
Program Analysis

Roberto Bruni

PhD Course
June 30 - July 4, 2025

⟨P * R⟩ r ⟨Q * R⟩
⟨P⟩ r ⟨Q⟩

Lecture #2

http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni

Before we start…

Please answer questions

There are the 3 possible answers to the verification problem

“does my program satisfy the specification ?”

 yes

 no

 don’t know

please pick one option whenever we ask questions in these classes

c S

Program correctness:
a long standing problem

Origins? Turing’s assertions1

“how can one check a routine in the
sense of making sure that it is right?”

Alan Turing (1949)

Checking factorial
2b

• a dashed letter indicates
the value at the end of the
process represented by
the box

• an undashed letter
represents the initial value
of a quantity

• TEST is test for zero

• denotes factorial

• at the end (D)

□
v = n!

2b

s
r
n
u
v

General snapshots (P. Naur, 1966)
BIT 6 (1966), 310-316

PROOF OF ALGORITHMS BY GENERAL SNAPSHOTS

PETER NAUR

Abstract .
A constructive approach to the question of proofs of algorithms is to consider

proofs that an object resulting from the execution of an algorithm possesses cer-
tain static characteristics. It is shown by an elementary example how this pos-
sibility may be used to prove the correctness of an algorithm written in ALGOL 60.
The stepping stone of the approach is what is called General Snapshots, i.e. ex-
pressions of static conditions existing whenever the execution of the algorithm
reaches particular points. General Snapshots are further shown to be useful for
constructing algorithms.

Key words: Algorithm, proof, computer, programming.

Introduct ion .
I t is a deplorable consequence of the lack of influence of mathemat ica l

th inking on the way in which compute r p rogramming is cur ren t ly being
pursued, t h a t the regular use of systemat ic proof procedures, or even
the realization t h a t such proof procedures exist, is unknown to the large
major i ty of programmers . Undoub ted ly , this fac t accounts for a t least
a large share of the unrel iabi l i ty and the a t t e n d a n t lack of over-all ef-
fectiveness of programs as t h e y are used to-day .

Histor ical ly this s ta te of affairs is easily explained. Large scale com-
pu te r programming s ta r ted so recent ly t ha t all of its pract i t ioners are,
in fact , amateurs . At the same t ime the modern computers are so effec-
t ive t ha t t hey offer advantages in use even when the i r powers are largely
wasted. The stress has been on always larger, and, allegedly, more power-
ful systems, in spite of the fac t t h a t the available p rogrammer com-
petence often is unable to cope with their complexities.

However , a reac t ion is bound to come. We cannot indefini tely con-
t inue to build on sand. When this is realized there will be an increased
interest in the less glamorous, bu t more solid, basic principles. This will
go in parallel with the in t roduct ion of these principles in the e lementa ry
school curricula. One subject which will then come up for a t t en t ion is
t h a t of proving the correctness of algorithms. The purpose of the present
article is to show in an e lementa ry way t h a t this subject no t only exists,
b u t is ripe to be used in practise. The i l lustrat ions are phrased in ALGOL
60, bu t the technique m a y be used with any programming language.

Copyright (~ 1966 by Peter Naur.

“expression of static conditions
existing whenever the execution of the
algorithm reaches particular points”

P R O O F O F A L G O R I T H M S B Y G E N E R A L S N A P S H O T S 313

ments in the process, but still as applied to one particular set of data.
To illustrate this technique, every detail of an example of the use of
Program 1 is given above. Successive snapshots are given in successive
lines, where for clarity a value given in a column holds unchanged in
following lines unless another value is given.

This snapshot technique is quite useful as an aid to understanding a
given algorithm. However, it is not a proof technique because it depends
entirely on the choice of the data set. In order to achieve a proof we
shall need more general snapshots.

General Snapshots .
By a General Snapshot I shall mean a snapshot of a dynamic process

which is associated with one particular point in the actual program text,
and which is valid every time that point is reached in the execution of
the process.

From this definition it immediately follows tha t the values of vari-
ables given in a General Snapshot normally at best can be expressed as
general, mathematical expressions or by equivalent formulations. I have
to say "a t best" because in many cases we can only give certain limits on
the value, and I have to admit "equivalent formulations" because we do
not always have suitable mathematical notation available.

In order to illustrate this notion, here is a version of the above algorithm
expanded with General Snapshots at six different points:

PROGRAM 2
Greatest number, with snapshots

c o m m e n t General Snapshot 1:1 < N;
r : = l ;
c o m m e n t General Snapshot 2 : 1 < N, r = 1;
for i := 2 step 1 unt i l /V do

begin c o m m e n t General Snapshot 3 : 2 <= i <= N, 1 < r <= i - 1,
A[r] is the greatest among the elements A[1],A[2] , A [i - 1] ;
if A[i] > Air] then r : = i;
c o m m e n t General Snapshot 4: 2 < i < N , l < r< i, A[r] is the greatest
among the elements A [1], A [2] A [i];
end;

c o m m e n t General Snapshot 5 : 1 < r <-N, A[r] is the greatest among the
elements A[1],A[2] A[_N];
R : = A[r];
c o m m e n t General Snapshot 6: R is the greatest value of any element,
A[1J,A[2] A [~¢'];

Floyd’s interpretations (1967)
“an association of a proposition with
each connection in the flow of
control through a program, where
the proposition is asserted to hold
whenever that connection is taken”

