(a), y) is computed on a single sample
(@, y), such as cross-entropy in classification problems.

Desiderata

¢ Replay-Free Continual Learning

e Memory and Computationally Bounded
¢ Task-free Continual Learning

¢ Online Continual Learning

18




Continual Learning

Approaches

19



Continual Learning Approaches

Rehearsal Generative Replay
Continual Learning Methods
N
Replay Regularization-based Parameter isolation
methods methods methods
Rehearsal Pseudo Constrained Prior-focused Data-focused Fixed Dynamic
| Rehearsal | | | Network Architectures
iCaRL [16] | GEM[55]  EWC[27]  LwF [58] | |
ER [49] DGR [12] A-GEM [6] IMM [28] LFL [59] PackNet [61] PNN [64]
SER [50] PR [52] GSS [48] SI [56] EBLL [9]  PathNet [30] Expert Gate [5]
TEM [51] CCLUGM [53] R-EWC [57] DMC [60] Piggyback [62] RCL [65]
CoPE [33] LGM [54] MAS [13] HAT [63] DAN [17]
Riemannian
j Walk [14]
Regularization ~ Architectural

Continual Learning for Robotics: Definition, Framework, Learning Strategies, Opportunities and Challenges, Lesort et al. Information Fusion, 2020.
A continual learning survey: Defying forgetting in classification tasks. De Lange et al, TPAMI 2021. 20



https://arxiv.org/abs/1907.00182%C3%B9
https://ieeexplore.ieee.org/document/9349197

Experience Replay

A basic approach Algorithm 1 Pseudocode explaining how the external memory

RM 1s populated across the training batches. Note that the amount
h of patterns to add progressively decreases to maintain a nearly
balanced contribution from the different training batches, but no
constraints are enforced to achieve a class-balancing.

I: RM =9

2: RMg;,. = number of patterns to be stored in RM

1. Sample randomly from the
current experience data

2. Fill your fixed Random

Memory (RM) 3: for each training batch B;:

4: train the model on shuffled B; U RM

RMsize
5 h=—""=—
1
3. Replace examplc.es _ 6: Rg4q = random sampling h patterns from B;
randomly to maintain an o ifi—— 1
I 7 Rreplace = .

approximate equal number i random sample h patterns from RM  otherwise
of examples for experience 8: RM = (RM — Ryepiace) U Radd

Latent Replay for Real-Time Continual Learning. Pellegrini et al. IROS, 2019.

21


https://arxiv.org/abs/1912.01100

Elastic Weights Consolidation diSJE

Z“ — Lll + A Z S);\f (ék oy 6}()2
k

<

d
I(E'Og/“(a’f: HH) f(x; 6y) dx

%—I

Fisher Information

Overcoming catastrophic forgetting in neural
networks, Kirkpatrick et al. PNAS, 2017.
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Continual Learning
Benchmarks

Datasets, Scenarios and Evaluation metrics

23



Continual Learning Scenarios

1. Task-Incremental: every experience is a different task.

Task 1 Task 2

0/

first second first second first second first second first second
class class class class class class class class class class

1. Class-Incremental: every experience contains examples of different classes of a unique classification problem.

0/ 719

1. Domain-Incremental: every experience contains examples (from a different domain) of the same classes.

Task 1 Task 2 Task 10
(permutation 1) (permutation 2) (permutation 10)

0| /|2|3]4]
BaEEA

Three scenarios for continual learning, Van de Ven, 2019

24



Continual Learning Benchmarks

Benchmark Current Focus

Split MNIST /Fashion MNIST

Rotation MNIST * Class-Inc / Multi-Task (Often with Task Supervised Signals)
Permutation MNIST

iCIFAR10, 100 * I.1.D by Parts

SVHN * Few Big Tasks

EE)E‘EEE * Unrealistic / Toy Datasets

r S .

iCubWorld28 MOStly SuperVISed

iCubWorld-Transformation * Accuracy

LSUN

ImageNet Recent Growing Trend

Omniglot

i““‘“’fﬂ vOoC * Single-Incremental-Task

ALarl . . . . P
RNN CL benchmark * High-Dimensional Data Streams (highly non-i.i.d.)
CRLMaze (based on VizDoom) * Natural / Realistic Datasets

DeepMind Lab * Mostly Unsupervised

* Scalability and Efficiency

Continual Learning for Robotics: Definition, Framework, Learning Strategies, Opportunities and Challenges, Lesort et al. Information Fusion, 2020. 25



Continual Learning Evaluation

Table 2: Elements in R accounted to compute the Accuracy (white and cyan elements), BWT (in
cyan), and FWT (in light gray) criteria. R* = R;;, T'r; = training, T'e;= test tasks.

Global Accuracy After Each Task R | Tei Tes Tes
80 T T e
- T?‘2 R-; i R*
&= Naive Trs Ry R, R
70 4 === Cumulative
EWC Average Accuracy: ACC = T ZRT,g
— 60 i=1
E ;] Tl
= a . . Pape _- —-
= Backward Transfer: BWT T—1 ; Ryp; — R;;
5 50 - T
-EE- Forward Transfer: FWT = ﬁ ; Ri1:—0;
= 40
E A
=
¥
<L 30
20 1 Naive
Cumulative
si
EWC
lD T T T T T T T T i
1 2 3 4 5 & 7 8 9 10
Tasks

N. Diaz-Rodriguez, V. Lomonaco et al. Don't forget, there is more than forgetting: new metrics for Continual Learning. CL Workshop, NeurlPS 2018. 26



Significant focus on CIL...

