Program Analysis

Lecture #4

Roberto Bruni

UNIVERSITA
DI PIsSA

(P*R) r (Q*R)

June 30 - July 4, 2025

SCHOOL OF ADVANCED STUDIES

GRAN SASSO
PhD Course G SCIENCE INSTITUTE

http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni

Backward Analysis

Regular commands

regular _ .

Syntactic sugar
if b then ¢, else ¢, 2 (b?: c))+ (0b7;)

while b do ¢ 2 (b?;¢0)*;~b?

Kleene
star

Backward analysis

Forward Analysis Backward Analysis

int Simple (bool b) nterval int Simple (bool b)
{ int z; analysis { intz;
f (b) i (b) @

z:=12; ze|[12,12]
else
z:=-12; ze [-12,-12]
ze [-12,12]

} return 1/z; < JFossible } return 1/2:

Backward semantics

Different from WLP!

7o’ £ {o|o’ € [r]o} o€ [r]o’ o €lr]o

Hoare called it weakest possible precondition

As before we can extend it
to sets

[71Q =) [T1¢

o'eQ

Example

wip(c,@) = {o | []{c} C Q}
wlp(c,|s =5,z = 17]) = 222 (x prime,0,1)

A
C =

Divisor of(x) {

s := nondet[2..xX/2]; wip(c, [s = 5,z = 15]) = 222 (x prime,0,1)
1f (x%s=0)

skip DR / /
else lc]Q =100 € |c]o,0" € Q}

while true do skip

Unexpected result?

Behind any programming activity there is an expectation

What the program should do
Sort an array, find the maximum ...

What the program should not do
Read private data, divide by zero ...
Loop forever, irresponsive user interface ...

The expectation Iis the program specification

What is programming about?

Specification
What my code should do and should not do

Hacking
Write the code

Debugging / Verification
“Prove” my code follows its specification

Specification

Can be informal
No hang, no infinite loops, no crashes, no wrong output ...
Can be formal

Simplest: Test cases
What | expect in some finite cases

More complex: Formal specification language

Debugging / Verification

Runtime analysis

Run the program, observe the behavior for some specific runs
Check if the behavior violates the specification

Static analysis / verification

Do not run the program, observe the properties for all runs
Check if the behavior meets the specification

Example: Abs

Which is the specification for this code?

public int32 Abs(int32 x)

{ Reminder:
. int32 = [—2°1 231 — 1
1t (X < O) _(_231) - 231
return —Xx,;
else to return a non-negative value?
return Xx;

equal to the absolute value of x?
does it work?

under which conditions?

Overview

Problem: Automatic inference of preconditions

Which preconditions?

Sufficient Precondition: if it holds, the code is correct

Necessary Precondition: if it does not hold the code is not correct
Necessary Precondition: if it does not hold something bad can happen

Sufficient preconditions

int Examplel(int x,

object L1 a) Sufficient precondition: a !'= null
{ Too strong for the caller
if (x >= 0)
{ no runtime errors also when
x < 0anda == null

return a.length;

+ Users of verification tools complained about it

return -1: wrong preconditions

F

Sufficient Precondition: if it holds, no error is raised

Necessary preconditions

Sufficient precondition: false

int Example2 (object[] a)

{ for (int i=0; i<=a.length; i++)
{ The function may fail

alil=f(ali]);

if (nondet())
return; Necessary precondition: a != null &

1 0 < a.length

So eliminate all runs!

If 0==a.length then it will always fail!

Sufficient Precondition: if it holds, no error is raised
Necessary Precondition: If it does not hold something bad can happen

Necessary conditions (NC)

Automatic Inference of Necessary Preconditions

Patrick Cousot', Radhia Cousot?, Manuel Fahndrich?®, and Francesco Logozzo®

1 NYU, ENS, CNRS, INRIA
pcousot@cims.nyu.edu
2 CNRS, ENS, INRIA
rcousot@ens.fr
3 Microsoft Research
{maf,logozzo}@microsoft.com

Abstract. We consider the problem of automatic precondition infer-
ence. We argue that the common notion of sufficient precondition in-
ference (i.e., under which precondition is the program correct?) imposes
too large a burden on callers, and hence it is unfit for automatic program
analysis. Therefore, we define the problem of necessary precondition in-
ference (i.e., under which precondition, if violated, will the program al-
ways be incorrect?). We designed and implemented several new abstract
interpretation-based analyses to infer atomic, disjunctive, universally and
existentially quantified necessary preconditions.

