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Program incorrectness:  
pragmatic motivations



POPL 2020
“Program correctness and incorrectness 
are two sides of the same coin”


Peter O’Hearn (2020)
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Incorrectness Logic

PETER W. O’HEARN, Facebook and University College London, UK

Program correctness and incorrectness are two sides of the same coin. As a programmer, even if you would
like to have correctness, you might find yourself spending most of your time reasoning about incorrectness.
This includes informal reasoning that people do while looking at or thinking about their code, as well as that
supported by automated testing and static analysis tools. This paper describes a simple logic for program
incorrectness which is, in a sense, the other side of the coin to Hoare’s logic of correctness.

CCS Concepts: • Theory of computation→ Programming logic.

Additional Key Words and Phrases: Proofs, Bugs, Static Analysis

ACM Reference Format:
Peter W. O’Hearn. 2020. Incorrectness Logic. Proc. ACM Program. Lang. 4, POPL, Article 10 (January 2020),
32 pages. https://doi.org/10.1145/3371078

1 INTRODUCTION

When reasoning informally about a program, people make abstract inferences about what might
go wrong, as well as about what must go right. A programmer might ask “will the program crash
if we give it a large string?”, without saying which large string. In this paper we investigate the
hypothesis that reasoning about the presence of bugs can be underpinned by sound techniques
in a principled logical system, just as reasoning about correctness (absence of bugs) has been
demonstrated to have sound logical principles in an extensive research literature. We also consider
the relationship of the principles to automated reasoning tools for finding bugs in software.

We explore our hypothesis by defining incorrectness logic, a formalism that is similar to Hoare’s
logic of program correctness [Hoare 1969], except that it is oriented to proving incorrectness rather
than correctness. Hoare’s theory is based on specifications of the form

{pre-condition}code{post-condition}

which say that the post-condition over-approximates (describes a superset of) the states reachable
upon termination when the code is executed starting from states satisfying the pre-condition (the
so-called strongest post). Conversely, we use a specification form

[presumption]code[result]

which says that the post-assertion result be an under-approximation (subset) of the final states that
can be reached starting from states satisfying the presumption.

The under-approximate triples were studied (with a different but equivalent definition) previously
by de Vries and Koutavas [2011] in their reverse Hoare logic, which they used to specify randomized
algorithms. Incorrectness logic adds post-assertions for errors as well as for normal termination, and
these assertions describe erroneous states that can be reached by actual program executions. Dijkstra
[1976] famously remarked that “testing can be quite effective for showing the presence of bugs, but
is hopelessly inadequate for showing their absence,” and he made this remark while arguing for the
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Incorrectness Logic 10:3

∧∨ Symmetry: [p]c[q1] ∧ [p]c[q2] ⇐⇒ [p]c[q1 ∨ q2]

{p}c{q1} ∧ {p}c{q2} ⇐⇒ {p}c{q1 ∧ q2}

⇑⇓ Symmetry: p ′ ⇐ p ∧ [p]c[q] ∧ q ⇐ q′ =⇒ [p ′]c[q′]

p ′ ⇒ p ∧ {p}c{q} ∧ q ⇒ q′ =⇒ {p ′}c{q′}

Principle of Agreement: [u]c[u ′] ∧ u ⇒ o ∧ {o}c{o′} =⇒ u ′ ⇒ o′

Principle of Denial: [u]c[u ′] ∧ u ⇒ o ∧ ¬(u ′ ⇒ o′) =⇒ ¬({o}c{o′})

Fig. 1. Correctness and Incorrectness Principles

Figure 1 depicts the two triples. Predicates in the diagram represents the set of subsets of a
collection of program states, and the arrows are binary relations. The relation [−]c[−] relates any
pair (p,q) of predicates when [p]c[q] holds, and similarly for {−}c{−}. post (c ) is actually a function
(a single-valued relation), which maps each input predicate to the set of those states reachable
upon termination; the others are non-functional relations. The picture is a commuting diagram in
the category of sets and binary relations: i.e., [−]c[−] = post (c ); ⊇ and {−}c{−} = post (c ); ⊆, where
‘;’ is sequential composition of binary relations. The diagram can be taken to define [−]c[−] and
{−}c{−} in terms of post (c ). A rigorous semantics of these notions will be given later in Section 5.
post (c )p is often called the “strongest” post-condition, because it is the smallest set of states

amongst those q satisfying {p}c{q}. This nomenclature reflects the historical accident of focus on
the top triangle, and not the equally (we shall attempt to show) natural bottom. post (c )p is also the
largest q satisfying [p]c[q], what we might call the “weakest under-approximate post”.

