
Program analysis:
from proving correctness
to proving incorrectness

Roberto Bruni, Roberta Gori
(University of Pisa)

Lecture #07
BISS 2024

March 11-15, 2024

Recap:
combining over and under

?

Verification problem

<latexit sha1_base64="SfXD/pKfDpFWBJ4GDeZyHrVXYWs=">AAACtXicjVFLb9NAEN64PEp5pXDksmqExCmyK0S5IFXi0mOQSFspa0Xj9Tisurs2u+OgaOU7v4Yr/BX+TTeOD/RxYE6fvnl8M98UjVae0vTvKNl78PDR4/0nB0+fPX/xcnz46tzXrZM4l7Wu3WUBHrWyOCdFGi8bh2AKjRfF1edt/mKNzqvafqVNg7mBlVWVkkCRWo6PhNaFA3mFFIQB+uarILtOODewfLYcT9Jp2ge/C7IBTNgQs+XhKIiylq1BS1KD94ssbSgP4EhJjd2BaD02cTqscBGhBYM+D/0xHX/beqCaN+i40rwn8d+OAMb7jSliZb/v7dyWvC+3aKn6mAdlm5bQyq0QKY29kJdORZeQl8ohEWw3R64sl+CACJ3iIGUk22jbDUFPBtzGlfEoiz9kbQzYMp6PFX7vdo461EEUrdJlRFysow1OgV1FbVFHVR4+dd19/a1a//cIsSuPc+K7stvPuQvOj6fZh+nxl/eT07PhcfvsDTti71jGTtgpO2MzNmeS/WS/2G/2JzlJ8qRMql1pMhp6XrMbkdTXe27dmQ==</latexit>

JcKP

<latexit sha1_base64="6Jv4AV8qHP7Ccfz4J8IckOiUYGE=">AAACtHicjVFNbxMxEHW2fJTwlZYjF0OEVC7RbkGFS6UiLj0WQdpK2Sia9U6CVdu72OOgyNpzf02v8Fv4N3i3OZC2B+b09ObjzbwpaiUdpemfXrJ17/6Dh9uP+o+fPH32fLCze+oqbwWORaUqe16AQyUNjkmSwvPaIuhC4Vlx8bnNny3ROlmZb7SqcaphYeRcCqBIzQavPu3lGui7pPC1RtG85Ye8v8HMBsN0lHbBb4NsDYZsHSeznV7Iy0p4jYaEAucmWVrTNIAlKRQ2/dw7rEFcwAInERrQ6Kahu6Xhb7wDqniNlkvFOxL/7QignVvpIla2W7qbuZa8KzfxNP84DdLUntCIVoikwk7ICSujSchLaZEI2s2RS8MFWCBCKzkIEUkfXdsQdKTBrmwZjzL4U1Ragynj+TjHH03ofLSoQl54qcqIeL6MNlgJZhG18yqq8nDYNHf1e7n87xH5dXmcE9+V3XzObXC6P8oORu++vB8eHa8ft81estdsj2XsAztix+yEjZlgl+yK/WK/k4MkT0SC16VJb93zgm1EYv4C+7nbpw==</latexit>

A(Spec) = Spec

<latexit sha1_base64="7M/zo8prenwhiULY4h1FW5bBZ18=">AAACknicjVFNTxRBEO0dQRFQQL156bAx8bSZIQSNiQmGCwcPS+ICyc6G1PTUrhW6e8bu6jWbyfwCr/rj/Df2LHuQjwN1enn18V5VFbUmz2n6t5c8WVt/+mzj+ebW9ouXO7t7r859FZzCkap05S4L8KjJ4oiJNV7WDsEUGi+K65MufzFH56my33hR48TAzNKUFHCkzoZXu/10kC5D3gfZCvTFKoZXe70mLysVDFpWGrwfZ2nNkwYck9LYbubBYw3qGmY4jtCCQT9plk5b+S544ErW6CRpuSTx/44GjPcLU8RKA/zd38115EO5ceDpx0lDtg6MVnVCTBqXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5JejZgFu4Mi5l8aeqjAFbxvVxij/aJu9cONRNXgTSZUQyn8czOAI7i9p5FVVl87ltH+oPNH/0iPymPM6J78ruPuc+OD8YZEeDg7PD/vHp6nEb4q3YF+9FJj6IY3EqhmIklEDxS/wWf5I3yafkS3JyU5r0Vj2vxa1Ivv4Dvj3OoA==</latexit>

P

<latexit sha1_base64="DRsbcwVzBNr02l1JpFnLSyvAJUM=">AAAC+HicjVHLbhMxFHWGVwmvFJZsLCIkVtFMhYANUiU2XbBIBWkrxVHk8dxJrdqeqX2dKljTb2GH2PIbfAGfwRY2OJNZ0AcSd3V07rn33EdeK+kwTX/0khs3b92+s3W3f+/+g4ePBtuPD1zlrYCJqFRlj3LuQEkDE5So4Ki2wHWu4DA/ebfOHy7BOlmZj7iqYab5wshSCo6Rmg+AKZVbLk4AA9Mcj10ZRNMwazuWjilzPneAcEpbhcTwoQbR9M/ZeyjRysUxcmurs/P+/j+k88EwHaVt0Ksg68CQdDGeb/cCKyrhNRgUijs3zdIaZ4FblEJB02feQR0H5AuYRmi4BjcL7T0a+tw7jhWtwVKpaEvC3xWBa+dWOo/KduXLuTV5XW7qsXwzC9LUHsGItRFKBa2RE1bGQwMtpAVEvp4cqDRUcMsRwUrKhYikj5e/YOhQc7uyRVzKwJmotOamiOtDCafN5ikWVGC5l6qIiLJlPIOV3CyiN6uiKw1vm+a6ei+X/92CbeSxT3xXdvk5V8HBzih7NdrZfznc3eset0WekmfkBcnIa7JL9siYTIgg38lP8ov8Tj4ln5MvydeNNOl1NU/IhUi+/QHHQPqE</latexit>

JcKP ✓ Spec , Q ✓ Spec

<latexit sha1_base64="STnxcbAh5cF4AlV/Gjys+LA/0oE=">AAACqXicjVFLixNBEO6Mr3V9ZRW8eGkMgiCEmWVRL8KClz0mYHaD6RBqeiqx2e6esbs6Etrxx3jVP+S/sTObg/s4WKePrx5f1Vdlo5WnPP/Ty27dvnP33t79/QcPHz1+0j94eurr4CROZK1rNy3Bo1YWJ6RI47RxCKbUeFaef9zmz9bovKrtJ9o0ODewsmqpJFCiFv3nIo5E+0MYoC9+GWWCcSzaRX+QD/Mu+HVQ7MCA7WK0OOhFUdUyGLQkNXg/K/KG5hEcKamx3RfBYwPyHFY4S9CCQT+P3QEtfxU8UM0bdFxp3pH4b0cE4/3GlKmyW/RqbkvelJsFWr6fR2WbQGjlVoiUxk7IS6eSM8gr5ZAItpsjV5ZLcECETnGQMpEhWXVJ0JMBt3FVOsriN1kbA7ZK5+MSv7axs9KhjqIMSlcJcbFONjgFdpW0RZ1UefzQtjf1B7X+7xHiojzNSe8qrj7nOjg9HBZvh4fjo8Hxye5xe+wFe8les4K9Y8fshI3YhEn2nf1kv9jv7E02zqbZ54vSrLfrecYuRSb/Aipl2Io=</latexit>

{P} c {Q}

<latexit sha1_base64="dWFNhYuyH5NaVq3ShOUKpzBPTDg=">AAACpXicjVFLb9NAEN6YVymvtBy5rIgQnCK7qoALUiUuvSClUpNWsq1ovJ6EVXfXZnc2EK3cn8IV/hL/ho2bA30cmNOnbx7fzDdVq6SjNP0zSO7df/Dw0c7j3SdPnz1/Mdzbn7nGW4FT0ajGnlfgUEmDU5Kk8Ly1CLpSeFZdfN7kz1ZonWzMKa1bLDUsjVxIARSp+XA/n5SXhQb66hZBdJf5STkfjtJx2ge/DbItGLFtTOZ7g1DUjfAaDQkFzuVZ2lIZwJIUCrvdwjtsQVzAEvMIDWh0ZeiX7/gb74Aa3qLlUvGexH87Amjn1rqKlf2aN3Mb8q5c7mnxsQzStJ7QiI0QSYW9kBNWRleQ19IiEWw2Ry4NF2CBCK3kIEQkfbTpmqAjDXZt63iUwe+i0RpMHc/HBX7rQm+kRRWKyktVR8SLVbTBSjDLqF00UZWHT113V7+Xq/8eUVyVxznxXdnN59wGs4Nx9n58cHI4OjrePm6HvWKv2TuWsQ/siB2zCZsywX6wn+wX+528Tb4kp8nsqjQZbHtesmuRzP8CNw/Wcg==</latexit>

[P] c [Q]

?

?correctness

incorrectness

Over vs Under
<latexit sha1_base64="6CqUA4P13yzKhQSoum6EK9y7umQ=">AAACknicjVFNTxRBEO0dQRFQQL156bAx8bSZIQSNiQmGCwcPbOICyc6G1PTUrhW6e8bu6jWbyfwCr/rj/Df2LHuQjwN1enn18V5VFbUmz2n6t5c8WVt/+mzj+ebW9ouXO7t7r859FZzCkap05S4L8KjJ4oiJNV7WDsEUGi+K65MufzFH56my33hR48TAzNKUFHCkhsOr3X46SJch74NsBfpiFWdXe70mLysVDFpWGrwfZ2nNkwYck9LYbubBYw3qGmY4jtCCQT9plk5b+S544ErW6CRpuSTx/44GjPcLU8RKA/zd38115EO5ceDpx0lDtg6MVnVCTBqXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5JejZgFu4Mi5l8aeqjAFbxvVxij/aJu9cONRNXgTSZUQyn8czOAI7i9p5FVVl87ltH+oPNH/0iPymPM6J78ruPuc+OD8YZEeDg+Fh//h09bgN8Vbsi/ciEx/EsTgVZ2IklEDxS/wWf5I3yafkS3JyU5r0Vj2vxa1Ivv4DwGvOoQ==</latexit>

Q
<latexit sha1_base64="7M/zo8prenwhiULY4h1FW5bBZ18=">AAACknicjVFNTxRBEO0dQRFQQL156bAx8bSZIQSNiQmGCwcPS+ICyc6G1PTUrhW6e8bu6jWbyfwCr/rj/Df2LHuQjwN1enn18V5VFbUmz2n6t5c8WVt/+mzj+ebW9ouXO7t7r859FZzCkap05S4L8KjJ4oiJNV7WDsEUGi+K65MufzFH56my33hR48TAzNKUFHCkzoZXu/10kC5D3gfZCvTFKoZXe70mLysVDFpWGrwfZ2nNkwYck9LYbubBYw3qGmY4jtCCQT9plk5b+S544ErW6CRpuSTx/44GjPcLU8RKA/zd38115EO5ceDpx0lDtg6MVnVCTBqXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5JejZgFu4Mi5l8aeqjAFbxvVxij/aJu9cONRNXgTSZUQyn8czOAI7i9p5FVVl87ltH+oPNH/0iPymPM6J78ruPuc+OD8YZEeDg7PD/vHp6nEb4q3YF+9FJj6IY3EqhmIklEDxS/wWf5I3yafkS3JyU5r0Vj2vxa1Ivv4Dvj3OoA==</latexit>

P

<latexit sha1_base64="7M/zo8prenwhiULY4h1FW5bBZ18=">AAACknicjVFNTxRBEO0dQRFQQL156bAx8bSZIQSNiQmGCwcPS+ICyc6G1PTUrhW6e8bu6jWbyfwCr/rj/Df2LHuQjwN1enn18V5VFbUmz2n6t5c8WVt/+mzj+ebW9ouXO7t7r859FZzCkap05S4L8KjJ4oiJNV7WDsEUGi+K65MufzFH56my33hR48TAzNKUFHCkzoZXu/10kC5D3gfZCvTFKoZXe70mLysVDFpWGrwfZ2nNkwYck9LYbubBYw3qGmY4jtCCQT9plk5b+S544ErW6CRpuSTx/44GjPcLU8RKA/zd38115EO5ceDpx0lDtg6MVnVCTBqXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5JejZgFu4Mi5l8aeqjAFbxvVxij/aJu9cONRNXgTSZUQyn8czOAI7i9p5FVVl87ltH+oPNH/0iPymPM6J78ruPuc+OD8YZEeDg7PD/vHp6nEb4q3YF+9FJj6IY3EqhmIklEDxS/wWf5I3yafkS3JyU5r0Vj2vxa1Ivv4Dvj3OoA==</latexit>

P
<latexit sha1_base64="6CqUA4P13yzKhQSoum6EK9y7umQ=">AAACknicjVFNTxRBEO0dQRFQQL156bAx8bSZIQSNiQmGCwcPbOICyc6G1PTUrhW6e8bu6jWbyfwCr/rj/Df2LHuQjwN1enn18V5VFbUmz2n6t5c8WVt/+mzj+ebW9ouXO7t7r859FZzCkap05S4L8KjJ4oiJNV7WDsEUGi+K65MufzFH56my33hR48TAzNKUFHCkhsOr3X46SJch74NsBfpiFWdXe70mLysVDFpWGrwfZ2nNkwYck9LYbubBYw3qGmY4jtCCQT9plk5b+S544ErW6CRpuSTx/44GjPcLU8RKA/zd38115EO5ceDpx0lDtg6MVnVCTBqXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5JejZgFu4Mi5l8aeqjAFbxvVxij/aJu9cONRNXgTSZUQyn8czOAI7i9p5FVVl87ltH+oPNH/0iPymPM6J78ruPuc+OD8YZEeDg+Fh//h09bgN8Vbsi/ciEx/EsTgVZ2IklEDxS/wWf5I3yafkS3JyU5r0Vj2vxa1Ivv4DwGvOoQ==</latexit>

