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Before we start…



Please answer questions

There are the 3 possible answers to the verification problem 

“does my program  satisfy the specification  ?”


 yes

 no

 don’t know


please pick one option whenever we ask questions in these classes

c S



Program correctness:  
a long standing problem



Origins? Turing’s assertions1                            

 

“how can one check a routine in the 
sense of making sure that it is right?”


Alan Turing (1949)



Checking factorial
2b

 

• a dashed letter indicates 
the value at the end of the 
process represented by 
the box


• an undashed letter 
represents the initial value 
of a quantity


• TEST is test for zero

•  denotes factorial

• at the end (D) 

□
v = n!
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General snapshots (P. Naur, 1966)
BIT 6 (1966), 310-316 

PROOF OF ALGORITHMS BY GENERAL SNAPSHOTS 

PETER NAUR 

Abstract .  
A constructive approach to the question of proofs of algorithms is to consider 

proofs that an object resulting from the execution of an algorithm possesses cer- 
tain static characteristics. It  is shown by an elementary example how this pos- 
sibility may be used to prove the correctness of an algorithm written in ALGOL 60. 
The stepping stone of the approach is what is called General Snapshots, i.e. ex- 
pressions of static conditions existing whenever the execution of the algorithm 
reaches particular points. General Snapshots are further shown to be useful for 
constructing algorithms. 

Key words: Algorithm, proof, computer, programming. 

Introduct ion .  
I t  is a deplorable consequence of the lack of influence of mathemat ica l  

th inking on the way  in which compute r  p rogramming  is cur ren t ly  being 
pursued,  t h a t  the regular  use of systemat ic  proof  procedures,  or even 
the realization t h a t  such proof procedures  exist,  is unknown to the large 
major i ty  of programmers .  Undoub ted ly ,  this fac t  accounts  for  a t  least 
a large share of the  unrel iabi l i ty  and  the  a t t e n d a n t  lack of over-all  ef- 
fectiveness of programs as t h e y  are used to-day .  

Histor ical ly  this s ta te  of affairs is easily explained.  Large  scale com- 
pu te r  programming s ta r ted  so recent ly  t ha t  all of its pract i t ioners  are, 
in fact ,  amateurs .  At  the same t ime the  modern  computers  are so effec- 
t ive t ha t  t hey  offer advantages  in use even when the i r  powers are largely 
wasted.  The stress has been on always larger, and, allegedly, more power- 
ful systems, in spite of the  fac t  t h a t  the available p rogrammer  com- 
petence  often is unable  to cope with their  complexities.  

However ,  a reac t ion  is bound  to  come. We cannot  indefini tely con- 
t inue to build on sand. When  this is realized there  will be an increased 
interest  in the  less glamorous,  bu t  more  solid, basic principles. This will 
go in parallel  with  the  in t roduct ion  of these principles in the  e lementa ry  
school curricula. One subject  which will then  come up for  a t t en t ion  is 
t h a t  of proving the  correctness of algorithms. The  purpose of the  present  
article is to  show in an  e lementa ry  way  t h a t  this  subject  no t  only exists, 
b u t  is ripe to  be used in practise.  The i l lustrat ions are phrased  in ALGOL 
60, bu t  the  technique  m a y  be used with any  programming  language. 

Copyright (~ 1966 by Peter  Naur. 

“expression of static conditions 
existing whenever the execution of the 
algorithm reaches particular points”

P R O O F  O F  A L G O R I T H M S  B Y  G E N E R A L  S N A P S H O T S  313 

ments in the process, but still as applied to one particular set of data. 
To illustrate this technique, every detail of an example of the use of 
Program 1 is given above. Successive snapshots are given in successive 
lines, where for clarity a value given in a column holds unchanged in 
following lines unless another value is given. 

This snapshot technique is quite useful as an aid to understanding a 
given algorithm. However, it is not a proof technique because it depends 
entirely on the choice of the data  set. In order to achieve a proof we 
shall need more general snapshots. 

General  Snapshots .  
By a General Snapshot I shall mean a snapshot of a dynamic process 

which is associated with one particular point in the actual program text, 
and which is valid every time that  point is reached in the execution of 
the process. 

From this definition it immediately follows tha t  the values of vari- 
ables given in a General Snapshot normally at  best can be expressed as 
general, mathematical expressions or by equivalent formulations. I have 
to say "a t  best" because in many cases we can only give certain limits on 
the value, and I have to admit "equivalent formulations" because we do 
not always have suitable mathematical notation available. 

In order to illustrate this notion, here is a version of the above algorithm 
expanded with General Snapshots at  six different points: 

PROGRAM 2 
Greatest number, with snapshots 

c o m m e n t  General Snapshot 1:1  < N; 
r : = l ;  
c o m m e n t  General Snapshot 2 : 1  < N, r = 1; 
for i :=  2 step 1 unt i l /V do 

begin c o m m e n t  General Snapshot 3 : 2 <= i <= N,  1 < r <= i -  1, 
A[r] is the greatest among the elements A[1],A[2] . . . .  , A [ i - 1 ] ;  
if A[i] > Air] then r : =  i; 
c o m m e n t  General Snapshot 4: 2 < i < N ,  l < r< i, A[r] is the greatest 
among the elements A [ 1], A [2] . . . . .  A [i]; 
end; 

c o m m e n t  General Snapshot 5 : 1  < r <-N, A[r] is the greatest among the 
elements A[1],A[2] . . . . .  A[_N]; 
R : =  A[r]; 
c o m m e n t  General Snapshot 6: R is the greatest value of any element, 
A[1J,A[2] . . . . .  A [~¢']; 