Below the diagramwe list several principles. The under-approximate triple part of∧∨ symmetry is
central: it supports sound reasoning covering fewer than all the paths in a program. The correctness
version of the symmetry is true in our framework but the⇒ implication has sometimes been denied
in correctness logics (e.g., [Gotsman et al. 2011]). Both parts of the ⇑⇓ symmetry are important:
these are “rules of consequence” which allow specifications to be adapted to broader contexts.

To understand the Principles of Agreement andDenial is it helpful fo appeal to testing terminology.
In this picture
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strongest 
postcondition

over 
approximation

weakest under 
approximated post

under 
approximation

Hoare partial 
correctness triple

O’Hearn 
incorrectness triple



false 

positive

Over-approximation:

good for proving correctness

bad for bug-finding

[[c]]P

[[c]]P

true

negatives

Correctness vs incorrectness

[[c]]P

[[c]]P

false

negative

true 

positives

Under-approximation:

bad for proving correctness

good for bug-finding



Correctness workflow, ideally

developer

code inspector

code repository deployment

warnings

correct!

some scalability issues in a

production environment:

analysis takes time (overnight?),

warnings are received late,

false positives mine credibility

facebook.com/careers
facebook.com/careers

facebook.com/careers

>100K 
commits per week

>1M 
source control commands


run per day



Design principles

Low friction 
do not rely on manual annotations


Act fast 
able to report errors in less than 15’


Be compositional 
whole program analysis is discouraged


Occam 
do not use complex techniques (unless forced)

True positive theorem! 
(under certain assumptions) the analyzer 

reports no false positives

“do not spam the developers!”



Incorrectness Logic 
(IL)



Hoare’s triples

  {P} c {Q}

pre  
condition

post 
condition

for any input matching the precondition

executing the command establishes the postcondition


                 [[c]]P ⊆ Q
over 

approximation!
can include non 
reachable states

O’Hearn’s triples

  [P] c [Q]

pre  
condition

post 
condition

any output matching the postcondition

can be reached by executing the command 

on some input matching the precondition 


           [[c]]P ⊇ Q
under 

approximation!
includes just 

reachable states



As first order formulas
  {P} c {Q}

  [P] c [Q]

[[c]]P ⊆ Q

[[c]]P ⊇ Q

∀σ ∈ P . ∀σ′ ∈ [[c]]σ . σ′ ∈ Q≡

≡ ∀σ′ ∈ Q . ∃σ ∈ P . σ′ ∈ [[c]]σ

any reachable output satisfies the postcondition

any output in the postcondition is reachable



Regular commands

  

      |     

      |      + 

      |     

r ::= e
r1; r2
r1 r2
r⋆

regular 
command atomic 

command

Kleene 
star

skip  

       |    

       |    

       |  error( )

       |  nondet( )

       |  …

e ::=
x := a
b?

x :=

choice



Exit condition
  [P] r [ϵ : Q]

 is the exit condition

       ok: normal execution

       er: erroneous execution

ϵ

 x := y           error( ) [y = v] [ok : x = y = v] [y = v] [𝖾𝗋 : y = v]



Notation

  


stands for


   and   

[P] r [𝗈𝗄 : Q1][𝖾𝗋 : Q2]

[P] r [𝗈𝗄 : Q1] [P] r [𝖾𝗋 : Q2]



Floyd’s axiom for assignment

 x := 42 [y = 42] [𝗈𝗄 : x = y = 42]

  [P] x := a [𝗈𝗄 : ∃x′ . P[x′ /x] ∧ x = a[x′ /x]][𝖾𝗋 : 𝖿𝖺𝗅𝗌𝖾]



