
Heap manipulating atomic
commands

Stores, heaps and states

s : X → ℤ
set of

variables
set of
values

store

𝖲𝗍𝗈𝗋𝖾𝗌 ≜ {s : X → ℤ}
set of all
stores

h : ℕ ⇀fin ℤ⊥

heap
set of

locations
set of
values

special value
(deallocated)

𝖧𝖾𝖺𝗉𝗌 ≜ {h : ℕ ⇀fin ℤ⊥}
set of all
heaps

𝖲𝗍𝖺𝗍𝖾𝗌 ≜ 𝖲𝗍𝗈𝗋𝖾𝗌 × 𝖧𝖾𝖺𝗉𝗌
set of all
states

σ = ⟨s, h⟩
state

store-heap
pair

℘(𝖲𝗍𝖺𝗍𝖾𝗌)
concrete
domain

null=-1

 is the domain of definition of a heap function

 is the union of functions with disjoint domains

(undefined if)

 is the partial function like except that goes to

𝖽𝗈𝗆(f)

h1 # h2 ≜ 𝖽𝗈𝗆(h1) ∩ 𝖽𝗈𝗆(h2) = ∅

h1 ∙ h2
¬(h1 # h2)

f[x ↦ n] f x n

Notation

disjoint
heaps

(disjoint) heap
composition

update

Regular commands

 |

 | +

 |

r ::= e
r1; r2
r1 r2
r⋆

regular
command atomic

command

Kleene
star

skip

 |

 |

 | // read

 | // write

 |

 |

 |

e ::=
b?
x := a
x := [a]
[a1] := a2
x := 𝖺𝗅𝗅𝗈𝖼()
𝖿𝗋𝖾𝖾(x)
x := 𝖼𝗈𝗇𝗌(a0, . . . , ak)

choice

Assertion language

Assertion language

 | | | | …

 | | | | …

 |

 |

 |

P ::= 𝗍𝗋𝗎𝖾 𝖿𝖺𝗅𝗌𝖾 a1 < a2 a1 = a2
¬P P1 ∧ P2 ∃x . P
𝖾𝗆𝗉
a1 ↦ a2
P1 * P2

assertion

Boolean and
classical

assertions

empty heap

ownership

and
separately

structural
assertions

also called
pure assertions

Satisfaction: classical

⟨s, h⟩ ⊧ P the assertion holds
for the given state

P
⟨s, h⟩

⟨s, h⟩ ⊧ a1 < a2 iff s ⊧ a1 < a2

⟨s, h⟩ ⊧ P1 ∧ P2 iff and ⟨s, h⟩ ⊧ P1 ⟨s, h⟩ ⊧ P2

⟨s, h⟩ ⊧ ∀x . P iff ∀v ∈ ℤ . ⟨s[x ↦ v], h⟩ ⊧ P

…

⟨s, h⟩ ⊧ a1 ↦ a2 iff and 𝖽𝗈𝗆(h) = {[[a1]]s} h([[a1]]s) = [[a2]]s

⟨s, h⟩ ⊧ 𝖾𝗆𝗉 iff is the empty map []h

⟨s, h⟩ ⊧ P1 * P2 iff and and ∃h1, h2 . ⟨s, h1⟩ ⊧ P1 ⟨s, h2⟩ ⊧ P2 h = h1 ∙ h2

Satisfaction: structural

splits the heap
but not the store!

⟨s, h⟩ ⊧ P the assertion holds
for the given state

P
⟨s, h⟩

Example

1142

x

s(x) = 11
s(y) = 42

y

h(11) = 42
h(42) = 11

𝖽𝗈𝗆(h) = {11,42}

 ?

 ?

 ?