Floyd’s interpretations (1967)
“an association of a proposition with 
each connection in the flow of 
control through a program, where 
the proposition is asserted to hold 
whenever that connection is taken”

Robert W. Floyd 

ASSIGNING MEANINGS TO PROGRAMSl 

Introduction. This paper attempts to provide an adequate basis for 
formal definitions of the meanings of programs in appropriately defined 
programming languages, in such a way that a rigorous standard is established 
for proofs about computer programs, including proofs of correctness, 
equivalence, and termination. The basis of our approach is the notion of 
an interpretation of a program: that is, an association of a proposition 
with each connection in the flow of control through a program, where the 
proposition is asserted to hold whenever that connection is taken. To prevent 
an interpretation from being chosen arbitrarily, a condition is imposed on 
each command of the program. This condition guarantees that whenever 
a command is reached by way of a connection whose associated proposition 
is then true, it will be left (if at all) by a connection whose associated 
proposition will be true at that time. Then by induction on the number of 
commands executed, one sees that if a program is entered by a connection 
whose associated proposition is then true, it will be left (if at all) by a 
connection whose associated proposition will be true at that time. By this 
means, we may prove certain properties of programs, particularly properties 
of the form: "If the initial values of the program variables satisfy the 
relation Rit the final values on completion will satisfy the relation Rz." 
Proofs of termination are dealt with by showing that each step of a program 
decreases some entity which cannot decrease indefinitely. 

These modes of proof of correctness and termination are not original; 
they are based on ideas of Perlis and Gorn, and may have made their 
earliest appearance in an unpublished paper by Gorn. The establishment 
of formal standards for proofs about programs in languages which admit 
assignments, transfer of control, etc., and the proposal that the semantics 
of a programming language may be defined independently of all processors 
for that language, by establishing standards of rigor for proofs about 

1 This work was supported by the Advanced Projects Agency of the Office of 
the Secretary of Defense (SD-146). 
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A flowchart language. To make these notions more specific, consider a 
particular flowchart language with five statement types, represented 
pictorially as in Figure 2, having the usual interpretations as an assignment 
operation, a conditional branch, a join of control, a starting point for the 
program, and a halt for the program. 

Take specifically the assignment operator x+- f(x, y), where x is a variable 
and f is an expression which may contain occurrences of x and of the vector 
y of other program variables. Considering the effect of the command, it 
is clearly desirable that if P l is (x = xo/\ R), and Ql is (x = f(xo, y) /\ R), 
where R contains no free occurrences of x, then VC(Pl ; Ql). Applying the 
axioms, we shall establish a definition of V.I-f(.I.,) which is complete and 
consistent if the underlying deductive system is, and which is, in that 
sense, the most general semantic definition of the assignment operator. 

(STAr) 
bl 

FIGURE 2 

101 

Designating the command x +-f(x, y) by c, we apply Axiom 3 to Vc(Ph QI), 
to obtain 

Vc« 3xo) PI; (3 xo) QJ. 
Because [( 3 x) (x = e /\ P(x» ] == P(e) , provided x does not occur free 

in e, we apply Corollary 1, to get Vc(R(x,y); (3 xo)(x = f(xo,y) /\R(xo,Y»). 
Finally, by Corollary 1, we have 

The verification condition for assignment operators. 

If P l has the form R(x, y) and if (3 xo)(x = f(xo, y) /\ R(xo, y» I- Qh 
(1) 

then V.I-f(.I,J)(Ph QI). 



Floyd’s examples

programs in the language, appear to be novel, although McCarthy ll, 2] 
has done similar work for programming languages based on evaluation of 
recursive functions. 

A semantic definition of a programming language, in our approach, is 
founded on a syntactic definition. It must specify which of the phrases 
in a syntactically correct program represent commands, and what conditions 
must be imposed on an interpretation in the neighborhood of each command. 

We will demonstrate these notions, first on a flowchart language, then 
on fragments of ALGOL. 

DEFINITIONS. A flowchart will be loosely defined as a directed graph 
with a command at each vertex, connected by edges (arrows) representing 
the possible passages of control between the commands. An edge is said 
to be an entrance to (or an exit from) the command c at vertex v if its 
destination (or origin) is v. An interpretation I of a flowchart is a mapping 
of its edges on propositions. Some, but not necessarily all, of the free 
variables of these propositions may be variables manipulated by the 

- - - - - - - - n E J+ (J+ is the set of positive integers) 

- - - - - - - - n E J+ /\ i = 1/\ S = 0 
i-l 

_____ - - - n E J+ /\ i E J+ /\ i n + 1/\ S = 1: OJ 
j-l 

i-I n 
- - - n E J1- /\ i = n + 1/\ S = 1: OJ; i.e., S = 1: OJ ______ j-l j-l 

i-l 
- - - - - - - - n E J+ /\ i E J+ /\ i n /\ S = 1: OJ 

j-1 

. 
I 

- - - - - - - - n E J+ /\ i E J+ /\ i n /\ S = L. OJ 
j-1 

i - i + 1 i-l 

- - - - - - - - n E J+ Ai ¤ J+ 1\ 2 i n + 1/\ S = 1: OJ 
j-l 

FIGURE 1. Flowchart of program t() compute S = 1:1-1 OJ (n 0) 
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START 

_____ {X 0, Y> 0, Q = ° 
r-----lI=----, (X - Q, 5) 

R-X 
_____ 

(X-Q,4) 
_____ {R 0, X 0, Y > 0, Q 0, X = R + QY 

(X - Q,3) __ _ 

---"'-- ,C HALT) 

