Program Analysis

Lecture #3

Roberto Bruni

UNIVERSITA
DI PIsSA

(P*R) r (Q*R)

June 30 - July 4, 2025

SCHOOL OF ADVANCED STUDIES

GRAN SASSO
PhD Course G SCIENCE INSTITUTE

http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni

Program incorrectness:
pragmatic motivations

POPL 2020

Incorrectness Logic

PETER W. O’HEARN, Facebook and University College London, UK

Program correctness and incorrectness are two sides of the same coin. As a programmer, even if you would
like to have correctness, you might find yourself spending most of your time reasoning about incorrectness.
This includes informal reasoning that people do while looking at or thinking about their code, as well as that
supported by automated testing and static analysis tools. This paper describes a simple logic for program
incorrectness which is, in a sense, the other side of the coin to Hoare’s logic of correctness.

“Program correctness and incorrectness
e are two sides of the same coin”

Peter W. O’Hearn. 2020. Incorrectness Logic. Proc. ACM Program. Lang. 4, POPL, Article 10 (January 2020),

32 pages. https://doi.org/10.1145/3371078 ,
1 INTRODUCTION Peter O H earl I 2020

When reasoning informally about a program, people make abstract inferences about what might
go wrong, as well as about what must go right. A programmer might ask “will the program crash
if we give it a large string?”, without saying which large string. In this paper we investigate the
hypothesis that reasoning about the presence of bugs can be underpinned by sound techniques
in a principled logical system, just as reasoning about correctness (absence of bugs) has been
demonstrated to have sound logical principles in an extensive research literature. We also consider
the relationship of the principles to automated reasoning tools for finding bugs in software.

We explore our hypothesis by defining incorrectness logic, a formalism that is similar to Hoare’s
logic of program correctness [Hoare 1969], except that it is oriented to proving incorrectness rather
than correctness. Hoare’s theory is based on specifications of the form

{pre-condition}code{post-condition}
which say that the post-condition over-approximates (describes a superset of) the states reachable

upon termination when the code is executed starting from states satisfying the pre-condition (the
so-called strongest post). Conversely, we use a specification form

[presumption]code[result]

which says that the post-assertion result be an under-approximation (subset) of the final states that
can be reached starting from states satisfying the presumption.

The under-approximate triples were studied (with a different but equivalent definition) previously
by de Vries and Koutavas [2011] in their reverse Hoare logic, which they used to specify randomized
algorithms. Incorrectness logic adds post-assertions for errors as well as for normal termination, and
these assertions describe erroneous states that can be reached by actual program executions. Dijkstra
[1976] famously remarked that “testing can be quite effective for showing the presence of bugs, but
is hopelessly inadequate for showing their absence,” and he made this remark while arguing for the

Author’s address: Peter W. O’Hearn, Facebook and University College London, UK.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2020 Copyright held by the owner/author(s).
2475-1421/2020/1-ART10
https://doi.org/10.1145/3371078

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 10. Publication date: January 2020.

Picturing incorrectness

ver
Hoare partial
correctness triple .
Predicates
UI strongest
postcondition
post(c)

Predicates ——————————> Predicates

weakest under

approximated post

U

Predicates
under
approximation

[= el =1

O’Hearn
Incorrectness triple

Correctness vs incorrectness

Over-approximation: Under-approximation:
good for proving correctness bad for proving correctness

e false
- positive

true
positives

bad for bug-finding good for bug-finding

Correctness workflow, ideally
e O MOVE THF DONEIS

run per day

e e ST Ol BT

3 THINGS il PERFECT
|
l [comect B m ,

fac

@ some scalability issues in a
| production environment:
WATTINES analysis takes time (overnight?),

code inspector

eeeeeeeeeeeeeeeee

warnings are received late,
false positives mine credibility

Design principles

W
%,; Low friction -
do not rely on manual annotations True positive theorem!

(under certain assumptions) the analyzer
reports no false positives

Act fast

able to report errors in less than 15°
“*do not spam the developers!”

.". Be compositional

whole program analysis is discouraged

Occam

do not use complex technigues (unless forced)

Incorrectness Logic

(IL)

Hoare’s triples O’Hearn’s triples

pre
condition

pre
condition

PrcilQ; [Pl c[Q]

post
condition

post
condition

any output matching the postcondition
can be reached by executing the command
on some input matching the precondition

for any input matching the precondition
executing the command establishes the postcondition

[c]lP C QO [c]lP 2 QO

over can include non under includes just
approximation! reachable states approximation! reachable states

As first order formulas

1P} cig]
[c]IP C O = Voe P. Vo' €l|clle. 6" € O
any reachable output satisfies the postcondition
[P] c 0]
[c]|]P 2 O = Vo'e Q. doe P.o" € |cllo

any output in the postcondition is reachable

Regular commands

regular
command atomic
command

e .= skiIp
roi= | X:=a
| T n | b7
| +n | error()
| | x := nondet()

Kleene | .
star

EXIt condition

[Pl rle: Q]

¢ IS the exit condition

ok: normal execution
er: erroneous execution

ly=v]x:=y|ok:x=y=V] ly =v]error() |er : vy = V]

Notation

|[P] rlok: QO ller: O]

stands for

|P|rlok: Q]land [P] rler: O]

Floyd’s axiom for assignment

[Pl x:=alok: dx". Plx'/x]| A x = al|x'/x]]|er : false]

ly =42 x:=42 |ok : x =y = 42]

Hoare’s axiom for assignment?