2230 hits 934 hits 543 hits ?
Class-Incremental Task-Incremental Domain-Incremental Other

* Hits computed by keywords search (e.g., «class-incremental» and «continual learning» on google scholar on the 13-08-2023) 2/
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Is Class-Incremental Enough
For Continual Learning?

Short answer: No

«Is Class-Incremental Enough For Continual Learning?», Cossu et al, Frontiers in CS, 2021 28



Why CIL? Pros & Cons

Pros:

1. it’s easy to setup

2. Any static classification benchmark can be
converted in a CIL benchmark

3. It exacerbate catastrophic forgetting
problem (often assumed to be the most
difficult scenario but... it depends on the
evaluation metrics chosen)

Cons:

1. It is a peculiar / specific problem

2. Quite unrealistic setting for many
applications

Definition 1. Class-Incremental Learning aims to learn from
an evolutive stream with incoming new classes [32]. Assume
there is a sequence of B training tasks' {'DI,DE, fe ,DE}
!E is the
b-th incremental step with ny, training instances. X, € H’.b Is an
instance of class y; € Yy, Yy is the label space of task b, where

3 N Yy = @ for b # b'. We can only access data from D° when
training task b. The ultimate goal of CIL is to continually build
a classification model for all classes. In other words, the model
should not only acquire the knowledge from the current task D° but

also preserve the knowledge from former tasks. After each task, the

. ¥ T
without overlapping classes, where D? = {(}:5’, yf-' ) }i

trained model is evaluated over all seen classes Y, = Y, U --- Y.

Deep Class-Incremental Learning: A Survey, Zhou et al. 2015,
iCaRL: Incremental Classifier and Representation Learning”, Rebuffi, 2017

29




...a Tiny Portion of CL!

Virtual Drifts

cremental Lea

e

Sudden Drifts




More on the basics... di.8JE

Continual Learning: On Available

Machines that Can Learn on
YouTube!

Continually

1st Open-Access Course on CL
Offered by Unipi & ContinualAl

course.continualai.org

https://course.continualai.org



Continual Al Unconf: completely free and virtual!

Continual Al

UN-CONFERENCE

1st Free, Multi-timezone, Virtual
ContinualAl Unconference!

unconf.continualai.org

October 19th

https://unconf.continualai.org




Part 2 — Beyond CIL

Real World Streams
Metrics and Evaluation
Distributed Continual Learning

33



Towards Realistic Streams

Existing benchmarks with natural streams and controllable simulators
 Benchmarks desiderata

» Real drifts and streaming data

« Simulators and synthetic generators

34



Classic CL Benchmarks

Class Incremental Domain Incremental
RIY) P¥)  RiY) FiY) = Bul¥) = By(Y)

i o¥x ¥x ¥ ¥ ¥

-
L

L
Y1 ¥a ¥a Yo ¥s ¥

Distinet P(X)

P{X) F(X) ByX)

Gradually
changing P(X)

TmageNet* Cifar100* Cifarl0® Permuted Rotated
MNIST MNIST
Others
MNIST* Cub200* Sequences

» L]
CLAD-C  CORe50.NI .

b .
COReb0 Toys200 iCub . "
Wanderlust ~ CLOC Clear

Eli Verwimp et al. 2022. "CLAD: A Realistic Continual Learning Benchmark for Autonomous Driving.” 35




Properties of Real World Streams

Real World Streams

* G

radual and sharp drifts

« New domains and classes

a
*R

Dpear over time
epetitions of old domain and

C

dSSesS

 Imbalanced distributions

*R

eal drift changes the objective

function

. T

emporal consistency (e.qg.

video frames)

CIL (as used in popular
benchmarks)

 Sharp drifts

* New classes

* No repetitions

« Balanced data

* Virtual drift

* No temporal consistency

36



Consequences of Realistic Streams

 Gradual drifts: methods can't easily freeze old components,
task/domain inference is more difficult.

* New domains: new classes implicitly provide labels, domains
don't.

* Repetitions: methods can’t easily freeze old components.

 Imbalance: reservoir sampling mimics the unbalance in the
stream.

* Real drift: Replay data may be incorrect.

37




Evaluation with Real vs Virtual Drifts

Example: Data ordered by class (0,0,0,0,0,1,1,1,1..)
 Persistent classifier (predict previous class) is optimal
« The model can (and should) exploit temporal consistency!