I_tO R < Y,X O,X = R + QY 
No (X - Q,2) 

_____ {R Y> 0, X 0, Q 0, X = R + QY 
,_----'1""-_--, (X - Q, 2) 

_____ {R 0, Y > 0, X 0, Q > 0, X = R + QY 
(X - Q,4) 

FIGURE 5. Algorithm to compute quotient Q and remainder R of 
X.;- y, for integers X 0, Y > ° 
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Turing’s proof in Floyd’s notation
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Turing’s proof in Floyd’s notation
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Hoare Logic
An Axiomatic Basis for 
Computer Programming 

C. A. R. HOARE 
The Queen's University of Belfast,* Northern Ireland 

In this paper an attempt is made to explore the logical founda- 
tions of computer programming by use of techniques which 
were first applied in the study of geometry and have later 
been extended to other branches of mathematics. This in- 
volves the elucidation of sets of axioms and rules of inference 
which can be used in proofs of the properties of computer 
programs. Examples are given of such axioms and rules, and 
a formal proof of  a simple theorem is displayed. Finally, it is 
argued that important advantages, both theoretical and prac- 
tical, may follow f rom a pursuance of  these topics. 

KEY WORDS AND PHRASES: axiomatic method, theory of programming' 
proofs of programs, formal language definition, programming language 
design, machine-independent programming, program documentation 
CR CATEGORY: 4.0, 4.21,4.22, 5.20, 5.21,5.23, 5.24 

1. Introduction 

Computer  programming is an exact science in that  all 
the properties of a program and all the consequences of 
executing it  in any given environment can, in principle, 
be found out from the text of the program itself by means 
of purely deductive reasoning. Deductive reasoning in- 
volves the application of valid rules of inference to sets of 
valid axioms. I t  is therefore desirable and interesting to 
elucidate the axioms and rules of inference which underlie 
our reasoning about computer programs. The exact choice 
of axioms will to some extent depend on the choice of 
programming language. For illustrative purposes, this 
paper is confined to a very simple language, which is effec- 
tively a subset of all eurrent procedure-oriented languages. 

2. Computer Arithmetic  
The first requirement in valid reasoning about a pro- 

gram is to know the properties of the elementary operations 
which it  invokes, for example, addition and multiplication 
of integers. Unfortunately, in several respects computer 
arithmetic is not the same as the arithmetic familiar to 
mathematicians, and it  is necessary to exercise some care 
in selecting an appropriate set of axioms. For example, the 
axioms displayed in Table I are rather a small selection 
of axioms relevant to integers. From this incomplete set 

* Depurtment of Computer Science 

of axioms it is possible to deduce such simple theorems as: 

x = x + y X O  

y < r  ~ r  + y  X q = ( r -  y) + y  X (1 + q )  

The proof of the second of these is: 

A5 ( r - - y )  + y X ( l + q )  

= ( r - - y ) +  ( y X l + y X q )  

A9 = ( r - -  y) + (y + y  X q) 

A3 = ( ( r - - y ) + y ) + y X q  

A6 = r + y X q p rov idedy  < r 

The axioms A1 to A9 are, of course, true of the tradi- 
tional infinite set of integers in mathematics. However, 
they are also true of the finite sets of "integers" which are 
manipulated by computers provided that  they are con- 
fined to nonnegative numbers. Their  t ru th  is independent 
of the size of the set; furthermore, it is largely independent 
of the choice of technique applied in the event of "over- 
flow"; for example: 

(1) Strict interpretation: the result of an overflowing 
operation does not exist; when overflow occurs, the offend- 
ing program never completes its operation. Note  that  in 
this case, the equalities of A1 to A9 are strict, in the sense 
that  both sides exist or fail to exist together. 

(2) Firm boundary:  the result of an overflowing opera- 
tion is taken as the maximum value represented. 

(3) Modulo arithmetic: the result of an overflowing 
operation is computed modulo the size of the set of integers 
represented. 

These three techniques are illustrated in Table I I  by 
addition and multiplication tables for a trivially small 
model in which 0, 1, 2, and 3 are the only integers repre- 
sented. 

I t  is interesting to note that  the different systems satisfy- 
ing axioms A1 to A9 may be rigorously distinguished from 
each other by choosing a particular one of a set of mutually 
exclusive supplementary axioms. For  example, infinite 
arithmetic satisfies the axiom: 

A10z ~ 3 x V y  (y < x), 

where all finite arithmetics satisfy: 

A10~ Vx (x < max) 

where "max" denotes the largest integer represented. 
Similarly, the three treatments of overflow may be 

distinguished by a choice of one of the following aMoms 
relating to the value of max + 1: 

A l l s  ~ 3 x  (x = max + 1) (strict interpretation) 

A l l ,  max + 1 = max (firm boundary)  

AllM max + 1 = 0 (modulo arithmetic) 

Having selected one of these axioms, it  is possible to 
use it  in deducing the properties of programs; however, 
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“the purpose of this study is to 
provide a logical basis for proofs 
of the properties of a program”


C.A.R. Hoare (1969)



Hoare’s example

3.2. RULES OF CONSEQUENCE 
In addition to axioms, a deductive science requires at  

least one rule of inference, which permits the deduction of 
new theorems from one or more axioms or theorems al- 
ready proved. A rule of inference takes the form " I f  ~-X 
and ~- Y then ~-Z", i.e. if assertions of the form X and Y 
have been proved as theorems, then Z also is thereby 
proved as a theorem. The simplest example of an inference 
rule states tha t  if the execution of a program Q en- 
sures the t ru th  of the assertion R, then it  also ensures the 
t ru th  of every assertion logically implied by R. Also, if 
P is known to be a precondition for a program Q to pro- 
duce result R, then so is any other assertion which logically 
implies P.  These rules may be expressed more formally: 

