4

e

i’

Mversity of P“sa)

Lecture #08

.-MarCh“11 -1 5,_ 2024

BISS 2024

Backward Analysis

Regular commands

regular _ .

Syntactic sugar
if b then ¢, else ¢, 2 (b?: c))+ (0b7;)

while b do ¢ 2 (b?;¢0)*;~b?

Kleene
star

Backward analysis

Forward Analysis Backward Analysis
int Simple (bool b) int Simple (bool b)
v Intz; { intz;
i (b) i (o) @
z.=12; ze [12,12] .
else
z:=-12; ze [-12,-12]
ze [-12,12]
} return 1/z; 4- diagi)sr:bt's) }

Backward semantics

[]o’ £ {o|o’ € [r]o} o€ [T o €r]o

As before we can extend it

s to sets

710 = P

Necessary conditions (NC)

Automatic Inference of Necessary Preconditions

Patrick Cousot', Radhia Cousot?, Manuel Fahndrich?®, and Francesco Logozzo®

1 NYU, ENS, CNRS, INRIA
pcousot@cims.nyu.edu
2 CNRS, ENS, INRIA
rcousot@ens.fr
3 Microsoft Research
{maf,logozzo}@microsoft.com

Abstract. We consider the problem of automatic precondition infer-
ence. We argue that the common notion of sufficient precondition in-
ference (i.e., under which precondition is the program correct?) imposes
too large a burden on callers, and hence it is unfit for automatic program
analysis. Therefore, we define the problem of necessary precondition in-
ference (i.e., under which precondition, if violated, will the program al-
ways be incorrect?). We designed and implemented several new abstract
interpretation-based analyses to infer atomic, disjunctive, universally and
existentially quantified necessary preconditions.

We experimentally validated the analyses on large scale industrial
code. For unannotated code, the inference algorithms find necessary pre-
conditions for almost 64% of methods which contained warnings. In 27%
of these cases the inferred preconditions were also sufficient, meaning all
warnings within the method body disappeared. For annotated code, the
inference algorithms find necessary preconditions for over 68% of meth-
ods with warnings. In almost 50% of these cases the preconditions were
also sufficient. Overall, the precision improvement obtained by precon-
dition inference (counted as the additional number of methods with no
warnings) ranged between 9% and 21%.

1 Introduction

Design by Contract [28] is a programming methodology which systematically re-
quires the programmer to provide the preconditions, postconditions and object
invariants (collectively called contracts) at design time. Contracts allow auto-
matic generation of documentation, amplify the testing process, and naturally
enable assume/guarantee reasoning for divide and conquer static program anal-
ysis and verification. In the real world, relatively few methods have contracts
that are sufficient to prove the method correct. Typically, the precondition of
a method is weaker than necessary, resulting in unproven assertions within the
method, but making it easier to prove the precondition at call-sites. Inference
has been advocated as the holy grail to solve this problem.

In this paper we focus on the problem of computing necessary preconditions
which are inevitable checks from within the method that are hoisted to the

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 128-148, 2013.
© Springer-Verlag Berlin Heidelberg 2013

VMCAI 2013

“Under which precondition, if violated,
will the program always be incorrect?”

Necessary (pre)conditions

Sufficient Precondition: if it holds, the code is correct

Necessary Precondition: if it does not hold the code is never correct

But Sufficient preconditions impose too large a burden to a callers!!

Necessary preconditions

int Example?2 (object| | a)
{ for (int i1=0; i<=a.length; I++)

v ali]=t@li]);

If (nondet())

return; The function may fail
} So eliminate all runs!

Sufficient precondition: false

Necessary precondition: 0 < a . length

If 0 = = a.length then it will always fail!

Necessary preconditions

The idea of NC is to prevent the invocation of the function with arguments that will
Inevitably lead to some error

Given Q the set of good final states, the NC triple

(P)r(Q)

means that any state 0 € P may admit at least one non-erroneous execution of r.

[rlec P

The taxonomy

Over HLY [P C @ (NC) ﬂ?]]@ C P

Under | g [F]JP2Q (supe[T]Q2P

Sufficient incorrectness logic
(SIL)

2310.18156v3 [cs.LO] 30 Jan 2024

arxiv

Ongoing work

Sufficient Incorrectness Logic: SIL and Separation SIL

FLAVIO ASCARI, Universita di Pisa, Italy

ROBERTO BRUNI, Universita di Pisa, Italy
ROBERTA GORI, Universita di Pisa, Italy
FRANCESCO LOGOZZO, Meta Platforms, Inc., USA