⟨s, h⟩ ⊧ 𝖾𝗆𝗉

⟨s, h⟩ ⊧ x ↦ y

⟨s, h⟩ ⊧ x ↦ y * y ↦ x

h1(11) = 42

h2(42) = 11

𝖽𝗈𝗆(h1) = {11}

𝖽𝗈𝗆(h2) = {42}

h = h1 ∙ h2

⟨s, h1⟩ ⊧ x ↦ y
⟨s, h2⟩ ⊧ y ↦ x

two
locations

11 42

Example

42

x

s(x) = 11
s(y) = 42

y

h1(11) = 42
𝖽𝗈𝗆(h1) = {11}

 ?

 ?

 ?

⟨s, h1⟩ ⊧ 𝖾𝗆𝗉

⟨s, h1⟩ ⊧ x ↦ y

⟨s, h1⟩ ⊧ x ↦ y * y ↦ x

Example

11

x

s(x) = 11
s(y) = 42

y

h2(42) = 11

𝖽𝗈𝗆(h2) = {42}

 ?

 ?

 ?

⟨s, h2⟩ ⊧ 𝖾𝗆𝗉

⟨s, h2⟩ ⊧ y ↦ x

⟨s, h2⟩ ⊧ x ↦ y * y ↦ x

Example

 ?⟨s, h⟩ ⊧ x ↦ y * y ↦ x

h = h1 ∙ h2 11

x

s(x) = 11
s(y) = 42

y

h2(42) = 11

𝖽𝗈𝗆(h2) = {42}

42

x

s(x) = 11
s(y) = 42

y

h1(11) = 42
𝖽𝗈𝗆(h1) = {11}

Some subtleties

P * 𝖾𝗆𝗉 ≡ P

x ↦ v * 𝗍𝗋𝗎𝖾 ≢ x ↦ v

x ↦ v * x ↦ w ≡ 𝖿𝖺𝗅𝗌𝖾

(x = y) * (x = y) ≡ (x = y)

x ↦ v * y ↦ w ⇏ x ↦ v

x ↦ v ⇏ x ↦ v * y ↦ w

P ∧ 𝖾𝗆𝗉 ≢ P

x ↦ v * P ≢ x ↦ v ∧ P

x ↦ v ∧ x ↦ w ≡ x ↦ v ∧ (v = w)

P * P ≡ P

x ↦ v ∧ y ↦ w ⇒ x ↦ v

x ↦ v ⇏ x ↦ v ∧ y ↦ w

any
assertion

pure
assertionsingle-cell

heapany heap

cannot separate

Let us define the following inductive predicate for list segments

and let and

Does the heap in the figure satisfy ?

and ?

and ?

𝗅𝗌(a1, a2,0) ≜ a1 = a2 ∧ 𝖾𝗆𝗉
𝗅𝗌(a1, a2, n + 1) ≜ a1 ≠ a2 ∧ ∃x . a1 ↦ x * 𝗅𝗌(x, a2, n)

𝗅𝗌(a1, a2) ≜ ∃n . 𝗅𝗌(a1, a2, n) 𝗅𝗂𝗌𝗍(a) ≜ 𝗅𝗌(a, 𝗇𝗂𝗅)

𝗅𝗌(x, x)
𝗅𝗌(x, y) * 𝗅𝗌(y, x)
𝗅𝗂𝗌𝗍(x)

Example

x

y

Separation Logic (SL)

CSL 2001
“it should be possible for reasoning and
specification to be confined to the cells
that the program actually accesses. The
value of any other cell will automatically
remain unchanged”

Local Reasoning about Programs
that Alter Data Structures

Peter O’Hearn1, John Reynolds2, and Hongseok Yang3

1 Queen Mary, University of London
2 Carnegie Mellon University

3 University of Birmingham and University of Illinois at Urbana-Champaign

Abstract. We describe an extension of Hoare’s logic for reasoning about
programs that alter data structures. We consider a low-level storage
model based on a heap with associated lookup, update, allocation and
deallocation operations, and unrestricted address arithmetic. The asser-
tion language is based on a possible worlds model of the logic of bunched
implications, and includes spatial conjunction and implication connec-
tives alongside those of classical logic. Heap operations are axiomatized
using what we call the “small axioms”, each of which mentions only those
cells accessed by a particular command. Through these and a number of
examples we show that the formalism supports local reasoning: A speci-
fication and proof can concentrate on only those cells in memory that a
program accesses.
This paper builds on earlier work by Burstall, Reynolds, Ishtiaq and
O’Hearn on reasoning about data structures.

