
Heap manipulating atomic 
commands



Stores, heaps and states

s : X → ℤ
set of 

variables
set of  
values

store

𝖲𝗍𝗈𝗋𝖾𝗌 ≜ {s : X → ℤ}
set of all 
stores

h : ℕ ⇀fin ℤ⊥

heap
set of 

locations
set of  
values

special value 
(deallocated)

𝖧𝖾𝖺𝗉𝗌 ≜ {h : ℕ ⇀fin ℤ⊥}
set of all 
heaps

𝖲𝗍𝖺𝗍𝖾𝗌 ≜ 𝖲𝗍𝗈𝗋𝖾𝗌 × 𝖧𝖾𝖺𝗉𝗌
set of all 
states

σ = ⟨s, h⟩
state

store-heap 
pair

℘(𝖲𝗍𝖺𝗍𝖾𝗌)
concrete 
domain

null=-1



 is the domain of definition of a heap function


  


 is the union of functions with disjoint domains 

(undefined if  )


 is the partial function like  except that  goes to 

𝖽𝗈𝗆( f )

h1 # h2 ≜ 𝖽𝗈𝗆(h1) ∩ 𝖽𝗈𝗆(h2) = ∅

h1 ∙ h2
¬(h1 # h2)

f[x ↦ n] f x n

Notation

disjoint 
heaps

(disjoint) heap 
composition

update



Regular commands

  

      |     

      |      + 

      |     

r ::= e
r1; r2
r1 r2
r⋆

regular 
command atomic 

command

Kleene 
star

skip  

       |   

       |    

       |       // read

       |    // write

       |  

       |  

       |  

e ::=
b?
x := a
x := [a]
[a1] := a2
x := 𝖺𝗅𝗅𝗈𝖼( )
𝖿𝗋𝖾𝖾(x)
x := 𝖼𝗈𝗇𝗌(a0, . . . , ak)

choice



Assertion language



Assertion language

    |     |      |     |  …

      |       |    |    |  …

      |     

      |     

      |     

P ::= 𝗍𝗋𝗎𝖾 𝖿𝖺𝗅𝗌𝖾 a1 < a2 a1 = a2
¬P P1 ∧ P2 ∃x . P
𝖾𝗆𝗉
a1 ↦ a2
P1 * P2

assertion

Boolean and 
classical 

assertions

empty heap

ownership

and 
separately

structural 
assertions

also called  
pure assertions



Satisfaction: classical

⟨s, h⟩ ⊧ P the assertion  holds 
for the given state 

P
⟨s, h⟩

⟨s, h⟩ ⊧ a1 < a2 iff s ⊧ a1 < a2

⟨s, h⟩ ⊧ P1 ∧ P2 iff  and ⟨s, h⟩ ⊧ P1 ⟨s, h⟩ ⊧ P2

⟨s, h⟩ ⊧ ∀x . P iff  ∀v ∈ ℤ . ⟨s[x ↦ v], h⟩ ⊧ P

…



⟨s, h⟩ ⊧ a1 ↦ a2 iff  and 𝖽𝗈𝗆(h) = {[[a1]]s} h([[a1]]s) = [[a2]]s

⟨s, h⟩ ⊧ 𝖾𝗆𝗉 iff  is the empty map [ ]h

⟨s, h⟩ ⊧ P1 * P2 iff   and  and ∃h1, h2 . ⟨s, h1⟩ ⊧ P1 ⟨s, h2⟩ ⊧ P2 h = h1 ∙ h2

Satisfaction: structural

splits the heap  
but not the store!

⟨s, h⟩ ⊧ P the assertion  holds 
for the given state 

P
⟨s, h⟩



Example

1142

x

s(x) = 11
s(y) = 42

y

h(11) = 42
h(42) = 11

𝖽𝗈𝗆(h) = {11,42}

 ?


 ?


 ?

