Program Analysis

Lecture #1

Roberto Bruni

UNIVERSITA
DI PIsSA

(P*R) r (Q*R)

June 30 - July 4, 2025

SCHOOL OF ADVANCED STUDIES

GRAN SASSO
PhD Course G SCIENCE INSTITUTE

http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni
http://www.di.unipi.it/~bruni

lcebreaker brain teasers

Where's Wally?

only person to find in
the pictures. There is his
Wally’s Facebook fans: Wally app downloads: friend Wenda, his rival Odlaw
(who is dressed in black and
yellow. Odlaw is ‘Waldo’ spelt
backwards), Wizard Whitebeard
and me, Wally’s dog, Woof

The first
Where’s Wally? book
was published on
September 21, 1987 and
was created by English
children’s author and

illustrator Martin
Handford

Wally is a time
traveller - he has
been to Ancient Rome,
the Stone Age and even
the future. He has met
pirates, knights, giants,

dinosaurs and & m -

4.2million 6.8million

| Wally has many aliases
depending on which country
More than @ he is in, including...
5 8 m Where’s Wally? has been translated into

Where’s Wally? books

~ Charlie (French) Vallu (Finnish)

3 O languages. it o Gile (Serbian) =~ Waldo (American)

Hetti (Hindi) Walter (German)

have been sold
worldwide

... and published in Holger (Danish) Willy (Norway)

38 Countries Valli (Icelandic) Wolli (Korean)

......

-

y{’éf{ h‘*"'ll‘ ‘l “ofo 1 &Y . ‘

RS\ \ A l x” ..q) ‘-;Ak“‘ 2
yok .‘i,m ¥y WY | 4\2« ¢1, 07 3 S IS
't]\/«n{* s - Ay
N \“ ‘ Q‘
‘ “ o \s..

{i"

| ”1» s

: s, ‘. 3 \x N h A

% 24 g".?"‘i. :’(:\! 5‘*“5 ;3/§§"
(e ‘?Q P

—.’") /‘
'Q,t'%.)/ili b2

..“ 2 V\ \II D

,,,,,

' &~ ,@'5[
; ‘l 8
25l f’”j; }QA*\)‘T@';'D
P it R-" N J
‘ : Q@g&w ..;.ﬁ
' ,"_'@g’,?(. ‘5 g‘ ‘ ;J
B '*;vg“,"*?,.;:}tv ?‘(\'.’ 5
&4 uﬁb\;",:\%l:/‘ 24)(
2 \\Rv?’.!r- LD A R
’ \ﬂa ‘hﬁ"‘“ J«. y hsﬁ

3 ”"“"t‘"ﬂJ
% ‘f ')r~ ; €30 "(.1 /
' 120 = SN -

f’*’f’ﬁ‘)‘ !
. i“j/g%cl ~
=l -Q

5 q‘é‘,"’l
s 4‘7 1o

e 7/«
,&

\/‘ = ' '
1&
-;’"l e "“3)‘\
‘w ;;1323. 3
i 3

:‘ zo" g\) \. ‘, _~-'.': (m I"ﬁ“\> v,] ;’r a'.al'_‘\ .\"},P‘v’r
i (4 "'. 7‘ (=X “? l“'lﬁ ‘&/_,;-\\’\ f‘\;lim‘:;p

" o0’

.~x‘- -

= X : - e it a“\""?‘ 4 B
\v i a JJ e p
"p- : “-:‘)7‘ “- ans \ 5 ﬂ\\‘\

- A B G _))! ’ < ; Y ol ; o y Bl 2 3 Q SN i
-}x)) ﬁl":ﬁ'u & ‘!"“ ") ; > DI _,-'J.t" RO m : \f" :“ ATioy S YRS e A g e~3 ~" ¥ ‘%ﬁ ; ‘2 e 1) :/ ‘:.\A ;». L -. X ‘ : .° - '\‘ I3

-
.S

A metaphor for logical thinking

Where is the regular five-pointed star?
(There is one, really! No tricks!)

If you see it, raise your hand
or write ‘found!’ on chat,
but don’t point it out to your friends

Simple is not necessarily obvious

Which cards must be turned over to make sure the
following claim is true?

“If the front face of a card bears an even number,
then its back face is red”

Which implication is (always) valid?

(dx.Vy.P) = (Vy. dx. P)

2

(Vy.dx. P) = (dx.Vy. P)

All cats are the same colour

All cats are the same colour base case (n = 1): trivial

inductive case: taken a generic n, we assume the property holds for all groups
with £ < n cats and prove it holds for any group with n + 1 cats as well.

