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combining over and under



&

Verification problem

2
(c| P C Spec

. ).




Over vs Under

T {P)c{Q)

—— ’ logically complete
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What can go wrong?

local local

completeness
requirement

completeness
requirement

iont ign local
C28" (x < 07) Cs'gfo 1y (= x5 10)
p {-10,-1} completeness
(transfer) (transfer) :
Sigd [p]x < 07 [{~10, 1] Sigit [(~10,~1}] x = x = 10 [{~100, ~10}] requirement
se
I_Sigl’_]‘— |p] x < 07;x :=x %10 [{—100,—-10}] {-100,—-10} C Sigmp) = 2+ (seq)
(iterate) oF
Fsigit [P] (¢ < 0%3x := x % 10)™ [{~100,-10,-1,100}] {-100,100} € {-100,-10, 1,100}  Sigr({~100,100}) = Zy C?l—g;‘oo 100} (0 <x7)
(relax) : transfer
Sigrrlp] (x < 0% x = x + 10)* [{~100,100}] Sigr [{~100,100}] 0 < x? [{100} ] ( )
n (seq)

Signt L] ¢ [{100}]

local-completeness proof obligations can fail!

any non-trivial abstract domain A introduces some imprecision!
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« A Correctness and Incorrectness Program Logic

we show how to relax local-completeness
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requirements for while loops and by

Abstract interpretation is a well-known and extensively used method to extract over-approximate program
invariants by a sound program analysis algorithm. Soundness means that no program errors are lost and it is,
in principle, guaranteed by construction. Completeness means that the abstract interpreter reports no false n n

alarms for all possible inputs, but this is extremely rare because it needs a very precise analysis. We introduce

a weaker notion of completeness, called local completeness, which requires that no false alarms are produced

only relatively to some fixed program inputs. Based on this idea, we introduce a program logic, called Local
Completeness Logic for an abstract domain A, for proving both the correctness and incorrectness of program
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While loops




FiXpoints preserve completenessw

(C, C) ~(A4,L)
fix(F)4_)

I
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if F™" is complete, then fix(F™) = a(fix(F))



FiXpoints preserve completenessw
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if F™" is complete, then fix(F™) = a(fix(F))



FiXpoints preserve completenessw
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FiXpoints preserve completenessw
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if F™" is complete, then fix(F™) = a(fix(F))




FiXpoints preserve completenessw

(C, C) @A4,E)
fix(F)
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if F™" is complete, then fix(F™) = a(fix(F))




FiXpoints preserve completenessw
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FiXpoints preserve completenessw
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FiXpoints preserve completenessw
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FiXpoints preserve completenessw
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fix(F)
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FiXpoints preserve completenessw

(C C) @A4,E)
ﬂx " ﬂx(F ")
| 4 .

(

if F™" is complete, then fix(F™) = a(fix(F))



Not a necessary requirement &

(C, C) @A4,E)
fi X%Q ) %
: l

we can have fix(F™) = a(fix(F)) when F" is just locally complete on fix(F)



Finite unrolling of while loops &
while bdo ¢ = (b?:;¢)*; b
r2b?:c

requires local abstract
completeness for b?; ¢ fixpoint!
requires local

completeness for b?; c I_A [P \/R1 V... VRk] A [Q] Q — A(P V.. )

requires local

completeness for b?; c

— — local
., [PVRr[R,] F,[PV...1r*[0Q]
-, [P1r[R,] F,4[PVR]r*[O] C(—b)
=4 [P (B?;0)* [O] =4 [Q] 70? [Q A D]

-, [P] while b do ¢ [Q A =b]



Example &

r2x>07;x:=x-2

Intlx > O]lInt{—3,0,3} = Int[lx > Of|[—3,3] = Int[1,3] =[1,3]
Intlx > 0]I{—3,0,3} = Int{3} =[3,3]

303}()6 > () .
Fre [1—3,0,31 1 x> 0? (W] B (W] ... [R] .
1o [{=3,0.3}1 7 [R)] - [PVR]F[0]
 FlE30300f100 0 R [Qlx <02 [QAX 0]

T [(—3.03]Twhie x> 0dox =x—2[0Ax < 0]



Locally complete invariants

—, [PAblc[R] +, [PV R]whilebdoc[O]
— . [P] while b do ¢ [O]

Cfé(b) Cih(=b) [PADblc[Q] Q= A(P)
[P]l whilebdoc[(PV QO)A b



Finite unrolling of while loops &

local-completeness proof obligations for guards are necessary

just when the abstract fixpoint is reached!
fixpoint!

local completeness
local completeness for test b
for test b not required!

