Program Analysis

Lecture #5

Roberto Bruni

UNIVERSITA
DI PIsSA

(P*R) r (Q*R)

June 30 - July 4, 2025

SCHOOL OF ADVANCED STUDIES

GRAN SASSO
PhD Course G SCIENCE INSTITUTE

http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni

The taxonomy

Forward Backward
Over Hy [r]P C Q@ Ne) [r]Q C P
Under i (7P 2 Q SIL2[F]Q D P

sufficient incorrectness logic
exposes sources of errors

Different logics for different
purposes!

Hoare Logic

P} c {0}
validity: [[c]|P C O

Voe P.Voe|clle. o€ 0

can prove the absence of bugs
(any execution of ¢ from P is correct)

while (x<5) do x:=x+V;
{(x=6} @

Example

x <0}
while (x<5) do x:=x+V;

{Ix=6} @ [x— 8,y 8]isalso reachable

Example

x <0}

while (x<5) do x:=x+V;

(x>6} @

Example

x <0}

while (x<5) do x:=x+V;

x>0} @

Necessary condition

(P) ¢ (Q)
validity: P 2 [[?]]Q

V6eQ.Voe[cl6.c€P

express necessary conditions for correctness
(any execution of ¢ from outside P is incorrect)

Example

x<6 A y=6—Xx)

while (x<5) do x:=x+V;

(x=6) ©&

Example

x<6 AN dn.n*y=6-—x)

while (x<5) do x:=x+V;

(x=6) @

Example

(x < 6)

while (x<5) do x:=x+V;

(x=6) @

Incorrectness Logic

|P] c |Q]
validity: [[c]IP 2 O

Voe (.doe P.o € |clo

can prove the presence of bugs
(any error in Q is reachable executing ¢)

Example

[x < O]
while (x<5) do x:=x+V;

[x — 6] @ [x+— 6,y > — 1]is not reachable

Example

[x < 0] (x> —4,y > 10]

while (x<5) do x:=x+V;

x=6Ay>0] ® [x — 6,y — 10]

Sufficient incorrectness logic
(SIL)

OOPSLA 2025

Revealing Sources of (Memory) Errors via Backward Analysis

FLAVIO ASCARI, University of Pisa, Italy
ROBERTO BRUNI, University of Pisa, Italy
ROBERTA GORI, University of Pisa, Italy
FRANCESCO LOGOZZ0O, Meta Platforms, USA

Sound over-approximation methods are effective for proving the absence of errors, but inevitably produce
false alarms that can hamper programmers. In contrast, under-approximation methods focus on bug detection
and are free from false alarms. In this work, we present two novel proof systems designed to locate the source
of errors via backward under-approximation, namely Sufficient Incorrectness Logic (SIL) and its specialization
for handling memory errors, called Separation SIL. The SIL proof system is minimal, sound and complete
for Lisbon triples, enabling a detailed comparison of triple-based program logics across various dimensions,
including negation, approximation, execution order, and analysis objectives. More importantly, SIL lays the
foundation for our main technical contribution, by distilling the inference rules of Separation SIL, a sound and
(relatively) complete proof system for automated backward reasoning in programs involving pointers and
dynamic memory allocation. The completeness result for Separation SIL relies on a careful crafting of both
the assertion language and the rules for atomic commands.

CCS Concepts: « Theory of computation — Logic and verification; Proof theory; Hoare logic; Separation
logic; Programming logic.

Additional Key Words and Phrases: Sufficient Incorrectness Logic, Incorrectness Logic, Outcome Logic

ACM Reference Format:

Flavio Ascari, Roberto Bruni, Roberta Gori, and Francesco Logozzo. 2025. Revealing Sources of (Memory)
Errors via Backward Analysis. Proc. ACM Program. Lang. 9, OOPSLA1, Article 127 (April 2025), 28 pages.
https://doi.org/lO.l 145/3720486