* Virtual drift  Real drift
« sampling bias « Concept drift. Example: politician roles
- Evaluation on a static test set and affiliations to political party
+ a.k.a. most of the CL research - Evaluation on the next data (e.g.

prequential evaluation)

* Not a lot of research in CL right now
(Timestamp) . Train . Test

__ V_——-

IID Protocol: Train today, test on today Streaming Protocol: Train today, test on tomorrow

Image from CLEAR paper 38



Real Drift - CLEAR / Wild-Time

CLEAR Wild-Time

- real-world images with smooth temporal evolution ~ * 9 datasets with temporal distribution drifts (real drift)
« Temporal metadata

 Eval-Fix: evaluation on static test data

» Eval-Stream: evaluate on the next K timestamps

 Large unlabeled dataset (~7.8M images)
» Prequential evaluation

» Scenario: domain-incremental and semi-supervised

2004 2011 2014 Distribution shift over time
Training Distribution Test Distribution
(acc: 97.99%) (acc: 79.50%)
/4 o |
@ g Time
- @

1930s °*°* 1960s °+-= 2000s 2010s

Streaming Protocol for Continual Un-/Semi-Supervised Learning

Z Linetal “The CLEAR Benchmark: Continual LEArning on Real-World Imagery” 2021
Yao, Huaxiu et al. “Wild-Time: A Benchmark of in-the-Wild Distribution Shift over Time.” NeurlPS 2022 39



Real Drift - CLOC - Continual Localization

 Images with geolocalization and
timestamps
« 9 years of data
* 39M images
« 2M for offline preprocessing
« 712 classes (localization regions)

(a) S2 Cells in our dataset

—— 2010
| —— 2006 -2014

Per-Month Accuracy (%)

Jan2007  Jan2008  Jan2009  Jan2010  Jan2011 Jan2012  Jan2013  Jan2014
Time
Figure 2. Distribution shift in CLOC. We train two supervised
models, one using data from the entire temporal range and the other
only on data from the year 2010. We evaluate both models on
the full temporal range using the validation set (not seen during
training). Due to non-stationarity in the data, the performance of
the 2010 model drops sharply on data from other times.

Z. Cai et al. “Online Continual Learning with Natural Distribution Shifts: An Empirical Study with Visual Data.” ICCV 21 40



Temporal Coherence - CoRES0

 Temporally coherent streams

- Domain-incremental, class-
incremental, and repetitions

* CL on-the-edge application:
 Given a pretrained model
« Take a short video of a new object
 Finetune the model

Continuous Object Recognition
« 50 classes

« Short videos of object manipulation with
different background

« Temporal coherence from videos

Many scenarios: batch, online, with

repetitions.

Lomonaco V. and Maltoni D. CORe50: a New Dataset and Benchmark for Continuous Object Recognition. CoRL2017. 41



Simulators and Synthetic Data

Driving simulation CIR Synthetic Generator Poster session today!

« Parameters: « Start from a static dataset (e.g. CIFAR100)
* new classes « Define distribution parameters: stream length,
* weather class balancing, repetitions, ...

* illumination changes

i « Sample stream with the desired probability
« Temporal consistency

* You can tweak the difficulty of the benchmark and
check how different methods perform under
different conditions

A
Occurrence Matrix ~ Concepts (@ A m ¢ + 5 ¢ & 0} CL Streams

Gsamp D {Instances x |
B Parameters e ey e ey e o D T :
My x X x :‘_S‘ . —p e ’ H
N Stream xx xx xS E train |
K Matrix —* (g Xy X x| \ !
—» =X XX ' 1
Ps(S) Generator Iy ' Stest —» a ’:
c b = Sampler s -

T. Hess et al. "A Procedural World Generation Framework for Systematic Evaluation of Continual Learning.” 2021

H. Hemati et al. “Class-Incremental Learning with Repetition.” CoLLAs 23 42



Average Test Accuracy Average Seen Class Accuracy

Naive finetuning approaches replay for long streams with repetitions

Average Missing Class Accuracy

500

Missing class accuracy improves over time, even for naive finetuning

a0y

Figure 6: Accuracy of a particular class over the stream. The target class is either present or absent in the experiences
indicated by the blue and orange points, respectively.

In unbalanced streams, class-
balanced buffers and reservoir
sampling are not effective

0.5

Strategy

— ER-FA
04H_ ER-CBW
N’\,,/"\JA\/\/

> —— ER-RS /
% 0.3 — nNaive M
— ~ v
!
O 0.2
<

0.1

0.0

0 20 40 60 80 100
Experience

Figure 10: Accuracy of Infrequent Classes.

H. Hemati et al. “Class-Incremental Learning with Repetition.” CoLLAs 23 43



- Z,
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VLTINS
ecap S

« Benchmarks desiderata: gradual drifts, new domains and
classes, repetitions, temporal coherence, real drift

 Real drifts: Wild-Time, CLEAR, CLOC. Prequential evaluation for
real drifts

« Streaming data: CoRE50 (and many others)

 Simulators and synthetic generators: allow to control drift and
evaluate over many different configurations

44



Metrics and Evaluation in
Online CL

Metrics for online continual learning: cumulative accuracy, continual stability, linear
probing

Results in online continual learning
Continual hyperparameter selection and robustness

45




Online CL (OCL)

Mandatory:

 Online: data arrives in small mini-batches
(possibly in a real-time stream). Strong Red diamonds = task boundaries
constraints on memory and
computational budget

« Anytime inference: ability to predict at
every time, even during a'drift.