Cp, (b,=b) F,4[(PV...)ADlc[Q] Q= AP V...)

local completeness
for test b not required!

PV R ATe TR TATP e baec PV VO A0
— . [PAblc[R]  F,4[PVR,whiebdoc[(PV...VQ)A-b]

—4 [Plwhilebdoc [(PV...VO)A D]



Example &

abstract
¥ B0 e

C?gt}(x— 2) C?‘f}(x >0) Fr {13 Hx i =x=-2[{-1,1}] {-1,1} € [-3,3]
o ({3 xi=x =2 [{1}] by [{=3,0,1,3} ] whilex > O0dox:=x—2[{-3,—1,0}]
b [{=3.03} whilex > 0dox:=x—2[{-3, - 1,0}]




Refinement



Domain refinement

to satisfy a local completeness requirement, it can be useful to
refine the domain

Sign|[[x # 0]|S1gn{0,1} = Sign[[x + O]]Z =3Sign(x # 0) =~/ Z<o/ \Z>0
Sign[lx # 0]10,1} =Sign{1} =~Z \/

i abstract
Sign fixpoint!
C - Gy (x+ 1)

Cfg%';}(x £ 0) Cfg%f;}(x =0) Fgg[{1}Ix:=x+1[{2}] {2} CSign({0,1}) = Z

Fsign 10,1 1] while x # 0 dox :=x+ 1 [{0}]



Domain refinement

to satisfy a local completeness requirement, it can be useful to
refine the domain

e PN
Sign™[[x # 0]Sign™{0,1} = Sign+[[x # 0]Z.,=Sign"Z.,=Z., \>< ><\
Sign™[[x # 0]{0,1} = Sign™{1} = \\/

>O
i abstract
CSlgn ()C n 1) fixpoint!
I £

CSE" (x#0) CSE" (x=0) bgg Foor {1 x:=x+1[{2}] {2} CSign*({0,1}) = Z.

10,1} 10,1}

Fsigrt [{0,1}] while x # 0 dox := x + 1 [{0}]



Domain integration &
suppose A, P|ry [Rland A, R] r, [O]

can we conclude =, [P]| r; ; r, [Q] for some suitable A ?

not guaranteed to work (some proof obligations may fail)



Conjunctive properties

program verification often requires the use of
the conjunction of several basic predicates

concrete states = stores with two variables x, y

Intervals abstraction for each variable
abstract state = an interval for each variable

[0,00] [3,8]




Product domain

fx Ag X A,
C .

(ag, a1) = yolag) N yi(a;)
V<t




Problem &

concrete stores = stores with one variable x

Int X EvenOdd

\.
/

e.g. an abstract state ([2,10], even )
describes even values between 2 and 10

but also ([1,11], even ) represents the same
concrete set {2,4,6,8,101}!



Reduced product A, 1A, W

/'

(Ag XAz AgN A,

(Cl(), al) = (Cl(/), Cli) g }/X(a(), al) — VX(CI(’), Cli)

Yalag, ail2) = rolag) N y(ay)



Domain integration
suppose A, P|ry [Rland A, R] r, [O]

can we conclude =, [P]| r; ; r, [Q] for some suitable A ?

' ldea: combine more abstract domains in the same derivation,
— different abstract domains for different portions of code!