Q

correctness incorrectness

<latexit sha1_base64="7M/zo8prenwhiULY4h1FW5bBZ18=">AAACknicjVFNTxRBEO0dQRFQQL156bAx8bSZIQSNiQmGCwcPS+ICyc6G1PTUrhW6e8bu6jWbyfwCr/rj/Df2LHuQjwN1enn18V5VFbUmz2n6t5c8WVt/+mzj+ebW9ouXO7t7r859FZzCkap05S4L8KjJ4oiJNV7WDsEUGi+K65MufzFH56my33hR48TAzNKUFHCkzoZXu/10kC5D3gfZCvTFKoZXe70mLysVDFpWGrwfZ2nNkwYck9LYbubBYw3qGmY4jtCCQT9plk5b+S544ErW6CRpuSTx/44GjPcLU8RKA/zd38115EO5ceDpx0lDtg6MVnVCTBqXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5JejZgFu4Mi5l8aeqjAFbxvVxij/aJu9cONRNXgTSZUQyn8czOAI7i9p5FVVl87ltH+oPNH/0iPymPM6J78ruPuc+OD8YZEeDg7PD/vHp6nEb4q3YF+9FJj6IY3EqhmIklEDxS/wWf5I3yafkS3JyU5r0Vj2vxa1Ivv4Dvj3OoA==</latexit>

P
<latexit sha1_base64="6CqUA4P13yzKhQSoum6EK9y7umQ=">AAACknicjVFNTxRBEO0dQRFQQL156bAx8bSZIQSNiQmGCwcPbOICyc6G1PTUrhW6e8bu6jWbyfwCr/rj/Df2LHuQjwN1enn18V5VFbUmz2n6t5c8WVt/+mzj+ebW9ouXO7t7r859FZzCkap05S4L8KjJ4oiJNV7WDsEUGi+K65MufzFH56my33hR48TAzNKUFHCkhsOr3X46SJch74NsBfpiFWdXe70mLysVDFpWGrwfZ2nNkwYck9LYbubBYw3qGmY4jtCCQT9plk5b+S544ErW6CRpuSTx/44GjPcLU8RKA/zd38115EO5ceDpx0lDtg6MVnVCTBqXQl45iidAWZJDZuicoyQrFThgRkcSlIpkiDe5JejZgFu4Mi5l8aeqjAFbxvVxij/aJu9cONRNXgTSZUQyn8czOAI7i9p5FVVl87ltH+oPNH/0iPymPM6J78ruPuc+OD8YZEeDg+Fh//h09bgN8Vbsi/ciEx/EsTgVZ2IklEDxS/wWf5I3yafkS3JyU5r0Vj2vxa1Ivv4DwGvOoQ==</latexit>

Q

<latexit sha1_base64="1HvcBa8kjIx1Vxk/CAbRQkaD+G0=">AAACBnicbVA9TwJBEN3DL8QvxNJmIzGxIndq1BK1sYREwOS4kLllhA17H9mdIxICtb/CVis7Y+vfsPC/eCCFgq96eW8m8+b5sZKGbPvTyiwtr6yuZddzG5tb2zv53ULdRIkWWBORivSdDwaVDLFGkhTexRoh8BU2/N71xG/0URsZhbc0iNELoBPKeymAUqmVLzT7bTDd1iV3K95YjN2q18oX7ZI9BV8kzowU2QyVVv6r2Y5EEmBIQoExrmPH5A1BkxQKR7lmYjAG0YMOuikNIUDjDafZR/wwMUARj1FzqfhUxN8bQwiMGQR+OhkAdc28NxH/89yE7i+8oQzjhDAUk0MkFU4PGaFlWgryttRIBJPkyGXIBWggQi05CJGKSdpSLu3Dmf9+kdSPS85Z6aR6WixfzZrJsn12wI6Yw85Zmd2wCqsxwR7YE3tmL9aj9Wq9We8/oxlrtrPH/sD6+AZMiZiO</latexit>

`A [P] c [Q]
<latexit sha1_base64="6Jv4AV8qHP7Ccfz4J8IckOiUYGE=">AAACtHicjVFNbxMxEHW2fJTwlZYjF0OEVC7RbkGFS6UiLj0WQdpK2Sia9U6CVdu72OOgyNpzf02v8Fv4N3i3OZC2B+b09ObjzbwpaiUdpemfXrJ17/6Dh9uP+o+fPH32fLCze+oqbwWORaUqe16AQyUNjkmSwvPaIuhC4Vlx8bnNny3ROlmZb7SqcaphYeRcCqBIzQavPu3lGui7pPC1RtG85Ye8v8HMBsN0lHbBb4NsDYZsHSeznV7Iy0p4jYaEAucmWVrTNIAlKRQ2/dw7rEFcwAInERrQ6Kahu6Xhb7wDqniNlkvFOxL/7QignVvpIla2W7qbuZa8KzfxNP84DdLUntCIVoikwk7ICSujSchLaZEI2s2RS8MFWCBCKzkIEUkfXdsQdKTBrmwZjzL4U1Ragynj+TjHH03ofLSoQl54qcqIeL6MNlgJZhG18yqq8nDYNHf1e7n87xH5dXmcE9+V3XzObXC6P8oORu++vB8eHa8ft81estdsj2XsAztix+yEjZlgl+yK/WK/k4MkT0SC16VJb93zgm1EYv4C+7nbpw==</latexit>

A(Spec) = Spec

logically complete

logically complete

logically incomplete

HL

IL

LCL

What can go wrong?

20 R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

CInt?1 (b1?)

`Int [?1] b1? [{1, 999, 1000}]
(tr.)

CInt{1,999,1000} (e1)

`Int [{1, 999, 1000}] e1? [{0, 998, 999}]
(tr.)

`Int [?1] r1 [{0, 998, 999}]
(seq)

CInt?1 (b2?)

`Int [?1] b2? [{0, 1, 999}]
(tr.)

CInt{0,1,999} (e2)

`Int [{0, 1, 999}] e2 [{1, 2, 1000}]
(tr.)

`Int [?1] r2 [{1, 2, 1000}]
(seq)

`Int [?1] r1 � r2 [{0, 1, 2, 998, 999, 1000}]
(join)

(¢)
(iterate)

CInt? (b1?)

`Int [?] b1? [?]
(tr.)

CInt? (e1)

`Int [?] e1 [{0, 998}]
(tr.)

`Int [?] r1 [{0, 998}]
(seq)

CInt? (b2?)

`Int [?] b2? [?]
(tr.)

CInt? (e2)

`Int [?] e2 [{2, 1000}]
(tr.)

`Int [?] r2 [{2, 1000}]
(seq)

`Int [?] r1 � r2 [{0, 2, 998, 1000}]
(join)

(¢)
`Int [{0, 1, 999, 1000}] r [{0, 1, 2, 998, 999, 1000}]

(iterate)

`Int [{0, 1, 2, 998, 999, 1000}] r [{0, 2, 1000}]
(relax)

`Int [?] r [{0, 2, 1000}]
(rec)

Legenda: b1 , 0 < G e1 , G := G � 1 b2 , G < 1000 e2 , G := G + 1 ?1 , {0, 1, 999, 1000}

Fig. 5. Derivation of `Int [? = {1, 999}] r [{0, 2, 1000}] for Example 5.2, where the label (tr.) stands for (transfer) .

C
Sign
? (G  0?)

`Sign [?] G  0? [{�10, �1}]
(transfer)

C
Sign
{�10,�1} (G := G ⇤ 10)

`Sign [{�10, �1}] G := G ⇤ 10 [{�100, �10}]
(transfer)

`Sign [?] G  0?;G := G ⇤ 10 [{�100, �10}] {�100, �10} ✓ Sign(?) = Z<0
(seq)

`Sign [?] (G  0?;G := G ⇤ 10)⇤ [{�100, �10, �1, 100}] {�100, 100} ✓ {�100, �10, �1, 100} ✓ Sign({�100, 100}) = Z<0
(iterate)

`Sign [?] (G  0?;G := G ⇤ 10)⇤ [{�100, 100}]
(relax)

C
Sign
{�100,100} (0 < G?)

`Sign [{�100, 100}] 0 < G? [{100}]
(transfer)

`Sign [?] c [{100}]
(seq)

Fig. 6. Derivation of `Sign [? = {�10, �1, 100}] c [{100}] for Example 5.3.

Of course, for no-ops, Boolean guards and assignments, the rule (transfer) can be equivalently stated in symbolic form
as follows:

`� [?] skip [?] (skip)
C�? (b?)

`� [?] b? [? ^ b] (assume)

C�? (G := a)
`� [?] G := a [9E .(? [E/G] ^ G = a[E/G])]

(assign)

where [E/G] denotes the substitution for replacing G by E .
The rule (seq) for sequential composition and the rule (join) for choice are standard. The rule (rec) allows us to

unfold one step of Kleene iteration, until the rule (iterate) can be applied.
The rule (iterate) is a distinguishing rule of LCL� and is as much fundamental as rule (relax) for several reasons:

both rules have premises depending on the abstraction �; under-approximated post-conditions are only introduced by
these two rules (all the other rules are otherwise “exact”); while the concrete semantics of r⇤ can be in�nitary (e.g.,
consider (G := G + 1)⇤), using (iterate) we can exploit the abstraction � to stop the proof when the abstraction of a
�nitary input ? is already an in�nitary abstract invariant3 (cf. Lemma 5.4), returning a �nite under-approximation
of the concrete invariant; the combination of under- and over-approximations in the rule (iterate) is therefore more
expressive than the sum of its parts, as it allows us to speed up both program analysis and alarm detection.

The next two examples illustrate the key features of LCL�: the �rst one exploits all the rules and the second one is
applied to a classical while-loop. They will be revisited in Section 5.1 to show how LCL� can help in program analysis.

3A maybe non-obvious consequence of the condition @  �(?) .
Manuscript submitted to ACM

local
completeness
requirement

local
completeness
requirement

local
completeness
requirement

local-completeness proof obligations can fail!

any non-trivial abstract domain introduces some imprecision!A

J.ACM 70(2)
we show how to relax local-completeness
requirements for while loops and by
domain refinement

15

A Correctness and Incorrectness Program Logic

ROBERTO BRUNI, University of Pisa, Italy
ROBERTO GIACOBAZZI, University of Verona, Italy
ROBERTA GORI, University of Pisa, Italy
FRANCESCO RANZATO, University of Padova, Italy

Abstract interpretation is a well-known and extensively used method to extract over-approximate program
invariants by a sound program analysis algorithm. Soundness means that no program errors are lost and it is,
in principle, guaranteed by construction. Completeness means that the abstract interpreter reports no false
alarms for all possible inputs, but this is extremely rare because it needs a very precise analysis. We introduce
a weaker notion of completeness, called local completeness, which requires that no false alarms are produced
only relatively to some fixed program inputs. Based on this idea, we introduce a program logic, called Local
Completeness Logic for an abstract domain A, for proving both the correctness and incorrectness of program
specifications. Our proof system, which is parameterized by an abstract domainA, combines over- and under-
approximating reasoning. In a provable triple ⊢A [p] c [q], c is a program, q is an under-approximation of
the strongest post-condition of c on input p such that their abstractions in A coincide. This means that q is
never too coarse, namely, under some mild assumptions, the abstract interpretation of c does not yield false
alarms for the input p iff q has no alarm. Therefore, proving ⊢A [p] c [q] not only ensures that all the alarms
raised in q are true ones, but also that if q does not raise alarms, then c is correct. We also prove that ifA is the
straightforward abstraction making all program properties equivalent, then our program logic coincides with
O’Hearn’s incorrectness logic, while for any other abstraction, contrary to the case of incorrectness logic, our
logic can also establish program correctness.

CCS Concepts: • Theory of computation→ Logic and verification; Abstraction; Programming logic;
Semantics and reasoning; Program analysis; Hoare logic; Axiomatic semantics; Abstraction; Program
reasoning;
Additional Key Words and Phrases: Abstract interpretation, abstract domain, program analysis, program ver-
ification, program logic, local completeness, best correct approximation, incorrectness logic

ACM Reference format:
Roberto Bruni, Roberto Giacobazzi, Roberta Gori, and Francesco Ranzato. 2023. A Correctness and Incorrect-
ness Program Logic. J. ACM 70, 2, Article 15 (March 2023), 45 pages.
https://doi.org/10.1145/3582267

The authors have been funded by the Italian MIUR, under the PRIN2017 project no. 201784YSZ5 “AnalysiS of PRogram
Analyses (ASPRA)” and by a Meta research gift. Roberto Giacobazzi and Francesco Ranzato have been partially funded
by Facebook Research, under a “Probability and Programming Research Award,” by an Amazon Research Award for “AWS
Automated Reasoning,” and by a WhatsApp Research Award on “Privacy-aware Program Analysis.”
Authors’ addresses: R. Bruni and R. Gori, University of Pisa, Pisa, Italy; emails: bruni@di.unipi.it, gori@di.unipi.it; R. Gia-
cobazzi, University of Verona, Verona, Italy; email: roberto.giacobazzi@univr.it; F. Ranzato, University of Padova, Padova,
Italy; email: ranzato@math.unipd.it.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2023 Copyright held by the owner/author(s).
0004-5411/2023/03-ART15 $15.00
https://doi.org/10.1145/3582267

Journal of the ACM, Vol. 70, No. 2, Article 15. Publication date: March 2023.

