Program Analysis

Lecture #2

Roberto Bruni

UNIVERSITA
DI PIsSA

(P*R) r (Q*R)

June 30 - July 4, 2025

SCHOOL OF ADVANCED STUDIES

GRAN SASSO
PhD Course G SCIENCE INSTITUTE

http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni

Conseqguence rule

P=P (PjriQ} Q0=0¢

forward / backward

x—y<xAx+y2>0}
n:=x-—y;
in<xAx+y2>0}

Conseqguence rule

P=P (PjriQ} Q0=0¢

forward / backward

=Yy<O0Ax2>20Ay >0} =

x—y<xAx+y2>0}
ni=x-—y;

in<xAx+y2>0}

Conseqguence rule

P=P (PjriQ} Q0=0¢

forward / backward

(x>0Ay>0}=>
=Yy<O0Ax2>20Ay >0} =
x—y<xAx+y2>0}
n:i=x-—y;
in<xAx+y2>0}

Hoare’s proof

{true}
ri=X

g .= 0;
while y < r do
ri=r-—y;

qg:=q+1

ftrue} = {x = x}
ri=2Xx

X =rj
q = 0;
while y < r do

ri=r-—y;

g:=q+1

Hoare’s proof

Hoare’s proof

{true} = {x = x}
ri=X

Ix=r}={x=
qzzo;} {x=r+ 0y}
X =Tr+qyj
while y < r do

ri=r-—y;

qg:=q+1

Hoare’s proof

{true} = {x = x}

r .= X -
{X:I"}E{x=r+()y} WhiledeC
7:=0;
(x=r+qy}

WhlleySFdO
rF.=—r—y,

q:=q+1

Hoare’s proof

{true} = {x = x}
rF .= X C
{x=r}={x=r+0y}

q:=0:

X =r+qy}
while y < r do

X=r+gyAy=<rj

while b do ¢

ri=r-—y;
qg:=q+1
X =Tr+qy;

Ix=r+qgyAy>r}

Hoare’s proof

{true} = {x = x}
rF .= X C
{x=r}={x=r+0y}

q:=0:

WX =r+qyj

consequence
while y < r do =

Ix=r+gyANy<r} = {x=r+qgy}

while b do ¢

ri=r-—y;
qg:=q+1
X =71+qy]

Ix=r+qgyAy>r}

Hoare’s proof

{true} = {x = x}

ri=X {PADb} c{P}
e=rp=ix=r+0y) {P}while bdo ¢ {PA-D}
q:=0;
{X = r + qy } consequence
while y < r do fule

X=r+gyAy<r}y = {x=r+qy}=ix=0—-y)+(@+ 1)y}
ri=r-—y,

{x=r+(q+ 1)y} e
g .=qg+1 {Q[CZ/X]}XIZCZ{Q}

X =7+qy;
xX=r+qyAy>r}

Wait a moment...
{true} = {x = x}
r .— X
ix=r}={x=r+0y}
q = 0; [cll[x = 5y— —-2]=...=0
X =r+qyj
while y < r do
xX=r+gyAy<rj = {x=0—-y)+(@+ 1)y}
ri=r-—y;
x=r+(g+ Dy}
g .=qg+1
X =r+qy;
Ix=r4+qgyAy>r}

Wait a moment...
ftrue} = {x = x}
r .=— X
Ix=r}={x=r+ 0y}
g = 0; Iclllx— S5y~ 22— 0]=...=0
X =r+qy;
while z = 0 do
WX =r+qgyAz=0} = (x=@-y)+(@+1)y;
ri=r-—y,
x=r+(q+ 1)y}
qg:=q+1
(x=r+gqyj
x=r+gyANz#0}