Sound over-approximation methods have been proved effective for guaranteeing the absence of errors, but in-
evitably they produce false alarms that can hamper the programmers. Conversely, under-approximation meth-
ods are aimed at bug finding and are free from false alarms. We introduce Sufficient Incorrectness Logic (SIL),
a new under-approximating, triple-based program logic to reason about program errors. SIL is designed to
set apart the initial states leading to errors. We prove that SIL is correct and complete for a minimal set of
rules, and we study additional rules that can facilitate program analyses. We formally compare SIL to existing
triple-based program logics. Incorrectness Logic and SIL both perform under-approximations, but while the
former exposes only true errors, the latter locates the set of initial states that lead to such errors. Hoare Logic
performs over-approximations and as such cannot capture the set of initial states leading to errors in nonde-
terministic programs — for deterministic and terminating programs, Hoare Logic and SIL coincide. Finally, we
instantiate SIL with Separation Logic formulae (Separation SIL) to handle pointers and dynamic allocation
and we prove its correctness and, for loop-free programs, also its completeness. We argue that in some cases
Separation SIL can yield more succinct postconditions and provide stronger guarantees than Incorrectness
Separation Logic and can support effective backward reasoning.

CCS Concepts: « Theory of computation — Logic and verification; Proof theory; Hoare logic; Separation
logic; Programming logic.

Additional Key Words and Phrases: Sufficient Incorrectness Logic, Incorrectness Logic, Necessary Conditions,
Outcome Logic

1 INTRODUCTION

Formal methods aim to provide tools for reasoning and establishing program guarantees. His-
torically, research in formal reasoning progressed from manual correctness proofs to effective,
automatic methods that improve program reliability and security. In the late 60s, Floyd [1967]
and Hoare [1969] independently introduced formal systems to reason about programs. In the
70s/early 80s, the focus was on mechanization, with the introduction of numerous techniques
such as predicate transformers [Dijkstra 1975], Abstract Interpretation [Cousot and Cousot 1977],
model checking [Clarke and Emerson 1981], type inference [Damas and Milner 1982] and mech-
anized program proofs [Coquand and Huet 1985]. Those seminal works, in conjunction with the
development of automatic and semi-automatic theorem provers (e.g., [de Moura 2007]) brought
impressive wins in proving program correctness of real-world applications. For instance, the As-
trée abstract interpreter automatically proves the absence of runtime errors in millions of lines
of safety-critical C [Blanchet et al. 2003], the SLAM model checker was used to check Windows
drivers [Ball and Rajamani 2001], CompCert is a certified C compiler developed in Coq [Leroy
2009], and VCC uses the calculus of weakest precondition to verify safety properties of annotated
Concurrent C programs [Cohen et al. 2009].

Despite the aforementioned successes, effective program correctness methods struggle to reach
mainstream adoption. As program correctness is undecidable, all those methods over-approximate
programs behaviours. Over-approximation guarantees soundness (if the program is proved to be

Authors’ addresses: Flavio Ascari, Dipartimento di Informatica, Universita di Pisa, Largo B. Pontecorvo 3, 56127, Pisa, Italy,
flavio.ascari@phd.unipi.it; Roberto Bruni, Dipartimento di Informatica, Universita di Pisa, Largo B. Pontecorvo 3, 56127,
Pisa, Italy, roberto.bruni@unipi.it; Roberta Gori, Dipartimento di Informatica, Universita di Pisa, Largo B. Pontecorvo 3,
56127, Pisa, Italy, roberta.gori@unipi.it; Francesco LogozzoMeta Platforms, Inc., USA, logozzo@meta.com.

“SIL can characterises the source of
errors”

Sufficient Incorrectness Logic (SIL)

Given Q a specification of the possible errors

«P » C «Q » < valid when It is an under-approximation!

[7]Q 2P
means
P WJ\"*’{\:;' Voe Pdo' e Q.0 € |rllo
s A

An under-approximating logic deS|gned to devise the initial states leading to errors

Bug reporting

Which errors should a tool report to programmers?
We do not want false positives but for the others?

Should the tool report all of them?

int foo (int * X) Pulse (based on IL) would find

{ *x=32} (x=null] foo(x) [er: x=null]

Should the tool report this?

2N
2

“But | never call foo with null!” “Which bugs shall | report then?”