Robert W. Floyd

ASSIGNING MEANINGS TO PROGRAMSl

Introduction. This paper attempts to provide an adequate basis for
formal definitions of the meanings of programs in appropriately defined
programming languages, in such a way that a rigorous standard is established
for proofs about computer programs, including proofs of correctness,
equivalence, and termination. The basis of our approach is the notion of
an interpretation of a program: that is, an association of a proposition
with each connection in the flow of control through a program, where the
proposition is asserted to hold whenever that connection is taken. To prevent
an interpretation from being chosen arbitrarily, a condition is imposed on
each command of the program. This condition guarantees that whenever
a command is reached by way of a connection whose associated proposition
is then true, it will be left (if at all) by a connection whose associated
proposition will be true at that time. Then by induction on the number of
commands executed, one sees that if a program is entered by a connection
whose associated proposition is then true, it will be left (if at all) by a
connection whose associated proposition will be true at that time. By this
means, we may prove certain properties of programs, particularly properties
of the form: "If the initial values of the program variables satisfy the
relation Rit the final values on completion will satisfy the relation Rz."
Proofs of termination are dealt with by showing that each step of a program
decreases some entity which cannot decrease indefinitely.

These modes of proof of correctness and termination are not original;
they are based on ideas of Perlis and Gorn, and may have made their
earliest appearance in an unpublished paper by Gorn. The establishment
of formal standards for proofs about programs in languages which admit
assignments, transfer of control, etc., and the proposal that the semantics
of a programming language may be defined independently of all processors
for that language, by establishing standards of rigor for proofs about

1 This work was supported by the Advanced Projects Agency of the Office of
the Secretary of Defense (SD-146).

19

A flowchart language. To make these notions more specific, consider a
particular flowchart language with five statement types, represented
pictorially as in Figure 2, having the usual interpretations as an assignment
operation, a conditional branch, a join of control, a starting point for the
program, and a halt for the program.

Take specifically the assignment operator x+- f(x, y), where x is a variable
and f is an expression which may contain occurrences of x and of the vector
y of other program variables. Considering the effect of the command, it
is clearly desirable that if P l is (x = xo/\ R), and Ql is (x = f(xo, y) /\ R),
where R contains no free occurrences of x, then VC(Pl ; Ql). Applying the
axioms, we shall establish a definition of V.I-f(.I.,) which is complete and
consistent if the underlying deductive system is, and which is, in that
sense, the most general semantic definition of the assignment operator.

(STAr)
bl

FIGURE 2

101

Designating the command x +-f(x, y) by c, we apply Axiom 3 to Vc(Ph QI),
to obtain

Vc« 3xo) PI; (3 xo) QJ.
Because [(3 x) (x = e /\ P(x»] == P(e) , provided x does not occur free

in e, we apply Corollary 1, to get Vc(R(x,y); (3 xo)(x = f(xo,y) /\R(xo,Y»).
Finally, by Corollary 1, we have

The verification condition for assignment operators.

If P l has the form R(x, y) and if (3 xo)(x = f(xo, y) /\ R(xo, y» I- Qh
(1)

then V.I-f(.I,J)(Ph QI).

Floyd’s examples

programs in the language, appear to be novel, although McCarthy ll, 2]
has done similar work for programming languages based on evaluation of
recursive functions.

A semantic definition of a programming language, in our approach, is
founded on a syntactic definition. It must specify which of the phrases
in a syntactically correct program represent commands, and what conditions
must be imposed on an interpretation in the neighborhood of each command.

We will demonstrate these notions, first on a flowchart language, then
on fragments of ALGOL.

DEFINITIONS. A flowchart will be loosely defined as a directed graph
with a command at each vertex, connected by edges (arrows) representing
the possible passages of control between the commands. An edge is said
to be an entrance to (or an exit from) the command c at vertex v if its
destination (or origin) is v. An interpretation I of a flowchart is a mapping
of its edges on propositions. Some, but not necessarily all, of the free
variables of these propositions may be variables manipulated by the

- - - - - - - - n E J+ (J+ is the set of positive integers)

- - - - - - - - n E J+ /\ i = 1/\ S = 0
i-l

_____ - - - n E J+ /\ i E J+ /\ i n + 1/\ S = 1: OJ
j-l

i-I n
- - - n E J1- /\ i = n + 1/\ S = 1: OJ; i.e., S = 1: OJ ______ j-l j-l

i-l
- - - - - - - - n E J+ /\ i E J+ /\ i n /\ S = 1: OJ

j-1

.
I

- - - - - - - - n E J+ /\ i E J+ /\ i n /\ S = L. OJ
j-1

i - i + 1 i-l

- - - - - - - - n E J+ Ai ¤ J+ 1\ 2 i n + 1/\ S = 1: OJ
j-l

FIGURE 1. Flowchart of program t() compute S = 1:1-1 OJ (n 0)

Floyd’s examples

programs in the language, appear to be novel, although McCarthy ll, 2]
has done similar work for programming languages based on evaluation of
recursive functions.

A semantic definition of a programming language, in our approach, is
founded on a syntactic definition. It must specify which of the phrases
in a syntactically correct program represent commands, and what conditions
must be imposed on an interpretation in the neighborhood of each command.

We will demonstrate these notions, first on a flowchart language, then
on fragments of ALGOL.