⟨s, h⟩ ⊧ 𝖾𝗆𝗉

⟨s, h⟩ ⊧ x ↦ y

⟨s, h⟩ ⊧ x ↦ y * y ↦ x

h1(11) = 42

h2(42) = 11

𝖽𝗈𝗆(h1) = {11}

𝖽𝗈𝗆(h2) = {42}

h = h1 ∙ h2

⟨s, h1⟩ ⊧ x ↦ y
⟨s, h2⟩ ⊧ y ↦ x

two 
locations

11 42



Example

42

x

s(x) = 11
s(y) = 42

y

h1(11) = 42
𝖽𝗈𝗆(h1) = {11}

 ?


 ?


 ?

⟨s, h1⟩ ⊧ 𝖾𝗆𝗉

⟨s, h1⟩ ⊧ x ↦ y

⟨s, h1⟩ ⊧ x ↦ y * y ↦ x



Example

11

x

s(x) = 11
s(y) = 42

y

h2(42) = 11

𝖽𝗈𝗆(h2) = {42}

 ?


 ?


 ?

⟨s, h2⟩ ⊧ 𝖾𝗆𝗉

⟨s, h2⟩ ⊧ y ↦ x

⟨s, h2⟩ ⊧ x ↦ y * y ↦ x



Example

 ?⟨s, h⟩ ⊧ x ↦ y * y ↦ x

h = h1 ∙ h2 11

x

s(x) = 11
s(y) = 42

y

h2(42) = 11

𝖽𝗈𝗆(h2) = {42}

42

x

s(x) = 11
s(y) = 42

y

h1(11) = 42
𝖽𝗈𝗆(h1) = {11}



Some subtleties
    


    


    


    


    


    

P * 𝖾𝗆𝗉 ≡ P

x ↦ v * 𝗍𝗋𝗎𝖾 ≢ x ↦ v

x ↦ v * x ↦ w ≡ 𝖿𝖺𝗅𝗌𝖾

(x = y) * (x = y) ≡ (x = y)

x ↦ v * y ↦ w ⇏ x ↦ v

x ↦ v ⇏ x ↦ v * y ↦ w

    


      


      


    


    


    

P ∧ 𝖾𝗆𝗉 ≢ P

x ↦ v * P ≢ x ↦ v ∧ P

x ↦ v ∧ x ↦ w ≡ x ↦ v ∧ (v = w)

P * P ≡ P

x ↦ v ∧ y ↦ w ⇒ x ↦ v

x ↦ v ⇏ x ↦ v ∧ y ↦ w

any 
assertion

pure  
assertionsingle-cell 

heapany heap

cannot separate



Let us define the following inductive predicate for list segments

          


  


and let    and   


Does the heap in the figure satisfy  ?

and  ?

and  ?

𝗅𝗌(a1, a2,0) ≜ a1 = a2 ∧ 𝖾𝗆𝗉
𝗅𝗌(a1, a2, n + 1) ≜ a1 ≠ a2 ∧ ∃x . a1 ↦ x * 𝗅𝗌(x, a2, n)

𝗅𝗌(a1, a2) ≜ ∃n . 𝗅𝗌(a1, a2, n) 𝗅𝗂𝗌𝗍(a) ≜ 𝗅𝗌(a, 𝗇𝗂𝗅)

𝗅𝗌(x, x)
𝗅𝗌(x, y) * 𝗅𝗌(y, x)
𝗅𝗂𝗌𝗍(x)

Example

x

y



Separation Logic (SL)



CSL 2001
“it should be possible for reasoning and 
specification to be confined to the cells 
that the program actually accesses. The 
value of any other cell will automatically 
remain unchanged”

Local Reasoning about Programs
that Alter Data Structures

Peter O’Hearn1, John Reynolds2, and Hongseok Yang3

1 Queen Mary, University of London
2 Carnegie Mellon University

3 University of Birmingham and University of Illinois at Urbana-Champaign

Abstract. We describe an extension of Hoare’s logic for reasoning about
programs that alter data structures. We consider a low-level storage
model based on a heap with associated lookup, update, allocation and
deallocation operations, and unrestricted address arithmetic. The asser-
tion language is based on a possible worlds model of the logic of bunched
implications, and includes spatial conjunction and implication connec-
tives alongside those of classical logic. Heap operations are axiomatized
using what we call the “small axioms”, each of which mentions only those
cells accessed by a particular command. Through these and a number of
examples we show that the formalism supports local reasoning: A speci-
fication and proof can concentrate on only those cells in memory that a
program accesses.
This paper builds on earlier work by Burstall, Reynolds, Ishtiaq and
O’Hearn on reasoning about data structures.