Take n+ 1 cats and place them along a line (this is the hardest part of the proof!).
By inductive hypothesis, the first n cats are the same colour.
By inductive hypothesis, the last n cats are the same colour.

Since the cats in the middle of the line belongs to both groups, by transitivity all
n + 1 cats are the same colour.

- 2 What's wrong?

How would you rate your knowledge?

First order logic PAQAE K¢
Denotational semantics ¢+
Fixed points DAGAGAS
W

Hoare triples

General info

Lectures plan

Monday June 30 14:30-16:30

Tuesday July1 15:00-17:00

Wednesday July?2 15:00-17:00

Thursday July3 14:00-16:00

Topics

Proving correctness: Hoare logic (HL)

Finding bugs: Incorrectness logic (L)

Backward analysis: NC and SIL

Heap analysis: Separation logic(s)

Exams?

Active participation during lectures?

Solving selected exercises?

Short oral Q&A exam session?

5' presentations (elevator pitch)?

O

Introduction and motivation

The need for verification

Friday, 24th June [1949]
Checking a large routine by Dr A. Turing.

How can one check a routine 1n the sense of making sure that 1t 1s right?

“Program correctness and incorrectness
are two sides of the same coin”

Peter O’'Hearn (2020)

Software Verification

COrreCtn eSS the aim is to prove the absence of bugs

o\’\\\

I nCO rreCtneSS the aim is to prove the presence of bugs

Have you seen this picture before?

Bugs

Belay # 70, Panel F, of the Mark Il Aiken Relay Calculator

) M!iar‘fmun"its'jy’ 2 Sgeﬂt,?ombﬁggfll) Y WIKIPEDIA
/000 ' S O .07 BYC 95 covuid * ‘: The Free Encyclopedia
kY V}"’-T:}}r/ MP -MmC l‘;—m J“é%) 7.6/5 72 0.;7(s) -
63y PRO.> 2.13pyr0yis A software bug is an
N 2.13067ems

error, flaw or fault in the
design, development, or
operation of computer
software that causes it
to produce an incorrect
or unexpected result

P Avst acthal case |

https://en.wikipedia.org/wiki/Computer_software
https://en.wikipedia.org/wiki/Computer_software

Why do we need to verify our code?

The code that exploded Ariane 5 rocket!
(video duration 5'45")

Ariane 5 Rocket Explosion (1996)

Attempt to fit 64-bit data into 16-bit data
numeric overflow error): $100M for loss of mission

Read more at:
https:www.bugnag.Com/blog/bug—day—ariane—S—disaster/

.