Hoare’s axiom for assignment?

 x := 42 


unsound!


 not reachable

[y = 42] [𝗈𝗄 : x = y]

σ ≜ [x ↦ 3,y ↦ 3]

  [Q[a/x]] x := a [𝗈𝗄 : Q][𝖾𝗋 : 𝖿𝖺𝗅𝗌𝖾]



Other atomic commands

  [P] b? [𝗈𝗄 : P ∧ b][𝖾𝗋 : 𝖿𝖺𝗅𝗌𝖾]

 ( ) [P] 𝖾𝗋𝗋𝗈𝗋 [𝗈𝗄 : 𝖿𝖺𝗅𝗌𝖾][𝖾𝗋 : P]

 ( ) [P] x := 𝗇𝗈𝗇𝖽𝖾𝗍 [𝗈𝗄 : ∃x . P][𝖾𝗋 : 𝖿𝖺𝗅𝗌𝖾]

  [P] 𝗌𝗄𝗂𝗉 [𝗈𝗄 : P][𝖾𝗋 : 𝖿𝖺𝗅𝗌𝖾]



Short circuiting of errors
         [P] r1 [𝗈𝗄 : R] [R] r2 [ϵ : Q]

   [P] r1; r2 [ϵ : Q]
  [P] r1 [𝖾𝗋 : Q]

   [P] r1; r2 [𝖾𝗋 : Q]

 error( ) ; x := y [y = v] [𝖾𝗋 : y = v]



Dropping disjuncts
   [P] r1 [ϵ : Q]

   [P] r1 + r2 [ϵ : Q]

 error( ) + x := y 


 error( ) + x := y 

[y = v] [𝖾𝗋 : y = v]

[y = v] [𝗈𝗄 : x = y = v]

   [P] r2 [ϵ : Q]
   [P] r1 + r2 [ϵ : Q]

sound under-approximation!

scalable bug detection



Example

  


is it a valid IL triple?


   , , , … 

[y = 0] 𝗂𝖿 even(x) 𝗍𝗁𝖾𝗇 y := 42 [𝗈𝗄 : y = 42]

(y = 42) ≜ { [x ↦ 0,y ↦ 42] [x ↦ 1,y ↦ 42] [x ↦ 2,y ↦ 42] }



Example

  


is it a valid IL triple?


   , , … 

[y = 0] 𝗂𝖿 even(x) 𝗍𝗁𝖾𝗇 y := 42 [𝗈𝗄 : y = 42 ∧ even(x)]

y = 42 ∧ even(x) ≜ { [x ↦ 0,y ↦ 42] [x ↦ 2,y ↦ 42] }



IL vs HL

  


  


  


  

[y = 0] 𝗂𝖿 even(x) 𝗍𝗁𝖾𝗇 y := 42 [𝗈𝗄 : y = 42 ∧ even(x)]

{y = 0} 𝗂𝖿 even(x) 𝗍𝗁𝖾𝗇 y := 42 {y = 42 ∧ even(x)}

{y = 0 ∧ even(x)} 𝗂𝖿 even(x) 𝗍𝗁𝖾𝗇 y := 42 {y = 42}

[y = 0 ∧ even(x)] 𝗂𝖿 even(x) 𝗍𝗁𝖾𝗇 y := 42 [𝗈𝗄 : y = 42]



Bounded loop unrolling

   [P] r⋆ [𝗈𝗄 : P]
   [P] r⋆; r [ϵ : Q]
   [P] r⋆ [ϵ : Q]

sound under-approximation!

scalable bug detection

  


  

[x = 0] (x := x + 1)⋆ [𝗈𝗄 : x = 0]

[x = 0] (x := x + 1)⋆ [𝗈𝗄 : x = 2]



Backwards variant (weak)
.    ∀n ∈ ℕ [Pn] r [𝗈𝗄 : Pn+1]

   [P0] r⋆ [𝗈𝗄 : Pk]

loop invariants are inherently over-approximations 

sub-variants to reason about loop under-approximation

    // 


 ( ) 