1 Introduction

Formal methods aim to automate the improvement of software reliability and security. Notable suc-
cess stories are, e.g., the Astrée static analyzer [Blanchet et al. 2003], the SLAM model checker [Ball
and Rajamani 2001], the certified C compiler CompCert [Leroy 2009], VCC for safety properties
verification [Cohen et al. 2009], and the Frama-C platform for the integration of many C code
analyses [Baudin et al. 2021]. Despite that, effective program correctness methods struggle to reach
mainstream adoption, mostly because they exploit over-approximation to handle decidability issues
and false positives are seen as a distraction by expert programmers. Being free from false positives
is possibly the reason why under-approximation approaches for bug-finding, such as testing and
bounded model checking, are preferred in industrial applications. Incorrectness Logic (IL) [O’Hearn
2020] is a new program logic for bug-finding: any error state found in the post can be produced by
some input states that satisfy the pre. However, IL triples are not able to characterize precisely the
input states that are responsible for a given error. This is possibly rooted in the forward flavor of the
under-approximation, which follows the ordinary direction of code execution.

Authors’ Contact Information: Flavio Ascari, University of Pisa, Pisa, Italy, flavio.ascari@phd.unipi.it; Roberto Bruni,
University of Pisa, Pisa, Italy, bruni@di.unipi.it; Roberta Gori, University of Pisa, Pisa, Italy, roberta.gori@unipi.it; Francesco
Logozzo, Meta Platforms, Seattle, USA, logozzo@meta.com.

D 0eo

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/4-ART127

https://doi.org/10.1145/3720486

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 127. Publication date: April 2025.

“SIL can characterise the source of
errors”

Sufficient Incorrectness Logic (SIL)

Given a specification () of the possible errors

It is an under-approximation!

<P> C <Q> is valid when ﬂ?ﬂ@ O P
means
P WJ\'J Voe P.doe Q.o € |rlo
‘ A

A backward under-approximation logic to expose some initial states leading to errors

Sufficient Incorrectness Logic

(P) ¢ (Q)
validity: P C [[(CT]]Q

VoeP.doe Q.o€l|clo

express sufficient conditions for incorrectness
(any state in P can lead within er : Q)

Example

(x<6Adn.n*y=6—x)

while (x<5) do x:=x+V;

(x=6) @

Example

(x<6AYy=6-—X)

while (x<5) do x:=x+V;

(x=6) @

Example

(x < 6) [x = 5,y = — 1] cannot reach the post

while (x<5) do x:=x+V;

(x=6) O

Bug reporting

Which errors should a tool report to programmers?
We do not want false positives but for the others?

Should the tool report all of them?
int foo (int * x) Pulse (based on IL) would find

{ ™x=32} [x=null] foo(x) [er: x=null

Should the tool report this”?

2
2

“But | never call foo with null!” “Which bugs shall | report then?”

Manifest errors

An error is manifest if it occurs independently of the context and is therefore particularly
Interesting to point out to programmers

Manifest errors cannot be characterised with IL

But they can be easily characterised with SIL

Q is a manifest error < (true) r {(Q) is valid

SIL Rules

The proof system favours backward analysis starting from the (error) postconditions

backward oriented

Hoare’s axiom for assignment

—_——— {atom — a))
(Qla/z|) x := a {{Q)
NOTATION DISCLAIM: >0) x:=y—1 (x=0)
for legacy reasons, iIn some slides
we are g<y>ing to write (P)) ¢ (OY) y#43) x:=y—1 (x#42))

instead of (P) ¢ (0),
but they carry the same meaning

SIL Rules

The proof system favours backward analysis starting from the (error) postconditions

backward oriented

(atom — g))

(QND) b7 (Q)

(@) x>0)7 (x=-42)
(x=42) (x>0)? (x=42)

SIL Rules

The proof system favours backward analysis starting from the (error) postconditions

Same conditions for both branches

(P)ri(Q) (P2)r2(Q))

(choice))

(PLUP)) r1 + 12 <<Q>>

(y=43vy=42) (:=y-D+u:=y) (x=42)
(true)) =y #43vy#42)) (@=y-DH+x:=y) (x # 42))

(y#43) x=y—-D+x:=42) ({(x#42)