—sient L] 1y IR] o [R] 1y [Q]
=sign [Pl 1y 5 1y [O]




Refine rule

select a more precise preserve abstraction carry the sub proof

domain A’ of pre-conditions In the refined domain
A'<A A(P)=AP) FyuI[P]rlO]
—a LP] 7 [O]

move the conclusion

[refine]

to the more abstract
domain

Atriple -, [P]  [Q] is valid if Q C [F1P C A(Q) [T} A(P)



Pointed refinement

Suppose we want to extend A with a new approximation u € C

A U {u} is not necessarily an abstract domain!
must be closed under meet (called Moore closure)

AuéAU{unalaeA}

A (¢) ZunAe)ifc <u
A (c) =A(c)  otherwise

Equivalently A =AM/ where [ = { L u, T}



Example

Let us denote by [, y]_, the interval-with-a-hole [x, y]\ {0}

Then Inty = Int U {[x, Vi | [x,y] € Int,x <0 <y}

we have, e.g.

Inty {—10, — 5,7} = [—10,7],
Int. {—10, —5,0,7} = [—10,7]
Intuy {—10, — 5} =[—10, — 5]



Example

Let us denote by Z. , the set of non-negative integers

Then Sign_, = Sign U \Zso}

e
we have, e.q. NP2
Sign_, {0} = Z, ’
Sign., {1.7} = Z,, N
Sign_, {=7,0} =Z Z<O/ ZZ\



Example

0] y € [=199,201] y € [1,201]
odd(y) odd(y)

y:=2%xy+1; y:= abs(y

y € [—100,10

o é x:=y; while(x > 1){y =y—1;x:=x— 1}

y € [1,201]} x =y € [1,201]
odd(y) odd(y)




1

9

Int is non
= nt,, [P 71 15] . "ot 151 73 19

[|>

Ay

P £

Example

y:=2%xy+1; y:= abs(y
x:=vy; while(x> 1){y:=y—1;x:=x— 1}

e _— ref.ne
P o lrefine]  — oo lrefinel

1o [P 713 75 (O] seq]

(y € [-100;100])) S = (ye{1;201}) Q=(x=y=1)
[ri; ol Int(P) =(x=1A0<y < 100)




Refinement strategy

problems related to automation (ingenuity required);
when and how to apply the consequence rule relax?
when and how to apply the rule refine?

It would be nice to select automatically the most abstract
domain where the correctness proof can be completed...




Abstract Interpretation Repair
(AIR)
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Abstract

Abstract interpretation is a sound-by-construction method
for program verification: any erroneous program will raise
some alarm. However, the verification of correct programs
may yield false-alarms, namely it may be incomplete. Ideally,
one would like to perform the analysis on the most abstract
domain that is precise enough to avoid false-alarms. We show
how to exploit a weaker notion of completeness, called local
completeness, to optimally refine abstract domains and thus
enhance the precision of program verification. Our main
result establishes necessary and sufficient conditions for the
existence of an optimal, locally complete refinement, called
pointed shell. On top of this, we define two repair strategies
to remove all false-alarms along a given abstract compu-
tation: the first proceeds forward, along with the concrete
computation, while the second moves backward within the
abstract computation. Our results pave the way for a novel
modus operandi for automating program verification that we
call Abstract Interpretation Repair (AIR): instead of choos-
ing beforehand the right abstract domain, we can start in
any abstract domain and progressively repair its local in-
completeness as needed. In this regard, AIR is for abstract
interpretation what CEGAR is for abstract model checking.
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gram analysis.
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1 Introduction

It is widely acknowledged that the chance of formally ver-
ifying programs is fundamental to effectively rise the con-
fidence level that the code we use is correct [23]. However,
as emerged in the last decades, this approach to program
correctness becomes socially acceptable when these proofs
are not only rigorous but also explainable, meaning that
they have to rely upon a largely recognized proof method
which has to be simple and inspectable [22]. As advocated by
Vardi [61], checking program correctness “is a cost that must
be justified by the benefits”. The last 50 years have shown
an impressive flourishing of formal methods and tools for
achieving this ambitious goal [32]. These include, among the
others: Certified compilers [42], certified analyzers [39], ad-
vanced type checkers [49, 50], sophisticated static analyzers
[6, 19, 25] and software model checkers [3, 37].