DEFINITIONS. A flowchart will be loosely defined as a directed graph
with a command at each vertex, connected by edges (arrows) representing
the possible passages of control between the commands. An edge is said
to be an entrance to (or an exit from) the command c at vertex v if its
destination (or origin) is v. An interpretation I of a flowchart is a mapping
of its edges on propositions. Some, but not necessarily all, of the free
variables of these propositions may be variables manipulated by the

- - - - - - - - n E J+ (J+ is the set of positive integers)

- - - - - - - - n E J+ /\ i = 1/\ S = 0
i-l

_____ - - - n E J+ /\ i E J+ /\ i n + 1/\ S = 1: OJ
j-l

i-I n
- - - n E J1- /\ i = n + 1/\ S = 1: OJ; i.e., S = 1: OJ ______ j-l j-l

i-l
- - - - - - - - n E J+ /\ i E J+ /\ i n /\ S = 1: OJ

j-1

.
I

- - - - - - - - n E J+ /\ i E J+ /\ i n /\ S = L. OJ
j-1

i - i + 1 i-l

- - - - - - - - n E J+ Ai ¤ J+ 1\ 2 i n + 1/\ S = 1: OJ
j-l

FIGURE 1. Flowchart of program t() compute S = 1:1-1 OJ (n 0)

START

_____ {X 0, Y> 0, Q = °
r-----lI=----, (X - Q, 5)

R-X

(X-Q,4)
_____ {R 0, X 0, Y > 0, Q 0, X = R + QY

(X - Q,3) __ _

---"'-- ,C HALT)

I_tO R < Y,X O,X = R + QY
No (X - Q,2)

_____ {R Y> 0, X 0, Q 0, X = R + QY
,_----'1""-_--, (X - Q, 2)

_____ {R 0, Y > 0, X 0, Q > 0, X = R + QY
(X - Q,4)

FIGURE 5. Algorithm to compute quotient Q and remainder R of
X.;- y, for integers X 0, Y > °

REFERENCES

1. J. McCarthy, "A basis for a mathematical theory of computation" in Computer pro-
gramming and formal systems, North-Holland, Amsterdam, 1963, pp. 33-70.

2. , Towards a mathematical science of computation, Proc. IFIP Congr. 62, North-
Holland, Amsterdam, 1962, pp. 21-28.

CARNEGIE INSTITUTE OF TECHNOLOGY
PITTSBURGH, PENNSYLVANIA

non-negative?

weakening

to prove
termination

weakening

Turing’s proof in Floyd’s notation

2d

Turing’s proof in Floyd’s notation

2d

if here
it holds:

after
updating u

this
will hold:

Hoare Logic
An Axiomatic Basis for
Computer Programming

C. A. R. HOARE
The Queen's University of Belfast,* Northern Ireland

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which
were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in-
volves the elucidation of sets of axioms and rules of inference
which can be used in proofs of the properties of computer
programs. Examples are given of such axioms and rules, and
a formal proof of a simple theorem is displayed. Finally, it is
argued that important advantages, both theoretical and prac-
tical, may follow f rom a pursuance of these topics.

KEY WORDS AND PHRASES: axiomatic method, theory of programming'
proofs of programs, formal language definition, programming language
design, machine-independent programming, program documentation
CR CATEGORY: 4.0, 4.21,4.22, 5.20, 5.21,5.23, 5.24

1. Introduction

Computer programming is an exact science in that all
the properties of a program and all the consequences of
executing it in any given environment can, in principle,
be found out from the text of the program itself by means
of purely deductive reasoning. Deductive reasoning in-
volves the application of valid rules of inference to sets of
valid axioms. I t is therefore desirable and interesting to
elucidate the axioms and rules of inference which underlie
our reasoning about computer programs. The exact choice
of axioms will to some extent depend on the choice of
programming language. For illustrative purposes, this
paper is confined to a very simple language, which is effec-
tively a subset of all eurrent procedure-oriented languages.

2. Computer Arithmetic
The first requirement in valid reasoning about a pro-

gram is to know the properties of the elementary operations
which it invokes, for example, addition and multiplication
of integers. Unfortunately, in several respects computer
arithmetic is not the same as the arithmetic familiar to
mathematicians, and it is necessary to exercise some care
in selecting an appropriate set of axioms. For example, the
axioms displayed in Table I are rather a small selection
of axioms relevant to integers. From this incomplete set

* Depurtment of Computer Science

of axioms it is possible to deduce such simple theorems as:

x = x + y X O

y < r ~ r + y X q = (r - y) + y X (1 + q)

The proof of the second of these is:

A5 (r - - y) + y X (l + q)

= (r - - y) + (y X l + y X q)

A9 = (r - - y) + (y + y X q)

A3 = ((r - - y) + y) + y X q

A6 = r + y X q p rov idedy < r

The axioms A1 to A9 are, of course, true of the tradi-
tional infinite set of integers in mathematics. However,
they are also true of the finite sets of "integers" which are
manipulated by computers provided that they are con-
fined to nonnegative numbers. Their t ru th is independent
of the size of the set; furthermore, it is largely independent
of the choice of technique applied in the event of "over-
flow"; for example:

(1) Strict interpretation: the result of an overflowing
operation does not exist; when overflow occurs, the offend-
ing program never completes its operation. Note that in
this case, the equalities of A1 to A9 are strict, in the sense
that both sides exist or fail to exist together.

(2) Firm boundary: the result of an overflowing opera-
tion is taken as the maximum value represented.

(3) Modulo arithmetic: the result of an overflowing
operation is computed modulo the size of the set of integers
represented.

These three techniques are illustrated in Table I I by
addition and multiplication tables for a trivially small
model in which 0, 1, 2, and 3 are the only integers repre-
sented.