SIL Rules

The proof system favours backward analysis starting from the (error) postconditions

Backward iteration starting from final state (),

vn > 0.(Qnt1)) 7 (@n)

backward oriented

(x<42) = (.. Vx=4lVvx=42) (x:=x4+ ¥ (x=42)

SIL Rules

The proof system favours backward analysis starting from the (error) postconditions

SIL can drop disjuncts going backward:

(x=41vx=42) (x:=x+ 1)* (x=42)

Validity, soundness and
completeness

A proof system for SIL

Core rules

. PCP (P)r(@) @CQ,
(510) < (@) ™ Py r (Q) (cons)
(P (@) (PR (o (PY AR (RY Q)
(PLUP2) r1 +r2 (Q) (P) r1i;r2 (Q)
Vn > 0. (Quer) r (Qn)
(U @ r (@) (iter)
Additional rules
(P r (@) (P)r(Q) .
@ (@) (empty) (PLUP) T (QUQ) (i)
| (P) r*:r (Q)
@ (qy e Py 7 gQy (unold

(P) rir {Q1) (
(PUGQ2) r* (QU G2)

unroll-split)

Soundness and completeness

Validity of a SIL triple (P) ¢ (Q): [r]Q D P

Th. [Soundness]
All provable SIL triples are valid

Th. [Completeness]
All valid triples are provable (using the core rules)

The taxonomy

Over

Under

The taxonomy

Forward Backward
HL NC
(P} ¢ {0} (P) ¢ (O
[c]]P C O POlclQ
I SIL
[P] ¢ [O] (P) ¢ {Q)

[cIP 2O PCclo

Consequence rules

Forward Backward

HL NC
Over [P} c {0} (P) C(SQ)
[c]]P C O > [[c [|O
IL
Under [P] ¢ [Q]

[clP 2 O

SIL vs IL

C42:

If even (X) { Given a specification of the possible errors
it odd(y){z:=42;} Q=2 {z=42)
}

Safe 7 # 42 With |IL one can prove
| z=11] ¢4 [z=42 A odd(y) A even(x)]

Expressing that the postcondition is reachable

E.g., x:=1/(42- 2)

With SIL one can prove
<Z=11 /\ Odd(y) /\ even(X)> C42 <Z=42>
Expressing a precondition that leads to error states

SIL vs HL

C42 :
X := nondet();

it even (x) { . S .
if odd(y) { z := 42;) Given a specification of the possible errors

! Qz{z=42}

Safe 7 £ 42

E.g., x:=1/(42- 2) With HL one can prove
{Z:42 } C42 {Z:42 }

With SIL one can prove

<Odd(y)> C42 <Z=42>
Expressing a precondition that leads to error states

SIL vs HL

r deterministic and terminating: SIL equivalent to HL

(P) r{Q) < {P} r{Q]

Questions

Question 1
Which SIL triples are valid for any r and P ?

(false) r (P) o

(true) r (true) o

(P) r* (Pvx=0) o

(wip(r, P)) r (P) @

Question 2

Prove that rule {conj) is unsound for SIL

(P1) r{Qy) (P) r{Qy) |
(PyAP,) r(Q)AQ) conj)

Consider (x = 0) x := nondet() (x = 0)

and (x = 0) x := nondet() (x = 1)

By rule {conj) we could derive (x = 0) x := 1 (false)
which is not sound!

Question 3

Prove or disprove the validity of the following axiom in SIL

(P) b? (P ADb)

Consider the following triple (x> 0) (x> 1)? (x > 2)

it is not valid, because from x =) we cannot reach x > 2

Exercise

// function r

X := nondet();

if (x=1) { 1t (y>100) {
if (y<100) { MC } elsey{:= y-10; x :
¥ y = y+1ll; x :
SIL | IL | HL

// function MC is the McCarthy 91 function
while (x>0) {

x-1 }
x+1 } }

NC

[true| r [y =91 A x # 1]

(y<100) r{y =91 Ax #1)

{y < 100) r {y = 91)

(y <91) r {y =91)