1 Introduction

Pointers have been a persistent trouble area in program proving. The main dif-
ficulty is not one of finding an in-principle adequate axiomatization of pointer
operations; rather there is a mismatch between simple intuitions about the way
that pointer operations work and the complexity of their axiomatic treatments.
For example, pointer assignment is operationally simple, but when there is alias-
ing, arising from several pointers to a given cell, then an alteration to that cell
may affect the values of many syntactically unrelated expressions. (See [20, 2, 4,
6] for discussion and references to the literature on reasoning about pointers.)

We suggest that the source of this mismatch is the global view of state
taken in most formalisms for reasoning about pointers. In contrast, programmers
reason informally in a local way. Data structure algorithms typically work by
applying local surgeries that rearrange small parts of a data structure, such as
rotating a small part of a tree or inserting a node into a list. Informal reasoning
usually concentrates on the effects of these surgeries, without picturing the entire
memory of a system. We summarize this local reasoning viewpoint as follows.

To understand how a program works, it should be possible for reasoning
and specification to be confined to the cells that the program actually ac-
cesses. The value of any other cell will automatically remain unchanged.

L. Fribourg (Ed.): CSL 2001, LNCS 2142, pp. 1–19, 2001.
c⃝ Springer-Verlag Berlin Heidelberg 2001



Separation logic principles

Separation logic = local axioms + frame rule



Local axioms

 atomic command {P} {Q}
minimal 

requirement 
for correct 
execution

strongest 
postcondition, 

given the 
minimal 

precondition

in-place reasoning



Frame rule

  {P} r {Q}
  {P * R} r {Q * R} 𝗆𝗈𝖽(r) ∩ 𝖿𝗋𝖾𝖾(R) = ∅

variables possibly 
modified by r

in-place reasoning

idle cells idle cells

variables 
constrained by R



Some abbreviations

                               (for  fresh )


                 


  

a ↦ _ ≜ ∃v . a ↦ v v

a1 ≐ a2 ≜ (a1 = a2) ∧ 𝖾𝗆𝗉

a ↦ ⟨a0, . . . , ak⟩ ≜ (a ↦ a0) * . . . * (a + k ↦ ak)



Local axioms: write

  {???} [a1] := a2 {???}



Local axioms: write

  {a1 ↦ _} [a1] := a2 {???}



Local axioms: write

  {a1 ↦ _} [a1] := a2 {a1 ↦ a2}

  {???} [x] := y {???}



Local axioms: write

  {a1 ↦ _} [a1] := a2 {a1 ↦ a2}

  {x ↦ _} [x] := y {x ↦ y}



Local axioms: read

  {a ↦ v ∧ x = x′ } x := [a] {x = v ∧ a[x′ /x] ↦ v}

  {y ↦ v} x := [y] {x = v ∧ y ↦ v}



Local axioms: allocation

  {𝖾𝗆𝗉} x := 𝖺𝗅𝗅𝗈𝖼( ) {x ↦ _}



Local axioms: dispose

  {a ↦ _} 𝖿𝗋𝖾𝖾(a) {𝖾𝗆𝗉}

  {x ↦ _} 𝖿𝗋𝖾𝖾(x) {𝖾𝗆𝗉}



Local axioms: allocation

  {x ≐ x′ } x := 𝖼𝗈𝗇𝗌(a1, . . . , ak) {x ↦ ⟨a1[x′ /x], . . . , ak[x′ /x]⟩}



Example



    

        

    




        

        


{x ↦ _ * y ↦ _ * z ↦ _}
{x ↦ _}

[x] := 1;
{x ↦ 1}

{x ↦ 1 * y ↦ _ * z ↦ _}
[y] := 2;
[z] := 3;