[x = 0] (x := x + 1)⋆ [𝗈𝗄 : x = 242] Pn ≜ (x = n)

[x = 0] (x := x + 1)⋆ ; 𝗂𝖿 (x = 242) 𝗍𝗁𝖾𝗇 𝖾𝗋𝗋𝗈𝗋 [er : x = 242]



Consequence rule
        P′ ⇒ P [P′ ] r [ϵ : Q′ ] Q ⇒ Q′ 

  [P] r [ϵ : Q]

shrink the post!

scalable bug detection

        P ⇒ P′ {P′ } r {Q′ } Q′ ⇒ Q
  {P} r {Q}



Some dualities

                     


               

[P] r [Q1] ∧ [P] r [Q2] ⇔ [P] r [Q1 ∨ Q2]

{P} r {Q1} ∧ {P} r {Q2} ⇔ {P} r {Q1 ∧ Q2}



Some dualities

  {P} r {Q ∧ R}
  {P} r {Q}

  [P] r [Q ∨ R]
  [P] r [Q]

dropping disjuncts (by conseq. rule) dropping conjuncts (by conseq. rule)



A duality
For incorrectness 
reasoning  

You must remember 
information as you go 
along a path, but you 
get to forget some of 
the paths 

For correctness 
reasoning

You get to forget 
information as you go 
along a path, but you 
must remember all the 
paths.

(Slide courtesy of Peter O’Hearn) !14



Principle of agreement

Th. 
If       

       

      

then 

[P′ ] r [Q′ ] ∧
P′ ⇒ P ∧
{P} r {Q}

Q′ ⇒ Q

Proof. 
          // by IL


    // 

     // by HL


Q′ ⊆
[[r]]P′ ⊆ P′ ⇒ P
[[r]]P ⊆
Q

partially correct programs cannot exhibit counterexamples



Principle of denial

Th. 
If       

       

      

then 

[P′ ] r [Q′ ] ∧
P′ ⇒ P ∧
{P} r {Q}

Q′ ⇒ Q

any derivable counterexample witnesses program incorrectness

Cor. 
If       

       

    

then   

[P′ ] r [Q′ ] ∧
P′ ⇒ P ∧
¬(Q′ ⇒ Q)

¬({P} r {Q})



Examples
   




      

   

      




      

   

        

   

[𝗍𝗋𝗎𝖾]
𝗂𝖿 x ≥ 0 𝗍𝗁𝖾𝗇

[x ≥ 0]
𝗌𝗄𝗂𝗉

[x ≥ 0]
𝖾𝗅𝗌𝖾

[x < 0]
x := − x

[∃x′ . x′ < 0 ∧ x = − x′ ] ≡ [x > 0]
[𝗈𝗄 : x ≥ 0]



Examples

   




      

   

         

      

         

   

[z = 11]
𝗂𝖿 even(x) 𝗍𝗁𝖾𝗇

[z = 11 ∧ even(x)]
𝗂𝖿 odd(y) 𝗍𝗁𝖾𝗇

[z = 11 ∧ even(x) ∧ odd(y)]
z := 42

[z = 42 ∧ even(x) ∧ odd(y)]
[𝗈𝗄 : z = 42 ∧ even(x) ∧ odd(y)]



Finite unrolling of while loops
while  do b c ≜ (b?; c)⋆; ¬b?

 while  do   [P] b c [𝗈𝗄 : P ∧ ¬b]

 while  do   [P] b c [𝗈𝗄 : (P ∨ Q) ∧ ¬b]
   [P ∧ b] c [𝗈𝗄 : Q]



Finite unrolling of while loops
while  do b c ≜ (b?; c)⋆; ¬b?

 while  do   [P] b c [𝗈𝗄 : P ∧ ¬b]
   [P] (b?; c)⋆ [𝗈𝗄 : P]    [P] ¬b? [𝗈𝗄 : P ∧ ¬b]



Finite unrolling of while loops
while  do 

                  

b c ≜ (b?; c)⋆; ¬b?
r ≜ b?; c

 while  do   [P] b c [𝗈𝗄 : (P ∨ Q) ∧ ¬b]
   [P] r⋆ [𝗈𝗄 : Q]    [Q] ¬b? [𝗈𝗄 : Q ∧ ¬b]

