Program Analysis

Lecture #2

Roberto Bruni

UNIVERSITA
DI PIsSA

(P*R) r (Q*R)

June 30 - July 4, 2025

SCHOOL OF ADVANCED STUDIES

GRAN SASSO
PhD Course G SCIENCE INSTITUTE

http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni

Before we start...

Please answer questions

There are the 3 possible answers to the verification problem
“does my program c satisfy the specification S ?”

O yes
O no
O don’t know

please pick one option whenever we ask questions in these classes

Program correctness:
a long standing problem

o by s D

g 2 i 4D 8 2 T A
PP RINRCA SOOI LT RPN DR IOy 3

-

1

it

.

..,,..“._
PRANINTE L

. e®

o
Ao

LV A e D o

- 'Ng.: 2

'_: g S

&

- .
=t o PR A
- Dot

Q:Y;‘.ulhl.'&& -

y
d\
.

«
4
TS 4
A

Origins? Turing’s assertions

Sriday, 24Lth June, .

Checking a large routine. by Dr, A, Turing.

How can one check a routine in the sense of making sure that it is right?

In order that the man wio checks may not have too difficult a task the
programaer should muke a number of definite assertions which can be checked

individually, and from which the corroctness of the whole programae easily
follovnl.

Conaider the anslogy of checking an addition. If it is given as

1374
5906
6719
L337
7768

26104
one must check the whale at one aitting, because of the carrics,

But ir the totalas for the various ocolumns are given, as below:
137
5906
6719
4337
7768

3974
2213

26104

the chscker's work is much ocasier being split up into the checking of the
various assertions 3 + 9+ 7 + 3 + 7 = 29 oto, and the small addition

379,
2213

26104,

This principle can be applied to the process of checking a large routine
but we will illustrate the method by means of & small routine viz. one to
obtein’ n without tho use or a multiplier, multiplication being carried cut
by rupeated addition,

At & typical moment of the process we have recorded r end = r for . scme
r, s. We can change s r to (s+1) =r, by addition of r, Whon 8 = ret
w3 can change r to r+! by a trmaror. Unfortunately there is no coding -
systew sufiiclently goenerally known to Justify giving the routine for this

process in full, but the flow dlagram given in Fig.1 will be sutficient
for illustration,

Each 'box of the flow diagram reprosents a straight sequence of
inatructions without changes of control, The following convention is used;

(1) & dashed lotter indicates ths value at the end of the proccss
ropresonted by the bax:

(11) an undashed letter reprosents the initial value of a quantity,

One cannot equate mimilar lettors appearing in dirferent boxes, but 1t
i3 intended that the following identificationa bo valid throughout

67.

e ——————— -y —— ——
B

i Aadl>

— bt e,

“how can one check a routine In the

sense of making

sure that it is right?”
Alan Turing (1949

®

©,

®

> STOP

Checking factorial

®

mhed letter indicates

=t Lo Ly ou b restronode c bl s o] o2 the value at the end of the
process represented by
[@ the box
¢ * an undashed letter
: et) ; represents the initial value
Figure 1 (Redrawn from Turing’s original) Of a quantity
STORAGE (IN&I)AL) (STOP) @ @ @ o TE ST . 't 't f
LOCATION e B i b = ' e IS 1eS1 T0r Zero
2 ¢ Joor ey " e | denotes factorial
£ “ L E e YR ™) e attheend D)V = n!
T0 ® T0 ©|1T0 © T0 @ |10 ® T0 (B
WITH r’ =1 IFr=n WITHr ' =r + 1
g’ =1 T0 ® IFs=>r
IFr<mn 10 ()
e

Figure 2 (Redrawn from Turing’s original)

General snapshots (P. Naur, 1966)

‘expression of static conditions
existing whenever the execution of the
ST algorithm reaches particular points”