We experimentally validated the analyses on large scale industrial
code. For unannotated code, the inference algorithms find necessary pre-
conditions for almost 64% of methods which contained warnings. In 27%
of these cases the inferred preconditions were also sufficient, meaning all
warnings within the method body disappeared. For annotated code, the
inference algorithms find necessary preconditions for over 68% of meth-
ods with warnings. In almost 50% of these cases the preconditions were
also sufficient. Overall, the precision improvement obtained by precon-
dition inference (counted as the additional number of methods with no
warnings) ranged between 9% and 21%.

1 Introduction

Design by Contract [28] is a programming methodology which systematically re-
quires the programmer to provide the preconditions, postconditions and object
invariants (collectively called contracts) at design time. Contracts allow auto-
matic generation of documentation, amplify the testing process, and naturally
enable assume/guarantee reasoning for divide and conquer static program anal-
ysis and verification. In the real world, relatively few methods have contracts
that are sufficient to prove the method correct. Typically, the precondition of
a method is weaker than necessary, resulting in unproven assertions within the
method, but making it easier to prove the precondition at call-sites. Inference
has been advocated as the holy grail to solve this problem.

In this paper we focus on the problem of computing necessary preconditions
which are inevitable checks from within the method that are hoisted to the

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 128-148, 2013.
© Springer-Verlag Berlin Heidelberg 2013

VMCAI 2013

“Under which precondition, if violated,
will the program always be incorrect?”

Necessary preconditions

When automatic inference Is considered,
necessary preconditions make much more sense

Sufficient preconditions impose too large a burden to callers
Necessary preconditions are easy to explain to users
Implemented in the contract checker verifier Clousot (Microsoft)

Precision improvements 9% to 21%
Extremely low false positive ratio

Necessary preconditions

The idea of NC is to prevent the invocation of the function with arguments that
will inevitably lead to some error

Given Q the set of good final states, the NC triple

(P)r(Q)

means that any states o that admits at least one non-erroneous execution of r is in P

[rlec P

Compare over approximation logics

Over

Under

Hy (7] P C Q

Compare over approximation logics

Over HL [r]P C @

Under

i | P O Q

Compare over approximation logics

Over HL [r]P C @

Under [IL] T]]P D Q

No) [F]Q C P

Compare over approximation logics

Over Hy (7| P C Q (NC) ﬂ?]]@ C P

Under [IL] T]]P D Q

Which consegquence rule?
(NC) ﬂ?]]@ CP

There’s not a proof system but..

{HL} [IL]
P=P (PIr(Q) Q=0 222 P=P [P1r[0] 0= 0
(P} r{Q} [P] r[Q]
PP (P)rQ) 0=
(NC) ———————————

(P)r(Q)

HL vs NC: weakest/strongest pre and post

Given Q, we look for
the strongest P

Given P, we look for

the strongest Q

HL}y |[r|P C Q

Given Q, we look for

Given P, we look for

the weakest P the weakest Q

HL vs NC: relation

1P}rQ) < (-P)r(—-Q)

That means

[r]P C Q<= [7]-QC P

We prove one implication, Th f
the other is similar e p rOO

[r]P CQ = ["]-Q C —P Let us assume [[7]]P C QO
We want to prove [[7]] () C =P

— <«
Let ustake o € [[r]| 70O it must exist 0 € =0 such that o € [[r]0
i.e., such that o € [|[r]lo

if o € P, then it would mean that o € [[r]lc C [[7]|P C QO
but this is not possible, because we know that 0 & 0

therefore, it must be the case that o & P

(=P} r{-Q} < (P) r (Q)
r|-P C -Q — [r]QCP

Questions

Question 1

Letcé(z =X)+ (z:=y)
and let O = (z = 0)

Whatis wip(c,0)? (x=y=0) wip(c, Q) = {o | [c]{c} € Q}

What is [¢] O ? (x=0Vy=0) [€lQ2{o|d €[€Q}

Question 2

Recalling that both {false} ¢ {O} and {P} ¢ {true}

are valid HL triples (for any P, O and ¢)
can we claim something about the validity of NC triples such as

(false) ¢ (Q) < {true} c {0} o
(P)c (true) <= {-P} c {false} ©
(true) c (Q) <= {false} ¢ {0} @

(P) c (false) <= {—P} c {true} @