é}
Desiderata: 5 \ A
« Task-Agnostic: task labels are not -
available
- Boundary-agnostic: does not need 04 — e,
knowledge about drifts (a.k.a. task-free) . w0 1000 do0) 2000
- Many OCL methods are NOT boundary- Lt
agnostlc
» CIL settings provide trivial boundaries
(class IabeIsS)

Image from Mathias Delange et. al, Continual Evaluation for Lifelong Learning: Identifying the stability gap, ICLR 2023 46



Replay-based Online CL

00 Online Continual Learning

for (x_new, y_new) in train_stream:

Sampling for k in train_passes:

compute_loss_and_backprop(x_new, y_new, x_mem, y_mem) SCR: Contrastive

) weilghts_udpate()
Weights Update

update(memory, X_new, y_new)
A-GEM: uses memory only for ¢ ¥ X

gradient projection evaluation()

RAR: Adversarial augumentations X_new, y_new = augment(x_new, y_new) Loss
MIR: Find interfered examples s -
. x_mem, y_mem = augment(sample(memory)) DER++: Logits Replay

Notes

GDumb cannot really considered
an Online Strategy due to its latency in
Infererence, but rather as a Baseline.

ER-ACE: Bias Mitigation

ER + LwtF: Distillation

Classifier

Linear Classifier
SCR (NCM at Inference Time)

A. Soutif et al. "A Comprehensive Empirical Evaluation on Online Continual Learning” 2023 47



Online CL — Desiderata

- Knowledge Accumulation: the model
should improve over time

« Atany pointin time

« High average accuracy but also fast
adaptation

 Continual Stability: the model should not
forget previous knowledge
« Atany pointin time

« We often assume virtual drifts when
measuring stability

* Representation Quality: the latent .
representations should improve over time
« A weaker form of knowledge
accumulation/stability

« Can be evaluated on out-of-distribution data
or self-supervised models

o/

Accuracy

Red diamonds = task boundaries

0 500 1000 1500 2000
1terations

A. Soutif et al. "A Comprehensive Empirical Evaluation on Online Continual Learning” 2023 48



Knowledge Accumulation

Red diamonds = task boundaries

« Average Anytime Accuracy: accuracy a
along the entire curve. N
« Do not confuse with = 50
« Avg accuracy at the end of training (final =
diamond)
* Avg at task boundaries (avg of "0 e 1000 00 2000
d 1a mond S) iteratibns |
. 4 )
Notation: 11 K
 f; model at time i AAA; = n SJESJA(Ei:fj)
. E; experience i =1 =l
i €XP \_ J
« A(E;, f;) accuracy of model f; for A ¢
experience E. Average along the verage accuracy o
l training curve data seen up to now

Lucas Caccia et. al, New Insights on Reducing Abrupt Representation Change in Online Continual Learning, ICLR 2022 49



Cumulative Accuracy and Forgetting

* |In class-incremental settings, the drop
in accuracy comes from
1. Forgetting
2. Harder task because we have more

sk

).

-

o
L

Accuracy
N

classes
» Cumulative Accuracy isolates (1) by ﬁ | |
Usmg, O.nly the |OgItS of UnltS Seen up 0 500 1000 1500 . 2000
to training on the evaluation data iterations
(mask newer units). - N
11
, 1 : AAA == |2) A(E: f))
b, = TBE| Z 1, (arg max f*(z).) t ¢ Ik —
' vk = 1=
b r,yc EX c€Cy; J \§ J
Average along the  Average accuracy of
training curve data seen up to now

A. Soutif—=Cormerais et al. “On the Importance of Cross-Task Features for Class-Incremental Learning,” 50



Continual Stability

« Observe the behavior of the accuracy during training (curve from one diamond to the next)
« CL methods forget and re-learn old experiences during training

« This phenomenon is masked with the typical metrics measured only at boundaries (red
diamonds)

100 -

() A bl l - 7]4 : 'A - ‘gb M Vli A
0 500 1000 1500 2000
1terations
[1] Mathias Delange et. al, Continual Evaluation for Lifelong Learning: Identifying the stability gap, ICLR 2023
[2] Lucas Caccia et. al, New Insights on Reducing Abrupt Representation Change in Online Continual Learning, ICLR 2022 51



Stability Metrics

1 k—1 .

Worst-Case ACC: trade-off min-ACCr, = -— ) minA(E;, fn), V|Tia| <n <t
between the accuracy on o |
iteration t of current task Ty, WC-ACC; = - A(Eg, f;) + (1 — ) min-ACCr,
and the worst-case metric
min-ACCT;, for previous tasks WC-ACCr,,| < ACCr,

Zj — RAR 0.6 Z:j ,

oc) RAR + EMA oo ﬂ

Figure 3: Split-Cifar100, validation accuracy on task 1 data (Left), Average Anytime Accuracy AAA; (Middle) and
WC-ACC (Right), for RAR and its EMA augmented version, using 2000 memory. Mean and standard deviation are
computed over 6 runs.