A constructive approach to the question of proofs of algorithms is to consider
proofs that an object resulting from the execution of an algorithm possesses cer-
tain static characteristics. It is shown by an elementary example how this pos- .
sibility may be used to prove the correctness of an algorithm written in ALGOL 60. Gre aJte St’ Ilunlb er . Wlth Sna.!p ShOtS
The stepping stone of the approach is what is called General Snapshots, i.e. ex-
pressions of static conditions existing whenever the execution of the algorithm

reaches particular points. General Snapshots are further shown to be useful for C(}mment G@?@é?"@l S %&pSkOt 1 .]. g ..N ;

constructing algorithms. -

BIT 8 (1866}, 810316

Key words: Algorithm, proof, computer, programming,. ?" C = 1 >

.)
It is a deplorable consequence of the lack of influence of mathematical

comment General Snapshot 2: 1
thinking on the way in which computer programming is currently being . s
pursued, that the regular use of systematic proof procedures, or even f()r (AN 2 Step 1 untll N dO

the realization that such proof procedures exist, is unknown to the large

* ; »
majority of programmers. Undoubtedly, this fact accounts for at least begln COn *meﬁt G 6%6’}‘32 8 ?%Q}}Skgt 3 . 2 __<_ 2\7’ 1 § '8 § 1 —]_ ,
a large share of the unreliability and the attendant lack of over-all ef-

}
foctivenoss of programs as they aro used to-day. Alr] 18 the greatest among the elements A[1],A[2],...,A[+—1];

Historically this state of affairs is easily explained. Large scale com-
puter programming started so recently that all of its practitioners are, [] [} . .
in fact, amateurs. At the same time the modern computers are so effec- 1'f ‘A' t] > A r theﬁ r.= 2’ b
tive that they offer advantages in use even when their powers are largely

wasted. The stress has been on always larger, and, allegedly, more power- COmment GG%@T@Z S??/CLPS hOt 4: . 2 é mg_ .N

ful systems, in spite of the fact that the available programmer com- .

petence often is unable to cope with their complexities. 47 ?%O%g ﬁ&@ Ble?’}?/@?‘% ts A {].] A [], o« * v [?/]
However, a reaction is bound to come. We cannot indefinitely con-

tinue to build on sand. When this is realized there will be an increased end .

interest in the less glamorous, but more solid, basic principles. This will ?

go in paraﬂ:el with the int%’oduetio‘»n of ?hese principles in the eleme‘ntar.y comm eﬂt G ener al S na p Sk Ot 5 . 1 g ¥ § AT’ A {?a} ,i S tk e g?a erl te 8t sz{)%g t]?/e

school curricula. One subject which will then come up for attention is

Introduction.

A

N, r=1;

A

Il/\

Alr] 1s the greatest

that of proving the correctness of algorithms. The purpose of the present v,

article is to show in an elementary way that this subject not only exists, (Zleme?’bts A [1]) A [2] s e & A [.N] ;
but is ripe to be used in practise. The illustrations are phrased in ALGOL

60, but the technique may be used with any programming language. R T = A [*}"] ;

Copyright () 1966 by Peter Naur.

comment General Snapshot 6: R is the greatest value of any element,
A[1L,A[2],. .., A[N];

Floyd’s interpretations (1967)

Robert W. Floyd

ASSIGNING MEANINGS TO PROGRAMS:!

Introduction. This paper attempts to provide an adequate basis for
formal definitions of the meanings of programs in appropriately defined
programming languages, in such a way that a rigorous standard is established
for proofs about computer programs, including proofs of correctness,
equivalence, and termination. The basis of our approach is the notion of
an interpretation of a program: that is, an association of a proposition
with each connection in the flow of control through a program, where the
proposition is asserted to hold whenever that connection is taken. To prevent
an interpretation from being chosen arbitrarily, a condition is imposed on
each command of the program. This condition guarantees that whenever
a command is reached by way of a connection whose associated proposition
is then true, it will be left (if at all) by a connection whose associated
proposition will be true at that time. Then by induction on the number of
commands executed, one sees that if a program is entered by a connection
whose associated proposition is then true, it will be left (if at all) by a
connection whose associated proposition will be true at that time. By this
means, we may prove certain properties of programs, particularly properties
of the form: “If the initial values of the program variables satisfy the
relation R,, the final values on completion will satisfy the relation R,.”
Proofs of termination are dealt with by showing that each step of a program
decreases some entity which cannot decrease indefinitely.