I t is interesting to note that the different systems satisfy-
ing axioms A1 to A9 may be rigorously distinguished from
each other by choosing a particular one of a set of mutually
exclusive supplementary axioms. For example, infinite
arithmetic satisfies the axiom:

A10z ~ 3 x V y (y < x),

where all finite arithmetics satisfy:

A10~ Vx (x < max)

where "max" denotes the largest integer represented.
Similarly, the three treatments of overflow may be

distinguished by a choice of one of the following aMoms
relating to the value of max + 1:

A l l s ~ 3 x (x = max + 1) (strict interpretation)

A l l , max + 1 = max (firm boundary)

AllM max + 1 = 0 (modulo arithmetic)

Having selected one of these axioms, it is possible to
use it in deducing the properties of programs; however,

576 Communications of the ACM Volume 12 / Number 10 / October, 1969

“the purpose of this study is to
provide a logical basis for proofs
of the properties of a program”

C.A.R. Hoare (1969)

Hoare’s example

3.2. RULES OF CONSEQUENCE
In addition to axioms, a deductive science requires at

least one rule of inference, which permits the deduction of
new theorems from one or more axioms or theorems al-
ready proved. A rule of inference takes the form " I f ~-X
and ~- Y then ~-Z", i.e. if assertions of the form X and Y
have been proved as theorems, then Z also is thereby
proved as a theorem. The simplest example of an inference
rule states tha t if the execution of a program Q en-
sures the t ru th of the assertion R, then it also ensures the
t ru th of every assertion logically implied by R. Also, if
P is known to be a precondition for a program Q to pro-
duce result R, then so is any other assertion which logically
implies P. These rules may be expressed more formally:

D1 Rules of Consequence
If ~-P{Q}R and ~-R D S then ~-P{Q}S
If ~-P{Q}R and ~-S ~ P then ~-S{Q}R

3.3. RULE OF COMPOSITION
A program generally consists of a sequence of statements

which are executed one after another. The statements may
be separated by a semicolon or equivalent symbol denoting
procedural composition: (Q1 ; Q2 ; " '" ; Q~). In order to
avoid the awkwardness of dots, it is possible to deal ini-
tially with only two statements (Q1 ; Q2), since longer se-
quences can be reconstructed by nesting, thus (Q~ ; (Q2 ;
(" " (Q,-1 ; Q.) - ' "))) . The removal of the brackets of
this nest may be regarded as convention based on the
associativity of the ";-operator", in the same way as brack-
ets are removed from an arithmetic expression (6 + (t2 +
(. . - (t,_~ + t ,) - - .))) .

The inference rule associated with composition states
tha t if the proven result of the first par t of a program is
identical with the precondition under which the second par t
of the program produces its intended result, then the whole
program will produce the intended result, provided that the
precondition of the first part is satisfied.

In more formal terms:

D2 Rule of Composition
If ~-P{QdR1 and ~-R~{Q2}R then ~-P{ (Q~ ; Q2)}R

3.4. RvL~ OF ITERATION
The essential feature of a stored program computer is

the ability to execute some portion of program (S) re-
peatedly until a condition (B) goes false. A simple way of
expressing such an iteration is to adapt the ALGOL 60
w h i l e notation:

w h i l e B d o S

In executing this statement, a computer first tests the con-
dition B. If this is false, S is omitted, and execution of the
loop is complete. Otherwise, S is executed and B is tested
again. This action is repeated until B is found to be false.
The reasoning which leads to a formulation of an inference
rule for iteration is as follows. Suppose P to be an assertion
which is always true on completion of S, provided tha t it is
also true on initiation. Then obviously P will still be true
after any number of iterations of the s tatement S (even

no iterations). Furthermore, it is known tha t the con-
trolling condition B is false when the iteration finally
terminates. A slightly more powerful formulation is pos-
sible in light of the fact tha t B may be assumed to be true
on initiation of S:

D3 Rule of Iteration
If ~P A B{S}P then ~-P{while B do S} ~ B A P

3.5. EXAMPLE
The axioms quoted above are sufficient to construct the

proof of properties of simple programs, for example, a
routine intended to find the quotient q and remainder r
obtained on dividing x by y. All variables are assumed to
range over a set of nonnegative integers conforming to the
axioms listed in Table I. For simplicity we use the trivial
but inefficient method of successive subtraction. The pro-
posed program is:

((r := x; q := 0); w h i l e
y < r d o (r : = r - - y ; q : = l + q))

An important property of this program is tha t when it
terminates, we can recover the numerator x by adding to
the remainder r the product of the divisor y and the quo-
t ient q (i.e. x = r + y X q). Furthermore, the remainder
is less than the divisor. These properties may be expressed
formally:

t r u e { Q } ~ y ~< r A x = r + y X q

where Q stands for the program displayed above. This
expresses a necessary (but not sufficient) condition for
the "correctness" of the program.

A formal proof of this theorem is given in Table III .
Like all formal proofs, it is excessively tedious, and it
would be fairly easy to introduce notational conventions
which would significantly shorten it. An even more power-
ful method of reducing the tedium of formal proofs is to
derive general rules for proof construction out of the simple
rules accepted as postulates. These general rules would be
shown to be valid by demonstrating how every theorem
proved with their assistance could equally well (if more
tediously) have been proved without. Once a powerful set
of supplementary rules has been developed, a "formal
proof" reduces to little more than an informal indication
of how a formal proof could be constructed.

4. G e n e r a l R e s e r v a t i o n s

The axioms and rules of inference quoted in this paper
have implicitly assumed the absence of side effects of the
evaluation of expressions and conditions. In proving prop-
erties of programs expressed in a language permitting side
effects, it would be necessary to prove their absence in
each ease before applying the appropriate proof technique.
I f the main purpose of a high level programming language
is to assist in the construction and verification of correct
programs, it is doubtful whether the use of functional
notation to call procedures with side effects is a genuine
advantage.