NoO guarantee of termination

(x> 0] Icllx—35]=...=0

while x > 0 do
Ix>20Ax>0} = {x+1 >0}
x:=x+ 1;
x> 0}
Ix>20Ax<0}={x=0}

False positive

Ix=1}whilex>0dox:=x+1{x=0}

complete the proof below

(x=1}=>{7)}
while x > 0 do

1?7 Ax> 0}
x:=x++1;

v}
{? Ax<0}=> {x=0}

Partial vs total correctness

when the precondition Is met, m
executing the command

establishes the postcondition

when the precondition is met, n

executing the command terminates
and establishes the postcondition

Pyci0]

total correctness = partial correctness + termination

Total correctness: the idea

choose a measure

called "variant”
(e.g., an arithmetic expression)

(P} :
Wh | Ie b dO prove that each execution
{P/\b} t:Z of the body c

decreases the value of 7
C

P} < 7
{P A b}

here 7 is a fresh variable

that keeps the value of ¢
before the execution of ¢

prove that
whenever the loop invariant holds

the value of 7 iIs bounded below

Rule for total correctness

fresh precedence bounded
variable relation decrease

{PADb} c{P} {(PAbAt=z}lclt<z} P=>t>0
[P} while bdo ¢ {P A b}

proof obligations

variant =

termination
function

lTotal correctness proof

(x>0)taket 2 x obligations P=>1t>0
while x > 0 do x>0=>x >0
(x>0Ax>0} = {x—1>0)
x:=x—1;
(x>0} IPAbDANt=27}c{t<Z}

X20Ax L0} ={x=0} (x>0Ax>0Ax=2}=>

(x=z}=>

x<z+4+1}=

Ix—1<z} =
x:=x-—1

{x <z}

lTotal correctness proof

(Xx>0Ay>01={x>20Ay>0Ax=x+4+ 0y}

ri=x
(X>0AY>0AXxX=r+0y}={r>0Ay>0Ax=r+ 0y}
q:=0;

(r>0Ay>0Ax=r+qy}taket = r
while y < r do
(r>2y>0Ax=r+qy}=2{r—-y>0Ay>0Ax=r—y+(@q+ 1)y}

ri=r-—y,
(r>0Ay>0Ax=r+(g+ 1)y}
qg . =q+1

{r>0ANy>0Ax=r+qgy}
{yv>r>0Ax=r+qy}

Proof obligations

P=t>0

r>0Ay>0Ax=r+qgy) =>r>0 ke A

{PAbDAt=17Z}c{t<Zz}
lr>y>0A-Ar=z}=2{r>0Ay>0A---Ar—y<z}

ri=r-—Yy,
lr>0Ay>0A--Ar<z}
qg:=q+1

(r>0Ay>0A--Ar<z}={r<zl

If rule

WPADYc 1O {PA-D} 0]}

(true) {P}1f bthen ¢ else ¢, {0}

If x > 0 then

{7(x=20)}={—-x> 0]}
X:i=—X

(x>0} =>{x2>0}
{x >0}

Finding Iinvariants is difficult!

{true}
k.= 1;
ro= X,
while kK > 0 do
if r> 100 then
r.=r—10;
k=k—1
else
ro=r+ 11;
k:=k+ 1

"

McCarthy’s 91 function

{true}

k.= 1;

roi= X

while £ > 0 do

if r ?_102 t1f10§n fla) & f(f(z+11)) 2 <100
]’;:’]; : ’ x — 10 otherwise
else f(x) A 91 r < 100

r:=r+11; L) = r — 10 otherwise
k.=k+1

=)

Invariant for McCarthy’s 91 function?

{true}
k.= 1;
{7
while £ > 0 do
if r> 100 then f(x)é{ f(f(x+11)) =z <100
r.=r—10; xr — 10 otherwise
k:=k—1
olse f(z) 2 { 91 r < 100
ro=r+11; r — 10 otherwise
k:=k+1

L= ar=f%);)

can you help me finding an invariant for the program:
"r:=x;q:=0;while (y<=r) do { r=r-y; q:=q+1}" ?

Yes! To find an invariant for the given program:

plaintext & Copia Z Madifica
r X;
q = 0;
while (y <= r) do {
r:=sr=-y;
q:=q+1;

we need to determine a property that holds before and after each iteration of the loop.