These modes of proof of correctness and termination are not original;
they are based on ideas of Perlis and Gorn, and may have made their
earliest appearance in an unpublished paper by Gorn. The establishment
of formal standards for proofs about programs in languages which admit
assignments, transfer of control, etc., and the proposal that the semantics
of a programming language may be defined independently of all processors
for that language, by establishing standards of rigor for proofs about

! This work was supported by the Advanced Research Projects Agency of the Office of
the Secretary of Defense (SD-146).

19

“an association of a proposition with
each connection in the flow of
control through a program, where
the proposition Is asserted to hold
whenever that connection is taken”

kil (_HALT
b,

FIGURE 2

Floyd’s examples

FiGURE 1. Flowchart of program to compute S = z}'—x aj (n 2 0)

Floyd’s examples

non-negative?

l nEdJT (J7 is the set of positive integers)

i—1

nEJtAi=n+1AS=Y
J=1

neJtAiedJTAisnaAS =

ncedJ ANIi€edJTAIsRAS=

weakening

n
aj; i.e, S = 2 a;
j=1

i—1

2 G

j=1

i
2 a;

J=1

i—1

ncJtAIEJTA2sisn+1AS=2 g

j=1

FiGURE 1. Flowchart of program to compute S = 2_;-1 a;|(n 2 0)

«<D

to prove

.l, {X 20,Y>0 termination
(X, 6)
Q—0
L {XgO,Y>0,Q=O
- (X_Qv5)
R —
X l {X?_.o, Y>0,@=0\R=X BRVE|Cllfe

¥ {Rgo,Xgo,Y>0 Q20 X =R+ QY

L
(E<YD)—(ves)—>(aLT)

| {0§R<Y,X§O,X=R+QY

@ (X -2
{Rg Y>0 X20Q20 X=R+ QY
(X - Q,2)
I R—R-Y
\[Rz0,Y>0,X20,Q20,X=R+@Q+1Y
(X - @,1)

Q-Q+1 |

{RQO, Y>0X20@>0 X=R+ QY

FIGURE 5. Algorithm to compute quotient @ and remainder R of
X+Y, forintegers X 20,Y > 0

Turing’s proof in Floyd’s notation

v =n!
|
|
|
r<n rum.. ¢ %HOP s<r<n s<r<n
u=r! u=r! >0 u=sr! u=(s+ 1)!
3 v=r! V =[]}

0<n ' v=rl
|
|
|

o Y | | |
r_1 | : : : |
STt | e e S | - = I

Turing’s proof in Floyd’s notation

If here

Hoare Logic

of axioms it is possible to deduce such simple theorems as:

: - 0
m Computer Programming FoEtux
e y<r>r+yXg=(-y)+tyXL+g)

An Axiomatic Basis for

C. A. R. HoaRrg
The Queen’s University of Belfast,* Northern Ireland

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which
were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in-
volves the elucidation of sets of axioms and rules of inference
which can be used in proofs of the properties of computer
programs. Examples are given of such axioms and rules, and
a formal proof of a simple theorem is displayed. Finally, it is
argued that important advantages, both theoretical and prac-
tical, may follow from a pursuance of these topics.

KEY WORDS AND PHRASES:
proofs of programs, formal language definition, programming language

axiomatic method, theory of programming’

design, machine-independent programming, program documentation
CR CATEGORY: 4.0, 4.21, 4.22, 5.20, 5.21, 5.23, 5.24

1. Introduction

Computer programming is an exact science in that all
the properties of a program and all the consequences of
executing it in any given environment can, in principle,
be found out from the text of the program itself by means
of purely deductive reasoning. Deductive reasoning in-
volves the application of valid rules of inference to sets of
valid axioms. It is therefore desirable and interesting to
elucidate the axioms and rules of inference which underlie
our reasoning about computer programs. The exact choice
of axioms will to some extent depend on the choice of
programming language. For illustrative purposes, this
paper is confined to a very simple language, which is effec-
tively a subset of all current procedure-oriented languages.