While loops

Fixpoints preserve completeness
(A, ⊑)(C, ⊆)

F

𝖿𝗂𝗑(F)
𝖿𝗂𝗑(F#)

F#

if is complete, then F# 𝖿𝗂𝗑(F#) = α(𝖿𝗂𝗑(F))

Fixpoints preserve completeness

↵
<latexit sha1_base64="/nE6liJQLR0QIQv5sfLEkHMOx7A=">AAAB8HicbVDLSsNAFJ3UV62vqks3g63gqiRVfOyKblxWsA9pQ7mZTtqhM0mYmQgl9CvcuFDErZ/jzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8U5SygLc00p91IUhAepx1vcp36nQcqFQuDOz2NqCtgFDCfEdBGuq/2gUdjqOJBuWLX7Ax4kTg5qaAczUH5oz8MSSxooAkHpXqOHWk3AakZ4XRW6seKRkAmMKI9QwMQVLlJdvAMHxlliP1Qmgo0ztSfEwkIpabCM50C9Fj99VLxP68Xa//CTVgQxZoGZL7IjznWIU6/x0MmKdF8aggQycytmIxBAtEmo1IWwmWKs++XF0m7XnNOaqe39UrjKo+jiA7QITpGDjpHDXSDmqiFCBLoET2jF0taT9ar9TZvLVj5zD76Bev9C7aCj9Q=</latexit>

(A, ⊑)(C, ⊆)

F

𝖿𝗂𝗑(F)
𝖿𝗂𝗑(F#)

F#

if is complete, then F# 𝖿𝗂𝗑(F#) = α(𝖿𝗂𝗑(F))

Fixpoints preserve completeness

↵
<latexit sha1_base64="/nE6liJQLR0QIQv5sfLEkHMOx7A=">AAAB8HicbVDLSsNAFJ3UV62vqks3g63gqiRVfOyKblxWsA9pQ7mZTtqhM0mYmQgl9CvcuFDErZ/jzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8U5SygLc00p91IUhAepx1vcp36nQcqFQuDOz2NqCtgFDCfEdBGuq/2gUdjqOJBuWLX7Ax4kTg5qaAczUH5oz8MSSxooAkHpXqOHWk3AakZ4XRW6seKRkAmMKI9QwMQVLlJdvAMHxlliP1Qmgo0ztSfEwkIpabCM50C9Fj99VLxP68Xa//CTVgQxZoGZL7IjznWIU6/x0MmKdF8aggQycytmIxBAtEmo1IWwmWKs++XF0m7XnNOaqe39UrjKo+jiA7QITpGDjpHDXSDmqiFCBLoET2jF0taT9ar9TZvLVj5zD76Bev9C7aCj9Q=</latexit>

(A, ⊑)(C, ⊆)

F

𝖿𝗂𝗑(F)
𝖿𝗂𝗑(F#)

F#

if is complete, then F# 𝖿𝗂𝗑(F#) = α(𝖿𝗂𝗑(F))

Fixpoints preserve completeness

↵
<latexit sha1_base64="/nE6liJQLR0QIQv5sfLEkHMOx7A=">AAAB8HicbVDLSsNAFJ3UV62vqks3g63gqiRVfOyKblxWsA9pQ7mZTtqhM0mYmQgl9CvcuFDErZ/jzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8U5SygLc00p91IUhAepx1vcp36nQcqFQuDOz2NqCtgFDCfEdBGuq/2gUdjqOJBuWLX7Ax4kTg5qaAczUH5oz8MSSxooAkHpXqOHWk3AakZ4XRW6seKRkAmMKI9QwMQVLlJdvAMHxlliP1Qmgo0ztSfEwkIpabCM50C9Fj99VLxP68Xa//CTVgQxZoGZL7IjznWIU6/x0MmKdF8aggQycytmIxBAtEmo1IWwmWKs++XF0m7XnNOaqe39UrjKo+jiA7QITpGDjpHDXSDmqiFCBLoET2jF0taT9ar9TZvLVj5zD76Bev9C7aCj9Q=</latexit>

(A, ⊑)(C, ⊆)

F

𝖿𝗂𝗑(F)
𝖿𝗂𝗑(F#)

F#

if is complete, then F# 𝖿𝗂𝗑(F#) = α(𝖿𝗂𝗑(F))

↵
<latexit sha1_base64="/nE6liJQLR0QIQv5sfLEkHMOx7A=">AAAB8HicbVDLSsNAFJ3UV62vqks3g63gqiRVfOyKblxWsA9pQ7mZTtqhM0mYmQgl9CvcuFDErZ/jzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8U5SygLc00p91IUhAepx1vcp36nQcqFQuDOz2NqCtgFDCfEdBGuq/2gUdjqOJBuWLX7Ax4kTg5qaAczUH5oz8MSSxooAkHpXqOHWk3AakZ4XRW6seKRkAmMKI9QwMQVLlJdvAMHxlliP1Qmgo0ztSfEwkIpabCM50C9Fj99VLxP68Xa//CTVgQxZoGZL7IjznWIU6/x0MmKdF8aggQycytmIxBAtEmo1IWwmWKs++XF0m7XnNOaqe39UrjKo+jiA7QITpGDjpHDXSDmqiFCBLoET2jF0taT9ar9TZvLVj5zD76Bev9C7aCj9Q=</latexit>

Fixpoints preserve completeness

↵
<latexit sha1_base64="/nE6liJQLR0QIQv5sfLEkHMOx7A=">AAAB8HicbVDLSsNAFJ3UV62vqks3g63gqiRVfOyKblxWsA9pQ7mZTtqhM0mYmQgl9CvcuFDErZ/jzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8U5SygLc00p91IUhAepx1vcp36nQcqFQuDOz2NqCtgFDCfEdBGuq/2gUdjqOJBuWLX7Ax4kTg5qaAczUH5oz8MSSxooAkHpXqOHWk3AakZ4XRW6seKRkAmMKI9QwMQVLlJdvAMHxlliP1Qmgo0ztSfEwkIpabCM50C9Fj99VLxP68Xa//CTVgQxZoGZL7IjznWIU6/x0MmKdF8aggQycytmIxBAtEmo1IWwmWKs++XF0m7XnNOaqe39UrjKo+jiA7QITpGDjpHDXSDmqiFCBLoET2jF0taT9ar9TZvLVj5zD76Bev9C7aCj9Q=</latexit>

(A, ⊑)(C, ⊆)

F

𝖿𝗂𝗑(F)
𝖿𝗂𝗑(F#)

F#

if is complete, then F# 𝖿𝗂𝗑(F#) = α(𝖿𝗂𝗑(F))

↵
<latexit sha1_base64="/nE6liJQLR0QIQv5sfLEkHMOx7A=">AAAB8HicbVDLSsNAFJ3UV62vqks3g63gqiRVfOyKblxWsA9pQ7mZTtqhM0mYmQgl9CvcuFDErZ/jzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8U5SygLc00p91IUhAepx1vcp36nQcqFQuDOz2NqCtgFDCfEdBGuq/2gUdjqOJBuWLX7Ax4kTg5qaAczUH5oz8MSSxooAkHpXqOHWk3AakZ4XRW6seKRkAmMKI9QwMQVLlJdvAMHxlliP1Qmgo0ztSfEwkIpabCM50C9Fj99VLxP68Xa//CTVgQxZoGZL7IjznWIU6/x0MmKdF8aggQycytmIxBAtEmo1IWwmWKs++XF0m7XnNOaqe39UrjKo+jiA7QITpGDjpHDXSDmqiFCBLoET2jF0taT9ar9TZvLVj5zD76Bev9C7aCj9Q=</latexit>

Fixpoints preserve completeness

↵
<latexit sha1_base64="/nE6liJQLR0QIQv5sfLEkHMOx7A=">AAAB8HicbVDLSsNAFJ3UV62vqks3g63gqiRVfOyKblxWsA9pQ7mZTtqhM0mYmQgl9CvcuFDErZ/jzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8U5SygLc00p91IUhAepx1vcp36nQcqFQuDOz2NqCtgFDCfEdBGuq/2gUdjqOJBuWLX7Ax4kTg5qaAczUH5oz8MSSxooAkHpXqOHWk3AakZ4XRW6seKRkAmMKI9QwMQVLlJdvAMHxlliP1Qmgo0ztSfEwkIpabCM50C9Fj99VLxP68Xa//CTVgQxZoGZL7IjznWIU6/x0MmKdF8aggQycytmIxBAtEmo1IWwmWKs++XF0m7XnNOaqe39UrjKo+jiA7QITpGDjpHDXSDmqiFCBLoET2jF0taT9ar9TZvLVj5zD76Bev9C7aCj9Q=</latexit>

(A, ⊑)(C, ⊆)

F

𝖿𝗂𝗑(F)
𝖿𝗂𝗑(F#)

F#

if is complete, then F# 𝖿𝗂𝗑(F#) = α(𝖿𝗂𝗑(F))

↵
<latexit sha1_base64="/nE6liJQLR0QIQv5sfLEkHMOx7A=">AAAB8HicbVDLSsNAFJ3UV62vqks3g63gqiRVfOyKblxWsA9pQ7mZTtqhM0mYmQgl9CvcuFDErZ/jzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8U5SygLc00p91IUhAepx1vcp36nQcqFQuDOz2NqCtgFDCfEdBGuq/2gUdjqOJBuWLX7Ax4kTg5qaAczUH5oz8MSSxooAkHpXqOHWk3AakZ4XRW6seKRkAmMKI9QwMQVLlJdvAMHxlliP1Qmgo0ztSfEwkIpabCM50C9Fj99VLxP68Xa//CTVgQxZoGZL7IjznWIU6/x0MmKdF8aggQycytmIxBAtEmo1IWwmWKs++XF0m7XnNOaqe39UrjKo+jiA7QITpGDjpHDXSDmqiFCBLoET2jF0taT9ar9TZvLVj5zD76Bev9C7aCj9Q=</latexit>

↵
<latexit sha1_base64="/nE6liJQLR0QIQv5sfLEkHMOx7A=">AAAB8HicbVDLSsNAFJ3UV62vqks3g63gqiRVfOyKblxWsA9pQ7mZTtqhM0mYmQgl9CvcuFDErZ/jzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8U5SygLc00p91IUhAepx1vcp36nQcqFQuDOz2NqCtgFDCfEdBGuq/2gUdjqOJBuWLX7Ax4kTg5qaAczUH5oz8MSSxooAkHpXqOHWk3AakZ4XRW6seKRkAmMKI9QwMQVLlJdvAMHxlliP1Qmgo0ztSfEwkIpabCM50C9Fj99VLxP68Xa//CTVgQxZoGZL7IjznWIU6/x0MmKdF8aggQycytmIxBAtEmo1IWwmWKs++XF0m7XnNOaqe39UrjKo+jiA7QITpGDjpHDXSDmqiFCBLoET2jF0taT9ar9TZvLVj5zD76Bev9C7aCj9Q=</latexit>

Fixpoints preserve completeness

↵
<latexit sha1_base64="/nE6liJQLR0QIQv5sfLEkHMOx7A=">AAAB8HicbVDLSsNAFJ3UV62vqks3g63gqiRVfOyKblxWsA9pQ7mZTtqhM0mYmQgl9CvcuFDErZ/jzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8U5SygLc00p91IUhAepx1vcp36nQcqFQuDOz2NqCtgFDCfEdBGuq/2gUdjqOJBuWLX7Ax4kTg5qaAczUH5oz8MSSxooAkHpXqOHWk3AakZ4XRW6seKRkAmMKI9QwMQVLlJdvAMHxlliP1Qmgo0ztSfEwkIpabCM50C9Fj99VLxP68Xa//CTVgQxZoGZL7IjznWIU6/x0MmKdF8aggQycytmIxBAtEmo1IWwmWKs++XF0m7XnNOaqe39UrjKo+jiA7QITpGDjpHDXSDmqiFCBLoET2jF0taT9ar9TZvLVj5zD76Bev9C7aCj9Q=</latexit>

(A, ⊑)(C, ⊆)

F

𝖿𝗂𝗑(F)
𝖿𝗂𝗑(F#)

F#

if is complete, then F# 𝖿𝗂𝗑(F#) = α(𝖿𝗂𝗑(F))

↵
<latexit sha1_base64="/nE6liJQLR0QIQv5sfLEkHMOx7A=">AAAB8HicbVDLSsNAFJ3UV62vqks3g63gqiRVfOyKblxWsA9pQ7mZTtqhM0mYmQgl9CvcuFDErZ/jzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8U5SygLc00p91IUhAepx1vcp36nQcqFQuDOz2NqCtgFDCfEdBGuq/2gUdjqOJBuWLX7Ax4kTg5qaAczUH5oz8MSSxooAkHpXqOHWk3AakZ4XRW6seKRkAmMKI9QwMQVLlJdvAMHxlliP1Qmgo0ztSfEwkIpabCM50C9Fj99VLxP68Xa//CTVgQxZoGZL7IjznWIU6/x0MmKdF8aggQycytmIxBAtEmo1IWwmWKs++XF0m7XnNOaqe39UrjKo+jiA7QITpGDjpHDXSDmqiFCBLoET2jF0taT9ar9TZvLVj5zD76Bev9C7aCj9Q=</latexit>

↵
<latexit sha1_base64="/nE6liJQLR0QIQv5sfLEkHMOx7A=">AAAB8HicbVDLSsNAFJ3UV62vqks3g63gqiRVfOyKblxWsA9pQ7mZTtqhM0mYmQgl9CvcuFDErZ/jzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8U5SygLc00p91IUhAepx1vcp36nQcqFQuDOz2NqCtgFDCfEdBGuq/2gUdjqOJBuWLX7Ax4kTg5qaAczUH5oz8MSSxooAkHpXqOHWk3AakZ4XRW6seKRkAmMKI9QwMQVLlJdvAMHxlliP1Qmgo0ztSfEwkIpabCM50C9Fj99VLxP68Xa//CTVgQxZoGZL7IjznWIU6/x0MmKdF8aggQycytmIxBAtEmo1IWwmWKs++XF0m7XnNOaqe39UrjKo+jiA7QITpGDjpHDXSDmqiFCBLoET2jF0taT9ar9TZvLVj5zD76Bev9C7aCj9Q=</latexit>

Fixpoints preserve completeness

↵
<latexit sha1_base64="/nE6liJQLR0QIQv5sfLEkHMOx7A=">AAAB8HicbVDLSsNAFJ3UV62vqks3g63gqiRVfOyKblxWsA9pQ7mZTtqhM0mYmQgl9CvcuFDErZ/jzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8U5SygLc00p91IUhAepx1vcp36nQcqFQuDOz2NqCtgFDCfEdBGuq/2gUdjqOJBuWLX7Ax4kTg5qaAczUH5oz8MSSxooAkHpXqOHWk3AakZ4XRW6seKRkAmMKI9QwMQVLlJdvAMHxlliP1Qmgo0ztSfEwkIpabCM50C9Fj99VLxP68Xa//CTVgQxZoGZL7IjznWIU6/x0MmKdF8aggQycytmIxBAtEmo1IWwmWKs++XF0m7XnNOaqe39UrjKo+jiA7QITpGDjpHDXSDmqiFCBLoET2jF0taT9ar9TZvLVj5zD76Bev9C7aCj9Q=</latexit>

(A, ⊑)(C, ⊆)

F

𝖿𝗂𝗑(F)
𝖿𝗂𝗑(F#)

F#

if is complete, then F# 𝖿𝗂𝗑(F#) = α(𝖿𝗂𝗑(F))