A high degree of confidence in the correctness of a soft-
ware system, and of its most critical components, can be ob-
tained when the code is certified by a sound and complete (viz.
precise) static analyzer [14, 25]. Abstract interpretation [17]
was introduced with this purpose in mind: simplify the proof
of correctness by interpreting the program in a simplified,
abstract, domain. This provides a general methodology for
the design of sound-by-construction analysis tools.

The Problem. The soundness of an abstract interpreter, or
program analyzer, means that all true-alarms are caught.
However, it is often the case that some false-alarms are re-
ported. Actually, when false-alarms overwhelm true ones,
then the program analyzer may become poorly trustworth.
This is a consequence of the approximation inherent in the
making of an otherwise undecidable analysis decidable. As
all alarm systems, program analysis is credible when few
false-alarms are reported, ideally none. The problem we ad-
dress in this paper is how to derive the most abstract domain
to decide program correctness without raising false-alarms.
The absence of false-alarms in program analysis is closely
related to the property of completeness in abstract interpreta-
tion [33]. As an illustrative example, consider the program

“AlR Is f
CEGAR

or abstract interpretation what
Is for abstract model checking”




CEGAR in a nutshell



Model checking

A model, a (large) finite state transition system (2, — , I)

A temporal logic specification ¢ (e.g. AG —bad)
Does the model satisfy @?
yes

no, here is a counterexample s; — §, — ... = §,




Abstract transition system

A partition | - |, of 2 A

A partitioning abstraction A of go(2)
A 2 (I
xeX

A

Existential abstract transition relation /lll\

X=>"lyheodxeX. x—y e I‘I =
| > >
| | H

(A, =7 ,A()) .

I~



Abstract model checking
An abstract model (A, =" ,A(]))

A temporal logic specification ¢ (e.g. AG —bad)

Does the model satisfy ¢?
yes




CEGAR

CounterExample Guided Abstraction Refinement:
If the counterexample Is spurious, refine the partition to

eliminate the abstract path and repeat the analysis
B by By i

4

S, are the reachable states within B,
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S, are the reachable states within B,



CEGAR

CounterExample Guided Abstraction Refinement:
If the counterexample Is spurious, refine the partition to
eliminate the abstract path and repeat the analysis

B1 By

S, are the reachable states within B,



CEGAR

CounterExample Guided Abstraction Refinement:
If the counterexample Is spurious, refine the partition to
eliminate the abstract path and repeat the analysis

it is Important to separate dead states from bad ones
irrelevant states can be put in any partition



CEGAR and local completeness

Let 7 = (B, ..., B,) and abstract counterexample and let
post(X) = {¢| s € X. s — t} be the usual successor transformer

Define post_(X) = post(X) N B.. | and the sequence of reachable
states S, = /NB, # @and S, | = postﬂi(Sl-) = post(5,) N B,

Lemma.
7t is not spurious iff C?i(pcstﬂi) foralli € |[1,n — 1]

(i.e. iff each post is locally complete in A for 5;)

l



Partition refinement

To eliminate the spurious counterexample we can refine the
current abstraction A(S,) = B,

Bl
-
— e
—— ‘
B .
—

Bk Bk+1 B

most concrete refinement w.r.t. §,



Partition refinement

To eliminate the spurious counterexample we can refine the
current abstraction A(S,) = B,

most abstract refinement w.r.t. §,



Forward repailr



From CEGAR to program analysis

Consider the verification problem F¢ < a for some
expressible a = A(a)

We have seen that Fc < a & A(Fc) <a
Moreover, if C2(F) then Fc < a < F*A(c) < a

A spurious counterexample for the abstract analysis
arises when Fc < a but FAA(¢) %« a because —IC?(F )




From CEGAR to program analysis
Suppose F £ F_o...oF,, the equality FAA(c) = A(Fc) follows
as a conseguence of n local completeness proof obligations