2. Computer Arithmetic

The first requirement in valid reasoning about a pro-
gram is to know the properties of the elementary operations
which it invokes, for example, addition and multiplication
of integers. Unfortunately, in several respects computer
arithmetic is not the same as the arithmetic familiar to
mathematicians, and it is necessary to exercise some care
in selecting an appropriate set of axioms. I'or example, the
axioms displayed in Table I are rather a small selection
of axioms relevant to integers. From this incomplete set

* Department of Computer Science

576 Communications of the ACM

The proof of the second of these is:
A5 (r—y)4+yX A+9q)
=(r—-y)+ @WX1+yXyqg)

A9 =@ —y)+ y+yXqg
A3 =(r—y)+y)+yXgqg
A6 =r+y Xgqg providedy < r

The axioms Al to A9 are, of course, true of the tradi-
tional infinite set of integers in mathematics. However,
they are also true of the finite sets of “integers’’ which are
manipulated by computers provided that they are con-
fined to nonnegative numbers. Their truth is independent
of the size of the set; furthermore, it is largely independent
of the choice of technique applied in the event of “over-
flow”’; for example:

(1) Strict interpretation: the result of an overflowing
operation does not exist; when overflow occurs, the offend-
ing program never completes its operation. Note that in
this case, the equalities of Al to A9 are strict, in the sense
that both sides exist or fail to exist together.

(2) Firm boundary: the result of an overflowing opera-
tion is taken as the maximum value represented.

(3) Modulo arithmetic: the result of an overflowing
operation is computed modulo the size of the set of integers
represented.

These three techniques are illustrated in Table II by
addition and multiplication tables for a trivially small
model in which 0, 1, 2, and 3 are the only integers repre-
sented.

It is interesting to note that the different systems satisfy-
ing axioms Al to A9 may be rigorously distinguished from
each other by choosing a particular one of a set of mutually
exclusive supplementary axioms. For example, infinite
arithmetic satisfies the axiom:

A10; —d2Vy (y < x),
where all finite arithmetics satisfy:
Al0r Vz (x < max)

where “max” denotes the largest integer represented.
Similarly, the three treatments of overflow may be
distinguished by a choice of one of the following axioms
relating to the value of max + 1:
Alls =3z (x = max -+ 1) (strict interpretation)
All; max + 1 = max

Ally max+1=0

(firm boundary)

(modulo arithmetic)

Having selected one of these axioms, it is possible to
use it in deducing the properties of programs; however,

Yolume 12 / Number 10 / October, 1969

“the purpose of this study is to

provide a logical basis for proofs

of the properties of a program”
C.A.R. Hoare (1969

find the quotient g and the remainder r

Hoare’s example

obtained on dividing x by y

((r

q := 0); while

y<rdo (r:=r—vy; g:=1+4q))

y<rNzx=r—+y Xgq

TABLE III
Line
number Formal proof Justification
1 true Dz =24+ yXO0 Lemma 1
2 z=24+yYyX0fri=zjlz=r+yX0 DO
3 r=7r+yX0{g:=0Qz=r+yXg DO
4 true {r ;== zjz=r-4+y X0 D1 (1, 2)
5 true {r:=2; ¢:=0lz=r+4yXq D2 (4, 3)
6 z=r+yXgAy<grdDz=
(r—y) + v X (14-9) Lemma 2
7 z= (r—y)+y X A4+g){r := r—ylz =
r+y X (1+9) DO
8 z=r+4+yX A+9{q := 14gjz =
r4+yXgqg D0
9 z=(—y)+yX QA+g)fr := r—y;
q:=1+glx=r+yXgqg D2 (7, 8)
10 z=r4+yXgANy<rir:=r—y;
g :=1+qlx=r+yXg D1 (6, 9)
11 z =14+ y X q {while y<r do
(r:=r—y; q:=149q)}
Yy <rAz=r+yXgq D3 (10)
12 true {((r := z; ¢q :=0); whiley < r do
(ri=r—y; ¢g:=14+q)} wy<r Az =
r+y Xy D2 (5, 11)
NotEs

1. The left hand column is used to number the lines, and the
right hand column to justify each line, by appealing to an axiom,
a lemma or a rule of inference applied to one or two previous
lines, indicated in brackets. Neither of these columns is part
of the formal proof. For example, line 2 is an instance of the
axiom of assignment (ID0); line 12 is obtained from lines 5 and 11

by application of the rule of composition (D2).