1 Introduction

Pointers have been a persistent trouble area in program proving. The main dif-
ficulty is not one of finding an in-principle adequate axiomatization of pointer
operations; rather there is a mismatch between simple intuitions about the way
that pointer operations work and the complexity of their axiomatic treatments.
For example, pointer assignment is operationally simple, but when there is alias-
ing, arising from several pointers to a given cell, then an alteration to that cell
may affect the values of many syntactically unrelated expressions. (See [20, 2, 4,
6] for discussion and references to the literature on reasoning about pointers.)

We suggest that the source of this mismatch is the global view of state
taken in most formalisms for reasoning about pointers. In contrast, programmers
reason informally in a local way. Data structure algorithms typically work by
applying local surgeries that rearrange small parts of a data structure, such as
rotating a small part of a tree or inserting a node into a list. Informal reasoning
usually concentrates on the effects of these surgeries, without picturing the entire
memory of a system. We summarize this local reasoning viewpoint as follows.

To understand how a program works, it should be possible for reasoning
and specification to be confined to the cells that the program actually ac-
cesses. The value of any other cell will automatically remain unchanged.

L. Fribourg (Ed.): CSL 2001, LNCS 2142, pp. 1–19, 2001.
c⃝ Springer-Verlag Berlin Heidelberg 2001

Separation logic principles

Separation logic = local axioms + frame rule

Local axioms

 atomic command {P} {Q}
minimal

requirement
for correct
execution

strongest
postcondition,

given the
minimal

precondition

in-place reasoning

Frame rule

 {P} r {Q}
 {P * R} r {Q * R} 𝗆𝗈𝖽(r) ∩ 𝖿𝗋𝖾𝖾(R) = ∅

variables possibly
modified by r

in-place reasoning

idle cells idle cells

variables
constrained by R

Some abbreviations

 (for fresh)

a ↦ _ ≜ ∃v . a ↦ v v

a1 ≐ a2 ≜ (a1 = a2) ∧ 𝖾𝗆𝗉

a ↦ ⟨a0, . . . , ak⟩ ≜ (a ↦ a0) * . . . * (a + k ↦ ak)

Local axioms: write

 {???} [a1] := a2 {???}

Local axioms: write

 {a1 ↦ _} [a1] := a2 {???}

Local axioms: write

 {a1 ↦ _} [a1] := a2 {a1 ↦ a2}

 {???} [x] := y {???}

Local axioms: write

 {a1 ↦ _} [a1] := a2 {a1 ↦ a2}

 {x ↦ _} [x] := y {x ↦ y}

Local axioms: read

 {a ↦ v ∧ x = x′ } x := [a] {x = v ∧ a[x′ /x] ↦ v}

 {y ↦ v} x := [y] {x = v ∧ y ↦ v}

Local axioms: allocation

 {𝖾𝗆𝗉} x := 𝖺𝗅𝗅𝗈𝖼() {x ↦ _}

Local axioms: dispose

 {a ↦ _} 𝖿𝗋𝖾𝖾(a) {𝖾𝗆𝗉}

 {x ↦ _} 𝖿𝗋𝖾𝖾(x) {𝖾𝗆𝗉}

Local axioms: allocation

 {x ≐ x′ } x := 𝖼𝗈𝗇𝗌(a1, . . . , ak) {x ↦ ⟨a1[x′ /x], . . . , ak[x′ /x]⟩}

Example

{x ↦ _ * y ↦ _ * z ↦ _}
{x ↦ _}

[x] := 1;
{x ↦ 1}

{x ↦ 1 * y ↦ _ * z ↦ _}
[y] := 2;
[z] := 3;