Step 1: Understanding the Program's Behavior
« The program initializes r = x and ¢ = 0.
« In each iteration, it subtracts y from r and increments q.
« Theloop continues until r < y.
« Essentially, this computes the quotient g and the remainder of the division = < y, meaning:
r=q-y+r

at the end of the program, where 0 < r < y.

Step 2: Finding the Invariant

We want an expression that remains true throughout execution. Observing the program's logic, we

see that before and after each loop iteration, the equation:
r=q-y+r
remains valid. This is because:
1. Initially: g = 0and r = z,sox = 0 - y + x holds.
2. In each iteration:

« risreduced by y, and q is increased by 1.

« The equation transforms as:

r=(g+1)-y+(r—y)

which maintains the formz = q -y + r.

Step 3: Expressing the Invariant Formally
Thus, the loop invariant is:
r=q-y+r
which holds before entering the loop and remains true after each iteration.
Step 4: Verifying Initialization and Termination
« Initialization: Before the loop starts, ¢ = 0,r = z,s0x = 0 - y + x is true.

« Preservation: Each iteration updates ¢ and r in a way that maintains the equation.

« Termination: The loop stops when r <C y. At this point, the final values of g and r satisfy:
z=q-y+r, 0<r<y
which correctly represents the division.

Conclusion
The invariant for this program is:
T=q-y+r

This property helps us reason about the correctness of the algerithm, which effectively computes the
quotient and remainder of x divided by y.

Ask an expert?

can you help me finding an invariant for the program:
"r:=x:q:=0;while (y<=r) do { r:=r-y; q:=q+1}" ?

The invariant for this program is:

rT=q-Yy-—+r

can you help me finding an invariant for the program:
"k:=1:r:=x;while (k>0) do {if (r>100) then { r:=r-10:k:=k-1} else
{r:=r+11:k:=k+1} }" ?

The loop invariant for this program is:

r=x -+ 11k

can you help me finding an invariant for the program:
k=1 r=gwhile (k»0) do { i {r=100) then { ri=r-10k:=k-1} else

(r=re 1 icsket))" 2

Yes! Let's analyze and find an invariant for the given program:

while {(k > 8} do {
if Ir > 180) then {

r=r-19

} else {

Step 1: Understanding the Program's Behavior
e The program initializes k = land r = .
* The loop conditicn is k > 0, meaning it runs as long as k remains positive.
* The loocp has two cases:
o Hfr =100
e rdecreases by 10.
ek decreases by 1.
o Hfr < 100:
* rincreases by 11
o kincreases by 1.

* The loop ends when k eventually reaches 0.

Step 2: Observing Changes to r and k
* Each iteration modifies both k and r
e i r = 100, we decrease r and decrease k.
o Hr < 100, we increase r and increase k.
* The key observation is that the program fluctuates around 100:
e I r starts above 100, it tends to decrease.
e i r starts below or at 100, it tends to increase.

e The interplay between increasing and decreasing k ensures termination.

Step 3: Finding the Invariant
We need to find a property that remains true before and after every iteration.
Observing the changes:
e Each time k changes, r is updated by a constant amount.
* Specifically:
e Wk increases by 1, r increases by 1.

o ik decreases by 1, r decreases by 10.

This suggests the key invariant:
r=x~+11k

which we will prove by induction.

Step 4: Verifying the Invariant

Base Case (Before the Loop Starts)
o hitaly:k=1r=z
o Plugging into the invariant:
r=z+11(1)=x+11
This halds because r = .
Inductive Step (Loop Iteration)
* Suppose the invariant holds before an iteration, ie., r = z + 11k
o Now, consider bath cases:
o Hr =100
e rchanges:r =r— 10
o kchanges: k' =k — 1.

o New equation
rf=z+1lk-10=c+11{k-1)+1

which still follows the form v’ = = + 11k,
o Hr < 100
e rchanges:r' =r+11
o kchanges: k' =k + 1.

o New equation
Ff=z+1lk+1l=x+11(k+1)

which stil follows r’ = z + 11k’

Thus, the invariant remains true after every iteration.