Mathias Delange et. al, Continual Evaluation for Lifelong Learning: Identifying the stability gap, ICLR 2023

Figure from A. Soutif et al. «improving Online Continual Learning Performance and Stability with Temporal Ensembles” CoLLAs 23 o2




Knowledge Accumulation and Linear Probing

 Forgetting may result from a misaligned classifier

« Easy to fix (e.g. finetune only the linear classifier on replay
buffer) if the representations are good

* Linear probing measures the quality of the representation

* Train linear classifier with the current feature extractor using replay
data

 Evaluate the accuracy of the classifier

» useful for continual self-supervised models and continual
pretraining
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OCL Results

Method Split-Cifar100 (20 Tasks) Split-TinyImagenet (20 Tasks)
Acc 1 AAAY 4+ WC-Acc¥® 1 Probed Acc t Acc 1 AAAY 4+ WC-Acc¥® 1 Probed Acc t

1.1.d 30.3 15 - - 45.8 = 0.6 26.5 3 0.6 - - 34.3 05
GDumb 18.5+ 05 - - - 13.1 £ 0.4 - - -
AGEM 3.1 %02 10.4 £ 0.6 29403 18.7 £ 0.8 2.6 £0.2 7.3x05 2.6 0.2 23.3 0.6
ER 28.2+12 36.6 %20 12.5 + 0.6 44.9 £+ 0.9 21.24+06 339417 15.2+ 0.5 35.6 £ 0.6
ER+LwF 304408 39.2+420 15.3 4+ 0.9 444+ 0.8 22.74+11 344424 17.0 £ 0.7 33.8 0.9
MIR 2944+19 33.1+32 11.6 + 1.6 43.4 + 0.7 21.34+08 31.0+138 15.2+ 0.5 33.0+ 0.4
ER-ACE 2994+06 385418 14.9 4+ 0.9 42.4+ 0.6 236 +07 350+15 16.8 0.7 34.2+0.3
DER++ 29.34+09 37.5%25 13.4+ 0.7 44.0 & 0.8 229405 34.2440 16.3 £ 0.3 31.5 %09
RAR 2824+14 382416 14.9+ 0.7 42.3 + 0.9 15.74+09 27.8+28 10.1 0.9 29.8+ 0.9
SCR 283408 42.1+21 20.3 £ 0.4 37.0£0.3 169404 30.7%x15 12.3 0.5 225404

Table 2: Last step results on Split-Cifar100 (20 Tasks) with 2000 memory (Left) and for Split-Tinylmagenet (20 Tasks) with
4000 memory (Right). For each metric, we report the average and standard deviation over 5 seeds

A. Soutif et al. "A Comprehensive Empirical Evaluation on Online Continual Learning” 2023 54



OCL Results

0.5 0.7 0.40 |
N | Ay rlh‘\ v et X3 1
04 06 f’f -'\-._1_\ ’\’t WA |\
/\/\/ | e B 0.35
7 7N\ ¥ \
0.3 [
e ER 05
0.2 — ER—-ACE = g 030
o 0. @
£ —— DER++ S04 5
= 5 o
—_ o 0.25
S — ER + LwF 0.3 Tg
0.0{ .. RAR & i 0.20
w3 \‘m; e T :--""/__ .
e et SCR 0.2
—01 T O i S 0.15
_ 01 R
0.2 i —— iid
Al 0.10
B P e e e P GDumb
—0.3 0.0
1234567 8 91011121314151617181920 850 900 950 1000 1050 500 2000 8000
Training task Batch index Memory size

Figure 3: Left: Forgetting (full lines), and Cumulative Forgetting (dotted lines) on Split-Cifar100 with 2000 memory;
Middle: Illustration of the difference in stability between ER and SCR on Split-Cifar100 (20 tasks), using 2000 memory. We
place ourselves at the task shift between task 4 and 5 and display the accuracy on previous task data (dotted lines) as well as
the accuracy on current task data (full lines).; Right: Final performance of ER, i.i.d. reference method, and GDumb baseline

for 3 different memory sizes on Split-Cifar100

A. Soutif et al. "A Comprehensive Empirical Evaluation on Online Continual Learning” 2023
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Exponential Moving Average of the weights (EMA) mitigates the

s
o

o5
]

stability gap 9
. . . =
« Separate training and evaluation model g%
* Fixes stability only at evaluation time. Training model is still unstable 251
 Cheap and online method 20°2AR it RAREE . gl
Open question: how to fix stability gap during training.
40
t _ t—1 t 35
Hﬁmﬂ. — )‘Hﬁmﬂ. + (1 o )‘)9 ’ 3
B 30
<
— ER 251
ool ER+EMA
f ER-ACE
Check the ;; ii‘. vy ER-ACE+EMA 2O 7RAR i.i.cui  RARTEVA drEMa
0.5 ') ! " .; E ,,,«i: W —— RAR
poster for 5 .y (L !; DO\ p o RoREMA
more Eoa ) (?’"‘ O 2 ey 85 oA Figure 5: Comparison of previous state-of-the-
details! & u At , f art method in online continual learning RAR
: 0.3 | e, w against the reference method i.i.d,, /¢, on Split-
il Cifar100 (Top) using 2000 memory and Split-
0.2 Minimnet using 10000 memory (Bottom). The
performance gap is indicated in green, and is
0 1000 2000 3000 4000 greatly reduced by the use of EMA.