   [P] r⋆; r [𝗈𝗄 : Q]
   [P] r⋆ [𝗈𝗄 : P]    [P] r [𝗈𝗄 : Q]

   [P] b? [𝗈𝗄 : P ∧ b]    [P ∧ b] c [𝗈𝗄 : Q]



Examples
   


( );

   


;

   


 (

       

    

       

    ( )

         

)  

[𝗍𝗋𝗎𝖾]
n := 𝗇𝗈𝗇𝖽𝖾𝗍

[𝗍𝗋𝗎𝖾]
x := 0

[x = 0]
𝗐𝗁𝗂𝗅𝖾 n > 0 𝖽𝗈

[x = 0 ∧ n > 0]
x := x + n;

[x = n ∧ n > 0]
n := 𝗇𝗈𝗇𝖽𝖾𝗍

[∃n . x = n ∧ n > 0] ≡ [x > 0]
[𝗈𝗄 : x ≥ 0 ∧ n ≤ 0]

 while  do   [P] b c [𝗈𝗄 : (P ∨ Q) ∧ ¬b]
   [P ∧ b] c [𝗈𝗄 : Q]



Validity, soundness, 
completeness



Is    valid?


Is    valid?


Is    valid?


Is    valid?

[x > 0] x := 10x [x > 10]

[x > 0,y > 0] x := yx [x ≥ 0]

[x > 0,y > 0] x := yx [x = 42,y = 7]

[xy > 0] (x := yx)⋆ [x > 0,y ≠ 0]

Validity

A IL triple    is valid if [P] r [Q] Q ⊆ [[r]]P

difficulty level: 
highest



Relational semantics

[[r]] : ℘(Σ) → ℘(Σ)





[[r]]ϵ ⊆ Σ × Σ
[[r]]𝗈𝗄 ⊆ Σ × Σ
[[r]]𝖾𝗋 ⊆ Σ × Σ



Semantics: atomic commands



  




  




  


[[𝗌𝗄𝗂𝗉]]𝗈𝗄 ≜ {(σ, σ) ∣ σ ∈ Σ}
[[𝗌𝗄𝗂𝗉]]𝖾𝗋 ≜ ∅

[[b?]]𝗈𝗄 ≜ {(σ, σ) ∣ σ ⊧ b}
[[b?]]𝖾𝗋 ≜ ∅

[[x := a]]𝗈𝗄 ≜ {(σ, σ[x ↦ [[a]]σ]) ∣ σ ∈ Σ}
[[x := a]]𝖾𝗋 ≜ ∅

common 
constructs



Semantics: atomic commands

  






  

[[𝖾𝗋𝗋𝗈𝗋( )]]𝗈𝗄 ≜ ∅
[[𝖾𝗋𝗋𝗈𝗋( )]]𝖾𝗋 ≜ {(σ, σ) ∣ σ ∈ Σ}

[[x := 𝗇𝗈𝗇𝖽𝖾𝗍( )]]𝗈𝗄 ≜ {(σ, σ[x ↦ v]) ∣ σ ∈ Σ, v ∈ ℤ}
[[x := 𝗇𝗈𝗇𝖽𝖾𝗍( )]]𝖾𝗋 ≜ ∅

“exotic” 
constructs



Semantics: compositions

  

   


  


               where 

[[r1; r2]]𝗈𝗄 ≜ [[r2]]𝗈𝗄 ∘ [[r1]]𝗈𝗄
[[r1; r2]]𝖾𝗋 ≜ [[r1]]𝖾𝗋 ∪ ([[r2]]𝖾𝗋 ∘ [[r1]]𝗈𝗄)

[[r1 + r2]]ϵ ≜ [[r1]]ϵ ∪ [[r2]]ϵ

[[r⋆]]ϵ ≜ ⋃
k∈N

[[rk]]ϵ rk ≜ r; ⋯; r

k 𝗍𝗂𝗆𝖾𝗌


S, T ⊆ Σ × Σ
T ∘ S ≜ {(σ1, σ2) ∣ ∃σ . (σ1, σ) ∈ S ∧ (σ, σ2) ∈ T} ⊆ Σ × Σ



Minimal set of rules

  [P] e [[[e]]P] [atom]
         [P] r1 [R] [R] r2 [Q]