{x ↦ 1 * y ↦ 2 * z ↦ 3}

w
rit

e
ax

io
m

fra
m

e
ru

le {x ↦ _} [x] := 1 {x ↦ 1}
write

 {x ↦ _ * R} [x] := 1 {x ↦ 1 * R}
frame

with R ≡ (y ↦ _ * z ↦ _)

Example

{𝗅𝗂𝗌𝗍(x) ∧ x ≠ 𝗇𝗂𝗅} ≡ {x ↦ v * 𝗅𝗂𝗌𝗍(v)}
{x ↦ v * 𝗅𝗂𝗌𝗍(v)}

{x ↦ v} t := [x]; {x ↦ v ∧ t = v}
{x ↦ t * 𝗅𝗂𝗌𝗍(t)}

{x ↦ t} 𝖿𝗋𝖾𝖾(x); {𝖾𝗆𝗉}
{𝖾𝗆𝗉 * 𝗅𝗂𝗌𝗍(t)} ≡ {𝗅𝗂𝗌𝗍(t)}

{𝗅𝗂𝗌𝗍(t)}

𝗅𝗌(a1, a2) ≜ (a1 = a2 ∧ 𝖾𝗆𝗉) ∨ (a1 ≠ a2 ∧ ∃v . a1 ↦ v * 𝗅𝗌(v, a2))
𝗅𝗂𝗌𝗍(a) ≜ 𝗅𝗌(a, 𝗇𝗂𝗅)

fra
m

e
fra

m
e

Example

)

{x ↦ v * 𝗅𝗂𝗌𝗍(v) * 𝗅𝗂𝗌𝗍(y)}

t := x;

n := [t];

𝗐𝗁𝗂𝗅𝖾 n ≠ 𝗇𝗂𝗅 𝖽𝗈 (

t := n;

n := [t];

[t] := y;

{𝗅𝗂𝗌𝗍(x)}

𝗅𝗌(a1, a2) ≜ (a1 = a2 ∧ 𝖾𝗆𝗉) ∨ (a1 ≠ a2 ∧ ∃v . a1 ↦ v * 𝗅𝗌(v, a2))
𝗅𝗂𝗌𝗍(a) ≜ 𝗅𝗌(a, 𝗇𝗂𝗅)

Example

)

{x ↦ v * 𝗅𝗂𝗌𝗍(v) * 𝗅𝗂𝗌𝗍(y)}
{x ↦ v * 𝗅𝗂𝗌𝗍(v)}

t := x;
{𝗅𝗌(x, t) * t ↦ v * 𝗅𝗂𝗌𝗍(v)}

{t ↦ v} n := [t]; {t ↦ v ∧ n = v}
{𝗅𝗌(x, t) * t ↦ n * 𝗅𝗂𝗌𝗍(n)}

𝗐𝗁𝗂𝗅𝖾 n ≠ 𝗇𝗂𝗅 𝖽𝗈 (
{𝗅𝗌(x, t) * t ↦ n * 𝗅𝗂𝗌𝗍(n) ∧ n ≠ 𝗇𝗂𝗅} ≡ {𝗅𝗌(x, t) * t ↦ n * n ↦ w * 𝗅𝗂𝗌𝗍(w)}

t := n;
{𝗅𝗌(x, t′) * t′ ↦ t * t ↦ w * 𝗅𝗂𝗌𝗍(w) ∧ t = n}

{t ↦ w ∧ t = n} n := [t]; {t ↦ w ∧ n = w}
{𝗅𝗌(x, t) * t ↦ n * 𝗅𝗂𝗌𝗍(n)}

{𝗅𝗌(x, t) * t ↦ n * 𝗅𝗂𝗌𝗍(n) ∧ n = 𝗇𝗂𝗅} ⇒ {𝗅𝗌(x, t) * t ↦ _}
{t ↦ _} [t] := y; {t ↦ y}