Iterations

A. Soutif et al. «lmproving Online Continual Learning Performance and Stability with Temporal Ensembles” CoLLAs 23 56



Continual Hyperparameter Selection

« Most researchers perform a full . Algorithm 1. Continual
hyPerparameter selection on the entire
validation stream.

 |t's not a CL method and it's suboptimal

Hyperparameter Selection
Framework

input H hyperparameter set, @ € [0, 1] decaying factor, p € [0,1]

because optimal parameters may vary over accuracy drop margin, D'*! new task data, W coarse
time learnéng rate grid
. L require ¢' previous task model parameters
« Some methods are quite sensitive to require CLM continual learning method
hyperparameters (e.g. EWC) / /Maximal Plasticity Search
1: A* =0
o e . 2: forn e Wdo
EXIStIng methods: 3: A « Finetune(D*"', n; 6') > Finetuning accuracy

« [1] finds optimal stability-plasticity tradeoff . ifj*>*ﬂ* t:en S
at each step. Assumes that a single > //Sta}_;'nl " I;;CZ pdate best values
hyperparameter controls the tradeoff o, L Eraptiity becay
monotonically (e.g. regularization strength) 7™, _ o/ /o e 9

» [2] uses reinforcement learning to find 8 if A < (1—p)A” then
optimal parameters. Online RL (bandit) 9: M« a-Hr>Hyperparameter decay

) S 10: while 4 < (1 —p)A*
« [3] uses only the first part of the validation
stream

[1] M. De Lange et al. "A Continual Learning Survey: Defying Forgetting in Classification Tasks.” TPAMI 2022
[2] Y. Liu et al. “Online Hyperparameter Optimization for Class-Incremental Learning.” AAAI 23 57
[3] A. Chaudhry et al. “Efficient Lifelong Learning with A-GEM.” 2079



Robust CL Methods

Omniglot
B) Meta testing training performance
* Alternative to Continual
Hyperparameter Selection:
déesign robust models!
- Example: SiM4C
» Use a single inner update step # | sac ous) — AWML — oW (mproved) — oM.
* Use exact gradient instead of O e s

first-order approximation

* Results:
» Higher accuracy

* No need for additional
hyperparameter selection

CURRENT DATA SiM4C PAST DATA FUTURE DATA

Inner update step Outer meta loss LMET4

: c 0 6
« Easy to plug into existing o ouE -
methods Inner loss L aLMETA/aB
* WorkS in Continual_meta and Compute inner loss Update model Compute meta loss on past & future data

meta-continual learning

Figure 1. Schematic depiction of SiM4C, after a single inner optimization step the proposed meta-objective optimizes for forward and
backward transfer by utilizing seen past data from previous tasks and unseen future data of the current task.

E. Cetin et al. «A Simple Recipe to Meta-Learn Forward and Backward Transfer “, ICCV 23 58



Real-Time / Infinite Memory / Finite Compute

 Memory is cheap, compute is
expensive

« CL methods are designed for finite
memory usage. Often unrealistic

* The “privacy argument” is not very strong,
because trained models can leak data

 Alternative: real-time, infinite
memory, bounded computational
cost

« Real-time constraints. Methods need to
skip data if they are not fast enough

 Results: Experience Replay
outperforms CL methods

Y. Ghunaim et al. “Real-Time Evaluation in Online Continual Learning: A New Hope.” CVPR 23
A. Prabhu et al. “Computationally Budgeted Continual Learning: What Does Matter?” CVPR 23

CL Strategy Method(A) Cs(A) Delay
Experience Replay  ER[11] 1 0
ACE [6] 1 0
Regularizations LwF [28] 93 13
RWalk [£] 2 |
LR Scheduler PoLLRS [7] 3 2
( ) . MIR [?] 5k ¥
Sampling Strategies GSS [4] 6* 5
20 "
-
93;15 "’.‘r.‘
g s
3 | 7
<10/
£”
o
25
<L
0 100k 200k 300k
Time Steps
-o- ER ACE LwF RWalk
PoLRS MIR GSS
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Unsolved CL questions:

 Continual stability

* Robustness to stream parameters

« Continual hyperparameter selection (and robustness)
« Compute-bounded continual learning

60
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Beyond Single CL Agents

Continual pretraining

Distributed continual agents

61



Two Perspectives

Continual Pretraining of Large Asynchronous and Independent
Models Continual Learning Agents

Continual Pre-Training Stream

(Sentiment Analysis) i (Document Classification)

Forgetting Control Task Downstream Task

62



Continual Pretraining

 Continual Pretraining
is the problem of
efficiently updating a
large pretrained model

D
1

- Forgetting Control Ay By e
Task: we don't want to :
fOrg et general Forgetting Control Task Downstream Task
knowledage (Sentiment Analysis) : . (Document Classification)
g : |
- Downstream Task: we “ l' L |
want to improve on :

domain-specific tasks =
Di

Cossu, A., et al. "Continual Pre-Training Mitigates Forgetting in Language and Vision." 2022. 63