{x ↦ 1 * y ↦ 2 * z ↦ 3}

w
rit

e 
ax

io
m

fra
m

e 
ru

le   {x ↦ _} [x] := 1 {x ↦ 1}
write

  {x ↦ _ * R} [x] := 1 {x ↦ 1 * R}
frame

with R ≡ (y ↦ _ * z ↦ _)



Example
  


    

          

    

          

      


{𝗅𝗂𝗌𝗍(x) ∧ x ≠ 𝗇𝗂𝗅} ≡ {x ↦ v * 𝗅𝗂𝗌𝗍(v)}
{x ↦ v * 𝗅𝗂𝗌𝗍(v)}

{x ↦ v} t := [x]; {x ↦ v ∧ t = v}
{x ↦ t * 𝗅𝗂𝗌𝗍(t)}

{x ↦ t} 𝖿𝗋𝖾𝖾(x); {𝖾𝗆𝗉}
{𝖾𝗆𝗉 * 𝗅𝗂𝗌𝗍(t)} ≡ {𝗅𝗂𝗌𝗍(t)}

{𝗅𝗂𝗌𝗍(t)}

  

  

𝗅𝗌(a1, a2) ≜ (a1 = a2 ∧ 𝖾𝗆𝗉) ∨ (a1 ≠ a2 ∧ ∃v . a1 ↦ v * 𝗅𝗌(v, a2))
𝗅𝗂𝗌𝗍(a) ≜ 𝗅𝗌(a, 𝗇𝗂𝗅)

fra
m

e
fra

m
e



Example



   

        

   

        

   

        

       

            

       

            

        )

   

        

   


{x ↦ v * 𝗅𝗂𝗌𝗍(v) * 𝗅𝗂𝗌𝗍(y)}

t := x;

n := [t];

𝗐𝗁𝗂𝗅𝖾 n ≠ 𝗇𝗂𝗅 𝖽𝗈 (

t := n;

n := [t];

[t] := y;

{𝗅𝗂𝗌𝗍(x)}
  


  
𝗅𝗌(a1, a2) ≜ (a1 = a2 ∧ 𝖾𝗆𝗉) ∨ (a1 ≠ a2 ∧ ∃v . a1 ↦ v * 𝗅𝗌(v, a2))
𝗅𝗂𝗌𝗍(a) ≜ 𝗅𝗌(a, 𝗇𝗂𝗅)



Example

    

        

    

          

    

        

          

             

        

              

         )

      

         

    


  

{x ↦ v * 𝗅𝗂𝗌𝗍(v) * 𝗅𝗂𝗌𝗍(y)}
{x ↦ v * 𝗅𝗂𝗌𝗍(v)}

t := x;
{𝗅𝗌(x, t) * t ↦ v * 𝗅𝗂𝗌𝗍(v)}

{t ↦ v} n := [t]; {t ↦ v ∧ n = v}
{𝗅𝗌(x, t) * t ↦ n * 𝗅𝗂𝗌𝗍(n)}

𝗐𝗁𝗂𝗅𝖾 n ≠ 𝗇𝗂𝗅 𝖽𝗈 (
{𝗅𝗌(x, t) * t ↦ n * 𝗅𝗂𝗌𝗍(n) ∧ n ≠ 𝗇𝗂𝗅} ≡ {𝗅𝗌(x, t) * t ↦ n * n ↦ w * 𝗅𝗂𝗌𝗍(w)}

t := n;
{𝗅𝗌(x, t′ ) * t′ ↦ t * t ↦ w * 𝗅𝗂𝗌𝗍(w) ∧ t = n}

{t ↦ w ∧ t = n} n := [t]; {t ↦ w ∧ n = w}
{𝗅𝗌(x, t) * t ↦ n * 𝗅𝗂𝗌𝗍(n)}

{𝗅𝗌(x, t) * t ↦ n * 𝗅𝗂𝗌𝗍(n) ∧ n = 𝗇𝗂𝗅} ⇒ {𝗅𝗌(x, t) * t ↦ _}
{t ↦ _} [t] := y; {t ↦ y}