AF,A(c,) = A(F,c,) where ¢, = cand ¢, = Fic,
C

FAA(c)
O
FA(C)‘ ® U
A(cy) A(Fc)
¢ ®
I
é‘ c. = Fc

C n
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AF,A(c,) = A(F,c,) where ¢, = cand ¢, = Fic,
C

A
CA(F)) e
s s
- @
A(cy) A(F 11 A(F¢)
A:./CZV; Flcl C“é Fe

C1:C n
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Suppose F £ F_o...oF,, the equality FAA(c) = A(Fc) follows
as a conseguence of n local completeness proof obligations
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C
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AFlA(Cl) AFzA(Cz) FA(c) ‘ .
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From CEGAR to program analysis
Suppose F £ F, o...oF,, the equality FAA(c) = A(Fc) follows
as a conseguence of n local completeness proof obligations

AF,A(c,) = A(F,c,) where ¢, = cand ¢, = Fic,
C

F*A
CA(F) CA(Fy) ~CAF) & o
AF- A o Al A(c)
1 (Cl) AFzA(Cz) A(? c) FA(c) ® ® U
A(C1Mﬂ) AlG) 'k : A(Fc)
o ? o
A./C;:Tc:_ Foc, C, Crr1 = I Cn‘é Fo

Cl=C



BCA repair

AF, A(c)\A(F\c))
red states are the sources
of iIncompleteness

we would like to introduce
a better approximation u

than A(c,) for ¢, such that:
¢, <u<A()and
Aquu — AquCk

pointed
refinement

pointed

refinement




BCA repair

A(cy) AF,A(c)

AF, A(c)\A(F,cp)
red states are the sources
of iIncompleteness

we would like to introduce
a better approximation u

than A(c,) for ¢, such that:
¢, <u<A()and

pointed
refinement

pointed

A refinement

most concrete refinement: u = ¢,
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red states are the sources
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we would like to introduce
a better approximation u
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AF, A(c)\A(F,c;)
red states are the sources
of iIncompleteness

we would like to introduce
a better approximation u

than A(c,) for ¢, such that:
¢, <u<A()and
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BCA repair

AF, A(c)\A(F,c;)
red states are the sources
of iIncompleteness

we would like to introduce
a better approximation u

than A(c,) for ¢, such that:
¢, <u<A()and
Aquu — AquCk

pointed
refinement

pointed

refinement

most abstract possible refinement



BCA repair

AF, A(c)\A(F\c))
red states are the sources
of iIncompleteness

we would like to introduce
a better approximation u

than A(c,) for ¢, such that:
¢, <u<A()and
Aquu — AquCk

pointed
refinement

pointed

refinement

erroneous refinement



Pointed shell

Which refinement A, when a proof obligation C?(F ) fails?

Candidates: {x € C | x < A(c), C?X(F)}

. A
Most concrete solution: u = ¢

Most abstract solution: # € max{x € C | x < A(c), C‘?X(F)}

In the case of guards (when Cf;(b) fails):
u=(A(PAD)AD)V (AP A D) A D)



A forward repair strategy for LCL

Given A, P, c try to find QO such that ~—, [P] r [Q]
If a local completeness proof obligation fails, refine A with 1, and retry

If a local completeness proof obligation fails, refine A, with i, and retry

If a local completeness proof obligation fails, refine A, , with 15 and retry

Until =, [P] r [Q] for some N = Uyy...,u,} and O



Forward repair strategy

additional
points, if any

1 Function fRepair 4 (N, P, r)

2 found := false; | |
given A, NV, P, r try to find Q such that I_AN |P] r [O]
3 do
1 out := finda (N, P, r);
5 Switch out do found Q such that I_AN |P] r [O]
6 case O do found := true; // underapprox.
7 ~ case (R,e) do N :=refine4q (N, R,e); // incompl.
o select new

3 Whlle (_IfOU nd) ; failed proof ;ﬁgarﬁr]j pointed refinement

bligation ~C2¥(e
9 return (N, out); S &

returns the latest N and QO such that Ay |P] r [O]