Another deficiency in the axioms and rules quoted above

578 Communica t ions of the ACM Volume 12 / Number 10 / October, 1969

is that they give no basis for a proof that a program suc-
cessfully terminates. Failure to terminate may be due to an
infinite loop; or it may be due to violation of an imple-
mentation-defined limit, for example, the range of numeric
operands, the size of storage, or an operating system time
limit. Thus the notation "PIQ}R" should be interpreted
"provided tha t the program successfully terminates, the
properties of its results are described by R." I t is fairly
easy to adapt the axioms so that they cannot be used to
predict the "results" of nonterminating programs; but the
actual use of the axioms would now depend on knowledge
of many implementation-dependent features, for example,
the size and speed of the computer, the range of numbers,
and the choice of overflow technique. Apart from proofs of
the avoidance of infinite loops, it is probably better to
prove the "conditional" correctness of a program and rely
on an implementation to give a warning if it has had to

TABLE III

Line
number Formal proof Justification

1 t r u e ~ x = x ~ y X 0 L e m m a l
2 x = x - { - y X O{r := x } x = r . - t - y X O DO
3 x = r ~ y X O { q : = O } x = r . - b y X q DO
4 t r u e {r := x} x = r ~ y X 0 D1 (1, 2)

5 t r u e {r := x; q := 0} x = r -t- y X q D2 (4, 3)
6 x = r ~ y X q A y ~ r ~ x =

(r - y) ~ y X (1-t-q) L e m m a 2
7 x = (r - - y) .-{- y X (1-t-q){r := r - y } x =

r + y X (l + q) DO
8 x = r + y X (l + q) [q := 1.-bq}x =

r - t - y X q DO
9 x = (r - - y) -~ y X (l + q) { r := r - - y ;

q := 1+q} x = r + y X q D2 (7, 8)
10 x = r + y X q A y ~ r {r := r - - y ;

, q : = l + q } x = r + y X q D1 (6, 9)

11 x = r -b y X q [w h i l e y ~ r d o
(r := r - - y ; q := 1--bq)}

~- -Ty < r /~ x = r ~ y X q D3 (10)
12 t r u e {((r := x; q := 0); w h i l e y ~ r d o

(r := r - - y ; q := l + q)) } -~y ~ r A x =

r + y X q D2 (5,11)

NOTES
i. The left hand column is used to number the lines, and the

right hand column to justify each line, by appealing to an axiom,
a lemma or a rule of inference applied to one or two previous
lines, indicated in brackets. Neither of these columns is part
of the formal proof. For example, line 2 is an instance of the
axiom of assignment (DO); line 12 is obtained from lines 5 and 11
by application of the rule of composition (D2).

2. Lemma 1 may be proved from axioms A7 and AS.
3. Lemma 2 follows directly from the theorem proved in See. 2.

abandon execution of the program as a result of violation
of an implementation limit.

Finally it is necessary to list some of the areas which have
not been covered: for example, real arithmetic, bit and
character manipulation, complex arithmetic, fractional
arithmetic, arrays, records, overlay definition, files, input /
output, declarations, subroutines, parameters, recursion,
and parallel execution. Even the characterization of integer
arithmetic is far from complete. There does not appear to
be any great difficulty in dealing with these points, pro-
vided that the programming language is kept simple.
Areas which do present real difficulty are labels and jumps,
pointers, and name parameters. Proofs of programs which
made use of these features are likely to be elaborate, and
it is not surprising that this should be reflected in the
complexity of the underlying axioms.

5. P r o o f s o f P r o g r a m C o r r e c t n e s s

The most important property of a program is whether it
accomplishes the intentions of its user. If these intentions
can be described rigorously by making assertions about the
values of variables at the end (or at intermediate points) of
the execution of the program, then the techniques described
in this paper may be used to prove the correctness of the
program, provided that the implementation of the pro-
gramming language conforms to the axioms and rules which
have been used in the proof. This fact itself might also be
established by deductive reasoning, using an axiom set
which describes the logical properties of the hardware
circuits. When the correctness of a program, its compiler,
and the hardware of the computer have all been established
with mathematical certainty, it will be possible to place
great reliance on the results of the program, and predict
their properties with a confidence limited only by the
reliability of the electronics.

The practice of supplying proofs for nontrivial programs
will not become widespread until considerably more power-
ful proof techniques become available, and even then will
not be easy. But the practical advantages of program prov-
ing will eventually outweigh the difficulties, in view of the
increasing costs of programming error. At present, the
method which a programmer uses to convince himself of
the correctness of his program is to t ry it out in particular
cases and to modify it if the results produced do not cor-
respond to his intentions. After he has found a reasonably
wide variety of example cases on which the program seems
to work, he believes that it will always work. The time
spent in this program testing is often more than half the
time spent on the entire programming project; and with a
realistic costing of machine time, two thirds (or more) of
the cost of the project is involved in removing errors during
this phase.