Solution: manifest errors

An error is manifest if it occurs independently of the context and is therefore particularly
Interesting to point out to programmers

Manifest errors cannot be characterised with IL

But they can be easily characterised with SIL

(true)) r{ O) isvalid < Q is a manifest error

Compare logics along the
approximation axis

Over HLY [P C @ (NC) ﬂ?]]@ C P

Under i [r]P 2 Q (siLy [r]Q o> P

(=P} r {=0} — (P) r (Q)
[r]-PC-Q <= [T]QCP

Compare logics along the
approximation axis

Forward Backward
/\A
Over HLY [P C @ (NC) ﬂ?]]@ C P

Under i [r]P 2 Q (siLy [r]Q o> P

SIL vs IL

Cy»: No relations!
r) { Given a specification of the possible errors
If even (X A -
f oddly) {z:=42;} 17742
}
Safe z # 42 With IL one can prove
E.g., x:=1/(42- 2) [z=11] ¢4» [Zz=42 A 0dd(y) A even(x)]

Expressing that the postcondition is reachable

With SIL one can prove

(z=11 A odd(y) A even(x))) c4r (z=42))
Expressing a precondition that leads to error states

Compare logics according to the
conseguence rule

Over
Under m

P=>P PrQ Q=0
Conseqguence rules follows the diagonal of the schema, so they suggest relations between HL-SIL and IL-NC

P/:P P/I/,Q/ Q$Q/

PrQ

Relations following the diagonals

NC-IL: no relation

HL-SIL: loosely related,

r deterministic and terminating: SIL equivalent to HL

(P) r Q) < (P} r{0}

SIL vs HL

C42 :
Given a specification of the possible errors
X := nondet(); Q2{z=42}
if even (Xx) {
it odd(y){z:=42;} With SIL one can prove
}

(odd(y))) ¢z (2=42))

Expressing a precondition that leads to error states

Safe 7 £ 42

E.g., x:=1/(42- 2)

With HL one can prove
{2242 } C42 {Z:42 }

SIL Rules

The proof system favours backward analysis starting from the (error) postconditions

Hoare’s axiom for assignment
(atom — a))

(Qla/z|) v = a{Q)

>0) x=y—-1 (x=>0)
y#43) x:=y—1 (x#42)

SIL Rules

The proof system favours backward analysis starting from the (error) postconditions

(atom — g))

(QND) b7 (Q)

(@) x>0)7 (x=-42)
(x=42) (x>0)? (x=42)

SIL Rules

The proof system favours backward analysis starting from the (error) postconditions

Same conditions for both branches

(Pr1)r1{(@) (Pa)ro <<Q>><< e
(P U P) r+ 12 (Q)

(y=43vy=42) (:=y-D+x=y) (x = 42))
(true)) =y #43vy#42)) (@=y-DH+x:=y) (x # 42))

(y#43) x=y—-D+x:=42) ({(x#42)

SIL Rules

The proof system favours backward analysis starting from the (error) postconditions

Backward iteration starting from final state (),

vn 2 0.(Qnt1)) 7 (Qn)
1 G DR tery

(U @u)) r* (Qo)

n>0

(x<42) = (.. Vx=4lVvx=42) (x:=x4+ ¥ (x=42)

SIL Rules

The proof system favours backward analysis starting from the (error) postconditions

SIL can drop disjunction going backward:

(x=41vx=42) (x:=x+ 1)* (x=42)

Validity, soundness and
completeness

A proof system for SIL

Core rules

. PCP (P)r(@) @CQ,
(510) < (@) ™ Py r (Q) (cons)
(P (@) (PR (o (PY AR (RY Q)
(PLUP2) r1 +r2 (Q) (P) r1i;r2 (Q)
Vn > 0. (Quer) r (Qn)
(U @ r (@) (iter)
Additional rules
(P r (@) (P)r(Q) .
@ (@) (empty) (PLUP) T (QUQ) (i)
| (P) r*:r (Q)
@ (qy e Py 7 gQy (unold

(P) rir {Q1) (
(PUGQ2) r* (QU G2)

unroll-split)

Soundness and completeness

SIL validity of a triple : [7]Q 2 P

Th. [Soundness]
All provable triples (including additional rules) are valid

Th. [Completeness]
All valid triples are provable (using the core rules)

Questions

Question 1
Which SIL triples are valid for any r and P ?

(false)) r (P)) ®

(true)) r (true)) o

(P) r* (PVx=0) ©

(wip(r, P))) r {P)) @

Question 2

Prove that rule [conj] is unsound for SIL

(P r O (P2 r€0y))
(P1 AP r (O A0y

Consider ((x = 0)) x := nondet() (x = 0))
and ((x = 0)) x := nondet() (x = 1))

By rule [conj] we could derive ((x = 0)) x := 1 ((false))
which is not sound!

lconj]

*Exam 11

Find a derivation for the SIL triple
(true)) If x > y then z :=x else z := y ((z = max(x, y)))

* Exam 12

Prove or disprove the validity of the following axiom in SIL

(P) (b)? (P AD)