Pretraining Results

Evaluation on the
Forgetting Control Task

1

Table 2: Accuracy on the entire dataset of |sentiment analysis|with ROBERTa model. Continual
pre-training has been performed sequentially over each experience of scientific abstracts.
Base refers to the model pre-trained on Wikipedia, while NT refers to the model with vocabulary

expansion. : | fact
as
RoBERTa Accuracy I 1-epoch Accuracy I adaptation
Base 93.40 02.40
Exp. el e2 e3 e4 ) el e2 e3 e4 e5
Pretr 9340 93.15 9335 9320 |9290]| 9240 91.80 9230 91.85 92.20
Pretr. NT 9375 9370 93.75 93.60 |94.10})| 91.75 91.15 92.00 9230 9245
Forgetting is limited even with finetuning. Self-supervised pretraining is more
Dynamic vocabulary expansion (NT) slightly robust than supervised methods
improves the performance. (result for vision in the paper)

Cossu, A., et al. "Continual Pre-Training Mitigates Forgetting in Language and Vision." 2022. 64



Self-Supervised CL

» Distillation loss maps
old representations in a P g
new projected space

Network Network

7 (=) f'(x)

« SSL tricks such as heavy _t §
augmentations and SSL ¢ g{ﬁ O 0 o mamenatons

losses

* Linear probing e U,
ev a I u at i O n Figure 2. Overview of the CaSSLe framework.

A. Gomez-Villa et al. “Continually Learning Self-Supervised Representations With Projected Functional Regularization,” CLVISION 22
E. Fini et al. “Self-Supervised Models Are Continual Learners.” CVPR 22

Empirical
cross-correlation
Distillation
Temporal \ P Vlev‘; \ View
Projector \ rojelc or Projector
m j Zy ‘ %
Backbone Backbone Backbone
t—1
fo 5 £s
T Barlow
I Twins
P za Uap
Images ;.x'

Figure 1. Self-supervised continual learning with Projected Func-
tional Regularization. Instead of performing feature distillation
directly between the previous task backbone and the new one, we
use a learned temporal projection between the two feature spaces.
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Continual Federated Learning

* FL methods fail in simple heterogeneous settings.

» Local forgetting happens in heterogeneous FL if the local models are not aggregated often
enough, resulting in a local drift and forgetting of the global knowledge.

Open question: can continual learning improve federated learning in heterogeneous settings?

« [1] proposes WSM loss, a weighted cross-entropy to mitigate this problem

Initialize local models

with shared weights

Client 1 Optimization
FedAvg

- o Performance on Client 1 Data
—\ Performance on Client 2, 3 ... , K data

FedAvg+WSM
_~ Performance on Client 1 Data
= ..r-—"
—e—e— Performance on Client 2, 3 ... , K data

Client 2 Optimization
FedAvg

o o  Performance on Client 2 Data

_k'\ Performance on Client 1, 3 ..., K data

FedAvg+WSM

e Performance on Client 2 Data
—e
—e—e— Performance on Client 1, 3 ..., K data

wy
K n
; ka*k“ R Local Data
Aggregate weights why é' &'
NOt my paper, w, _JC Local Data
But this is also B — %
a ColLLas paper ‘\w}{ —
o S}x Local Data
._<i>.'“‘" i-s?
Local training
iterations for i
clients ke k |

FedAvg Client K Optimization

. o  Performance on Client 3 Data
A\\ Performance on Client 1,2 ... , K data

FedAvg+WSM
o« Performance on Client 3 Data

—&
_e—e Performance on Client 1, 2 ..., K data

Figure 1: llustration of catastrophic forgetting within client rounds. A global model with knowledge of all classes
1s sent to all clients participating in a given FL round. Local training increases the client model performance on the
client’s local distribution but tends to simultaneously decrease performance with respect other clients distributions
which leads to poor aggregation and overall model performance.

[1] G. Legate et al. "Re-Weighted Softmax Cross-Entropy to Control Forgetting in Federated Learning.” CoLLAs 23
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° Objectives: Local client model:
» Minimize communication 0 =B om® + AL + 3 Y o)Ay
* Exploit task similarity i€C\e <[t

« Avoid task interference

* Modularized task-based
model:
» Global parameters
 Local base parameters
» Task-adaptive parameters

(a) Communication of General Knowledge (b) Communication of Task-adaptive Knowledge

Figure 3. Updates of FedWelT. (a) A client sends sparsified federated parameter B. ® m" . After that, the server redistributes aggregated
parameters to the clients. (b) The knowledge base stores previous tasks-adaptive parameters of clients, and each client selectively utilizes
them with an attention mask.

J. Yoon et al. “Federated Continual Learning with Weighted Inter-Client Transfer.” ICML 21 67



Ex-Model CL

- Model aggregation is the critical
missing component in
heterogeneous FL!