D1 Rules of Consequence 
If  ~-P{Q}R and ~-R D S then ~-P{Q}S 
If ~-P{Q}R and ~-S ~ P then ~-S{Q}R 

3.3. RULE OF COMPOSITION 
A program generally consists of a sequence of statements 

which are executed one after another. The statements may 
be separated by a semicolon or equivalent symbol denoting 
procedural composition: (Q1 ; Q2 ; " '"  ; Q~). In  order to 
avoid the awkwardness of dots, it  is possible to deal ini- 
tially with only two statements (Q1 ; Q2), since longer se- 
quences can be reconstructed by nesting, thus (Q~ ; (Q2 ; 
( " "  (Q,-1 ; Q.)  - ' "  ) ) ) .  The  removal of the brackets of 
this nest may be regarded as convention based on the 
associativity of the ";-operator",  in the same way as brack- 
ets are removed from an arithmetic expression (6 + (t2 + 
( . . -  (t,_~ + t , )  - - . ) ) ) .  

The  inference rule associated with composition states 
tha t  if the proven result of the first par t  of a program is 
identical with the precondition under which the second par t  
of the program produces its intended result, then the whole 
program will produce the intended result, provided that  the 
precondition of the first part  is satisfied. 

In  more formal terms: 

D2 Rule of Composition 
If ~-P{QdR1 and ~-R~{Q2}R then ~-P{ (Q~ ; Q2)}R 

3.4. RvL~ OF ITERATION 
The essential feature of a stored program computer is 

the ability to execute some portion of program (S) re- 
peatedly until  a condition (B) goes false. A simple way of 
expressing such an iteration is to adapt  the ALGOL 60 
w h i l e  notation: 

w h i l e  B d o  S 

In  executing this statement,  a computer first tests the con- 
dition B. If  this is false, S is omitted, and execution of the 
loop is complete. Otherwise, S is executed and B is tested 
again. This action is repeated until B is found to be false. 
The reasoning which leads to a formulation of an inference 
rule for iteration is as follows. Suppose P to be an assertion 
which is always true on completion of S, provided tha t  it  is 
also true on initiation. Then obviously P will still be true 
after any number of iterations of the s tatement  S (even 

no iterations). Furthermore,  it  is known tha t  the con- 
trolling condition B is false when the iteration finally 
terminates. A slightly more powerful formulation is pos- 
sible in light of the fact tha t  B may be assumed to be true 
on initiation of S: 

D3 Rule of Iteration 
If ~P A B{S}P then ~-P{while B do S} ~ B  A P 

3.5. EXAMPLE 
The axioms quoted above are sufficient to construct the 

proof of properties of simple programs, for example, a 
routine intended to find the quotient q and remainder r 
obtained on dividing x by y. All variables are assumed to 
range over a set of nonnegative integers conforming to the 
axioms listed in Table I. For  simplicity we use the trivial 
but  inefficient method of successive subtraction. The pro- 
posed program is: 

((r  := x; q := 0);  w h i l e  
y < r d o  ( r : = r - - y ;  q : =  l + q ) )  

An important  property of this program is tha t  when it  
terminates, we can recover the numerator  x by adding to 
the remainder r the product  of the divisor y and the quo- 
t ient  q (i.e. x = r + y X q). Furthermore,  the remainder 
is less than the divisor. These properties may be expressed 
formally: 

t r u e { Q }  ~ y  ~< r A x  = r + y X q 

where Q stands for the program displayed above. This 
expresses a necessary (but not sufficient) condition for 
the "correctness" of the program. 

A formal proof of this theorem is given in Table III .  
Like all formal proofs, it  is excessively tedious, and it 
would be fairly easy to introduce notational conventions 
which would significantly shorten it. An even more power- 
ful method of reducing the tedium of formal proofs is to 
derive general rules for proof construction out of the simple 
rules accepted as postulates. These general rules would be 
shown to be valid by demonstrating how every theorem 
proved with their assistance could equally well (if more 
tediously) have been proved without. Once a powerful set 
of supplementary rules has been developed, a "formal 
proof" reduces to little more than an informal indication 
of how a formal proof could be constructed. 

4. G e n e r a l  R e s e r v a t i o n s  

The axioms and rules of inference quoted in this paper 
have implicitly assumed the absence of side effects of the 
evaluation of expressions and conditions. In  proving prop- 
erties of programs expressed in a language permitting side 
effects, it  would be necessary to prove their absence in 
each ease before applying the appropriate proof technique. 
I f  the main purpose of a high level programming language 
is to assist in the construction and verification of correct 
programs, it  is doubtful whether the use of functional 
notation to call procedures with side effects is a genuine 
advantage.  