{𝗅𝗌(x, t) * t ↦ y}
{𝗅𝗌(x, t) * t ↦ y * 𝗅𝗂𝗌𝗍(y)} ≡ {𝗅𝗂𝗌𝗍(x)}   


  
𝗅𝗌(a1, a2) ≜ (a1 = a2 ∧ 𝖾𝗆𝗉) ∨ (a1 ≠ a2 ∧ ∃v . a1 ↦ v * 𝗅𝗌(v, a2))
𝗅𝗂𝗌𝗍(a) ≜ 𝗅𝗌(a, 𝗇𝗂𝗅)

fra
m

e

invariant

fra
m

e
fra

m
e

fra
m

e



Correctness and 
(in)completeness



Relational semantics






















                                                                      

[[𝗌𝗄𝗂𝗉]] ≜ {(σ, σ)}
[[b?]] ≜ {(σ, σ) ∣ σ = ⟨s, h⟩ ∧ s ⊧ b}
[[x := a]] ≜ {(⟨s, h⟩, ⟨s[x ↦ [[a]]s], h⟩)}

[[x := [a]]] ≜ {(⟨s, h⟩, ⟨s[x ↦ v], h⟩) ∣ v = h([[a]]s) ∈ ℤ}

[[[a1] := a2]] ≜ {(⟨s, h⟩, ⟨s, h[[[a1]]s ↦ [[a2]]s]⟩) ∣ h([[a1]]s) ∈ ℤ}

[[x := 𝖺𝗅𝗅𝗈𝖼( )]] ≜ {(⟨s, h⟩, ⟨s[x ↦ n], h[n ↦ v]⟩) ∣ v ∈ ℤ ∧ (n ∉ 𝖽𝗈𝗆(h) ∨ h(n) = ⊥ )}

[[𝖿𝗋𝖾𝖾(x)]] ≜ {(⟨s, h ∙ [s(x) ↦ v]⟩, ⟨s, h⟩) ∣ s(x) ∈ ℕ ∧ v ∈ ℤ}

[[x := 𝖼𝗈𝗇𝗌(a0, . . . , ak)]] ≜ {(⟨s, h⟩, ⟨s[x ↦ n], h[n ↦ [[a0]]s, . . . , (n + k) ↦ [[ak]]s]⟩)
∣ (∀i ∈ [n, n + k] . i ∉ 𝖽𝗈𝗆(h) ∨ h(i) = ⊥ )}



Correctness

Th. [correctness]

If    then   


Proof. By induction on the derivation.

{P} r {Q} [[r]]P ⊆ Q



Incompleteness

Th. [incompleteness]

There exist valid SL triples that are not provable


Proof. Misses footprint theorem: see slides on ISL 



Final considerations on SL

SL addresses resource manipulation


separating conjunction for in-place reasoning


pre/post describe local surgeries

Simple Proofs 
for Simple 
Programs



Questions



Question 1
Can you find some state that satisfies the following assertions?

(x ≐ y) * x ↦ y

(x = y) ∧ x ↦ y

x ↦ x

x

(x = y) * x ↦ y
x y



Question 2
Show a state that satisfies the assertion (x ↦ y) * ¬(x ↦ y)

42

x

s(x) = 11
s(y) = 42

y

h(11) = 42
𝖽𝗈𝗆(h) = {11}



Consider the imprecise list segment definition below

  


Prove that    by finding a state that satisfies 
 but not 

𝗂𝗅𝗌(a1, a2) ≜ (a1 = a2 ∧ 𝖾𝗆𝗉) ∨ (∃v . a1 ↦ v * 𝗅𝗌(v, a2))

𝗂𝗅𝗌(a1, a2) ≢ 𝗅𝗌(a1, a2)
𝗂𝗅𝗌(42,42) 𝗅𝗌(42,42)

  𝗅𝗌(a1, a2) ≜ (a1 = a2 ∧ 𝖾𝗆𝗉) ∨ (a1 ≠ a2 ∧ ∃v . a1 ↦ v * 𝗅𝗌(v, a2))

Question 3

x
s(x) = 42 h(42) = 42

𝖽𝗈𝗆(h) = {42} ⟨s, h⟩ /⊧ 𝗅𝗌(42,42)
⟨s, h⟩ ⊧ 𝗂𝗅𝗌(42,42)