{𝗅𝗌(x, t) * t ↦ y}
{𝗅𝗌(x, t) * t ↦ y * 𝗅𝗂𝗌𝗍(y)} ≡ {𝗅𝗂𝗌𝗍(x)}

𝗅𝗌(a1, a2) ≜ (a1 = a2 ∧ 𝖾𝗆𝗉) ∨ (a1 ≠ a2 ∧ ∃v . a1 ↦ v * 𝗅𝗌(v, a2))
𝗅𝗂𝗌𝗍(a) ≜ 𝗅𝗌(a, 𝗇𝗂𝗅)

fra
m

e

invariant

fra
m

e
fra

m
e

fra
m

e

Correctness and
(in)completeness

Relational semantics

[[𝗌𝗄𝗂𝗉]] ≜ {(σ, σ)}
[[b?]] ≜ {(σ, σ) ∣ σ = ⟨s, h⟩ ∧ s ⊧ b}
[[x := a]] ≜ {(⟨s, h⟩, ⟨s[x ↦ [[a]]s], h⟩)}

[[x := [a]]] ≜ {(⟨s, h⟩, ⟨s[x ↦ v], h⟩) ∣ v = h([[a]]s) ∈ ℤ}

[[[a1] := a2]] ≜ {(⟨s, h⟩, ⟨s, h[[[a1]]s ↦ [[a2]]s]⟩) ∣ h([[a1]]s) ∈ ℤ}

[[x := 𝖺𝗅𝗅𝗈𝖼()]] ≜ {(⟨s, h⟩, ⟨s[x ↦ n], h[n ↦ v]⟩) ∣ v ∈ ℤ ∧ (n ∉ 𝖽𝗈𝗆(h) ∨ h(n) = ⊥)}

[[𝖿𝗋𝖾𝖾(x)]] ≜ {(⟨s, h ∙ [s(x) ↦ v]⟩, ⟨s, h⟩) ∣ s(x) ∈ ℕ ∧ v ∈ ℤ}

[[x := 𝖼𝗈𝗇𝗌(a0, . . . , ak)]] ≜ {(⟨s, h⟩, ⟨s[x ↦ n], h[n ↦ [[a0]]s, . . . , (n + k) ↦ [[ak]]s]⟩)
∣ (∀i ∈ [n, n + k] . i ∉ 𝖽𝗈𝗆(h) ∨ h(i) = ⊥)}

Correctness

Th. [correctness]

If then

Proof. By induction on the derivation.

{P} r {Q} [[r]]P ⊆ Q

Incompleteness

Th. [incompleteness]

There exist valid SL triples that are not provable

Proof. Misses footprint theorem: see slides on ISL

Final considerations on SL

SL addresses resource manipulation

separating conjunction for in-place reasoning

pre/post describe local surgeries

Simple Proofs
for Simple
Programs

Questions

Question 1
Can you find some state that satisfies the following assertions?

(x ≐ y) * x ↦ y

(x = y) ∧ x ↦ y

x ↦ x

x

(x = y) * x ↦ y
x y

Question 2
Show a state that satisfies the assertion (x ↦ y) * ¬(x ↦ y)

42

x

s(x) = 11
s(y) = 42

y

h(11) = 42
𝖽𝗈𝗆(h) = {11}

Consider the imprecise list segment definition below

Prove that by finding a state that satisfies
 but not

𝗂𝗅𝗌(a1, a2) ≜ (a1 = a2 ∧ 𝖾𝗆𝗉) ∨ (∃v . a1 ↦ v * 𝗅𝗌(v, a2))

𝗂𝗅𝗌(a1, a2) ≢ 𝗅𝗌(a1, a2)
𝗂𝗅𝗌(42,42) 𝗅𝗌(42,42)

 𝗅𝗌(a1, a2) ≜ (a1 = a2 ∧ 𝖾𝗆𝗉) ∨ (a1 ≠ a2 ∧ ∃v . a1 ↦ v * 𝗅𝗌(v, a2))

Question 3

x
s(x) = 42 h(42) = 42

𝖽𝗈𝗆(h) = {42} ⟨s, h⟩ /⊧ 𝗅𝗌(42,42)
⟨s, h⟩ ⊧ 𝗂𝗅𝗌(42,42)