Another deficiency in the axioms and rules quoted above 
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is that  they give no basis for a proof that  a program suc- 
cessfully terminates. Failure to terminate may be due to an 
infinite loop; or it  may be due to violation of an imple- 
mentation-defined limit, for example, the range of numeric 
operands, the size of storage, or an operating system time 
limit. Thus the notation "PIQ}R" should be interpreted 
"provided tha t  the program successfully terminates, the 
properties of its results are described by R." I t  is fairly 
easy to adapt the axioms so that  they cannot be used to 
predict the "results" of nonterminating programs; but  the 
actual use of the axioms would now depend on knowledge 
of many implementation-dependent features, for example, 
the size and speed of the computer, the range of numbers, 
and the choice of overflow technique. Apart  from proofs of 
the avoidance of infinite loops, it is probably better  to 
prove the "conditional" correctness of a program and rely 
on an implementation to give a warning if it has had to 

TABLE III 

Line 
number Formal proof Justification 

1 t r u e  ~ x  = x ~ y X 0 L e m m a l  
2 x = x - { - y X  O{r := x } x =  r . - t - y X O  DO 
3 x = r ~ y X O { q : =  O } x =  r . - b y X  q DO 
4 t r u e  {r :=  x} x = r ~ y X 0 D1 (1, 2) 

5 t r u e  {r := x; q := 0} x = r -t- y X q D2 (4, 3) 
6 x = r ~ y X  q A y ~ r ~ x  = 

( r - y )  ~ y X (1-t-q) L e m m a  2 
7 x = ( r - - y )  .-{- y X (1-t-q){r := r - y } x  = 

r + y X ( l + q )  DO 
8 x = r + y X ( l + q ) [ q  :=  1.-bq}x = 

r - t - y  X q DO 
9 x = ( r - - y )  -~ y X ( l + q ) { r  :=  r - - y ;  

q :=  1+q} x = r + y X q D2 (7, 8) 
10 x = r + y X q A y ~ r {r := r - - y ;  

, q : =  l + q }  x = r + y X q D1  (6, 9) 

11 x = r -b y X q [ w h i l e  y ~ r  d o  
(r := r - - y ;  q := 1--bq)} 

~- -Ty < r /~ x = r ~ y X q D3 (10) 
12 t r u e  {((r := x; q := 0); w h i l e  y ~ r d o  

(r := r - - y ;  q :=  l + q ) ) }  -~y ~ r A x  = 

r + y X q D2 (5,11) 

NOTES 
i. The left hand column is used to number the lines, and the 

right hand column to justify each line, by appealing to an axiom, 
a lemma or a rule of inference applied to one or two previous 
lines, indicated in brackets. Neither of these columns is part 
of the formal proof. For example, line 2 is an instance of the 
axiom of assignment (DO); line 12 is obtained from lines 5 and 11 
by application of the rule of composition (D2). 

2. Lemma 1 may be proved from axioms A7 and AS. 
3. Lemma 2 follows directly from the theorem proved in See. 2. 

abandon execution of the program as a result of violation 
of an implementation limit. 

Finally it is necessary to list some of the areas which have 
not been covered: for example, real arithmetic, bit and 
character manipulation, complex arithmetic, fractional 
arithmetic, arrays, records, overlay definition, files, input /  
output,  declarations, subroutines, parameters, recursion, 
and parallel execution. Even the characterization of integer 
arithmetic is far from complete. There does not appear to 
be any great difficulty in dealing with these points, pro- 
vided that  the programming language is kept simple. 
Areas which do present real difficulty are labels and jumps, 
pointers, and name parameters. Proofs of programs which 
made use of these features are likely to be elaborate, and 
it  is not surprising that  this should be reflected in the 
complexity of the underlying axioms. 

5. P r o o f s  o f  P r o g r a m  C o r r e c t n e s s  

The most important  property of a program is whether it  
accomplishes the intentions of its user. If  these intentions 
can be described rigorously by making assertions about the 
values of variables at  the end (or at  intermediate points) of 
the execution of the program, then the techniques described 
in this paper may be used to prove the correctness of the 
program, provided that  the implementation of the pro- 
gramming language conforms to the axioms and rules which 
have been used in the proof. This fact itself might also be 
established by deductive reasoning, using an axiom set 
which describes the logical properties of the hardware 
circuits. When the correctness of a program, its compiler, 
and the hardware of the computer have all been established 
with mathematical certainty, it  will be possible to place 
great reliance on the results of the program, and predict 
their properties with a confidence limited only by the 
reliability of the electronics. 

The practice of supplying proofs for nontrivial programs 
will not become widespread until considerably more power- 
ful proof techniques become available, and even then will 
not be easy. But  the practical advantages of program prov- 
ing will eventually outweigh the difficulties, in view of the 
increasing costs of programming error. At present, the 
method which a programmer uses to convince himself of 
the correctness of his program is to t ry  it  out in particular 
cases and to modify it  if the results produced do not cor- 
respond to his intentions. After he has found a reasonably 
wide variety of example cases on which the program seems 
to work, he believes that  it  will always work. The time 
spent in this program testing is often more than half the 
time spent on the entire programming project; and with a 
realistic costing of machine time, two thirds (or more) of 
the cost of the project is involved in removing errors during 
this phase. 

The cost of removing errors discovered after a program 
has gone into use is often greater, particularly in the case 
of items of computer manufacturer 's software for which a 
large part  of the expense is borne by the user. And finally, 
the cost of error in certain types of program may be almost 
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3.2. RULES OF CONSEQUENCE 
In addition to axioms, a deductive science requires at  

least one rule of inference, which permits the deduction of 
new theorems from one or more axioms or theorems al- 
ready proved. A rule of inference takes the form " I f  ~-X 
and ~- Y then ~-Z", i.e. if assertions of the form X and Y 
have been proved as theorems, then Z also is thereby 
proved as a theorem. The simplest example of an inference 
rule states tha t  if the execution of a program Q en- 
sures the t ru th  of the assertion R, then it  also ensures the 
t ru th  of every assertion logically implied by R. Also, if 
P is known to be a precondition for a program Q to pro- 
duce result R, then so is any other assertion which logically 
implies P.  These rules may be expressed more formally: 

D1 Rules of Consequence 
If  ~-P{Q}R and ~-R D S then ~-P{Q}S 
If ~-P{Q}R and ~-S ~ P then ~-S{Q}R 

3.3. RULE OF COMPOSITION 
A program generally consists of a sequence of statements 

which are executed one after another. The statements may 
be separated by a semicolon or equivalent symbol denoting 
procedural composition: (Q1 ; Q2 ; " '"  ; Q~). In  order to 
avoid the awkwardness of dots, it  is possible to deal ini- 
tially with only two statements (Q1 ; Q2), since longer se- 
quences can be reconstructed by nesting, thus (Q~ ; (Q2 ; 
( " "  (Q,-1 ; Q.)  - ' "  ) ) ) .  The  removal of the brackets of 
this nest may be regarded as convention based on the 
associativity of the ";-operator",  in the same way as brack- 
ets are removed from an arithmetic expression (6 + (t2 + 
( . . -  (t,_~ + t , )  - - . ) ) ) .  