The cost of removing errors discovered after a program
has gone into use is often greater, particularly in the case
of items of computer manufacturer 's software for which a
large part of the expense is borne by the user. And finally,
the cost of error in certain types of program may be almost

V o l u m e 12 / N u m b e r 10 / O c t o b e r , 1969 C o m m u n i c a t i o n s o f t h e ACM 579

3.2. RULES OF CONSEQUENCE
In addition to axioms, a deductive science requires at

least one rule of inference, which permits the deduction of
new theorems from one or more axioms or theorems al-
ready proved. A rule of inference takes the form " I f ~-X
and ~- Y then ~-Z", i.e. if assertions of the form X and Y
have been proved as theorems, then Z also is thereby
proved as a theorem. The simplest example of an inference
rule states tha t if the execution of a program Q en-
sures the t ru th of the assertion R, then it also ensures the
t ru th of every assertion logically implied by R. Also, if
P is known to be a precondition for a program Q to pro-
duce result R, then so is any other assertion which logically
implies P. These rules may be expressed more formally:

D1 Rules of Consequence
If ~-P{Q}R and ~-R D S then ~-P{Q}S
If ~-P{Q}R and ~-S ~ P then ~-S{Q}R

3.3. RULE OF COMPOSITION
A program generally consists of a sequence of statements

which are executed one after another. The statements may
be separated by a semicolon or equivalent symbol denoting
procedural composition: (Q1 ; Q2 ; " '" ; Q~). In order to
avoid the awkwardness of dots, it is possible to deal ini-
tially with only two statements (Q1 ; Q2), since longer se-
quences can be reconstructed by nesting, thus (Q~ ; (Q2 ;
(" " (Q,-1 ; Q.) - ' "))) . The removal of the brackets of
this nest may be regarded as convention based on the
associativity of the ";-operator", in the same way as brack-
ets are removed from an arithmetic expression (6 + (t2 +
(. . - (t,_~ + t ,) - - .))) .

The inference rule associated with composition states
tha t if the proven result of the first par t of a program is
identical with the precondition under which the second par t
of the program produces its intended result, then the whole
program will produce the intended result, provided that the
precondition of the first part is satisfied.

In more formal terms:

D2 Rule of Composition
If ~-P{QdR1 and ~-R~{Q2}R then ~-P{ (Q~ ; Q2)}R

3.4. RvL~ OF ITERATION
The essential feature of a stored program computer is

the ability to execute some portion of program (S) re-
peatedly until a condition (B) goes false. A simple way of
expressing such an iteration is to adapt the ALGOL 60
w h i l e notation:

w h i l e B d o S

In executing this statement, a computer first tests the con-
dition B. If this is false, S is omitted, and execution of the
loop is complete. Otherwise, S is executed and B is tested
again. This action is repeated until B is found to be false.
The reasoning which leads to a formulation of an inference
rule for iteration is as follows. Suppose P to be an assertion
which is always true on completion of S, provided tha t it is
also true on initiation. Then obviously P will still be true
after any number of iterations of the s tatement S (even

no iterations). Furthermore, it is known tha t the con-
trolling condition B is false when the iteration finally
terminates. A slightly more powerful formulation is pos-
sible in light of the fact tha t B may be assumed to be true
on initiation of S:

D3 Rule of Iteration
If ~P A B{S}P then ~-P{while B do S} ~ B A P

3.5. EXAMPLE
The axioms quoted above are sufficient to construct the

proof of properties of simple programs, for example, a
routine intended to find the quotient q and remainder r
obtained on dividing x by y. All variables are assumed to
range over a set of nonnegative integers conforming to the
axioms listed in Table I. For simplicity we use the trivial
but inefficient method of successive subtraction. The pro-
posed program is:

((r := x; q := 0); w h i l e
y < r d o (r : = r - - y ; q : = l + q))

An important property of this program is tha t when it
terminates, we can recover the numerator x by adding to
the remainder r the product of the divisor y and the quo-
t ient q (i.e. x = r + y X q). Furthermore, the remainder
is less than the divisor. These properties may be expressed
formally:

t r u e { Q } ~ y ~< r A x = r + y X q

where Q stands for the program displayed above. This
expresses a necessary (but not sufficient) condition for
the "correctness" of the program.

A formal proof of this theorem is given in Table III .
Like all formal proofs, it is excessively tedious, and it
would be fairly easy to introduce notational conventions
which would significantly shorten it. An even more power-
ful method of reducing the tedium of formal proofs is to
derive general rules for proof construction out of the simple
rules accepted as postulates. These general rules would be
shown to be valid by demonstrating how every theorem
proved with their assistance could equally well (if more
tediously) have been proved without. Once a powerful set
of supplementary rules has been developed, a "formal
proof" reduces to little more than an informal indication
of how a formal proof could be constructed.

4. G e n e r a l R e s e r v a t i o n s

The axioms and rules of inference quoted in this paper
have implicitly assumed the absence of side effects of the
evaluation of expressions and conditions. In proving prop-
erties of programs expressed in a language permitting side
effects, it would be necessary to prove their absence in
each ease before applying the appropriate proof technique.
I f the main purpose of a high level programming language
is to assist in the construction and verification of correct
programs, it is doubtful whether the use of functional
notation to call procedures with side effects is a genuine
advantage.