↵
<latexit sha1_base64="/nE6liJQLR0QIQv5sfLEkHMOx7A=">AAAB8HicbVDLSsNAFJ3UV62vqks3g63gqiRVfOyKblxWsA9pQ7mZTtqhM0mYmQgl9CvcuFDErZ/jzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8U5SygLc00p91IUhAepx1vcp36nQcqFQuDOz2NqCtgFDCfEdBGuq/2gUdjqOJBuWLX7Ax4kTg5qaAczUH5oz8MSSxooAkHpXqOHWk3AakZ4XRW6seKRkAmMKI9QwMQVLlJdvAMHxlliP1Qmgo0ztSfEwkIpabCM50C9Fj99VLxP68Xa//CTVgQxZoGZL7IjznWIU6/x0MmKdF8aggQycytmIxBAtEmo1IWwmWKs++XF0m7XnNOaqe39UrjKo+jiA7QITpGDjpHDXSDmqiFCBLoET2jF0taT9ar9TZvLVj5zD76Bev9C7aCj9Q=</latexit>

↵
<latexit sha1_base64="/nE6liJQLR0QIQv5sfLEkHMOx7A=">AAAB8HicbVDLSsNAFJ3UV62vqks3g63gqiRVfOyKblxWsA9pQ7mZTtqhM0mYmQgl9CvcuFDErZ/jzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8U5SygLc00p91IUhAepx1vcp36nQcqFQuDOz2NqCtgFDCfEdBGuq/2gUdjqOJBuWLX7Ax4kTg5qaAczUH5oz8MSSxooAkHpXqOHWk3AakZ4XRW6seKRkAmMKI9QwMQVLlJdvAMHxlliP1Qmgo0ztSfEwkIpabCM50C9Fj99VLxP68Xa//CTVgQxZoGZL7IjznWIU6/x0MmKdF8aggQycytmIxBAtEmo1IWwmWKs++XF0m7XnNOaqe39UrjKo+jiA7QITpGDjpHDXSDmqiFCBLoET2jF0taT9ar9TZvLVj5zD76Bev9C7aCj9Q=</latexit>

Fixpoints preserve completeness

↵
<latexit sha1_base64="/nE6liJQLR0QIQv5sfLEkHMOx7A=">AAAB8HicbVDLSsNAFJ3UV62vqks3g63gqiRVfOyKblxWsA9pQ7mZTtqhM0mYmQgl9CvcuFDErZ/jzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8U5SygLc00p91IUhAepx1vcp36nQcqFQuDOz2NqCtgFDCfEdBGuq/2gUdjqOJBuWLX7Ax4kTg5qaAczUH5oz8MSSxooAkHpXqOHWk3AakZ4XRW6seKRkAmMKI9QwMQVLlJdvAMHxlliP1Qmgo0ztSfEwkIpabCM50C9Fj99VLxP68Xa//CTVgQxZoGZL7IjznWIU6/x0MmKdF8aggQycytmIxBAtEmo1IWwmWKs++XF0m7XnNOaqe39UrjKo+jiA7QITpGDjpHDXSDmqiFCBLoET2jF0taT9ar9TZvLVj5zD76Bev9C7aCj9Q=</latexit>

(A, ⊑)(C, ⊆)

F

𝖿𝗂𝗑(F)
𝖿𝗂𝗑(F#)

F#

if is complete, then F# 𝖿𝗂𝗑(F#) = α(𝖿𝗂𝗑(F))

↵
<latexit sha1_base64="/nE6liJQLR0QIQv5sfLEkHMOx7A=">AAAB8HicbVDLSsNAFJ3UV62vqks3g63gqiRVfOyKblxWsA9pQ7mZTtqhM0mYmQgl9CvcuFDErZ/jzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8U5SygLc00p91IUhAepx1vcp36nQcqFQuDOz2NqCtgFDCfEdBGuq/2gUdjqOJBuWLX7Ax4kTg5qaAczUH5oz8MSSxooAkHpXqOHWk3AakZ4XRW6seKRkAmMKI9QwMQVLlJdvAMHxlliP1Qmgo0ztSfEwkIpabCM50C9Fj99VLxP68Xa//CTVgQxZoGZL7IjznWIU6/x0MmKdF8aggQycytmIxBAtEmo1IWwmWKs++XF0m7XnNOaqe39UrjKo+jiA7QITpGDjpHDXSDmqiFCBLoET2jF0taT9ar9TZvLVj5zD76Bev9C7aCj9Q=</latexit>

↵
<latexit sha1_base64="/nE6liJQLR0QIQv5sfLEkHMOx7A=">AAAB8HicbVDLSsNAFJ3UV62vqks3g63gqiRVfOyKblxWsA9pQ7mZTtqhM0mYmQgl9CvcuFDErZ/jzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8U5SygLc00p91IUhAepx1vcp36nQcqFQuDOz2NqCtgFDCfEdBGuq/2gUdjqOJBuWLX7Ax4kTg5qaAczUH5oz8MSSxooAkHpXqOHWk3AakZ4XRW6seKRkAmMKI9QwMQVLlJdvAMHxlliP1Qmgo0ztSfEwkIpabCM50C9Fj99VLxP68Xa//CTVgQxZoGZL7IjznWIU6/x0MmKdF8aggQycytmIxBAtEmo1IWwmWKs++XF0m7XnNOaqe39UrjKo+jiA7QITpGDjpHDXSDmqiFCBLoET2jF0taT9ar9TZvLVj5zD76Bev9C7aCj9Q=</latexit>

Fixpoints preserve completeness

↵
<latexit sha1_base64="/nE6liJQLR0QIQv5sfLEkHMOx7A=">AAAB8HicbVDLSsNAFJ3UV62vqks3g63gqiRVfOyKblxWsA9pQ7mZTtqhM0mYmQgl9CvcuFDErZ/jzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8U5SygLc00p91IUhAepx1vcp36nQcqFQuDOz2NqCtgFDCfEdBGuq/2gUdjqOJBuWLX7Ax4kTg5qaAczUH5oz8MSSxooAkHpXqOHWk3AakZ4XRW6seKRkAmMKI9QwMQVLlJdvAMHxlliP1Qmgo0ztSfEwkIpabCM50C9Fj99VLxP68Xa//CTVgQxZoGZL7IjznWIU6/x0MmKdF8aggQycytmIxBAtEmo1IWwmWKs++XF0m7XnNOaqe39UrjKo+jiA7QITpGDjpHDXSDmqiFCBLoET2jF0taT9ar9TZvLVj5zD76Bev9C7aCj9Q=</latexit>

(A, ⊑)(C, ⊆)

F

𝖿𝗂𝗑(F)
𝖿𝗂𝗑(F#)

F#

if is complete, then F# 𝖿𝗂𝗑(F#) = α(𝖿𝗂𝗑(F))

↵
<latexit sha1_base64="/nE6liJQLR0QIQv5sfLEkHMOx7A=">AAAB8HicbVDLSsNAFJ3UV62vqks3g63gqiRVfOyKblxWsA9pQ7mZTtqhM0mYmQgl9CvcuFDErZ/jzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8U5SygLc00p91IUhAepx1vcp36nQcqFQuDOz2NqCtgFDCfEdBGuq/2gUdjqOJBuWLX7Ax4kTg5qaAczUH5oz8MSSxooAkHpXqOHWk3AakZ4XRW6seKRkAmMKI9QwMQVLlJdvAMHxlliP1Qmgo0ztSfEwkIpabCM50C9Fj99VLxP68Xa//CTVgQxZoGZL7IjznWIU6/x0MmKdF8aggQycytmIxBAtEmo1IWwmWKs++XF0m7XnNOaqe39UrjKo+jiA7QITpGDjpHDXSDmqiFCBLoET2jF0taT9ar9TZvLVj5zD76Bev9C7aCj9Q=</latexit>

↵
<latexit sha1_base64="/nE6liJQLR0QIQv5sfLEkHMOx7A=">AAAB8HicbVDLSsNAFJ3UV62vqks3g63gqiRVfOyKblxWsA9pQ7mZTtqhM0mYmQgl9CvcuFDErZ/jzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8U5SygLc00p91IUhAepx1vcp36nQcqFQuDOz2NqCtgFDCfEdBGuq/2gUdjqOJBuWLX7Ax4kTg5qaAczUH5oz8MSSxooAkHpXqOHWk3AakZ4XRW6seKRkAmMKI9QwMQVLlJdvAMHxlliP1Qmgo0ztSfEwkIpabCM50C9Fj99VLxP68Xa//CTVgQxZoGZL7IjznWIU6/x0MmKdF8aggQycytmIxBAtEmo1IWwmWKs++XF0m7XnNOaqe39UrjKo+jiA7QITpGDjpHDXSDmqiFCBLoET2jF0taT9ar9TZvLVj5zD76Bev9C7aCj9Q=</latexit>

↵
<latexit sha1_base64="/nE6liJQLR0QIQv5sfLEkHMOx7A=">AAAB8HicbVDLSsNAFJ3UV62vqks3g63gqiRVfOyKblxWsA9pQ7mZTtqhM0mYmQgl9CvcuFDErZ/jzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8U5SygLc00p91IUhAepx1vcp36nQcqFQuDOz2NqCtgFDCfEdBGuq/2gUdjqOJBuWLX7Ax4kTg5qaAczUH5oz8MSSxooAkHpXqOHWk3AakZ4XRW6seKRkAmMKI9QwMQVLlJdvAMHxlliP1Qmgo0ztSfEwkIpabCM50C9Fj99VLxP68Xa//CTVgQxZoGZL7IjznWIU6/x0MmKdF8aggQycytmIxBAtEmo1IWwmWKs++XF0m7XnNOaqe39UrjKo+jiA7QITpGDjpHDXSDmqiFCBLoET2jF0taT9ar9TZvLVj5zD76Bev9C7aCj9Q=</latexit>

↵
<latexit sha1_base64="/nE6liJQLR0QIQv5sfLEkHMOx7A=">AAAB8HicbVDLSsNAFJ3UV62vqks3g63gqiRVfOyKblxWsA9pQ7mZTtqhM0mYmQgl9CvcuFDErZ/jzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8U5SygLc00p91IUhAepx1vcp36nQcqFQuDOz2NqCtgFDCfEdBGuq/2gUdjqOJBuWLX7Ax4kTg5qaAczUH5oz8MSSxooAkHpXqOHWk3AakZ4XRW6seKRkAmMKI9QwMQVLlJdvAMHxlliP1Qmgo0ztSfEwkIpabCM50C9Fj99VLxP68Xa//CTVgQxZoGZL7IjznWIU6/x0MmKdF8aggQycytmIxBAtEmo1IWwmWKs++XF0m7XnNOaqe39UrjKo+jiA7QITpGDjpHDXSDmqiFCBLoET2jF0taT9ar9TZvLVj5zD76Bev9C7aCj9Q=</latexit>

Not a necessary requirement

↵
<latexit sha1_base64="/nE6liJQLR0QIQv5sfLEkHMOx7A=">AAAB8HicbVDLSsNAFJ3UV62vqks3g63gqiRVfOyKblxWsA9pQ7mZTtqhM0mYmQgl9CvcuFDErZ/jzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8U5SygLc00p91IUhAepx1vcp36nQcqFQuDOz2NqCtgFDCfEdBGuq/2gUdjqOJBuWLX7Ax4kTg5qaAczUH5oz8MSSxooAkHpXqOHWk3AakZ4XRW6seKRkAmMKI9QwMQVLlJdvAMHxlliP1Qmgo0ztSfEwkIpabCM50C9Fj99VLxP68Xa//CTVgQxZoGZL7IjznWIU6/x0MmKdF8aggQycytmIxBAtEmo1IWwmWKs++XF0m7XnNOaqe39UrjKo+jiA7QITpGDjpHDXSDmqiFCBLoET2jF0taT9ar9TZvLVj5zD76Bev9C7aCj9Q=</latexit>

(A, ⊑)(C, ⊆)

F

𝖿𝗂𝗑(F)
𝖿𝗂𝗑(F#)

F#

↵
<latexit sha1_base64="/nE6liJQLR0QIQv5sfLEkHMOx7A=">AAAB8HicbVDLSsNAFJ3UV62vqks3g63gqiRVfOyKblxWsA9pQ7mZTtqhM0mYmQgl9CvcuFDErZ/jzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8U5SygLc00p91IUhAepx1vcp36nQcqFQuDOz2NqCtgFDCfEdBGuq/2gUdjqOJBuWLX7Ax4kTg5qaAczUH5oz8MSSxooAkHpXqOHWk3AakZ4XRW6seKRkAmMKI9QwMQVLlJdvAMHxlliP1Qmgo0ztSfEwkIpabCM50C9Fj99VLxP68Xa//CTVgQxZoGZL7IjznWIU6/x0MmKdF8aggQycytmIxBAtEmo1IWwmWKs++XF0m7XnNOaqe39UrjKo+jiA7QITpGDjpHDXSDmqiFCBLoET2jF0taT9ar9TZvLVj5zD76Bev9C7aCj9Q=</latexit>

we can have when is just locally complete on 𝖿𝗂𝗑(F#) = α(𝖿𝗂𝗑(F)) F# 𝖿𝗂𝗑(F)

Finite unrolling of while loops

 while do ⊢A [P] b c [Q ∧ ¬b]
 ⊢A [P] (b?; c)⋆ [Q] ⊢A [Q] ¬b? [Q ∧ ¬b]

ℂA
Q(¬b) ⊢A [P] r [R1] ⊢A [P ∨ R1] r⋆ [Q]

while do

b c ≜ (b?; c)⋆; ¬b?
r ≜ b?; c

 ⊢A [P ∨ R1] r [R2] ⊢A [P ∨ . . .] r⋆ [Q]

 ⊢A [P ∨ R1 ∨ . . . ∨ Rk] r [Q] Q ⇒ A(P ∨ . . .)

abstract
fixpoint!

⋮
⋮ ⋮

requires local
completeness for b?; c

requires local
completeness for b?; c

requires local
completeness for b?; c

local
completeness for ¬b

Example

 while do ⊢𝖨𝗇𝗍 [{−3,0,3}] x > 0 x := x − 2 [Q ∧ x ≤ 0]
 ⊢𝖨𝗇𝗍 [{−3,0,3}] r⋆ [Q] ⊢𝖨𝗇𝗍 [Q] x ≤ 0? [Q ∧ x ≤ 0]

 ⊢𝖨𝗇𝗍 [{−3,0,3}] r [R1] ⊢𝖨𝗇𝗍 [P ∨ R1] r⋆ [Q]

r ≜ x > 0? ; x := x − 2

 ⊢𝖨𝗇𝗍 [{−3,0,3}] x > 0? [W1] ⊢𝖨𝗇𝗍 [W1] . . . [R1]

fails!