[Olal/x]] x := a |ok : O]|er : false]

ly =42 x:=42 [ok : x = V]
unsound!

c2[x— 3,y — 3] not reachable

Other atomic commands
| P] skip [ok : P]|er : false]

|[P]b? |ok : P A bller : false]
| P] error() |ok : falsel|er : P]

|P] x := nondet() |[ok : dx. Pller : false]

Short circuiting of errors

|P]r;[ok:R] [R]r|e: O] | P] ry [er: O]
[P]r1§7’2[€3Q] [P]Vlﬂ”z[er:Q]

'y =v]error();x:=yler:y=y]

Dropping disjuncts

[P rle: O] [Pl rle: O]
Plri+rle: O] Plri+rle: O]

sound under-approximation!
scalable bug detection

ly =v]error()+x:=yler:y=yv]

ly=v]error()+x:=y|ok:x =y =]

Example

[y = 0] If even(x) then y :=42 [ok : y =42] 8
s It a valid IL triple?

y=42)=2{[x~> 0y~ 42],[x > L,y 42], [x > 2,y > 42], ... }
v, X

Example

ly = 0] if even(x) then y :=42 |ok : y =42 A even(x)] Q
s it a valid IL triple?

y = 42 A even(x) = {lx—=0y—=42], [x - 2,y = 42], ... }

<

&

IL vs HL

ly = 0] if even(x) then y :=42 |[ok : y =42 A even(x)] Q

{y =0} 1f even(x) then y :=42 {y =42 A even(x)} Q

{y=0Aceven(x)} if even(x) theny:=42 {y =42} Q

ly =0 A even(x)] if even(x) then y:=42 ok :y=42] e

Bounded loop unrolling

[P]r™;re: O]
[P] r* [ok : P] [P] r* [e : O]

sound under-approximation!
scalable bug detection

(x=0](x:=x+ D*[ok:x=0]

x=0](x:=x+ D*[ok: x=2]

Backwards variant (weak)

Vne N. [P]rlok: P,]
- [Plr*lok:P]

loop Invariants are inherently over-approximations
sub-variants to reason about loop under-approximation

(x=0](x:=x+1D*[ok:x=2%] /P, = (x =n)

x=0](x:=x+ D*; if (x =2%) then error() [er : x = 2*]

Consequence rule

P =P [Plrle: 0] O= 0
[P rle: O]

shrink the post!
scalable bug detection

P=P (PiriQ; Q=0
Prridi

Some dualities

Plr1Q] APl Q] & [PlriQV O,
PrriQip AP ridy) & (Prridi Ay

Some dualities

dropping disjuncts (by conseq. rule) dropping conjuncts (by conseq. rule)

[P]r[QVR] P r{0 AR}
[P] 7 [O] Py riQ}

For correctness

reasoning

You

A duality

iInformation as you go
along a path, but you

paths.

all the

For incorrectness
reasoning

You

iInformation as you go

along a path, but you
some of

the paths

Principle of agreement

Th. Proof.
it [Pl r[OQ]A Q' C
P = P A [r]|P’ C
(P} riQj [r]IP C
then 0" = 0O 9,

partially correct programs cannot exhibit counterexamples

Principle of denial

Th. Cor.
f r A f [P'lr[O] A
P = PA P'= P A
r ~(Q'= 0)
then Q' = 0 then = ({P} r{0})

any derivable counterexample withesses program incorrectness

Examples

[true]
If x > 0 then
|[x > 0]
skip
[x > O]
else
[x < O]
X:i=—X
[dx". X' < OAXx=—=X]=[x> 0]
ok : x > 0]

Examples

[z = 11]
If even(x) then
|z=11 A even(x)]
If odd(y) then
|z =11 A even(x) A odd(y)]
z:=42
|z =42 A even(x) A odd(y)]
ok : 7z =42 A even(x) A odd(y)]

Finite unrolling of while loops

while bdo ¢ = (b?;¢)*;b?
| P] while bdo c [ok : P A —D]

[P A b] clok: O]
[P] whilebdoc[ok: (PV O)A D]

Finite unrolling of while loops

while bdo ¢ = (b?;¢)*;b?