Another deficiency in the axioms and rules quoted above

578 Communica t ions of the ACM Volume 12 / Number 10 / October, 1969

find the quotient and the remainder
obtained on dividing by

q r
x y

Preliminaries and notation

A simple imperative language

 | skip

 |

 | if then else

 | while do

c ::= x := a

c1; c2
b c1 c2

b c

command
integer
variable

arithmetic
expression

Boolean
expression

 | | …b ::= a1 ≤ a2 b1 ∧ b2

 | | | …a ::= n x a1 + a2

Concrete domain

σ : X → ℤ

set of
variables

state

Σ ≜ {σ : X → ℤ}
set of all
states

℘(Σ) ≜ {P ∣ P ⊆ Σ}
concrete
domain

state
property

set of
integers

Notation

the state where holds , holds and any other variable holds
[x ↦ 1,y ↦ 2]

x 1 y 2 0

the state where holds and any other variable holds
σ[x ↦ n]

x n y σ(y)

the set of all states where holds and holds
(x = 1,y = 2)

x 1 y 2

state
notation

state
update

property
notation

conjunction

σ[n/x]

sometimes
denoted

Assertion language

 | | | | …

 | | | | …
P ::= 𝗍𝗋𝗎𝖾 𝖿𝖺𝗅𝗌𝖾 a1 < a2 a1 = a2

¬P P1 ∧ P2 ∃x . P

assertion

Boolean and
classical

assertions

Notation

 or also

the state satisfies the property

σ ⊧ P σ ∈ P
σ P

 or also or also

any state that satisfies satisfies

P ⇒ Q P ⊆ Q P ≤ Q
P Q

Collecting semantics

[[c]] : ℘(Σ) → ℘(Σ)
concrete

semantics

is the set of all and only states reachable from some state in after executing

 as a shorthand for

additive:

[[c]]P
P c

[[c]]σ [[c]]{σ}

[[c]](P1 ∪ P2) = ([[c]]P1) ∪ ([[c]]P2)

Collecting semantics

[[a]] : Σ → ℤ
concrete

semantics

evaluates the arithmetic expression in the current state
[[a]]σ

a σ

e.g.

[[x + 1]][x ↦ 1,y ↦ 2] = 2

no errors
are possible

Collecting semantics

[[b]] : ℘(Σ) → ℘(Σ)
concrete

semantics

 (intuitively)

is the set of all and only states in that satisfy the condition
[[b]]P b ∧ P

P b

e.g.

[[x < y]]{[x ↦ 1,y ↦ 2], [x ↦ 2,y ↦ 1]} = {[x ↦ 1,y ↦ 2]}

[[x < y]][x ↦ 2,y ↦ 1] = ∅

Collecting semantics:
atomic commands

e.g.

 [[r := x]][x ↦ 5,y ↦ 2] = {[x ↦ 5,y ↦ 2,r ↦ 5]}

[[𝗌𝗄𝗂𝗉]]P ≜ P

[[x := a]]P ≜ {σ[x ↦ [[a]]σ] ∣ σ ∈ P}

e.g.

 [[r := x; q := 0]][x ↦ 5,y ↦ 2] = {[x ↦ 5,y ↦ 2,r ↦ 5]}

Collecting semantics:
sequence

implicit
q ↦ 0

[[c1; c2]]P ≜ [[c2]]([[c1]]P)

e.g.

[[𝗂𝖿 x ≥ 0 𝗍𝗁𝖾𝗇 𝗌𝗄𝗂𝗉 𝖾𝗅𝗌𝖾 x := − x]]{[x ↦ − 1], [x ↦ 1]}
≜ [[𝗌𝗄𝗂𝗉]][x ↦ 1] ∪ [[x := − x]][x ↦ − 1]

≜ {[x ↦ 1]}

Collecting semantics:
conditionals

[[𝗂𝖿 b 𝗍𝗁𝖾𝗇 c1 𝖾𝗅𝗌𝖾 c2]]P ≜ [[c1]]([[b]]P) ∪ [[c2]]([[¬b]]P)

e.g.

[[𝗐𝗁𝗂𝗅𝖾 b 𝖽𝗈 c]]P ≜ [[¬b]]
∞

⋃
k=0

([[c]] ∘ [[b]])kP

Collecting semantics: loops

w ≜ 𝗐𝗁𝗂𝗅𝖾 y ≤ r 𝖽𝗈
r := r − y;
q := q + 1

σ ≜ [x ↦ 5,
y ↦ 2,
r ↦ 5]

 =

 = =

 = =

 = = we can stop!

 = =

P0 {σ}
P1 {σ} ∪ f(P0) {σ, [x ↦ 5,y ↦ 2,r ↦ 3,q ↦ 1]}
P2 {σ} ∪ f(P1)
{σ, [x ↦ 5,y ↦ 2,r ↦ 3,q ↦ 1], [x ↦ 5,y ↦ 2,r ↦ 1,q ↦ 2]}
P3 {σ} ∪ f(P2) P2

[[w]]{σ} [[y > r]]P3 {[x ↦ 5,y ↦ 2,r ↦ 1,q ↦ 2]}

f ≜ [[r := r − y; q := q + 1]] ∘ [[y ≤ r]]

Inference rules

ϕ1 ϕ2 ⋯ ϕn
ϕ

if all premises hold, then the conclusion holds

premises

conclusion

𝗉𝗈𝗌(1)
𝗉𝗈𝗌(x) 𝗉𝗈𝗌(y)

𝗉𝗈𝗌(x + y)
axiom

Proof systems

a set of inference rules

𝗉𝗈𝗌(1)
𝗉𝗈𝗌(x) 𝗉𝗈𝗌(y)

𝗉𝗈𝗌(x + y)[base] [sum]

Proof tree

 𝗉𝗈𝗌(1) 𝗉𝗈𝗌(4)
𝗉𝗈𝗌(5)

 𝗉𝗈𝗌(2) 𝗉𝗈𝗌(2)
 𝗉𝗈𝗌(1) 𝗉𝗈𝗌(1) 𝗉𝗈𝗌(1) 𝗉𝗈𝗌(1)

[base] [sum]

[base]

[sum]

[sum]

[sum]

[base]

Hoare Logic
(HL)

Hoare’s triples

 {P} c {Q}
pre

condition

post
condition

P {c} Q
original
paper

since
then

when the precondition is met,

executing the command establishes the postcondition

[[c]]P ⊆ Q
over

approximation!

can include non
reachable states

An obvious axiom

 {P} 𝗌𝗄𝗂𝗉 {P}

 {x > 0} 𝗌𝗄𝗂𝗉 {x > 0}

Let's work it out together

 {P} x := a ?