Example o

u 2 (Sign({0,1} A x # 0) Ax # 0) v (Sign({0,1} Ax = 0) A x = 0) /\

(Sign{1} A x # 0) V (Sign{0} A x = 0) o

=x>0Ax#0) V(T AXx=0) Zo  Zso
=x>0vx=0) \/
= (x > 0) /\
Sign[[x # 0]|Sign{0,1} = Sign[[x # 0]|Z = Sign(x # 0) =

Sign[[x # 0]]{0,1} =Sign{1} =2Z_, \/

‘ abstract
Sign fixpoint!
C - Gy (x+ 1)

a:f(')gfl‘}(x £ 0) C?(')g;'}(x =0) bggn [{1}x:=x+1[{2}] {2} CSign({0,1})=Z

Fsign 10,1 1] while x # 0 dox :=x+ 1 [{0}]




Example

Note that S|gn>0 — { J_ . Z>O’ Z<O’ ZZO’ Z}

is “smaller” than SignJr =1 1,Z2.0,Z_o, 2~
where we carried out the proof previously

L 50o L2, L <y L}

<0

Assuming Spec = Z ., we now know that 0 is a true positive, differently from
the abstract analysis [[while x # 0 do x :=x + 1] Sign 10,1} = Z,

Signzo

i abstract
Sign fixpoint!
C{ 1g} S

{01} 10,1}

—sign [{0.1}] whilex # 0 dox :=x+ 1 [{0}]

Colx#0) C (=0 Fgg [{1}1x:=x+1[{2}] {2} CSign,({0,1}) =2Z,



Questions




Question 1

What is the most abstract pointed refinement of Int to use when
CI”t7 7(x>4)?

Int, where:

U = (Int({=T7, 7} Ax>dHYDAx>DVInt({=T7,7} Ax <4 Ax < 4)
= (Int{7} Ax>4) vV (Int{—-T7T} Ax <4)

= (7, 7]Ax>4)V(-T7,—-TIAx <4

=771V I[-=7,-7T])

= {-71,7}



Question 2

Can you find a derivation for the LCL triple
Fgignt [X > 0] x:=x+ 1 x:=x—-1[x=>0]7

No, x > 0 is not a valid under-approximation



*
Exam 10
Can you find a derivation for the LCL triple

Fsignt [ > 0] x:=x+1;x:=x—1[x> 0]

repairing the domain if necessary??



Special prize
Can you find a derivation for the LCL triple

- [3k > 0. x = 2] ((even(x))?; x := x4+ 2)*; (x = 3)? [false]

b

repairing the domain if necessary?




Backward repair
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1 Introduction

It is widely acknowledged that the chance of formally ver-
ifying programs is fundamental to effectively rise the con-
fidence level that the code we use is correct [23]. However,
as emerged in the last decades, this approach to program
correctness becomes socially acceptable when these proofs
are not only rigorous but also explainable, meaning that
they have to rely upon a largely recognized proof method
which has to be simple and inspectable [22]. As advocated by
Vardi [61], checking program correctness “is a cost that must
be justified by the benefits”. The last 50 years have shown
an impressive flourishing of formal methods and tools for
achieving this ambitious goal [32]. These include, among the
others: Certified compilers [42], certified analyzers [39], ad-
vanced type checkers [49, 50], sophisticated static analyzers
[6, 19, 25] and software model checkers [3, 37].

A high degree of confidence in the correctness of a soft-
ware system, and of its most critical components, can be ob-
tained when the code is certified by a sound and complete (viz.
precise) static analyzer [14, 25]. Abstract interpretation [17]
was introduced with this purpose in mind: simplify the proof
of correctness by interpreting the program in a simplified,
abstract, domain. This provides a general methodology for
the design of sound-by-construction analysis tools.