The  inference rule associated with composition states 
tha t  if the proven result of the first par t  of a program is 
identical with the precondition under which the second par t  
of the program produces its intended result, then the whole 
program will produce the intended result, provided that  the 
precondition of the first part  is satisfied. 

In  more formal terms: 

D2 Rule of Composition 
If ~-P{QdR1 and ~-R~{Q2}R then ~-P{ (Q~ ; Q2)}R 

3.4. RvL~ OF ITERATION 
The essential feature of a stored program computer is 

the ability to execute some portion of program (S) re- 
peatedly until  a condition (B) goes false. A simple way of 
expressing such an iteration is to adapt  the ALGOL 60 
w h i l e  notation: 

w h i l e  B d o  S 

In  executing this statement,  a computer first tests the con- 
dition B. If  this is false, S is omitted, and execution of the 
loop is complete. Otherwise, S is executed and B is tested 
again. This action is repeated until B is found to be false. 
The reasoning which leads to a formulation of an inference 
rule for iteration is as follows. Suppose P to be an assertion 
which is always true on completion of S, provided tha t  it  is 
also true on initiation. Then obviously P will still be true 
after any number of iterations of the s tatement  S (even 

no iterations). Furthermore,  it  is known tha t  the con- 
trolling condition B is false when the iteration finally 
terminates. A slightly more powerful formulation is pos- 
sible in light of the fact tha t  B may be assumed to be true 
on initiation of S: 

D3 Rule of Iteration 
If ~P A B{S}P then ~-P{while B do S} ~ B  A P 

3.5. EXAMPLE 
The axioms quoted above are sufficient to construct the 

proof of properties of simple programs, for example, a 
routine intended to find the quotient q and remainder r 
obtained on dividing x by y. All variables are assumed to 
range over a set of nonnegative integers conforming to the 
axioms listed in Table I. For  simplicity we use the trivial 
but  inefficient method of successive subtraction. The pro- 
posed program is: 

((r  := x; q := 0);  w h i l e  
y < r d o  ( r : = r - - y ;  q : =  l + q ) )  

An important  property of this program is tha t  when it  
terminates, we can recover the numerator  x by adding to 
the remainder r the product  of the divisor y and the quo- 
t ient  q (i.e. x = r + y X q). Furthermore,  the remainder 
is less than the divisor. These properties may be expressed 
formally: 

t r u e { Q }  ~ y  ~< r A x  = r + y X q 

where Q stands for the program displayed above. This 
expresses a necessary (but not sufficient) condition for 
the "correctness" of the program. 

A formal proof of this theorem is given in Table III .  
Like all formal proofs, it  is excessively tedious, and it 
would be fairly easy to introduce notational conventions 
which would significantly shorten it. An even more power- 
ful method of reducing the tedium of formal proofs is to 
derive general rules for proof construction out of the simple 
rules accepted as postulates. These general rules would be 
shown to be valid by demonstrating how every theorem 
proved with their assistance could equally well (if more 
tediously) have been proved without. Once a powerful set 
of supplementary rules has been developed, a "formal 
proof" reduces to little more than an informal indication 
of how a formal proof could be constructed. 

4. G e n e r a l  R e s e r v a t i o n s  

The axioms and rules of inference quoted in this paper 
have implicitly assumed the absence of side effects of the 
evaluation of expressions and conditions. In  proving prop- 
erties of programs expressed in a language permitting side 
effects, it  would be necessary to prove their absence in 
each ease before applying the appropriate proof technique. 
I f  the main purpose of a high level programming language 
is to assist in the construction and verification of correct 
programs, it  is doubtful whether the use of functional 
notation to call procedures with side effects is a genuine 
advantage.  

Another deficiency in the axioms and rules quoted above 
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find the quotient  and the remainder  
obtained on dividing  by 

q r
x y



Preliminaries and notation



A simple imperative language

  

      |     skip

      |     

      |     if  then  else 

      |     while  do 

c ::= x := a

c1; c2
b c1 c2

b c

command
integer 
variable

arithmetic 
expression

Boolean 
expression

 |  | …b ::= a1 ≤ a2 b1 ∧ b2

 |  |  | …a ::= n x a1 + a2



Concrete domain

σ : X → ℤ

set of 
variables

state

Σ ≜ {σ : X → ℤ}
set of all 
states

℘(Σ) ≜ {P ∣ P ⊆ Σ}
concrete 
domain

state  
property

set of  
integers



Notation
 


the state where  holds ,  holds  and any other variable holds 
[x ↦ 1,y ↦ 2]

x 1 y 2 0

 

the state where  holds  and any other variable  holds 
σ[x ↦ n]

x n y σ(y)