 {x > 0,y = 3x, z = x} x := x + y ?

Let's work it out together

 {P} x := a ?

 {x > 0,y = 3x, z = x} x := x + y {z > 0,x = 4z, y = 3z}

Floyd’s axiom for assignment

 {P} x := a {∃x′ . P[x′ /x] ∧ x = a[x′ /x]}
syntax

replacement
syntax

replacement

 {𝗍𝗋𝗎𝖾} r := x {∃r′ . 𝗍𝗋𝗎𝖾, r = x} ≡ {r = x}

{x = r + qy} r := r − y {∃r′ . x = r′ + qy, r = r′ − y}
≡ {∃r′ . x = r + y + qy, r′ = r + y}

≡ {x = r + (q + 1)y}

Hoare’s axiom for assignment

 ? x := a {Q}

 ? x := x + y {z > 0,x = 4z, y = 3z}

Hoare’s axiom for assignment

 ? x := a {Q}

 {z > 0,x = z, y = 3z} x := x + y {z > 0,x = 4z, y = 3z}

Hoare’s axiom for assignment

 {Q[a/x]} x := a {Q}
syntax

replacement

 {𝗍𝗋𝗎𝖾} ≡ {x = x + 0y} r := x {x = r + 0y}

 {x = r} ≡ {x = r + 0y} q := 0 {x = r + qy}

{x = r + qy} ≡
{x = r − y + (q + 1)y} r := r − y {x = r + (q + 1)y}

An observation

 {Q[a/x]} x := a {Q}

 {P} x := a {∃x′ . P[x′ /x] ∧ x = a[x′ /x]}
forward oriented

backward oriented

[Floyd’s]

[Hoare’s]

Composition rule
 {P} c1 {R} {R} c2 {Q}

 {P} c1; c2 {Q}

{x = r + qy} r := r − y {x = r + (q + 1)y}
{x = r + (q + 1)y} q := q + 1 {x = r + qy}

 {x = r + qy} r := r − y; q := q + 1 {x = r + qy}

forward / backward

Inlining assertions

{x = r + qy}
r := r − y;

{x = r + (q + 1)y}
q := q + 1

{x = r + qy}

{x = r + qy} r := r − y {x = r + (q + 1)y}
{x = r + (q + 1)y} q := q + 1 {x = r + qy}

 {x = r + qy} r := r − y; q := q + 1 {x = r + qy}

While rule
 {P ∧ b} c {P}

 {P}𝗐𝗁𝗂𝗅𝖾 b 𝖽𝗈 c {P ∧ ¬b}
loop

invariant

{x ≥ 0}
𝗐𝗁𝗂𝗅𝖾 x > 0 𝖽𝗈

{x ≥ 0 ∧ x > 0} ≡ {x > 0} ≡ {x ≥ 1} ≡ {x − 1 ≥ 0}
x := x − 1;

{x ≥ 0}
{x ≥ 0 ∧ x ≤ 0} ≡ {x = 0}

While rule
 {P ∧ b} c {P}

 {P}𝗐𝗁𝗂𝗅𝖾 b 𝖽𝗈 c {P ∧ ¬b}
loop

invariant

{x ≥ 0}
𝗐𝗁𝗂𝗅𝖾 x > 0 𝖽𝗈

{x ≥ 0 ∧ x > 0} ≡ {x > 0} ≡ {x ≥ 1} ≡ {x − 1 ≥ 0}
x := x − 1;

{x ≥ 0}
{x ≥ 0 ∧ x ≤ 0} ≡ {x = 0}

While rule
 {P ∧ b} c {P}

 {P}𝗐𝗁𝗂𝗅𝖾 b 𝖽𝗈 c {P ∧ ¬b}
loop

invariant

{x ≥ 0}
𝗐𝗁𝗂𝗅𝖾 x > 0 𝖽𝗈

{x ≥ 0 ∧ x > 0} ≡ {x > 0} ≡ {x ≥ 1} ≡ {x − 1 ≥ 0}
x := x − 1;

{x ≥ 0}
{x ≥ 0 ∧ x ≤ 0} ≡ {x = 0}

While rule
 {P ∧ b} c {P}

 {P}𝗐𝗁𝗂𝗅𝖾 b 𝖽𝗈 c {P ∧ ¬b}
loop

invariant

{x ≥ 0}
𝗐𝗁𝗂𝗅𝖾 x > 0 𝖽𝗈

{x ≥ 0 ∧ x > 0} ≡ {x > 0} ≡ {x ≥ 1} ≡ {x − 1 ≥ 0}
x := x − 1;

{x ≥ 0}
{x ≥ 0 ∧ x ≤ 0} ≡ {x = 0}

While rule
 {P ∧ b} c {P}

 {P}𝗐𝗁𝗂𝗅𝖾 b 𝖽𝗈 c {P ∧ ¬b}
loop

invariant

{x ≥ 0}
𝗐𝗁𝗂𝗅𝖾 x > 0 𝖽𝗈

{x ≥ 0 ∧ x > 0} ≡ {x > 0} ≡ {x ≥ 1} ≡ {x − 1 ≥ 0}
x := x − 1;

{x ≥ 0}
{x ≥ 0 ∧ x ≤ 0} ≡ {x = 0}