Step 5: Confirming the Invariant at Termination
e Theloop stops when k = (.
e When k = 0, the invariant says:
r=x+11(0) ==z

So the final value of r is x, showing correctness.

Conclusion
The loop invariant for this program is:

r=r+11k

This equation remains true throughout execution, ensuring that the changes in k and r are always

balanced according to their relationship.

Invariant for McCarthy’s 91 function?

{true}
k=1 0 when (kK = 1, = x) then r = x + 1 1 k does not hold!
ri= X
{r=x+11k }
while £k > 0 do
if ¥ > 100 then fp) 2 1 S+ 11) 2 <100
r:=r—10: xr — 10 otherwise
k:=k—1 _
olce f(x) A 91 r < 1OQ
Fo=r+11: r — 10 otherwise
k:=k+1

L= ar=f0);)

can you help me finding an invariant for the program:
"r:=x;q:=0;while (y<=r) do { r=r-y; q:=q+1}" ?

Yes! To find an invariant for the given program:

plaintext £y Copia Z Madifica
r:=s x;
q := 0;

while (y <= r) do {
r:=re=y;
q:=q+1;

we need to determine a property that holds before and after each iteration of the loop.

Step 1: Understanding the Program's Behavior
« The program initializes r = x and ¢ = 0.
« In each iteration, it subtracts y from r and increments q.

« Theloop continues until r < y.

Essentially, this computes the quotient g and the remainder r of the division z =~ y, meaning:
r=q-y+r

at the end of the program, where 0 < r < y.

Step 2: Finding the Invariant

We want an expression that remains true throughout execution. Observing the program's logic, we
see that before and after each loop iteration, the equation:

T=q-y+r
remains valid. This is because:
1. Initially: g = Oandr = z,sox = 0 - y + z holds.
2. In each iteration:

« risreduced by y, and q is increased by 1.

« The equation transforms as:

r=(g+1)-y+(r—y)

which maintains the formz = q-y + r.

Step 3: Expressing the Invariant Formally
Thus, the loop invariant is:
r=q-y+r
which holds before entering the loop and remains true after each iteration.
Step 4: Verifying Initialization and Termination
« Initialization: Before the loop starts, ¢ = 0,r = z,s0x = 0 - y + x is true.

« Preservation: Each iteration updates ¢ and r in a way that maintains the equation.

« Termination: The loop stops when r < y. At this point, the final values of g and r satisfy:

z=q-y+r, 0<r<y
which correctly represents the division.

Conclusion
The invariant for this program is:
r=q-y+r

This property helps us reason about the correctness of the algerithm, which effectively computes the
quotient and remainder of divided by y.

Ask an expert?

can you help me finding an invariant for the program:

"r:=x;q:=0;while (y<=r) do {r:=r-y; g:=q+1}" ?

The invariant for this program is:

T=q-Yy—+r

can you help me finding an invariant for the program:
"k:=1:r:=x;while (k>0) do {if (r>100) then { r:=r-10:k:=k-1} else

{r:=r+11:k:=k+1} }" ?

The loop invariant for this program is:

r=x+ 11k

can you help me finding an invariant for the program:
k=1 r=gwhile (k»0) do { i {r=100) then { ri=r-10k:=k-1} else
(r=re 1 kcske1)) 2

Yes! Let's analyze and find an invariant for the given program:

plainte Copis 1 Modifica

k = 1;
roi=x;
while {k > @} do {

if (r > 189) then {

r=r-19;
(3 3
else {
ri=r
k 1= k

Step 1: Understanding the Program's Behavior
e The program initializes k = land r = x.
* The loop conditicn is k& > 0, meaning it runs as long as k remains positive.
* The loocp has two cases:
o Hr o> 100
* rdecreases by 10.
o kdecreasesby 1.
o Hr< 100
* rincreases by 11
o kincreasesby 1.

e The loocp ends when k eventually reaches 0.