The Problem. The soundness of an abstract interpreter, or
program analyzer, means that all true-alarms are caught.
However, it is often the case that some false-alarms are re-
ported. Actually, when false-alarms overwhelm true ones,
then the program analyzer may become poorly trustworth.
This is a consequence of the approximation inherent in the
making of an otherwise undecidable analysis decidable. As
all alarm systems, program analysis is credible when few
false-alarms are reported, ideally none. The problem we ad-
dress in this paper is how to derive the most abstract domain
to decide program correctness without raising false-alarms.
The absence of false-alarms in program analysis is closely
related to the property of completeness in abstract interpreta-
tion [33]. As an illustrative example, consider the program

“we aim to derive the most abstract
domain to decide program correctness
without raising false-alarms ”




CEGAR, again

CounterExample Guided Abstraction Refinement:
If the counterexample Is spurious, refine the partition to
eliminate the abstract path and repeat the analysis

it is Important to separate dead states from bad ones
irrelevant states can be put in any partition



CEGAR, again

The efficacy depends on the chosen refinement

B, By, By

dead

II'(:J VALl

\

it is Important to separate dead states from bad ones
irrelevant states can be put in any partition




CEGAR, again

Here a slightly different spurious counterexample remains

B, B




CEGAR, again

Here a slightly different spurious counterexample remains
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CEGAR, again

Here a slightly different spurious counterexample remains

Bk+1




CEGAR, backward

What if we start from the end of the trace?
All states in B, are bad ones!
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CEGAR, backward

What if we start from the end of the trace?
All states in B, are bad ones!
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CEGAR, backward

What if we start from the end of the trace?
All states in B,,_; that leads to b5, are bad ones!
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CEGAR, backward

What if we start from the end of the trace?

All states in B, _

; that leads to B, are bad ones!

and must be separated from the others greatest
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CEGAR, backward

What if we start from the end of the trace?
We then iterate the partitioning




CEGAR, backward

What if we start from the end of the trace?
We then iterate the partitioning




CEGAR, backward

What if we start from the end of the trace?
Until necessary

B,

Vi+1 Vn—l

e
‘ l
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CEGAR, backward

What if we start from the end of the trace?
No more spurious counterexamples from that trace!



When to backward repair

You want to check if [ 7]|P < Spec
You select an abstract domain such that A(Spec) = Spec
and run the abstract interpreter, but [[7]|SA(P) £ Spec

and cannot tell if the abstract interpretation is complete in A

Which errors are spurious? Which ones are due to P?

The aim of backward repair is to find (the most abstract) pointed
refinement A, such that for all X C A(P) (and thus also for P)

[ 7]] ANAN(X) < Spec & [[r]|IX < Spec ()




Aim of backward repair

Let V(P,r, Q) 2PN wip(|[7]l, Q) be the greatest valid input set
(it is the largest subset X C P such that [[7]| X C Q)




Aim of backward repair

Let V(P, r, Q) = P nwilp([[r]], Q) be the greatest valid input set
(it is the largest subset X C P such that [[7]| X C Q)

Th.
Condition () holds iff [ 7]] ANAN(V(A(P), r,Spec)) < Spec

which in turn implies V(A(P), r, Spec) being expressible in A




Backward repair

additional N greatest valid pointed
Th points, if any a point in input refinement

bRepair, (&, A(P), r, Spec) returns a pair (V, N) such that
V =V(A(P),r,Spec) € Ay and [[r]]ANV < Spec
(but may not terminate)

Cor. [Program (in)correctness]
f (V,N) = bRepair (&, A(P), r, Spec) then
Ir[|P < Spece PV

The most convenient case is when V = A(P)



Backward repair

if ([[r]]AEENP < S) then return (P, N );

switch r do

case e do // ba51c expression

V:=V(P,eS); Q:=S5A el \P:

return (V, N U {V,0});

case ry;r; do // sequential

(Vi,Np) = bRepa|rA(N [[ro]]AENP r,S); Function inv4 (N, ﬁ, r, V1) // loop 1nvariants
(Vo, No) = bRepair 4 (N, P, ro, V1); do R

return (Vj, No U N7 ); Vo:=PAV; Nop:=NU{W};
case ro ® ry do // choice (V1, N1) = bRepair 4 (No, Vo, 1, Vo );
(Vo, No) := bRepair 4 (N, P, r, S); while (V; # Vp);