« We know how to train the local @ AT -
model (continual learning) I A fi
« We know how to ag greg ate AT AT
homogeneous mo esas long as < L oaifie.  oafifli. < >
the agﬁregatlon is frequent a8 &= e L oye e - [0
enoug homogeneous federated L T -
learning) — B e W gty —
* If we can agﬁ,{egate independent : i z 5 il B £
models (Ex el CL) = ‘ > .
. Continual Learning Ex-Model Continual Learning
e we can train on muIt|pIe tasks in
pa ra I |e| Figure 1. Ex-model Continual Learning. The stream is composed of expert models, without access to the original data.
« Without frequent synchnonous
aggregations

» Allows decentralized training
« related to model patching [1]

A. Carta. "Ex-Model: Continual Learning From a Stream of Trained Models,” CLVISION 22
[1] Raffel, Colin. “Building Machine Learning Models Like Open Source Software.” Communications of the ACM 2023 68



Data-Agnostic Consolidation (DAC)

Previous Consolidated Model Laosses Student fiCL

CL
fiZi ———

Split learning into: 00D Augmented Pl
. Dataset Sample 2L oy KD: - .2
« Adaptation: learn new task | , A B v
. . BT T T = .piD
» Consolidation: aggregate models sC omm oo S

Model consolidation with data-free
knowledge distillation (DAC)

.....

 Double KnOWIGdge Distillation (a) Task-incremental SplitCIFAR100 after task 5 and
. 10. Baselines denote are taken from

« Teachers: Previous CL model and New ez —
model SplitCIFAR100

* On the output DCL  5Tasks 10 Tasks

« On the latent activations (Projected) Naivel R 498 383

. EWCT RF 60.2 56.7

« Task-incremental method Pahlnct  RF 573 53l

o ] ] . MAST RF 61.8 58.6

- Surprisingly, indipendent adaptation + RWalkl  RF 563 403

sequential consolidation seems better LwF! RE 767 766

than sequential adaptation (i.e. what DMC o m3 66T

most CL methods are doing DACA=0) v Tibur T75kos

Atie .D+0.8

A. Carta et al. "Projected Latent Distillation for Data-Agnostic Consolidation in Distributed Continual Learning.” arXiv preprint, 2023 69



Batch Model Consolidation

BMC.:

» Regularized adaptation with distillation on the
latent activations (teacher: base model)

* Replay data for batch consolidation

Sparse consolidation allows asynchronous learning

in independent agents with light synchronization

Central

Remote

Base Model >
egase e 7
v.-—
Expert 8; || Expert 0 Expert 0
Task D, Task D, Task Dy

Consolidation

— Regularized gradient

— Un-regularized gradient

=5

Regularization
Boundary

- = Mu

Jointly low-error zone

@® Base model

@ Regularized expert/
consolidated model

@ Un-regularized expert,
consolidated model

ilti-Task gradient

— BMC gradient

——— Synchronize artifacts

I. Fostiropoulos et al. “Batch Model Consolidation: A Multi-Task Model Consolidation Framework

Base Model
01 :>
base -= W
=
< =
- ®
.
Expert Oy41|| Expert Ox2| ... | Expert 02 =
2
+F & Z2 g
Task Dy || Task D2 Task D L
= 7 & Z\ling
E |2
= || =
- — — — -» Batched distillation on Buffer-Memory
"CVPR 23
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Conclusion
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Main Message

The goal of Continual Learning is to understand how to design
machine learning models that learn over time

« on a constrained budget (memory/compute/real-time requirements)
« with non-stationary data

* The goal is much wider than «class-incremental learning» or
«finetuning a pretrained model»

* We need to push towards more realistic settings
» Toy data is fine for research, toy settings not so much
« CL metrics can be misleading and very easy to abuse
» Good solutions already exist!
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Open Challenges

* CL Benchmarks:
 Real drifts and prequential evaluation
 Exploitation of temporal coherence
 Real-time training with infinite memory

* CL Robustness to
« stream parameters
« (continual) hyperparameter selection
« stability gap

* Beyond Single Agents
 continual pretraining
« ex-model / distributed continual learning

73



CL and Reproducibility - Avalanche

» PyTorch library for continual learning https://avalanche.continualai.org/
« A community effort with >30 CL methods, >60 contributors
 Easy to use and extend

* Reproducible baselines: hitps://github.com/ContinualAl/continual-
learning-baselines

 CIR: https://github.com/HamedHemati/CIR
* OCL survey: https://github.com/albinsou/ocl_survey

PVTor‘fh Progressive | [ Multi-Head | [Incremental
compatible Optimizers | NN ‘ support  Classifier |
Dynamic Architectures
Standalone
Replay Plugin Metrics
Dataload . " ; Plugin
00D/ valid. Benchmarks """ g Metrics
streams L . Object
: Detection
Strate
P'ueir?:

Class-Incr. Domain-Incr.

Scenarios

Task-Incr. Online CL

powered by

Split,
Permuted

CORe50 OpenLORIS

. Continual A/
Generators Stream51 EndlessCL Hierarchical Replay :
. . Interactive
Templates Policies

Figure 1: Avalanche main functionalities and modules.

Benchmarks

A. Carta et al. "Avalanche: A PyTorch Library for Deep Continual Learning.” 2023 74
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https://github.com/ContinualAI/continual-learning-baselines
https://github.com/ContinualAI/continual-learning-baselines
https://github.com/HamedHemati/CIR
https://github.com/albinsou/ocl_survey
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