-~

https://www.bugsnag.com/blog/bug-day-ariane-5-disaster/

Unfortunately

It was one of the most serious but not the only one....

~~~~~

\\\ .
~\>\\

https://www.cs.tau.ac.il/~nachumd/horror.html

Boeing 747 Max Crashes

Toyota unintended acceleration 350 people died

4 people died


https://www.cs.tau.ac.il/~nachumd/horror.html

Costs of SW bugs

Knight Capital Trading Glitch (2012) Nissan Airbag Malfunction (2014)
$440 M 1 Million Vehicles Recalled

Software Fails Watch (Tricentis, 2017): SW bugs lead to $ 1.7 Trillion revenue lost.

CISION PR Newswire (2020): SW bugs cost $ 61 Billion loss in productivity annually.

https://www.tricentis.com/news/tricentis-software-fail-watch-finds-3-6-billion-people-affected-and-1-7-trillion-revenue-lost-by-software-failures-last-year/

https://www.prnewswire.com/news-releases/study-software-failures-cost-the-enterprise-software-market-61b-annually-301066579.html


https://www.tricentis.com/news/tricentis-software-fail-watch-finds-3-6-billion-people-affected-and-1-7-trillion-revenue-lost-by-software-failures-last-year/
https://www.prnewswire.com/news-releases/study-software-failures-cost-the-enterprise-software-market-61b-annually-301066579.html

Complexity of programs

Size of Linux Kernel Avg. Size of Android Apps

(MBs)

Avg APK Size

0.01 1.0.0 1.1.0 1.2.0 1.3.0 2.0.0 2.1.0 2.2.0 2.3.0 240 250 2.6.0 3.0 4.0 5.0 Jan, 2013 Jan, 2014 Jan, 2015 Jan, 2016 Jan, 2017/
Kernel Version

always increasing!



Is there any bug free program?

“There are two ways of constructing a sw design:
one way Is to make it so simple that there are

obviously no deficiencies,
and the other way is to make it so complicated

that there are no obvious deficiencies”

Tony Hoare (1980 Turing award lecture)



Success stories

A long time before success Other Famous Success Stories

» Flight control software of A380: Astree verifies absence of
run-time errors (2005, abstract interpretation)

Computer-assisted verification is an old idea
http://www.astree.ens.fr/

> Turing, 1948

> Floyd-Hoare logic, 1969 > Microsoft’s hypervisor: using Microsoft's VCC and the Z3
automated prover (2008, deductive verification)
http://research.microsoft.com/en-us/projects/vcc/

Success in practice: only from the mid-1990s More recently: verification of PikeOS

» Importance of the increase of performance of computers » Certifled C compiler, developed using the Coqg proof
assistant (2009, correct-by-construction code generated by
a proof assistant)
A first success story: http://compcert.inria.fr/

» Paris metro line 14, using Atelier B (1998, refinement >

L4.verified micro-kernel, using tools on top of Isabelle/HOL
approach)

proof assistant (2010, Haskell prototype, C code, proof
assistant)
http://www.ertos.nicta.com.au/research/14.verified/



The main question

Will our program behave as we intended?

We need to analyse all executions of the program
The semantics of a program is a description of its run-time behaviors

Checking if a software will run as intended is equivalent to
checking if the code satisfies a (semantic) property of interest



Formal methods




Semantics = assigning meaning to syntax

A program lts meaning
C [c]]
syntax semantics

(how the program is written) (Iits computed function)



Memory states

set of

n -
c. X/
set of
integers

set of all
states

Y2 {6: X > 7



Forward semantics (deterministic code)

We start from input state o and we want to characterise the reachable output states

A program
Input store Output store

9] r*-\,r\_,r*. s o_s " [cllo

o ""\4@ lcllo =L Non terminating execution

Denotational semantics lc] : 2 — El Zl =2y {l}



Example

oft imphoit
c &
while (n>1) { Icllln— 1l]l=[nrH 1,x+— 0]
n := n+1l;
X 1= 0: [cflln— 2]=1
}

X ¢= n-1:



Collecting semantics (deterministic code)

Input stores A program
£ C Output stores
¢ Am [[C]]g
(‘.\J(*.\J‘b
U W g W N [c]P = U iclo
A avaveV¥s U

0(\,@ [cllo = L

Denotational semantics [ICll © 2 — 2

Collecting semantics Icll : (X)) — ¢(X)



A
C =

while (n>1) {
:= n+1;
0;

N

Example

[c(n>1)=0
[cln>0)={[n+—~ 1,x+~ 0]}

[cln>0)={[n+ 1,x+ 0],
n— 0, x> —1]}

Icll(true) = m<l,x=n-1)
C n<L1,x<L0)



Exact analysis

[c]l : (%) = g(X)

Icl|P

It is a property about the

computed function, not
about how c is written

semantic property of a program: a property about | c]||

P(c) =VP . Vo € [[c]]P.o(x) #0



Undecidability in the way

non trivial property:
- there exists a program ¢, such that 9°(c,) holds true

- and there exists also some program ¢, such that 2°(c¢,) is false

Rice theorem.
Let SP(c) be a non trivial semantic property of programs c.

There exists no algorithm such that, for every program c,