⋮
⋮

⋮ℂ𝖨𝗇𝗍
{−3,0,3}(x > 0)

𝖨𝗇𝗍[[x > 0]]𝖨𝗇𝗍{−3,0,3} = 𝖨𝗇𝗍[[x > 0]][−3,3] = 𝖨𝗇𝗍[1,3] = [1,3]
𝖨𝗇𝗍[[x > 0]]{−3,0,3} = 𝖨𝗇𝗍{3} = [3,3]

Locally complete invariants

 while do ⊢A [P] b c [Q]

 while do [P] b c [(P ∨ Q) ∧ ¬b]
 ℂA

P(b) ℂA
P(¬b) [P ∧ b] c [Q] Q ⇒ A(P)

 while do ⊢A [P ∧ b] c [R] ⊢A [P ∨ R] b c [Q]

abstract
fixpoint!

local completeness
 for test b

local completeness
 for test not required!b

Finite unrolling of while loops

 while do ⊢A [P] b c [(P ∨ . . . ∨ Q) ∧ ¬b]
 ⊢A [P ∧ b] c [R1] while do ⊢A [P ∨ R1] b c [(P ∨ . . . ∨ Q) ∧ ¬b]

 while do ⊢A [(P ∨ R1) ∧ b] c [R2] ⊢A [P ∨ . . .] b c [(P ∨ . . . ∨ Q) ∧ ¬b]

 ℂA
P∨...(b, ¬b) ⊢A [(P ∨ . . .) ∧ b] c [Q] Q ⇒ A(P ∨ . . .)

⋮
⋮ ⋮

local completeness
 for test not required!b

local completeness
 for test not required!b

local completeness
 for test b

abstract
fixpoint!

local-completeness proof obligations for guards are necessary

just when the abstract fixpoint is reached!

Example

 while do ⊢𝖨𝗇𝗍 [{−3,0,3}] x > 0 x := x − 2 [{−3, − 1,0}]
 ⊢𝖨𝗇𝗍 [{3}] x := x − 2 [{1}] while do ⊢𝖨𝗇𝗍 [{−3,0,1,3}] x > 0 x := x − 2 [{−3, − 1,0}]

ℂ𝖨𝗇𝗍
{3}(x − 2)

succeed!
abstract
fixpoint!

succeeds!

ℂ𝖨𝗇𝗍
{...}(x ≤ 0) ℂ𝖨𝗇𝗍

{1,3}(x − 2)

succeeds!

 ℂ𝖨𝗇𝗍
{...}(x > 0) ⊢𝖨𝗇𝗍 [{1,3}] x := x − 2 [{−1,1}] {−1,1} ⊆ [−3,3]

Refinement

Domain refinement
to satisfy a local completeness requirement, it can be useful to
refine the domain

 while do ⊢𝖲𝗂𝗀𝗇 [{0,1}] x ≠ 0 x := x + 1 [{0}]
 ℂ𝖲𝗂𝗀𝗇

{0,1}(x ≠ 0) ℂ𝖲𝗂𝗀𝗇
{0,1}(x = 0) ⊢𝖲𝗂𝗀𝗇 [{1}] x := x + 1 [{2}] {2} ⊆ 𝖲𝗂𝗀𝗇({0,1}) = ℤ

succeed!

abstract
fixpoint!ℂ𝖲𝗂𝗀𝗇

{1} (x + 1)
fails! succeed!

𝖲𝗂𝗀𝗇[[x ≠ 0]]𝖲𝗂𝗀𝗇{0,1} = 𝖲𝗂𝗀𝗇[[x ≠ 0]]ℤ = 𝖲𝗂𝗀𝗇(x ≠ 0) = ℤ
𝖲𝗂𝗀𝗇[[x ≠ 0]]{0,1} = 𝖲𝗂𝗀𝗇{1} = ℤ>0

ℤ

∅

ℤ<0 ℤ>0

𝖲𝗂𝗀𝗇

Domain refinement
to satisfy a local completeness requirement, it can be useful to
refine the domain

 while do ⊢𝖲𝗂𝗀𝗇+ [{0,1}] x ≠ 0 x := x + 1 [{0}]
 ℂ𝖲𝗂𝗀𝗇+

{0,1}(x ≠ 0) ℂ𝖲𝗂𝗀𝗇+

{0,1}(x = 0) ⊢𝖲𝗂𝗀𝗇+ [{1}] x := x + 1 [{2}] {2} ⊆ 𝖲𝗂𝗀𝗇+({0,1}) = ℤ≥0

succeed!

abstract
fixpoint!ℂ𝖲𝗂𝗀𝗇+

{1} (x + 1)
succeed!succeed!

𝖲𝗂𝗀𝗇+[[x ≠ 0]]𝖲𝗂𝗀𝗇+{0,1} = 𝖲𝗂𝗀𝗇+[[x ≠ 0]]ℤ≥0 = 𝖲𝗂𝗀𝗇+ℤ>0 = ℤ>0
𝖲𝗂𝗀𝗇+[[x ≠ 0]]{0,1} = 𝖲𝗂𝗀𝗇+{1} = ℤ>0

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

ú

Z<0 Z=0 Z>0

Z0 Z<0 Z�0

ZSign

Fig. 1. Abstract Domain for Sign Analysis.

making the proof of (in)correctness useless or poorly trustworthy. This is a consequence of the
approximation inherent in the need to make an otherwise undecidable analysis decidable. As all
alarming systems, program analysis is credible (and useful) to decide correctness and incorrectness,
when few false-alarms are reported, ideally none. In this case, we say that the abstract interpreter
is complete for our program under analysis. As an illustrative example, consider the program

Abs(G) =4 if (G � 0) then skip else G := �G

computing the absolute value of integer variables. The well-known interval abstraction Int ap-
proximates any property (2 ®(Z) of the integer values that G may assume by the least interval
Int(() = [0,1] such that (✓ [0,1], where 0  1, 0 2 Z [{�1} and 1 2 Z [{+1}. Int is clearly
incomplete for Abs. Assume we know that the variable G can just assume an odd value. Then, it turns
out that the best correct approximation of Abs we can compute in Int can introduce false-alarms:

Int(Abs({G | G is odd})) = Int({G | G is odd, G � 0}) = [1, +1],
Int(Abs(Int({G | G is odd}))) = Int(Abs([�1, +1])) = Int({G | G � 0}) = [0, +1] .

Since [1, +1] ([0, +1], it means that Int is incomplete for Abs on input � = {G | G is odd}. This
can cause a problem in veri�cation: even if no input will be zero, an interval analysis of Abs(G) may
produce a false-alarm, for instance whenever used as divisor in an integer division. As it is often
the case (cf. [Giacobazzi et al. 2015]), the problem with this program Abs resides in the Boolean
guard G � 0, that is not complete when the input � is abstracted in Int.
Completeness intuitively encodes the greatest achievable precision for an abstract transfer

function, meaning that it exactly matches the abstraction of its concrete counterpart. The problem
of constructively making abstract domains complete by either domain re�nement (i.e., increasing
abstract domain precision) or by domain simpli�cation (i.e., reducing abstract domain precision)
has been settled in [Giacobazzi et al. 2000]. The most abstract re�nement, called complete shell,
of an abstract domain � always exists for Scott continuous concrete transfer functions — hence
for all computable functions — and it can be constructively de�ned as solution of a recursive
abstract domain equation. As a classical simple example, we can consider the rule of signs domain
(see Figure 1). Sign is an abstraction of Int and is sound and complete for integer multiplication
but merely sound for addition. As proved in [Giacobazzi et al. 2000], the complete shell of Sign
for binary addition is the most abstract domain upper approximating sets of integers which is
complete for integer addition of their elements, which turns out to be precisely Int. Although
extremely powerful, this notion has an intrinsic global �avor: The complete shell of an abstract
domain with respect to a semantic transfer function 5 makes the abstract domain complete for 5
on all possible inputs. Instead, a program computation corresponds to a speci�c sequence (i.e., trace)
of applications of concrete transfer functions. Hence, this method does not allow us to tailor the
abstraction re�nement to the speci�c shape of a computational trace of interest. As a result, the

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

+

Domain integration
suppose and :

can we conclude for some suitable ?

⊢A1
[P] 𝗋𝟣 [R] ⊢A2

[R] 𝗋𝟤 [Q]
⊢A [P] 𝗋𝟣 ; 𝗋𝟤 [Q] A

 ?

not guaranteed to work (some proof obligations may fail)
A = A1 ⊓ A2

Conjunctive properties
program verification often requires the use of
the conjunction of several basic predicates

concrete states = stores with two variables

intervals abstraction for each variable

abstract state = an interval for each variable

x, y

[0,] [3,8]∞

Product domain
C A0α0

γ0 C A1α1

γ1

C A0 × A1α×

γ×

γ×(a0, a1) = γ0(a0) ∩ γ1(a1)

Problem
concrete stores = stores with one variable x

Int EvenOdd×

e.g. an abstract state ([2,10] , even)
describes even values between and 2 10

but also represents the same ([1,11] , even)
concrete set !{2,4,6,8,10}

⊤

⊥

oddeven

EvenOdd

Reduced product A0 ⊓ A1

C (A0 × A1)≡α⊓

γ⊓

γ⊓([a0, a1]≡) = γ0(a0) ∩ γ1(a1)

(a0, a1) ≡ (a′ 0, a′ 1) ⇔ γ×(a0, a1) = γ×(a′ 0, a′ 1)
take the equivalence

classes

C A0α0

γ0 C A1α1

γ1

A0 ⊓ A1

Domain integration

Idea: combine more abstract domains in the same derivation,

 different abstract domains for different portions of code!

⊢𝖲𝗂𝗀𝗇 [P] 𝗋𝟣 ; 𝗋𝟤 [Q]
 ⊢𝖲𝗂𝗀𝗇+ [P] 𝗋𝟣 [R] ⊢𝖨𝗇𝗍 [R] 𝗋𝟤 [Q]

suppose and :

can we conclude for some suitable ?

⊢A1
[P] 𝗋𝟣 [R] ⊢A2

[R] 𝗋𝟤 [Q]
⊢A [P] 𝗋𝟣 ; 𝗋𝟤 [Q] A

Refine rule
A Correctness and Incorrectness Program Logic 15:37

Fig. 11. The refinement rule of LCL≼A .

8 A LOGIC FOR LOCALLY COMPLETE BEST CORRECT APPROXIMATIONS
When a provable triple ⊢A [p] r [q] is used for program verification, we exploit the following
property:

q ≤ !r"p ≤ α (!r"p) = α (q), (§)
so that, by under-approximation q ≤ !r"p, any alarm in q is a true alarm for p, and, by over-
approximation !r"p ≤ α (q), the lack of alarms in α (q) entails the correctness of p. In LCLA, local
completeness can be viewed as a technical assumption to infer (§), meaning that it is a necessary
condition for deriving ⊢A [p] r [q] within our proof system, since we are able to prove only triples
that satisfy local completeness !r"♯Aα (p) = α (!r"p) (cf. Theorem 5.5). In this section, we show that it
is possible to relax our program logic so that local completeness is not required for the intensional
and inductively defined abstract interpreter !r"♯A but merely for the best correct approximation
!r"A ! α ◦ !r" ◦γ of the extensional concrete semantics !r". This is achieved by allowing different
abstract domains in different sub-derivations to increase the precision of the analysis whenever
necessary. Without the extension proposed in this section, whenever it would be convenient to use
different abstract domains for different parts of the proof, the only possibility would be to check if
it is possible to complete the derivation in the abstract domain obtained as the reduced product of
all domains involved in every sub-derivation: For example, if we are able to derive ⊢A1 [p] r1 [w]
and ⊢A2 [w] r2 [q], then we could try to derive ⊢A1⊓A2 [p] r1; r2 [q] leveraging the reduced product
A1⊓A2. One remarkable advantage of using different abstractions within the same derivation will
be that it is not necessary to consider their join at every step.

This extension of LCLA is obtained by adding the rule (refine) in Figure 11, where we recall
that ≼ denotes the refinement relation between abstract domains and write ⊢≼A [p] r [q] for a triple
that can be derived in this extended proof system LCL≼A ! LCLA ∪ {(refine)}. When A is not
locally complete for r on p, (refine) allows us to exploit an abstraction refinementA′ ofA, which is
locally complete provided that the over-approximations in A and A′ of both p and q coincide. The
soundness result for LCL≼A shows that any triple ⊢≼A [p] r [q] still ensures thatq ≤ !r"p ≤ α (q) holds.
Let us remark that the only difference in soundness of LCLA and LCL≼A , as stated by Theorems 5.5
and 8.1, is that the intensional abstract semantics !r"♯A of Theorem 5.5 is replaced by the bca !r"A

of Theorem 8.1.
Theorem 8.1 (Soundness of LCL≼A). Let Aα,γ ∈ Abs(C). For all r ∈ Reg, p,q ∈ C , if ⊢≼A [p] r [q]

then:

(1) q ≤ !r"p, and
(2) !r"Aα (p) = α (q) = α (!r"p).

Proof. As in the proof of Theorem 5.5, we refer to the equality !r"Aα (p) = α (q) as (2a) and
use (2b) for the equality !r"Aα (p) = α (!r"p). We then recall that (2b) follows immediately by (1)
and (2a).

The proof is by induction on the derivation tree of ⊢≼A [p] r [q]. For the cases where the
last used rule is in LCLA (in Figure 4), the proof follows the same pattern of the proof of
Theorem 5.5: for (1) there is nothing to change, while for (2) we just need to replace !·"♯A with !·"A

Journal of the ACM, Vol. 70, No. 2, Article 15. Publication date: March 2023.