  [P] r1; r2 [Q] [seq]

    ∀i ∈ {1,2} [P] ri [Qi]
  [P] r1 + r2 [Q1 ∪ Q2]

[choice]
   ∀n ≥ 0. [Pn] r [Pn+1]

  [P0] r⋆ [∃k . Pk]
[iter]

        P′ ⇒ P [P′ ] r [Q′ ] Q ⇒ Q′ 

  [P] r [Q] [cons]



     P′ ⇒ P [P′ ] r [Q]
  [P] r [Q] [weak]

      [P] r [Q′ ] Q ⇒ Q′ 

  [P] r [Q] [stren]

  [P1 ∨ P2] r [Q1 ∨ Q2]
[disj]

        [P1] r [Q1] [P2] r [Q2]

  [P ∧ R] r [Q ∧ R] [frame]
  [P] r [Q]

Auxiliary rules

 assigned variables in  
are disjoint from  

free variables in  

r

R
   [P] r⋆ [P]

   [P] r⋆; r [Q]
   [P] r⋆ [Q]

[iter0]

[unroll]



Correctness

Th. Any derivable IL triple is valid


Proof. By induction on the derivation tree



(Relative) Completeness

Th. Any valid IL triple can be derived.


Proof. (Assuming an oracle to decide implications.)

Roughly, by structural induction on the command .

Atomic commands: [atom] + [cons]

Choice and sequence: by inductive hyp. + [disj] + [cons]

Kleene star: see O’Hearn’s paper

r

 involving finitely-supported predicates

independent of all but a finite 
number of varables
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follows from the fact that Floyd’s axiom expresses the strongest post-condition, which is therefore
also an under-approximation. Similar is true for skip, error(), x=nondet() and assume(B).

Next we need a condition on predicates. A subset p ⊆ Σ(= Variables → Values) might depend on
all variables, but we need to be able to select a fresh variable y not in a given assertion in order to
apply the Local Variable rule in the proof of completeness. So, suppose that Variables is countably
infinite, and define a predicate p to be finitely-supported if it is independent of all but a finite number
of variables. Typically in applications, assertions will be written syntactically as finite expressions
involving finitely many variables, so being finitely-supported is not a drastic restriction.

Theorem 6 (Completeness). Every true triple involving finitely-supported predicates is provable.

This theorem relies on us using semantic (subset of Σ) rather than syntactic predicates, with an
oracle to decide implications. It does not contradict undecidability results, but rather confirms a
sense in which no proof rules for programs are missing. [To cognoscenti: semantic predicates let us
assume (or dodge the issue of) “expressiveness” [Cook 1978] used in completeness for Hoare logics,
and requiring that Values contains the natural numbers builds in the “arithmetical” interpretation
idea used in arguments for liveness proof rules [Harel 1979]. Our use of semantic predicates
has precedent, e.g., in the metatheory of separation logic [Calcagno et al. 2007; Yang 2001] and
embeddings of program logics in proof assistants [Nipkow 2002].]

Proof: We need to show that [p]C[ϵ:q] is provable on the assumption that it is true, and we do
this by induction on the structure of C . The base cases for assignment, error and assume follow at
once using the rule of consequence and the fact that the axioms express strongest post-conditions.

For choice, if [p]C1 +C2[ϵ:q] is true then we know that q is a subset of post (!C1 +C2"ϵ )p, which
is equal to post (!C1"ϵ )p ∨ post (!C2"ϵ )p. By induction we know that each [p]Ci [ϵ: post (!C2"ϵ )p] is
provable, and so the provability of [p]C1 +C2[ϵ:q] follows by the disjunction rule and consequence.
For sequencing, in case ϵ = ok the result follows by induction using the first sequencing rule,

consequence, and that post (!C1;C2"ok)p = post (!C2"ok) (post (!C1"ok)p). In case ϵ = er we use
induction, consequence and the rule of disjunction together with the equality post (!C1;C2"er )p =
(

post (!C2"er ) (post (!C1"ok)p)
)

∨ post (!C1"er )p.