 

the set of all states where  holds  and  holds 
(x = 1,y = 2)

x 1 y 2

state  
notation

state 
update

property  
notation

conjunction

σ[n/x]

sometimes 
denoted



Assertion language

     |     |      |     |  …

      |       |    |    |  …
P ::= 𝗍𝗋𝗎𝖾 𝖿𝖺𝗅𝗌𝖾 a1 < a2 a1 = a2

¬P P1 ∧ P2 ∃x . P

assertion

Boolean and 
classical 

assertions



Notation

   or also   

the state  satisfies the property 

σ ⊧ P σ ∈ P
σ P

   or also          or also     

any state that satisfies  satisfies 

P ⇒ Q P ⊆ Q P ≤ Q
P Q



Collecting semantics

[[c]] : ℘(Σ) → ℘(Σ)
concrete 

semantics

 

is the set of all and only states reachable from some state in  after executing 


  as a shorthand for  


additive: 

[[c]]P
P c

[[c]]σ [[c]]{σ}

[[c]](P1 ∪ P2) = ([[c]]P1) ∪ ([[c]]P2)



Collecting semantics

[[a]] : Σ → ℤ
concrete 

semantics

 

evaluates the arithmetic expression  in the current state 
[[a]]σ

a σ

e.g.

[[x + 1]][x ↦ 1,y ↦ 2] = 2

no errors  
are possible



Collecting semantics

[[b]] : ℘(Σ) → ℘(Σ)
concrete 

semantics

 (intuitively ) 

is the set of all and only states in  that satisfy the condition 
[[b]]P b ∧ P

P b

e.g.

  


  

[[x < y]]{[x ↦ 1,y ↦ 2], [x ↦ 2,y ↦ 1]} = {[x ↦ 1,y ↦ 2]}

[[x < y]][x ↦ 2,y ↦ 1] = ∅



Collecting semantics: 
atomic commands

e.g.

  [[r := x]][x ↦ 5,y ↦ 2] = {[x ↦ 5,y ↦ 2,r ↦ 5]}


[[𝗌𝗄𝗂𝗉]]P ≜ P

[[x := a]]P ≜ {σ[x ↦ [[a]]σ] ∣ σ ∈ P}



e.g.

  [[r := x; q := 0]][x ↦ 5,y ↦ 2] = {[x ↦ 5,y ↦ 2,r ↦ 5]}

Collecting semantics: 
sequence

  
implicit
q ↦ 0

[[c1; c2]]P ≜ [[c2]]([[c1]]P)



e.g.






 

[[𝗂𝖿 x ≥ 0 𝗍𝗁𝖾𝗇 𝗌𝗄𝗂𝗉 𝖾𝗅𝗌𝖾 x := − x]]{[x ↦ − 1], [x ↦ 1]}
≜ [[𝗌𝗄𝗂𝗉]][x ↦ 1] ∪ [[x := − x]][x ↦ − 1]

≜ {[x ↦ 1]}

Collecting semantics: 
conditionals

[[𝗂𝖿 b 𝗍𝗁𝖾𝗇 c1 𝖾𝗅𝗌𝖾 c2]]P ≜ [[c1]]([[b]]P) ∪ [[c2]]([[¬b]]P)






e.g.

[[𝗐𝗁𝗂𝗅𝖾 b 𝖽𝗈 c]]P ≜ [[¬b]]
∞

⋃
k=0

([[c]] ∘ [[b]])kP

Collecting semantics: loops



           

           




         

         

w ≜ 𝗐𝗁𝗂𝗅𝖾 y ≤ r 𝖽𝗈
r := r − y;
q := q + 1

σ ≜ [x ↦ 5,
y ↦ 2,
r ↦ 5]

 = 

 =    = 

 =    = 



 =    =  we can stop!


 =  = 

P0 {σ}
P1 {σ} ∪ f(P0) {σ, [x ↦ 5,y ↦ 2,r ↦ 3,q ↦ 1]}
P2 {σ} ∪ f(P1)
{σ, [x ↦ 5,y ↦ 2,r ↦ 3,q ↦ 1], [x ↦ 5,y ↦ 2,r ↦ 1,q ↦ 2]}
P3 {σ} ∪ f(P2) P2

[[w]]{σ} [[y > r]]P3 {[x ↦ 5,y ↦ 2,r ↦ 1,q ↦ 2]}

f ≜ [[r := r − y; q := q + 1]] ∘ [[y ≤ r]]



Inference rules

ϕ1 ϕ2 ⋯ ϕn
ϕ

if all premises hold, then the conclusion holds

premises

conclusion

𝗉𝗈𝗌(1)
𝗉𝗈𝗌(x) 𝗉𝗈𝗌(y)

𝗉𝗈𝗌(x + y)
axiom



Proof systems

a set of inference rules

𝗉𝗈𝗌(1)
𝗉𝗈𝗌(x) 𝗉𝗈𝗌(y)

𝗉𝗈𝗌(x + y)[base] [sum]



Proof tree

                                   𝗉𝗈𝗌(1) 𝗉𝗈𝗌(4)
𝗉𝗈𝗌(5)

                     𝗉𝗈𝗌(2) 𝗉𝗈𝗌(2)
     𝗉𝗈𝗌(1) 𝗉𝗈𝗌(1)     𝗉𝗈𝗌(1) 𝗉𝗈𝗌(1)

[base] [sum]

[base]

[sum]

[sum]

[sum]

[base]



Hoare Logic 
(HL)



Hoare’s triples

  {P} c {Q}
pre  

condition

post 
condition

P {c} Q
original 
paper

since  
then

when the precondition is met, 

executing the command establishes the postcondition


[[c]]P ⊆ Q
over 

approximation!

can include non 
reachable states



An obvious axiom

  {P} 𝗌𝗄𝗂𝗉 {P}

  {x > 0} 𝗌𝗄𝗂𝗉 {x > 0}



Let's work it out together

  {P} x := a ?