2. Lemma 1 may be proved from axioms A7 and AS.
3. Lemma 2 follows directly from the theorem proved in Sec. 2.

Preliminaries and notation

A simple imperative language

integer
variable

Cc = X:=da a:=n|x|a +a]...
| S k| p arithmetic
expression
| 50
| if bthen ¢, else ¢,
| while bdoc b:=a < a,|byAby]|...

Boolean

expression

Concrete domain

set of
l a
oc.X >/
set of
set of all integers

states

Y2 {o: X > Z)

concrete
domain

g(X) = {P|PCX)

state
property

Notation

(x— 1,y > 2]

the state where x holds 1, y holds 2 and any other variable holds O

sometimes
aiate denoted
update

oln/x]

olx — n|
the state where x holds 7 and any other variable y holds o(y)

(x = li,y =2)°

the set of all states where x holds 1 and y holds 2

Assertion language

=3

P

true | false | a; <a, | a=a, | .. IS

classical

| _|P | I)l/\})2 | HXP | assertions

Notation

ocEP oralso o€ P

the state o satisfies the property P

P=>(Q oralso PC(Q oraso P

any state that satisfies P satisfies

Collecting semantics

[c]l : go(Z) — go(X)
| c||P

is the set of all and only states reachable from some state in P after executing ¢

[cllo as a shorthand for [[c]|{o}

additive: [[c]|(P; U P,) = ([Llc]lP;) U (llclIP,)

Collecting semantics

NO errors
are possible

la]l : 2 - Z

concrete
semantics

lallo

evaluates the arithmetic expression a in the current state o

e.g.
[x+ 1fj[lx = 1,y— 2] =2

Collecting semantics

(o] : go(2) = go(2)

[L]|P (intuitively b A P)

is the set of all and only states in P that satisfy the condition b

e.g.
[x < y[{[x+— 1.y 2], [x—~ 2,y 1]} ={[x— 1,y — 2]}

[x <yllx—=2y=1]=7

Collecting semantics:
atomic commands

[skip]]P £ P

[x :=a]]P £ {o][x — [a]lo] | 6 € P)

e.g.
[r =x][x—~ S5,y 2]={[x— S5y 2,r—= 5]}

Collecting semantics:
seguence

[ci; o 1IP = [, N[TIP)

e.g.
[y ==x;9g:=0][x = 5,y 2]={|lx—= 5,y 2,r = 5]}

q+—0
implicit

Collecting semantics:
conditionals

[if b then ¢, else ¢,]||P 2 lc IdlolP) U e Il ~o1IP)

e.q.
Jif x > 0 then skip else x := —x]|{[x— —1],|[x — 1]}

= [[skipll[x = 11U [[x := — x]|[x = — 1]
2 {[x — 1]}

Collecting semantics: loops
[while b do c]|P 2 [-b]] U ([Tl © [bTHEP
k=0

e.g.
w 2 while y < r do

r-e=r—yY, P,={o)
qg:=q+1 P ={c)UfiP)={o,[x— 5y~ 2r—3g~ 1]}
P,=1{0c} Uf(P) =

fé [r:=r—y,g:=qg+ 1]y <rl]

Gé [x > 3, lo,[x—= 3y, 2r—»3g-1],[x—>5y—2r— 1,g— 2]}
y = 2, P, ={c} Uf(P,) = P, we can stop!
r— 5]

Iwliio} =lly>rllPy={lx— 5y 2r— l,g- 2]}

Inference rules

mqbl Py - P,
’ .