Step 2: Observing Changes to r and k
* Each iteration modifies both k and r-
e lr > 100, we decrease r and decrease k.
e Hr < 100, we increase r and increase k.
* The key observation is that the program fluctuates around 100:
e M r starts above 100, it tends to decrease.
e I r starts below or at 100, it tends to increase.

o The interplay between increasing and decreasing k ensures termination.

Step 3: Finding the Invariant
We need to find a property that remains true before and after every iteration.
Observing the changes:
e Each time k changes, r is updated by a constant amount.
* Specifically:
e Wk increases by 1, r increases by 1.

e Ik decreases by 1, r decreases by 10.

This suggests the key invariant:
r=x~+11k

which we will prove by induction.

Step 4: Verifying the Invariant

Base Case (Before the Loop Starts)
o hitally:k=1r==zx
* Plugging into the invariant:
r=z+11(1)=x+11
This halds because r = .
Inductive Step (Loop lteration)
* Suppose the invariant holds before an iteration, ie., r = z + 11k
o Now, consider bath cases:
o Hr > 100
e rchanges:r =r — 10
o kchanges: k' =k — 1.

* New equation:
rf=z+1k-10=c+11(k-1)+1
which still fcllows the form ' = = + 11K

oM< 100
e rchanges:r' = r+ 11
o kchanges: k' =k + 1.

* New equation:
f=z+1lk+1l=x+11(k+1)
which still follows ' = = + 11k

Thus, the invariant remains true after every iteration.

Step 5: Confirming the Invariant at Termination
* Theloop stops when k = 0.
* When k = 0, the invariant says:
r=x+11(0) =z

Sao the final value of r is x, showing correctness.

Conclusion
The loop invariant for this program is:
r=r+11k

This equation remains true throughout execution, ensuring that the changes in k and r are always

balanced accarding to their relationship.

Invariant for McCarthy’s 91 function

{true}
k:=1;
ri=X. when (k = 1,7 = x) then both k£ > 0 and /*(r) = f'(x) = f(x) hold
(k>0 Af(r) =flx)
while £ > 0 do
if > 100 then f(z) 2 f(f(r+11)) =z <100
r:=r—10:;] x—10 otherwise
=kl 01 < 100
else A L=
o=y 4+ 11; f($) { r — 10 otherwise
k. =k+1

(k=0Af()=f0} = {r=fx))

Variant for McCarthy’s 91 function?

{true}
k= 1; (fc:’:‘, Tle(:rl:n:,:ar:c?::)7
roi= X,
(k> 0Af(r)=flx)} t=72
while £k > 0 do
if r> 100 then f(flf)é{ f(f(x+11)) z <100
r.=r—10; xr — 10 otherwise
k:=k—1
olse f(z) 2 { 91_ N z < 100
ro=r+11: X otherwise
k:=k+ 1

(k=0Af(=f0} = {r=fx))

Finding invariants (McCarthy91)

{true}

o +— 1; Iexic;gr;phic
ri= X)
(k>0AFr)=fx)) t=(]101 —r+ 10k|,%)
while kK > 0 do
if > 100 then f(flf)é{ f(f(x+11)) z <100
r.=r—10; r — 10 otherwise
k:=k—1
olse f(z) 2 { 91 r < 100
ro=r4+11: r — 10 otherwise
k:=k+1

(k=0Af(=f0} = {r=fx))

Validity, soundness,
completeness

Validity

A HL triple { P} ¢ {Q} is valid if [c¢]P C Q
s (x> 0) x:=10x {x > 10} valid?
Is{x>0,y>0}x:=yx {x >0} valid?

s {false! ¢ [O) valid?

s { P} ¢ {true} valid?

Correctness

Th. Any derivable HL triple is valid

Proof. By induction on the derivation tree, e.qg.