  {x > 0,y = 3x, z = x} x := x + y ?



Let's work it out together

  {P} x := a ?

  {x > 0,y = 3x, z = x} x := x + y {z > 0,x = 4z, y = 3z}



Floyd’s axiom for assignment

  {P} x := a {∃x′ . P[x′ /x] ∧ x = a[x′ /x]}
syntax 

replacement
syntax 

replacement

    {𝗍𝗋𝗎𝖾} r := x {∃r′ . 𝗍𝗋𝗎𝖾, r = x} ≡ {r = x}
  


 

 

{x = r + qy} r := r − y {∃r′ . x = r′ + qy, r = r′ − y}
≡ {∃r′ . x = r + y + qy, r′ = r + y}

≡ {x = r + (q + 1)y}



Hoare’s axiom for assignment

                ? x := a {Q}

  ? x := x + y {z > 0,x = 4z, y = 3z}



Hoare’s axiom for assignment

                ? x := a {Q}

  {z > 0,x = z, y = 3z} x := x + y {z > 0,x = 4z, y = 3z}



Hoare’s axiom for assignment

  {Q[a/x]} x := a {Q}
syntax 

replacement

    {𝗍𝗋𝗎𝖾} ≡ {x = x + 0y} r := x {x = r + 0y}

    {x = r} ≡ {x = r + 0y} q := 0 {x = r + qy}
  


  
{x = r + qy} ≡
{x = r − y + (q + 1)y} r := r − y {x = r + (q + 1)y}



An observation

  {Q[a/x]} x := a {Q}

  {P} x := a {∃x′ . P[x′ /x] ∧ x = a[x′ /x]}
forward oriented

backward oriented

[Floyd’s]

[Hoare’s]



Composition rule
      {P} c1 {R} {R} c2 {Q}

  {P} c1; c2 {Q}

  

  

{x = r + qy} r := r − y {x = r + (q + 1)y}
{x = r + (q + 1)y} q := q + 1 {x = r + qy}

  {x = r + qy} r := r − y; q := q + 1 {x = r + qy}

forward / backward



Inlining assertions

   




   




   

{x = r + qy}
r := r − y;

{x = r + (q + 1)y}
q := q + 1

{x = r + qy}

  

  

{x = r + qy} r := r − y {x = r + (q + 1)y}
{x = r + (q + 1)y} q := q + 1 {x = r + qy}

  {x = r + qy} r := r − y; q := q + 1 {x = r + qy}



While rule
  {P ∧ b} c {P}

 {P}𝗐𝗁𝗂𝗅𝖾 b 𝖽𝗈 c {P ∧ ¬b}
loop 

invariant

   




            

   

      

     

{x ≥ 0}
𝗐𝗁𝗂𝗅𝖾 x > 0 𝖽𝗈

{x ≥ 0 ∧ x > 0} ≡ {x > 0} ≡ {x ≥ 1} ≡ {x − 1 ≥ 0}
x := x − 1;

{x ≥ 0}
{x ≥ 0 ∧ x ≤ 0} ≡ {x = 0}



While rule
  {P ∧ b} c {P}

 {P}𝗐𝗁𝗂𝗅𝖾 b 𝖽𝗈 c {P ∧ ¬b}
loop 

invariant

   




            

   

      

     

{x ≥ 0}
𝗐𝗁𝗂𝗅𝖾 x > 0 𝖽𝗈

{x ≥ 0 ∧ x > 0} ≡ {x > 0} ≡ {x ≥ 1} ≡ {x − 1 ≥ 0}
x := x − 1;

{x ≥ 0}
{x ≥ 0 ∧ x ≤ 0} ≡ {x = 0}



While rule
  {P ∧ b} c {P}

 {P}𝗐𝗁𝗂𝗅𝖾 b 𝖽𝗈 c {P ∧ ¬b}
loop 

invariant

   




            

   

      

     

{x ≥ 0}
𝗐𝗁𝗂𝗅𝖾 x > 0 𝖽𝗈

{x ≥ 0 ∧ x > 0} ≡ {x > 0} ≡ {x ≥ 1} ≡ {x − 1 ≥ 0}
x := x − 1;

{x ≥ 0}
{x ≥ 0 ∧ x ≤ 0} ≡ {x = 0}



While rule
  {P ∧ b} c {P}

 {P}𝗐𝗁𝗂𝗅𝖾 b 𝖽𝗈 c {P ∧ ¬b}
loop 

invariant

   




            

   

      

     

{x ≥ 0}
𝗐𝗁𝗂𝗅𝖾 x > 0 𝖽𝗈

{x ≥ 0 ∧ x > 0} ≡ {x > 0} ≡ {x ≥ 1} ≡ {x − 1 ≥ 0}
x := x − 1;

{x ≥ 0}
{x ≥ 0 ∧ x ≤ 0} ≡ {x = 0}



While rule
  {P ∧ b} c {P}

 {P}𝗐𝗁𝗂𝗅𝖾 b 𝖽𝗈 c {P ∧ ¬b}
loop 

invariant

   




            

   

      

     

{x ≥ 0}
𝗐𝗁𝗂𝗅𝖾 x > 0 𝖽𝗈

{x ≥ 0 ∧ x > 0} ≡ {x > 0} ≡ {x ≥ 1} ≡ {x − 1 ≥ 0}
x := x − 1;

{x ≥ 0}
{x ≥ 0 ∧ x ≤ 0} ≡ {x = 0}