For iteration first we do the proof for ϵ = ok. Supposing [p](C )⋆[ok:q] is true, we define

p (n) = {σ | you can get back from σ to some state in p by executing C backwards n times}.

Note that p (0) = p by this definition. From the definition of p (n) it is evident that

[p (n) ∧ nat (n)]C[ok:p (n + 1) ∧ nat (n)]

is true, and hence it is provable by induction hypothesis. We apply the Backwards Invariant rule and
then Consequence using q ⇒ ∃n.p (n), which is a true implication because of the Characterization
lemma. This shows that [p](C )⋆[ok:q] is provable. (We use n to describe the number of iterations
in a similar way to Harel [1979], except that he appeals to Gödel encoding, and to de Vries and
Koutavas [2011], who use an infinitary disjunction.)
Now, for ϵ = er we use the idea is that if an error is thrown then some number of successful

iterations happens first, followed by error happening on thenext (last) iteraiton. We use the rule
Iterate non-zero to deal with this case. So, suppose [p](C )⋆[er:q] is true and define frontier to be
the reachable states for normal termination; i.e., frontier = post (!C"ok)p. By the just-proven com-
pleteness case for iteration and normal termination, we know that [p](C )⋆[ok: frontier] is provable.
Now, [frontier]C[er:q] must be true (note the absence of ⋆), or else the beginning assumption that
[p](C )⋆[er:q] could not be. By induction hypothesis we know [frontier]C[er:q] is provable, and we
can use Sequencing (normal) and Iterate non-zero to conclude that [p](C )⋆[er:q] is provable.
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Questions



Question 1
Which IL triples are valid for any  and  ?r P

  [P] r [𝗈𝗄 : 𝖿𝖺𝗅𝗌𝖾][𝖾𝗋 : 𝖿𝖺𝗅𝗌𝖾]

  [P] r [𝗈𝗄 : 𝗍𝗋𝗎𝖾]

  [𝗍𝗋𝗎𝖾] r [𝗈𝗄 : P]

  [wlp(r, P)] r [𝗈𝗄 : P]



Question 2
Find a derivation for the IL triple


  [𝗍𝗋𝗎𝖾] 𝗂𝖿 x ≥ y 𝗍𝗁𝖾𝗇 z := x 𝖾𝗅𝗌𝖾 z := y [𝗈𝗄 : z = max(x, y)]

   




       

    

         




      

    

        

   

[𝗍𝗋𝗎𝖾]
𝗂𝖿 x ≥ y 𝗍𝗁𝖾𝗇

[x ≥ y]
z := x

[z = x ≥ y] ≡ [x ≥ y, z = max(x, y)]
𝖾𝗅𝗌𝖾

[x < y]
z := y
[z = y > x] ≡ [y > x, z = max(x, y)]

[𝗈𝗄 : z = max(x, y)]



Question 2
Find a derivation for the IL triple


  [𝗍𝗋𝗎𝖾] 𝗂𝖿 x ≥ y 𝗍𝗁𝖾𝗇 z := x 𝖾𝗅𝗌𝖾 z := y [𝗈𝗄 : z = max(x, y)]

   




       

    

         




      

    

        

   

[𝗍𝗋𝗎𝖾]
𝗂𝖿 x ≥ y 𝗍𝗁𝖾𝗇

[x ≥ y]
z := x

[z = x ≥ y] ≡ [x ≥ y, z = max(x, y)]
𝖾𝗅𝗌𝖾

[x < y]
z := y
[z = y > x] ≡ [y > x, z = max(x, y)]

[𝗈𝗄 : z = max(x, y)]



Question 3
Show that the following rule for assignment is not sound

  [P] x := a [𝗈𝗄 : P[a/x]]
syntax 

replacement

Consider the instance   

then    but is not a reachable state!

[x = y] x := 0 [𝗈𝗄 : y = 0]
(x ↦ 1,y ↦ 0) ⊧ (y = 0)