W We prove the conclusion is valid
\Pici010] assuming the premises are valid

[ci; P =l li(le IP) S llellR € O

Incompleteness |

Conjecture Any valid HL triple is derivable

Counterexample:

{true} ¢ {false} is valid only when c diverges

but halting problem is not r.e.
while the set of derivable HL triples is r.e.

Incompleteness I

Conjecture Any valid HL triple is derivable

Counterexample:

{true} skip { O} is valid when Q is a tautology

but Godel’s Incompleteness Theorem (1939) tells us that there

IS no effective proof system such that its theorems coincide with
all valid arithmetic assertions

Relative completeness |

Relative completeness: suppose we can consult an oracle to
check if an assertion P = P’is valid or not, then HL is complete

In other words, we separate concerns about programs and
reasoning about them from concerns to do with arithmetic and
the iIncompleteness of any proof system for it

Dijkstra’s weakest precondition

Given a command ¢ and a postcondition () a weakest liberal
precondition is a predicate P such that for any precondition R

IR} c{O}iffR=> P

.e., I is the least restrictive requirement that guarantees that
() holds after executing c (if it terminates)

Typically, it is denoted by wip(c, O) = {e € X | [[c]{s} C O}

Adjoints

P = wlip(c, O)

(Relative) Completeness

for any postcondition () expressible in the logic

and for any command c, the precondition
wip(c, Q) is also expressible in the logic

Th. If the logic language is expressive enough, then any valid HL
triple can be derived.

Proof. Suppose { P} ¢ {0} is valid (with P and Q expressible).
By structural induction on ¢ we can build an assertion R that is

equivalent to wip(c, Q) and such that {R} ¢ { O} is derivable.
By applying the consequence rule we derive { P} ¢ {O}.

Adding nondeterminism

Regular commands

e :=skip|x:=alb?|..

n [b27P £ [[b]|P

L7 + P 2 Lr lPUIrlIP

[*1P £ [r1°P
k=0

Encoding while commands

if b then ¢, else ¢, 2 (b?; c))+ (7b?;¢))

while b do ¢ 2 (b?:¢)* ;b7

Minimal set of rules
(P} r (R} {R} 1, {O)

(P} e ([elP] &M (P} 17, 1O 150
vie (12} (P)r {0} (Pyr{P}
Pin+n(o) oot Tpyrpy M

P=P (PjrQ}) Q=0
PrriQ;

{cons}

Auxiliary rules
Py riQy} 1P ri0,}

(P VP r {0,V 0, e

assigned variables in r

ablesin R

(P} riQ1 (P r {0} | (P} riQ}

(P AP r (O AD) O TPARIr{OAR) Tamel
P=P (P)ri0) (P} r{Q) Q=0
(P} 710 wstren; (P} 7 0]

{weak}

Questions

Question 1

Can we take P = b an invariant?

{IPADb} c{P}
{P} while bdo c {P A b}

Ifalse} ¢ { b}

—blwhilebdoc|-bl

Question 2

Find a derivation for the HL triple
{true} If x>y then z:=xelse z:=y {z=max(x,vy)}

{true}
If x > y then
(x> yj
7:=X
{iz=x2y}={z=max(x,y)}
else
X <yj
7=
{z=y>x} = {z=max(x,y)|
{z = max(x,y)}

Question 3

Prove that rule {conj;issound {P,} r {O,} {P,} r{0O,}

(P AP r (O AQ,) o

Assume [r]|P; C Q, and [[F]IP, C O,
By monotonicity of |[7] we have:
[rI(P; APy Cr]lP; C O, and
[P, A P,) C [FP, C O,
Therefore [[F]|(P; A P,) C O A O,

Question 4

Show that the following rule for assignment is not sound

{P}x:=a{Pla/x]}

syntax

replacement

Consider the instance {x =y} x ;=0 {y = 0}
then[x =0fJ[x—~ 1,y 1]=[x— 0,y 1] F {y =0}