A′ ⪯ A A′ (P) = A(P) ⊢A′
[P] r [Q]

⊢A [P] r

select a more precise
domain A′

preserve abstraction
of pre-conditions

carry the sub proof
in the refined domain

move the conclusion
to the more abstract

domain

A triple is valid if ⊢A [P] r [Q] Q ⊆ [[r]]P ⊆ A(Q) = [[r]]#
AA(P)

[refine]
[Q]

Pointed refinement

 if

 otherwise

Au ≜ A ∪ {u ∩ a ∣ a ∈ A}

Au(c) ≜ u ∩ A(c) c ≤ u
Au(c) ≜ A(c)

Suppose we want to extend with a new approximation

 is not necessarily an abstract domain!

must be closed under meet (called Moore closure)

A u ∈ C

A ∪ {u}

Equivalently where Au ≜ A ⊓ Iu Iu ≜ { ⊥ , u, ⊤ }

Example
Let us denote by the interval-with-a-hole [x, y]≠0 [x, y]∖{0}

Then 𝖨𝗇𝗍≠0 ≜ 𝖨𝗇𝗍 ∪ {[x, y]≠0 ∣ [x, y] ∈ 𝖨𝗇𝗍, x < 0 < y}

we have, e.g.
 𝖨𝗇𝗍≠0 {−10, − 5,7} = [−10,7]≠0
 𝖨𝗇𝗍≠0 {−10, − 5,0,7} = [−10,7]
 𝖨𝗇𝗍≠0 {−10, − 5} = [−10, − 5]

Example
Let us denote by the set of non-negative integersℤ≥0

Then 𝖲𝗂𝗀𝗇≥0 ≜ 𝖲𝗂𝗀𝗇 ∪ {ℤ≥0}

we have, e.g.
 𝖲𝗂𝗀𝗇≥0 {0} = ℤ≥0
 𝖲𝗂𝗀𝗇≥0 {1,7} = ℤ>0
 𝖲𝗂𝗀𝗇≥0 {−7,0} = ℤ

ℤ

∅

ℤ<0 ℤ>0

𝖲𝗂𝗀𝗇

ℤ

∅

ℤ<0 ℤ>0

𝖲𝗂𝗀𝗇≥0

ℤ≥0

<latexit sha1_base64="n6/xsG//hUEenagG15AXht481wc=">AAACp3icbVFdb9MwFHXC11o+VuCRlysqphZElVQMEBNjghfeGBLtKtVV5bhOa81xgn0DtaL8IH4Sv4C/QZJFotu4tqWjc+891z6OMiUtBsFvz79x89btO3ud7t179x/s9x4+mto0N1xMeKpSM4uYFUpqMUGJSswyI1gSKXEWnX+q82c/hLEy1d/QZWKRsLWWseQMK2rZ+0UThhsbF6ZchnAAFI1keq3Ed3pUrTqJWDh49x7G8BwcvIDwCGi9G5JFduCGJVDa7XR2tMZw8E8KdrW2dZtrNX5upBIw2MIxhEOgBTSiDl7WU5rKbY2BluWy1w9GQRNwHYQt6JM2Tpe9P3SV8jwRGrli1s7DIMNFwQxKrkTZpbkVGePnbC3mFdQsEXZRNJaW8KxiVhCnpjoaoWF3OwqWWOuSqKpsHn01V5P/y81zjN8uCqmzHIXmF4PiXAGmUP8PrKQRHJWrAONGVncFvmGGcax+8dIUiwkzzqxqZ8KrPlwH0/EofD06/Pqqf/Kx9WiPPCFPyYCE5A05IZ/JKZkQ7u17h96x98Ef+l/8qT+7KPW9tucxuRQ++wt6b8dN</latexit>

r1 , y := 2 ⇤ y+ 1; y := abs(y)

r2 , x := y; while(x > 1){y := y� 1; x := x� 1}

Example

y ∈ [−100,100] y ∈ [−199,201]
𝗈𝖽𝖽(y)

 y ∈ [1,201]
𝗈𝖽𝖽(y)

 y ∈ [1,201]
𝗈𝖽𝖽(y)

 x = y ∈ [1,201]
𝗈𝖽𝖽(y) x = y = 1

<latexit sha1_base64="n6/xsG//hUEenagG15AXht481wc=">AAACp3icbVFdb9MwFHXC11o+VuCRlysqphZElVQMEBNjghfeGBLtKtVV5bhOa81xgn0DtaL8IH4Sv4C/QZJFotu4tqWjc+891z6OMiUtBsFvz79x89btO3ud7t179x/s9x4+mto0N1xMeKpSM4uYFUpqMUGJSswyI1gSKXEWnX+q82c/hLEy1d/QZWKRsLWWseQMK2rZ+0UThhsbF6ZchnAAFI1keq3Ed3pUrTqJWDh49x7G8BwcvIDwCGi9G5JFduCGJVDa7XR2tMZw8E8KdrW2dZtrNX5upBIw2MIxhEOgBTSiDl7WU5rKbY2BluWy1w9GQRNwHYQt6JM2Tpe9P3SV8jwRGrli1s7DIMNFwQxKrkTZpbkVGePnbC3mFdQsEXZRNJaW8KxiVhCnpjoaoWF3OwqWWOuSqKpsHn01V5P/y81zjN8uCqmzHIXmF4PiXAGmUP8PrKQRHJWrAONGVncFvmGGcax+8dIUiwkzzqxqZ8KrPlwH0/EofD06/Pqqf/Kx9WiPPCFPyYCE5A05IZ/JKZkQ7u17h96x98Ef+l/8qT+7KPW9tucxuRQ++wt6b8dN</latexit>

r1 , y := 2 ⇤ y+ 1; y := abs(y)

r2 , x := y; while(x > 1){y := y� 1; x := x� 1}

<latexit sha1_base64="uIJ5hLcy9g4YQEWacCLadpl/Lc4=">AAACbnicbVFda9swFJXdtWu8r3SDvYyxy8IgfViwAlsHZVC2lz2mbGkLlgnXspKKyrIjyaXG5G8W9gv2uh+whylpGEvbA1cczj2XeznKKiWti+OfQbj1YHvn4W4nevT4ydNn3b3nJ7asDRdjXqrSnGVohZJajJ10SpxVRmCRKXGaXXxd9k8vhbGy1D9cU4m0wJmWU8nReWnSrVgSdUbAnJGoZ0rMod8AkxqS9zSOD8E/6T6w+bzGHL7f42MtPYRhTNnin+14w3YFn6HxRfejDkujSbcXD+IV4C6ha9Ija4wm3V8sL3ldCO24QmsTGlcubdE4yZVYRKy2okJ+gTOReKqxEDZtV8ks4J1XcpiWxpd2sFL/n2ixsLYpMu8s0J3b272leF8vqd30U9pKXdVOaH6zaForcCUsY4ZcGsGdajxBbqS/Ffg5GuTOf8bGFusKNI3JFz4ZejuHu+RkOKAfBx+Oh72jL+uMdskr8pb0CSUH5Ih8IyMyJpxckz/BdrAT/A5fhq/DNzfWMFjPvCAbCPt/Acwztb8=</latexit>

P , (y 2 [�100; 100]) S , (y 2 {1; 201}) Q , (x = y = 1)

 [[𝗋1; 𝗋2]]#
𝖨𝗇𝗍𝖨𝗇𝗍(P) = (x = 1 ∧ 0 ≤ y ≤ 100)

Example incomplete
in 𝖨𝗇𝗍

 is non
relational
𝖨𝗇𝗍

⊢𝖨𝗇𝗍 [P] r1 ; r2 [Q]
⊢𝖨𝗇𝗍 [P] r1 [S] ⊢𝖨𝗇𝗍 [S] r2 [Q]

⊢𝖨𝗇𝗍≠0 [P] r1 [S] ⊢𝖮𝖼𝗍 [S] r2 [Q]

[seq]
[refine] [refine]

<latexit sha1_base64="uIJ5hLcy9g4YQEWacCLadpl/Lc4=">AAACbnicbVFda9swFJXdtWu8r3SDvYyxy8IgfViwAlsHZVC2lz2mbGkLlgnXspKKyrIjyaXG5G8W9gv2uh+whylpGEvbA1cczj2XeznKKiWti+OfQbj1YHvn4W4nevT4ydNn3b3nJ7asDRdjXqrSnGVohZJajJ10SpxVRmCRKXGaXXxd9k8vhbGy1D9cU4m0wJmWU8nReWnSrVgSdUbAnJGoZ0rMod8AkxqS9zSOD8E/6T6w+bzGHL7f42MtPYRhTNnin+14w3YFn6HxRfejDkujSbcXD+IV4C6ha9Ija4wm3V8sL3ldCO24QmsTGlcubdE4yZVYRKy2okJ+gTOReKqxEDZtV8ks4J1XcpiWxpd2sFL/n2ixsLYpMu8s0J3b272leF8vqd30U9pKXdVOaH6zaForcCUsY4ZcGsGdajxBbqS/Ffg5GuTOf8bGFusKNI3JFz4ZejuHu+RkOKAfBx+Oh72jL+uMdskr8pb0CSUH5Ih8IyMyJpxckz/BdrAT/A5fhq/DNzfWMFjPvCAbCPt/Acwztb8=</latexit>

P , (y 2 [�100; 100]) S , (y 2 {1; 201}) Q , (x = y = 1)
<latexit sha1_base64="uIJ5hLcy9g4YQEWacCLadpl/Lc4=">AAACbnicbVFda9swFJXdtWu8r3SDvYyxy8IgfViwAlsHZVC2lz2mbGkLlgnXspKKyrIjyaXG5G8W9gv2uh+whylpGEvbA1cczj2XeznKKiWti+OfQbj1YHvn4W4nevT4ydNn3b3nJ7asDRdjXqrSnGVohZJajJ10SpxVRmCRKXGaXXxd9k8vhbGy1D9cU4m0wJmWU8nReWnSrVgSdUbAnJGoZ0rMod8AkxqS9zSOD8E/6T6w+bzGHL7f42MtPYRhTNnin+14w3YFn6HxRfejDkujSbcXD+IV4C6ha9Ija4wm3V8sL3ldCO24QmsTGlcubdE4yZVYRKy2okJ+gTOReKqxEDZtV8ks4J1XcpiWxpd2sFL/n2ixsLYpMu8s0J3b272leF8vqd30U9pKXdVOaH6zaForcCUsY4ZcGsGdajxBbqS/Ffg5GuTOf8bGFusKNI3JFz4ZejuHu+RkOKAfBx+Oh72jL+uMdskr8pb0CSUH5Ih8IyMyJpxckz/BdrAT/A5fhq/DNzfWMFjPvCAbCPt/Acwztb8=</latexit>

P , (y 2 [�100; 100]) S , (y 2 {1; 201}) Q , (x = y = 1)

Refinement strategy

problems related to automation (ingenuity required):

when and how to apply the consequence rule relax?

when and how to apply the rule refine?

it would be nice to select automatically the most abstract
domain where the correctness proof can be completed…

Abstract Interpretation Repair
(AIR)

PLDI 2022

“AIR is for abstract interpretation what
CEGAR is for abstract model checking”

Abstract Interpretation Repair
Roberto Bruni

University of Pisa, Pisa, Italy
roberto.bruni@unipi.it

Roberto Giacobazzi
University of Verona, Verona, Italy

roberto.giacobazzi@univr.it

Roberta Gori
University of Pisa, Pisa, Italy

roberta.gori@unipi.it

Francesco Ranzato
University of Padova, Padova, Italy

francesco.ranzato@unipd.it

Abstract
Abstract interpretation is a sound-by-construction method
for program veri�cation: any erroneous program will raise
some alarm. However, the veri�cation of correct programs
may yield false-alarms, namely it may be incomplete. Ideally,
one would like to perform the analysis on the most abstract
domain that is precise enough to avoid false-alarms.We show
how to exploit a weaker notion of completeness, called local
completeness, to optimally re�ne abstract domains and thus
enhance the precision of program veri�cation. Our main
result establishes necessary and su�cient conditions for the
existence of an optimal, locally complete re�nement, called
pointed shell. On top of this, we de�ne two repair strategies
to remove all false-alarms along a given abstract compu-
tation: the �rst proceeds forward, along with the concrete
computation, while the second moves backward within the
abstract computation. Our results pave the way for a novel
modus operandi for automating program veri�cation that we
call Abstract Interpretation Repair (AIR): instead of choos-
ing beforehand the right abstract domain, we can start in
any abstract domain and progressively repair its local in-
completeness as needed. In this regard, AIR is for abstract
interpretation what CEGAR is for abstract model checking.

CCS Concepts: • Theory of computation! Logic and
veri�cation;Abstraction; Semantics and reasoning;Pro-
gram analysis.

Keywords: abstract interpretation, program analysis, pro-
gram veri�cation, local completeness, CEGAR.

ACM Reference Format:
Roberto Bruni, Roberto Giacobazzi, Roberta Gori, and Francesco
Ranzato. 2022. Abstract Interpretation Repair. In Proceedings of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
PLDI ’22, June 13–17, 2022, San Diego, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9265-5/22/06.
h�ps://doi.org/10.1145/3519939.3523453

the 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (PLDI ’22), June 13–17, 2022,
San Diego, CA, USA. ACM, New York, NY, USA, 16 pages. h�ps:
//doi.org/10.1145/3519939.3523453

1 Introduction
It is widely acknowledged that the chance of formally ver-
ifying programs is fundamental to e�ectively rise the con-
�dence level that the code we use is correct [23]. However,
as emerged in the last decades, this approach to program
correctness becomes socially acceptable when these proofs
are not only rigorous but also explainable, meaning that
they have to rely upon a largely recognized proof method
which has to be simple and inspectable [22]. As advocated by
Vardi [61], checking program correctness “is a cost that must
be justi�ed by the bene�ts”. The last 50 years have shown
an impressive �ourishing of formal methods and tools for
achieving this ambitious goal [32]. These include, among the
others: Certi�ed compilers [42], certi�ed analyzers [39], ad-
vanced type checkers [49, 50], sophisticated static analyzers
[6, 19, 25] and software model checkers [3, 37].
A high degree of con�dence in the correctness of a soft-

ware system, and of its most critical components, can be ob-
tained when the code is certi�ed by a sound and complete (viz.
precise) static analyzer [14, 25]. Abstract interpretation [17]
was introduced with this purpose in mind: simplify the proof
of correctness by interpreting the program in a simpli�ed,
abstract, domain. This provides a general methodology for
the design of sound-by-construction analysis tools.