[P] (b?;¢c)" [ok : P] [P] =b? [ok : P A —b]
| P] while bdo c [ok : P A —D]

Finite unrolling of while loops
while bdo ¢ = (b?:;¢)*; b
r2b?:c

[P b? [ok: PADb] [PADb]clok: QO]
[P] r* [ok : P] [P]r[ok: O]
[P]r™;r[ok: Q]

[P] r* [ok : O] (O] =b? [ok : O A —D]
[P] whilebdoc [ok: (PV O)A D]

Examples

[true]
n := nondet();
[true] &
x = 0; while b do ¢
[x = 0]

while n > 0 do (
Ix =0An> 0]
X =X+ n,
Ix=nAn>0]
n := nondet()
|dn.x=nAn>0]=|x> 0]
) [k : x > 0An <O0]

Validity, soundness,
completeness

Validity

A IL triple [P]| r O] is valid if O C [[7[|P
Is[x > 0] x := 10x [x > 10] valid? o
Is|[x > 0,y > 0] x :=yx |x > 0] valid? X

Is[x>0,y>0]x:=yx[x=42,y =7]valid? @

s [xy > 0] (x:= yx)* [x > 0,y # 0] valid? ~ © <l

Relational semantics

|rfle C 2 X 2

17]] : o(X) — go(X) [r]lok C 2 X X
|rfler C 2 X 2

Semantics: atomic commands

[skip]lok = {(s,0) | 6 € 2}
[skip]ler = &

[b?ok = {(6,0) | 6 E b)
[62Ter 2 &

[x := allok = {(o,0[x — [[a]lo]) | 0 € 2}
[x := aller 2 @

Semantics: atomic commands

[error()]lok = &
[error()]ler = {(0,0) | 0 € X}

[x := nondet()]lok = {(c,0[x —» V]) |oc € 2, v e Z}
[x := nondet()]ler = &

Semantics: compositions

S, TC2XXZ2
ToS = {(0y,00) | do6. (061,0) €ESA(0,0,) €ET} CL XX

[7; ry]lok = [[r,]lok o [[7]lok
[7r;ryller = [[ryller U (Ilr,ller o [[7]lok)

\r + rlle =llrlle U llrle

Tr*Tle U [7<Tle where r* £ ;-2 7

kEN k times

Minimal set of rules

[Pl r IRl [RIr (O]

latom] W Iseq]

[Pl elllellf]

Vie{l,2} |P] r; [Ql] | Vn > 0. [P, 7 [Pn+1] "
PIR+rl0,00,] 0% e 3k, g ed
[P] r[O]

lcons]

Auxiliary rules
[Pl rlO [P]rlO,]

P VPIrI0 VO, o

W literO]

[P]r*;r[Q] AIrlol
o el PARIFIQAR] ome
P'= P [P]r[O] [P1r[Q] Q= O

———————— |[weak] ——— [stren]

[P] r [O] [P] r[Q]

Correctness

Th. Any derivable IL triple is valid

Proof. By induction on the derivation tree

(Relative) Completeness

Involving finitely-supported predicates

Th. Any valid IL triple can be derived

Proof. (Assuming an oracle to decide implications.

Roughly, by structural induction on the command r.

Atomic commands: [atom]| + [cons]
Choice and sequence by inductive hyp. + [disj] + [cons]

For iteration first we do the proot tor € = ok. Supposing [p|(C)™|ok: g] is true, we define

p(n) = {o | you can get back from o to some state in p by executing C backwards n times}.
Note that p(0) = p by this definition. From the definition of p(n) it is evident that
[p(n) A nat(n)]C[ok: p(n + 1) A nat(n)]

is true, and hence it is provable by induction hypothesis. We apply the Backwards Invariant rule and
then Consequence using ¢ = dn.p(n), which is a true implication because of the Characterization
lemma. This shows that [p](C)*[ok: q] is provable. (We use n to describe the number of iterations
in a similar way to Harel [1979], except that he appeals to Godel encoding, and to de Vries and
Koutavas [2011], who use an infinitary disjunction.)

Now, for € = er we use the idea is that if an error is thrown then some number of successful
iterations happens first, followed by error happening on thenext (last) iteraiton. We use the rule
Iterate non-zero to deal with this case. So, suppose [p](C)*[er: q] is true and define frontier to be
the reachable states for normal termination; i.e., frontier = post([C] ok)p. By the just-proven com-
pleteness case for iteration and normal termination, we know that [p](C)*[ok: frontier] is provable.
Now, [frontier]C[er: q] must be true (note the absence of), or else the beginning assumption that
[p](C)*[er: ¢] could not be. By induction hypothesis we know [frontier]C[er: q] is provable, and we
can use Sequencing (normal) and Iterate non-zero to conclude that [p](C)*[er: q] is provable.

Questions

Question 1
Which IL triples are valid for any r and P ?

|P] r|ok : falsel|er : false] @

|P] r|ok : true] X

[true] r [ok : P] X

(wip(r, P)] r [ok : P] X

Question 2

Find a derivation for the IL triple
[true] iIf x > y then z:=x else z:=y[ok : z = max(x, V)]

[true]
If x > y then

Question 2

Find a derivation for the IL triple
[true] iIf x > y then z:=x else z:=y[ok : z = max(x, V)]

[true]
If x > y then
[x >yl
. — X
z=x2>2y|=[x2>y,z=max(x,y)]

z:=Y
[z =y >x]=[y>x z=max(x,y)]
ok : z = max(x, y)]

Question 3

Show that the following rule for assignment is not sound

[Pl x :=a|ok : Pla/x]]

syntax

replacement

Consider the instance [x = y] x := 0 [ok : y = 0]
then (x — 1,y = 0) F (y = 0) but is not a reachable state!