(Vi,Np) = 3RepairA(N,§, r,S); B return (V;, Ny );

Q=S A%, P;

return (Vo A Vi, No UN; U{O});

case r;‘; do // Kleene star

= [[ro]]AEENP R
if (R < P) then return inv4a (N, P, rg, S);
else // unroll
(V1, N1) == bRepair 4 (N, P VaaN R,r S);

return (P A Vi, Ni)




Example

[c] T<(@Z=0)7?
c=do{z:=0; x :=y;
if (w # 0) then {
x=x+1;z:=1

}
} while (x # y)



Example

[c]] T<(z=0)7

c=do{z:=0; x :=y;
if (w # 0) then {
x=x+1;z:=1

}
} while (x # y)



" Example
g [T<e=07
c=do{z:=0; x :=y;

if (w # 0) then {
x=x+1;z:=1

}
} while (x # y)



N Example
m [c] T <(z=0)7
c=do{z:=0; x :=y;

if (w # 0) then {
x=x+1;z:=1

oo

} while (x # y)




N Example
m [c] T <(z=0)7
c=do{z:=0; x :=y;

if (w # 0) then {
x=x+1;z:=1

oo

} while (x # y)




mm Example
lc] T<(z=0)?
cédo{z::O;x::y;m

if (w # 0) then {
x=x+1;z:=1

oo

} while (x # y)




Exampli‘]] T<(z=0)?
cédo{z::O;x::y;m

if (w # 0) then {
x=x+1;z:=1

oo

} while (x # y)




Example

[c] T<(z=0)7?
Cédo{zzzO;x::y;m

if (w # 0) then {
x=x+1;z:=1

} B

} while (x # y)




Example

[c] T<(z=0)?
c—do{z = 0; X 1= y; m

if (w # 0) then {
x=x+1;z:=1

) BN

} while (x # y)




Examplic]]'l'ﬁ(z=0)?
c—do{z = 0; X 1= y; m

if (w # 0) then { . //\\

x=x+1.z:=1 p=(z=0) “1><><><|

} while (x # y)




Examplic]]'l'ﬁ(z=0)?
c—do{z = 0; X 1= y; m

if (w # 0) then { . //\\

x=x+1.z:=1 p=(z=0) “1><><><|

} while (x # y)

m [[6]]AT:q£p




ExampI?C]]TS(z=0)?
c—do{z = 0; x := y; m

if (w # 0) then { . //\\

x=x+1,z:=1 p=(z2=0) T><><><|

} while (x # y)

) oo [cTA T=q£p

bRepair, (@, T ,c,p) =( T ,{g = p})




ExampI?C]]TS(z=0)?
c—do{z = 0; X :=y; m

if (w # 0) then { . //\\

x=x+1,z:=1 p=(z2=0) T><><><|

} while (x # y)
) oo [l T=q%p
bRepair, (B, T ,¢,p) = (T.,{g=>p})
[cly, T =pAg=<p

q=>p




mm
c=do{z:=0; x: —y,m

if (w # 0) then {
x=x+1;,z:=1

} B

} while (x # y)

Example

q=(x=y)

bRepair, (@, T ,c,p) =( T ,{g = p})

[[C]]A I'=pAg<p

q=>p

p = (z2=0)

[c]] T<(z=0)7

AN
X X X

pAq PAG pAq PN

N\

[[C]]ATZQ£p

Th domain refinement use din[4,5]isthe
reduced disjun mpl of A, Wh ch is isomorphic to

the Boolea b nB= <50({pququAq,13 q}), ).
The analysis wit hBl ads exactly to the same analysis with

Ay s A @ {p < g}, n mly[H]*i =pAg.



Questions




Question 1

Which is the greatest valid input set V(P,b?, Q) ?
(recall that V(P, r, Q) = P nwip([[], O))

V(P,b?,0) =P A (QV ~b)

e.g.
Vix>0),x#0?,(x<5)) =1{0,1,2,3,4}