It all premises hold, then the conclusion holds

pos(x) pos(y)
pos(1) pos(x + y)

[base

Proof systems

a set of inference rules

pos(x) pos(y)

hos(1) bos(x +y)

Proof tree

[base] base]

pos(1) pos(1) pos(l) pos(l)
o pOs(2) pOS(2) -
o pos(1) Th

pos(d)

um]

[sum]

pos(x) pos(y) -
pos(1) pos(x + y)

[[[[[[

Hoare Logic
(HL)

Hoare’s triples

pre
condition

original
paper

Picy Q Pyci0]

post
condition

when the precondition Is met,
executing the command establishes the postcondition

can include non

[[C]] P g Q reachable states

over

approximation!

An obvious axiom

(P} skip {P}

{x >0} skip {x > 0}

Let's work It out together

{Pl x:=a’

{x>0y=3x,z=x}x:=x+y"

Let's work It out together

{Pl x:=a’

(x>0 y=3x,z=x}x=x4+y{z>0x=4z,y= 3z}

Floyd’s axiom for assignment

{P}x:=a{dx".Plx'/x] Ax =a|x'/x]}

{true} r:=x{dr'. true,r=x}={r =x}

Ix=r+qy}ri=r—y{dr'.x=r+qgy,r=r'—y}
={dr'. x=r+y+qy,r=r+y}
={x=r+(@+ 1)y}

Hoare’s axiom for assignment

’x:=a {0}

Tx:=x+y{z>0x=4zy =3z}

Hoare’s axiom for assignment

’x:=a {0}

{z>0x=2zy=3z}x=x+y{z>0x=4z,y =3z}

Hoare’s axiom for assignment

Olal/x]} x :=a {0}

{true} ={x=x+0y} r:=x{x=r+0y}

Ix=r}={x=r+0y}g:=0{x=r+qgy}

Ix=r+4+qy} =
x=r—y+@+yjri=r—yix=r+(@+ yj

Telg
servati

D

O

An

[Floyd’s]

— //X]}
CI[X
P[X,/)C] N\ X
[{HX :
® a
X .
{ }

X

—} [Hoa
{Q

._ a

I} x:

la/x

{Q

Composition rule

{P}ci {R} {R} ¢, {Q]
{P}cpe 0]

forward / backward

Ix=r+qgylri=r—vy{x=r+(@+ 1)y}
x=r+@+1yjqg:=q+1{x=r+qy}

Ix=r+qgylri=r—vy,g:=qg+1{x=r+qgy}

Inlining assertions

Ix=r+qgylri=r—vy{x=r+(@+ 1)y}
ix=r+@+Dlyjqg:=qg+1{x=r+gqyj

Ix=r+qylr=r—vy,g:=qg+1{x=r+qgy}

X =r+qy}

s _V—y

X =r+(@q+ 1)y}
g .=q+1

X =r+qy}

While rule

{IPAD} c{P}
{Ptwhile b do ¢ {P A =D}

Invariant
x>0}

while x > 0 do

x:=x-—1;

While rule

{IPAD} c{P}
{Ptwhile b do ¢ {P A =D}

Invariant
x>0}

while x > 0 do

{(x>0Ax>0}
x:=x—1;

While rule

{IPADb} c{P}
{Ptwhile b do ¢ {P A =D}

Invariant
{x >0}

while x > 0 do
Ix>20Ax>0l={x>0}={x>21}={x—-12>0)}
x:=x—1;

While rule

{IPADb} c{P}
{Ptwhile b do ¢ {P A =D}

Invariant
{x >0}

while x > 0 do
Ix>20Ax>0l={x>0}={x>21}={x—-12>0)}
x:=x—1;

x>0}

While rule

{IPADb} c{P}
{Ptwhile b do ¢ {P A =D}

Invariant
x>0}

while x > 0 do
Ix>20Ax>0l={x>0}={x>21}={x—-12>0)}
x:=x-—1;
{x > 0]}
Ix>20AXx<0}={x=0}