it returns true if and only if &(c) holds true

no analysis method that is automatic, universal, exact !

algorithmic for any program no false positive/negative




For some program...

Pc)=VP#@.do € [[c]|]P.o(x) #0

A

" @
x = 1;



...and for some other program

Pc)=VP#@.do € [[c]|]P.o(x) #0




it Gollatz's conjecture

1 itn <1

f(n) =< f(n/2)  elseif n%2=0 Vn.fin) = 1
f(3n+1) otherwise

F(12) = £(6) = £(3) = £(10) = £(5) = F(16) = £(8) = f(4) = £(2) = f(1) = 1

The Collatz conjecture!?! is one of the most famous unsolved problems in mathematics. The

conjecture asks whether repeating two simple arithmetic operations will eventually transform every U

positive integer into 1. It concerns sequences of integers in which each term is obtained from the e For even numbers, divide by 2;
previous term as follows: if a term is even, the next term is one half of it. If a term is odd, the next term e For odd numbers, multiply by 3
Is 3 times the previous term plus 1. The conjecture is that these sequences always reach 1, no matter ? and add 1.

which positive integer is chosen to start the sequence. The conjecture has been shown to hold for all With enough repetition, do all

positive integers up to 2.95 x 1020, but no general proof has been found. positive integers converge to 17

It is named after the mathematician Lothar Collatz, who introduced the idea in 1937, two years after (more unsolved problems in mathematics)

receiving his doctorate.!*! The sequence of numbers involved is sometimes referred to as the hailstone
sequence, hailstone numbers or hailstone numerals (because the values are usually subject to multiple descents and ascents
like hailstones in a cloud),'®! or as wondrous numbers.!°!



And for Collatz’s conjecture?

Pc)=VP#@.do € [[c]|]P.o(x) #0
c =
while (x>1) {
1f (even(x))
else



Limitations of the analysis

no analysis method that is automatic, universal, exact !

We need to give something up:
automation: machine-assisted techniques

the universality “for all programs™:
targeting only a restricted class of programs

claim to find exact answers: introduce approximations



money (mmm| money (mm| money 1| money -
energy 1| energy 1| energymmm | enerqy




Over approximations



Over approximations

Good for proving correctness

true negatives

Bad for bug-finding!

\dl/
bl "
true positives false positive




Example

[c]n>0)= {[n~ 1,x- 0],

c = B
while (n>1) { mpeam 27 0x L
ooz AT [c]”(m>0)= {n€{01},x<0}
'
X = n-1;
% & [c]”>20) = & & llcll(n 2 0)
v 1= 1/(x-2); We can prove correctness!!

Undefined behaviour for

X= 2




Example

[c]n>0)= {[n~ 1,x- 0],

c% ne— 0, x> —1]}
while (n>1) {

. im0 [c]*(n>0)= {n€ {01}, x <0
'
X := n-1; # € [c]”(n > 0) False Positive
v o= 1/(x+2) @ & [cllm = 0)

Undefined behaviour for

X=-2




Under approximations

i/
b}

M
Icl|P



Under approximations

Good for bug-finding!

true positives

Bad for proving correctness

false negative

cllP/ & <— true negative



Example

[cln>0)= {[n— 1,x+— 0],

¢ = n— 0,x+— —1]}
while (n>1) {
ooz AT [c]"(n>0)= {[nr~ 1,x— 0]}
'
* 1=k 8 clcl"@>0) = # € [cl@ > 0)
We can prove there is an error !!
y = 1/(x);

Undefined behaviour for

x=0




Example

[cln>0)= {[n— 1,x+— 0],

c = me 0,x > — 1]
while (n>1) {

L [c]"(@>0)= {[n~ Lx 0]}
)
X := n-1;

@ € [cl(m = 0)
& & [c]""(n > 0) False Negative

Undefined behaviour for

xX=-1




Proving Correctness: forward

v,
A program [cllP C O
C
(‘.\’(ﬂ‘\"ﬁ\"ﬂm either does not terminate
P &%:2% 0’\ g Q VoeP. [[C]]G or terminates in Q
o o e _ o e o

P Y
BM



Proving Correctr;ess: backward

A program P C wip(c, Q)
¢ [clPC O
LN R N W A
P .r‘k:::;'r:.:j?-\. 4\ g O Dijkstra’s weakest liberal precondition
Wmm wip(c,Q) = {o | [lcllio} € O}

i WS i W




Nondeterministic programs

Some programs may exhibit nondeterministic behaviour
(lack of information, approximation, programming constructs ¢; + ¢,)

A program C

O \;C:/‘r? [c] : 2 — ¢(X)
cf\{g & o~

[cIPCO
P C wip(c, Q)

all the outputs starting from 6 € P (upon termination) are in Q



Example

A

c 2 [clllx = 35] =(x=35,s € {5,7}))

Divisor of(x) {

s := nondet[2..xX/2];
1f (x%s=0)

skip
else

while true do skip



An example: non-termination analysis

Given a program ¢ and an input store ¢ does [[c]lc = & ?

S s S0
o

Non
termination
Using over-approximation: we try to prove [[c]|”"c C &

Using under-approximation: we try to prove [[c]|'o 2 Q for some QO # &



What we will see

Hoare Logic (HL)

Incorrectness Logic (IL)

Necessary Condition (NC)

Sufficient Incorrectness Logic (SIL)

Separation logic (SL)

Incorrectness Separation Logic (ISL)

Separation SIL

Forward Backward  Over-approximation
X X
X
X X
X
X X
X
X

Under-approximation