The Problem. The soundness of an abstract interpreter, or
program analyzer, means that all true-alarms are caught.
However, it is often the case that some false-alarms are re-
ported. Actually, when false-alarms overwhelm true ones,
then the program analyzer may become poorly trustworth.
This is a consequence of the approximation inherent in the
making of an otherwise undecidable analysis decidable. As
all alarm systems, program analysis is credible when few
false-alarms are reported, ideally none. The problem we ad-
dress in this paper is how to derive the most abstract domain
to decide program correctness without raising false-alarms.

The absence of false-alarms in program analysis is closely
related to the property of completeness in abstract interpreta-
tion [33]. As an illustrative example, consider the program

426

CEGAR in a nutshell

Model checking

Does the model satisfy ?

yes

no, here is a counterexample …

φ

s1 → s2 → → sn
I

𝖻𝖺𝖽

A model, a (large) finite state transition system

A temporal logic specification (e.g. AG bad)

⟨Σ, → , I⟩
φ ¬ no bad state

is reachable

Abstract transition system
A partition of [⋅]# Σ

A partitioning abstraction of A ℘(Σ)
A(X) ≜ ⋃

x∈X
[x]#

Existential abstract transition relation
 X →# [y]# ⇔ ∃x ∈ X . x → y

⟨A, →# , A(I)⟩

Σ

⊥

A

Abstract model checking
An abstract model

A temporal logic specification (e.g. AG bad)

Does the model satisfy ?

yes

no, here is a possibly spurious abstract counterexample

 …

⟨A, →# , A(I)⟩
φ ¬

φ

B1 → B2 → → Bn

B1 Bn

?

CEGAR
CounterExample Guided Abstraction Refinement:

If the counterexample is spurious, refine the partition to
eliminate the abstract path and repeat the analysis

B1 Bk Bk+1 Bn

S1

 are the reachable states within Si Bi

CEGAR
CounterExample Guided Abstraction Refinement:

If the counterexample is spurious, refine the partition to
eliminate the abstract path and repeat the analysis

B1 Bk Bk+1 Bn

S1 S2

 are the reachable states within Si Bi

CEGAR
CounterExample Guided Abstraction Refinement:

If the counterexample is spurious, refine the partition to
eliminate the abstract path and repeat the analysis

B1 Bk Bk+1 Bn
S1 S2

 are the reachable states within Si Bi

Sk

CEGAR
CounterExample Guided Abstraction Refinement:

If the counterexample is spurious, refine the partition to
eliminate the abstract path and repeat the analysis

B1 Bk Bk+1 Bn

dead

irrelevant

bad

it is important to separate dead states from bad ones

irrelevant states can be put in any partition

Sk

CEGAR and local completeness
Let and abstract counterexample and let

 be the usual successor transformer
π = ⟨B1, . . . , Bn⟩

𝗉𝗈𝗌𝗍(X) ≜ {t ∣ ∃s ∈ X . s → t}

Define and the sequence of reachable

states and

𝗉𝗈𝗌𝗍πi
(X) ≜ 𝗉𝗈𝗌𝗍(X) ∩ Bi+1

S1 ≜ I ∩ B1 ≠ ∅ Si+1 ≜ 𝗉𝗈𝗌𝗍πi
(Si) = 𝗉𝗈𝗌𝗍(Si) ∩ Bi+1

Lemma.
 is not spurious iff for all π ℂA

Si
(𝗉𝗈𝗌𝗍πi

) i ∈ [1,n − 1]
(i.e. iff each is locally complete in for)𝗉𝗈𝗌𝗍πi

A Si

Partition refinement
To eliminate the spurious counterexample we can refine the
current abstraction A(Sk) = Bk

B1 Bk Bk+1 Bn

dead

irrelevant

bad

most concrete refinement w.r.t. Sk

Sk

Partition refinement
To eliminate the spurious counterexample we can refine the
current abstraction A(Sk) = Bk

B1 Bk Bk+1 Bn

dead

irrelevant

bad

most abstract refinement w.r.t. Sk

Forward repair

From CEGAR to program analysis

Consider the verification problem for some
expressible

Fc ≤ a
a = A(a)

We have seen that Fc ≤ a ⇔ A(Fc) ≤ a
Moreover, if then ℂA

c (F) Fc ≤ a ⇔ FAA(c) ≤ a

A spurious counterexample for the abstract analysis
arises when but because Fc ≤ a FAA(c) ≰ a ¬ℂA

c (F)

C

c
Fc

A(c) A(Fc)
a

FA(c)

FAA(c)
¬ℂA

c (F)

From CEGAR to program analysis
Suppose , the equality follows
as a consequence of local completeness proof obligations

 where and

F ≜ Fn ∘ . . . ∘ F1 FAA(c) = A(Fc)
n

AFkA(ck) = A(Fkck) c1 ≜ c ck+1 ≜ Fkck
C

c1 ≜ c

A(c1)
aFA(c)

FAA(c)

cn ≜ Fc

A(Fc)
⋯

From CEGAR to program analysis
Suppose , the equality follows
as a consequence of local completeness proof obligations

 where and

F ≜ Fn ∘ . . . ∘ F1 FAA(c) = A(Fc)
n

AFkA(ck) = A(Fkck) c1 ≜ c ck+1 ≜ Fkck
C

c1 ≜ c

A(c1)
aFA(c)

FAA(c)

cn ≜ Fc

A(Fc)
⋯

c2 ≜ F1c1

A(F1c1)
AF1A(c1)=

ℂA
c1

(F1)

From CEGAR to program analysis
Suppose , the equality follows
as a consequence of local completeness proof obligations

 where and

F ≜ Fn ∘ . . . ∘ F1 FAA(c) = A(Fc)
n

AFkA(ck) = A(Fkck) c1 ≜ c ck+1 ≜ Fkck
C

c1 ≜ c

A(c1)
aFA(c)

FAA(c)

c3 ≜ F2c2

A(F2c2)
AF2A(c2)=

cn ≜ Fc

A(Fc)
⋯

c2 ≜ F1c1

A(F1c1)
AF1A(c1)=

ℂA
c1

(F1) ℂA
c2

(F2)

From CEGAR to program analysis
Suppose , the equality follows
as a consequence of local completeness proof obligations

 where and

F ≜ Fn ∘ . . . ∘ F1 FAA(c) = A(Fc)
n

AFkA(ck) = A(Fkck) c1 ≜ c ck+1 ≜ Fkck
C

c1 ≜ c

A(c1)
aFA(c)

FAA(c)

c3 ≜ F2c2

A(F2c2)
AF2A(c2)=

⋯

ck

A(ck)

cn ≜ Fc

A(Fc)
⋯

c2 ≜ F1c1

A(F1c1)
AF1A(c1)=

ℂA
c1

(F1) ℂA
c2

(F2)

From CEGAR to program analysis
Suppose , the equality follows
as a consequence of local completeness proof obligations

 where and

F ≜ Fn ∘ . . . ∘ F1 FAA(c) = A(Fc)
n

AFkA(ck) = A(Fkck) c1 ≜ c ck+1 ≜ Fkck
C

c1 ≜ c

A(c1)
aFA(c)

FAA(c)

c3 ≜ F2c2

A(F2c2)
AF2A(c2)=

⋯

ck

A(ck)

cn ≜ Fc

A(Fc)
⋯

ck+1 ≜ Fkck

A(Fkck)
AFkA(ck)≠

¬ℂA
ck

(Fk)

c2 ≜ F1c1

A(F1c1)
AF1A(c1)=

ℂA
c1

(F1) ℂA
c2

(F2)

BCA repair

ck

A(ck)

ck+1 ≜ Fkck

A(Fkck)
AFkA(ck)≠

ck Fkck

A(Fkck)

A(ck) AFkA(ck)

red states are the sources

of incompleteness

AFkA(ck)∖A(Fkck)

we would like to introduce

a better approximation

than for such that:

 and

u
A(ck) ck

ck ≤ u ≤ A(ck)
AuFku = AuFkck

pointed
refinement

pointed
refinement

Imagine for some atomic command Fk ≜ [[ek]] ek¬ℂA
ck

(Fk)

BCA repair

ck Fkck

A(Fkck)

A(ck) AFkA(ck)

red states are the sources

of incompleteness

AFkA(ck)∖A(Fkck)

we would like to introduce

a better approximation

than for such that:

 and

u
A(ck) ck

ck ≤ u ≤ A(ck)
AuFku = AuFkck

pointed
refinement

pointed
refinement

u

most concrete refinement: u ≜ ck

BCA repair

ck Fkck

A(Fkck)

A(ck) AFkA(ck)

red states are the sources

of incompleteness

AFkA(ck)∖A(Fkck)

we would like to introduce

a better approximation

than for such that:

 and

u
A(ck) ck

ck ≤ u ≤ A(ck)
AuFku = AuFkck

pointed
refinement

pointed
refinement

u

BCA repair

ck Fkck

A(Fkck)

A(ck) AFkA(ck)

red states are the sources

of incompleteness

AFkA(ck)∖A(Fkck)

we would like to introduce

a better approximation

than for such that:

 and

u
A(ck) ck

ck ≤ u ≤ A(ck)
AuFku = AuFkck

pointed
refinement

pointed
refinement

u

BCA repair

ck Fkck

A(Fkck)

A(ck) AFkA(ck)

red states are the sources

of incompleteness

AFkA(ck)∖A(Fkck)

we would like to introduce

a better approximation

than for such that:

 and

u
A(ck) ck

ck ≤ u ≤ A(ck)
AuFku = AuFkck

pointed
refinement

pointed
refinement

u

most abstract possible refinement

BCA repair

ck Fkck

A(Fkck)

A(ck) AFkA(ck)

red states are the sources

of incompleteness

AFkA(ck)∖A(Fkck)

we would like to introduce

a better approximation

than for such that:

 and

u
A(ck) ck

ck ≤ u ≤ A(ck)
AuFku = AuFkck

pointed
refinement

pointed
refinement

u

erroneous refinement

Pointed shell
Which refinement when a proof obligation fails?Au ℂA

c (F)

Candidates: {x ∈ C ∣ x ≤ A(c), ℂAx
c (F)}

Most concrete solution: u ≜ c
Most abstract solution: u ∈ max{x ∈ C ∣ x ≤ A(c), ℂAx

c (F)}

In the case of guards (when fails):ℂA
P(b)

u ≜ (A(P ∧ b) ∧ b) ∨ (A(P ∧ ¬b) ∧ ¬b)

A forward repair strategy for LCL
Given try to find such that A, P, 𝖼 Q ⊢A [P] 𝗋 [Q]

If a local completeness proof obligation fails, refine with and retryA u1

If a local completeness proof obligation fails, refine with and retryAu1
u2

If a local completeness proof obligation fails, refine with and retryA{u1,u2} u3
…

Until for some and ⊢AN
[P] 𝗋 [Q] N = {u1, . . . , un} Q

Forward repair strategy
Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

checking whether JrK%  Spec holds. Abstract interpretation
exploits over-approximations to interpret r on a (tractable)
abstract domain �. By soundness of JrK•�, if JrK•�%  Spec
holds then JrK%  Spec follows, but the reverse implication
is not necessarily true. Nevertheless, if the abstraction � is
locally complete for JrK on % and Spec is expressible in �
then JrK%  Spec implies JrK•�%  Spec. In this section we
apply AIR to iteratively repair an initial, possibly incomplete,
abstract domain � to get a re�ned domain �# such that

JrK%  Spec , JrK•�#
%  Spec (6)

To see the analogy with abstract model checking, given
a CEGAR abstract counterexample c = h⌫1, ...,⌫=i, assume
that we de�ne a regular command rc =4 e1; e2; ...; e= such
that the semantics Je:K of each basic expression is exactly
the function postc: de�ned in (3). Then, if we take the input
property % =4 ⌫1 and a trivial speci�cation Spec =4 ?⇠ , it turns
out that Jrc K%  Spec holds i� c is spurious. The correspon-
dence with the general scenario presented in Section 5 is
recovered by taking 2 = % , 0 = Spec and 5: = postc: = Je:K.

7.1 Program Veri�cation by Forward Repair
The forward repair strategy is described by the pseudocode
in Algorithm 1. Here, we do not commit to a speci�c method-
ology to detect local incompleteness, because the approach
is independent of the way in which such completeness coun-
terexamples are found. Thus, we merely assume that an
oracle function find� is available for the abstraction�, which
takes as input a re�nement �# = � � # , simply passed as
, a current set of stores % and a command r and, either
returns an under-approximation & satisfying &  JrK% and
�# (&) = �# (JrK%) — thus meaning that �# is locally com-
plete for JrK on % — or returns a pair h', ei for some set of
stores ' and basic command e occurring in r such that a local
completeness proof obligation C�#

' (e) is not met.
The procedure fRepair calls the oracle find�, and if this

returns a pair h', ei for a failed proof obligation C�' (e), then
the abstraction � is repaired by taking the pointed shell
returned by refine� (# ,', e). More precisely, refine� (# ,', e)
takes as input the current domain re�nement �# = � � # ,
the current set of stores ' and a basic expression e, and
outputs a �nite set # 0 ◆ # such that C�# 0

' (e) holds. This
oracle function find� is iteratively called until an under-
approximation& is eventually output by find�. Summing up,
fRepair� (# , %, r) takes as input a re�nement �# = � � # , a
command r and a concrete input % , and returns a pair h# 0,&i
such that # 0 ◆ # , &  JrK% , and �# 0 (&) = �# 0 (JrK%).
Theorem 7.1 (fRepair is Sound). For all � 2 Abs(⇠), �nite
✓ ⇠ , % 2 ⇠ , and r 2 Reg, if fRepair� (# , %, r) = h&,# 0i,
then # 0 ◆ # , C�# 0

% (r) and&  JrK%  �# 0 (&) = �# 0 (JrK%).
Example 7.2. Consider the regular command for AbsVal:

rAbs (G) =4 ((G � 0)?; skip) � ((G < 0)?;G := �G)

Algorithm 1: Forward repair procedure fRepair�
1 Function fRepair� (# ,%, r)
2 found := false;
3 do
4 out := find� (# ,%, r) ;
5 switch out do
6 case& do found := true; // underapprox.

7 case h', ei do # := refine� (# ,', e) ; // incompl.

8 while (¬found) ;
9 return h# , outi;

As discussed in Section 1, the analysis on Int of rAbs on input
� =4 {G | G is odd} and Spec =4 [1, +1] raises an alarm for the
allowed output G = 0 * Spec. To recognize whether this is a
true- or false-alarm, we apply the forward repair Algorithm 1,
where the oracle findInt (ú, � , rAbs) returns, as expected, the
proof obligation CInt� ((G � 0)?). Therefore, at line 7 the func-
tion refineInt (ú, � , (G � 0)?) is called. By Theorem 4.11, this
re�nement adds the new concrete element:

(Int(� \ (G � 0)) \ (G � 0))[(Int(� \ (G < 0)) \ (G < 0))
= [1, +1] [[�1,�1] = Z<0,

and consequently, by meet closure, all the intervals with a
hole in 0. In the next iteration, findInt ({Z<0}, � , rAbs) is called
and this returns & = {G 2 Z | G > 0, G is odd}. By Theo-
rem 7.1, we know that JrK%  Int{Z<0 } (&) = [1, +1] holds,
so that we infer that G = 0 was a false-alarm. ⇤

Whenever the abstract domain is re�ned, at the next itera-
tion the procedure find� performs a new full analysis in the
re�ned domain. Backward repair will overcome this issue.

7.2 Program Veri�cation by Backward Repair
The key idea of backward repair is to exploit as much as possi-
ble the abstract reasoning, disregarding the concrete input %
and the actual elements traversed by a concrete computation.
To achieve this, the target equivalence (6) is replaced by the
following stronger condition (7), guaranteeing that the re-
�nement �# is precise enough to decide the (in)correctness
of r not only for input % but also for any % 0  �(%):
8% 0  �(%))

�
JrK•�#

% 0  Spec , JrK% 0  Spec
�

(7)

This condition (7) admits an equivalent formulation in terms
of weakest liberal precondition (see Theorem 7.4).
De�nition 7.3 (Valid Input). Given r 2 Reg, an input set
% 2 ⇠ , and Spec 2 ⇠ , we let:

Vh%, r, Speci =4 ‘
⇠ {% 0 2 ⇠ | % 0  %, JrK% 0  Spec}

denote the greatest valid input set. ⇤

It turns out that Vh%, r, Speci = % ^ ���(JrK, Spec). As an
example, for the basic expressions in Exp we have that:

Vh%, skip, (i =4 % \ (, Vh%, b?, (i =4 % \ (([¬b),
Vh%, G := a, (i =4 {f 2 % | f [G 7! {|a|} f] 2 (}.

436

additional
points, if any

given try to find such that A, N, P, 𝗋 Q ⊢AN
[P] 𝗋 [Q]

found such that Q ⊢AN
[P] 𝗋 [Q]

select new
pointed refinementfailed proof

obligation ¬ℂAN
R (𝖾)

returns the latest and such that N Q ⊢AN
[P] 𝗋 [Q]

Initial call to 𝖿𝖱𝖾𝗉𝖺𝗂𝗋A(∅, P, r)

update
and retry

N

Example

 while do ⊢𝖲𝗂𝗀𝗇 [{0,1}] x ≠ 0 x := x + 1 [{0}]
 ℂ𝖲𝗂𝗀𝗇

{0,1}(x ≠ 0) ℂ𝖲𝗂𝗀𝗇
{0,1}(x = 0) ⊢𝖲𝗂𝗀𝗇 [{1}] x := x + 1 [{2}] {2} ⊆ 𝖲𝗂𝗀𝗇({0,1}) = ℤ

succeed!

abstract
fixpoint!ℂ𝖲𝗂𝗀𝗇

{1} (x + 1)
fails! succeed!

𝖲𝗂𝗀𝗇[[x ≠ 0]]𝖲𝗂𝗀𝗇{0,1} = 𝖲𝗂𝗀𝗇[[x ≠ 0]]ℤ = 𝖲𝗂𝗀𝗇(x ≠ 0) = ℤ
𝖲𝗂𝗀𝗇[[x ≠ 0]]{0,1} = 𝖲𝗂𝗀𝗇{1} = ℤ>0

u ≜ (𝖲𝗂𝗀𝗇({0,1} ∧ x ≠ 0) ∧ x ≠ 0) ∨ (𝖲𝗂𝗀𝗇({0,1} ∧ x = 0) ∧ x = 0)
= (𝖲𝗂𝗀𝗇{1} ∧ x ≠ 0) ∨ (𝖲𝗂𝗀𝗇{0} ∧ x = 0)
= (x > 0 ∧ x ≠ 0) ∨ (⊤ ∧ x = 0)
= (x > 0 ∨ x = 0)
= (x ≥ 0) ℤ

∅

ℤ<0 ℤ>0

𝖲𝗂𝗀𝗇

ℤ

∅

ℤ<0 ℤ>0

𝖲𝗂𝗀𝗇≥0

ℤ≥0

Example

 while do ⊢𝖲𝗂𝗀𝗇≥0
[{0,1}] x ≠ 0 x := x + 1 [{0}]

 ℂ𝖲𝗂𝗀𝗇≥0
{0,1} (x ≠ 0) ℂ𝖲𝗂𝗀𝗇≥0

{0,1} (x = 0) ⊢𝖲𝗂𝗀𝗇≥0
[{1}] x := x + 1 [{2}] {2} ⊆ 𝖲𝗂𝗀𝗇≥0({0,1}) = ℤ≥0

succeed!

abstract
fixpoint!ℂ𝖲𝗂𝗀𝗇≥0

{1} (x + 1)
succeed! succeed!

Note that 𝖲𝗂𝗀𝗇≥0 = { ⊥ , ℤ>0, ℤ<0, ℤ≥0, ℤ}
is “smaller” than 𝖲𝗂𝗀𝗇+ = { ⊥ , ℤ>0, ℤ=0, ℤ<0, ℤ≥0, ℤ≠0, ℤ≤0, ℤ}
where we carried out the proof previously

Assuming we now know that is a true positive, differently fromSpec ≜ ℤ>0 0
the abstract analysis [[𝗐𝗁𝗂𝗅𝖾 x ≠ 0 𝖽𝗈 x := x + 1]]#

𝖲𝗂𝗀𝗇≥0
𝖲𝗂𝗀𝗇≥0{0,1} = ℤ≥0

Questions

Question 1
What is the most abstract pointed refinement of to use when

 ?
𝖨𝗇𝗍

¬ℂ𝖨𝗇𝗍
{−7,7}(x > 4)

 where:

𝖨𝗇𝗍u
u ≜ (𝖨𝗇𝗍({−7,7} ∧ x > 4) ∧ x > 4) ∨ (𝖨𝗇𝗍({−7,7} ∧ x ≤ 4) ∧ x ≤ 4)
= (𝖨𝗇𝗍{7} ∧ x > 4) ∨ (𝖨𝗇𝗍{−7} ∧ x ≤ 4)
= ([7,7] ∧ x > 4) ∨ ([−7, − 7] ∧ x ≤ 4)
= ([7,7] ∨ [−7, − 7])
= {−7,7}

Question 2
Can you find a derivation for the LCL triple

 ?⊢𝖲𝗂𝗀𝗇+ [x > 0] x := x + 1 ; x := x − 1 [x ≥ 0]

No, is not a valid under-approximationx ≥ 0

* Exam 10
Can you find a derivation for the LCL triple

repairing the domain if necessary?

⊢𝖲𝗂𝗀𝗇+ [x > 0] x := x + 1 ; x := x − 1 [x > 0]

Special prize
Can you find a derivation for the LCL triple

repairing the domain if necessary?

⊢𝖨𝗇𝗍 [∃k > 0. x = 2k] ((𝖾𝗏𝖾𝗇(x))? ; x := x + 2)⋆ ; (x = 3)? [𝖿𝖺𝗅𝗌𝖾]

Backward repair

PLDI 2022
“we aim to derive the most abstract
domain to decide program correctness
without raising false-alarms ”

Abstract Interpretation Repair
Roberto Bruni

University of Pisa, Pisa, Italy
roberto.bruni@unipi.it

Roberto Giacobazzi
University of Verona, Verona, Italy

roberto.giacobazzi@univr.it

Roberta Gori
University of Pisa, Pisa, Italy

roberta.gori@unipi.it

Francesco Ranzato
University of Padova, Padova, Italy

francesco.ranzato@unipd.it

Abstract
Abstract interpretation is a sound-by-construction method
for program veri�cation: any erroneous program will raise
some alarm. However, the veri�cation of correct programs
may yield false-alarms, namely it may be incomplete. Ideally,
one would like to perform the analysis on the most abstract
domain that is precise enough to avoid false-alarms.We show
how to exploit a weaker notion of completeness, called local
completeness, to optimally re�ne abstract domains and thus
enhance the precision of program veri�cation. Our main
result establishes necessary and su�cient conditions for the
existence of an optimal, locally complete re�nement, called
pointed shell. On top of this, we de�ne two repair strategies
to remove all false-alarms along a given abstract compu-
tation: the �rst proceeds forward, along with the concrete
computation, while the second moves backward within the
abstract computation. Our results pave the way for a novel
modus operandi for automating program veri�cation that we
call Abstract Interpretation Repair (AIR): instead of choos-
ing beforehand the right abstract domain, we can start in
any abstract domain and progressively repair its local in-
completeness as needed. In this regard, AIR is for abstract
interpretation what CEGAR is for abstract model checking.

CCS Concepts: • Theory of computation! Logic and
veri�cation;Abstraction; Semantics and reasoning;Pro-
gram analysis.

Keywords: abstract interpretation, program analysis, pro-
gram veri�cation, local completeness, CEGAR.

ACM Reference Format:
Roberto Bruni, Roberto Giacobazzi, Roberta Gori, and Francesco
Ranzato. 2022. Abstract Interpretation Repair. In Proceedings of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
PLDI ’22, June 13–17, 2022, San Diego, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9265-5/22/06.
h�ps://doi.org/10.1145/3519939.3523453

the 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (PLDI ’22), June 13–17, 2022,
San Diego, CA, USA. ACM, New York, NY, USA, 16 pages. h�ps:
//doi.org/10.1145/3519939.3523453

1 Introduction
It is widely acknowledged that the chance of formally ver-
ifying programs is fundamental to e�ectively rise the con-
�dence level that the code we use is correct [23]. However,
as emerged in the last decades, this approach to program
correctness becomes socially acceptable when these proofs
are not only rigorous but also explainable, meaning that
they have to rely upon a largely recognized proof method
which has to be simple and inspectable [22]. As advocated by
Vardi [61], checking program correctness “is a cost that must
be justi�ed by the bene�ts”. The last 50 years have shown
an impressive �ourishing of formal methods and tools for
achieving this ambitious goal [32]. These include, among the
others: Certi�ed compilers [42], certi�ed analyzers [39], ad-
vanced type checkers [49, 50], sophisticated static analyzers
[6, 19, 25] and software model checkers [3, 37].
A high degree of con�dence in the correctness of a soft-

ware system, and of its most critical components, can be ob-
tained when the code is certi�ed by a sound and complete (viz.
precise) static analyzer [14, 25]. Abstract interpretation [17]
was introduced with this purpose in mind: simplify the proof
of correctness by interpreting the program in a simpli�ed,
abstract, domain. This provides a general methodology for
the design of sound-by-construction analysis tools.

The Problem. The soundness of an abstract interpreter, or
program analyzer, means that all true-alarms are caught.
However, it is often the case that some false-alarms are re-
ported. Actually, when false-alarms overwhelm true ones,
then the program analyzer may become poorly trustworth.
This is a consequence of the approximation inherent in the
making of an otherwise undecidable analysis decidable. As
all alarm systems, program analysis is credible when few
false-alarms are reported, ideally none. The problem we ad-
dress in this paper is how to derive the most abstract domain
to decide program correctness without raising false-alarms.

The absence of false-alarms in program analysis is closely
related to the property of completeness in abstract interpreta-
tion [33]. As an illustrative example, consider the program

426

CEGAR, again
CounterExample Guided Abstraction Refinement:

If the counterexample is spurious, refine the partition to
eliminate the abstract path and repeat the analysis

B1 Bk Bk+1 Bn

dead

irrelevant

bad

it is important to separate dead states from bad ones

irrelevant states can be put in any partition

CEGAR, again
The efficacy depends on the chosen refinement

B1 Bk Bk+1 Bn

dead

irrelevant

bad

it is important to separate dead states from bad ones

irrelevant states can be put in any partition

CEGAR, again
Here a slightly different spurious counterexample remains

B1 Bn

?

CEGAR, again
Here a slightly different spurious counterexample remains

B1 Bn

CEGAR, again
Here a slightly different spurious counterexample remains

B1 Bk Bk+1 Bn

dead

irrelevant

bad

CEGAR, backward
What if we start from the end of the trace?

All states in are bad ones! Bn

B1 Bn

CEGAR, backward
What if we start from the end of the trace?

All states in are bad ones! Bn

B1 Bn

CEGAR, backward
What if we start from the end of the trace?

All states in that leads to are bad ones!Bn−1 Bn

B1 Bn

CEGAR, backward
What if we start from the end of the trace?

All states in that leads to are bad ones!

and must be separated from the others

Bn−1 Bn

B1 Bn

greatest
valid set

vn−1

CEGAR, backward
What if we start from the end of the trace?

We then iterate the partitioning

B1 Bn
vn−1vn−2

CEGAR, backward
What if we start from the end of the trace?

We then iterate the partitioning

B1 Bn
vn−1vn−2vv+1

CEGAR, backward
What if we start from the end of the trace?

Until necessary

B1 Bn
vn−1vn−2vk+1vk

CEGAR, backward
What if we start from the end of the trace?

No more spurious counterexamples from that trace!

B1 Bn

When to backward repair
You want to check if [[r]]P ≤ Spec
You select an abstract domain such that A(Spec) = Spec
and run the abstract interpreter, but [[r]]#

AA(P) ≰ Spec
and cannot tell if the abstract interpretation is complete in A

Which errors are spurious? Which ones are due to ?P

The aim of backward repair is to find (the most abstract) pointed
refinement such that for all (and thus also for)AN X ⊆ A(P) P

 ()[[r]]#
AN

AN(X) ≤ Spec ⇔ [[r]]X ≤ Spec †

Aim of backward repair
Let be the greatest valid input set

(it is the largest subset such that)

V⟨P, r, Q⟩ ≜ P ∩ wlp([[r]], Q)
X ⊆ P [[r]]X ⊆ Q

P Q

Aim of backward repair
Let be the greatest valid input set

(it is the largest subset such that)

V⟨P, r, Q⟩ ≜ P ∩ wlp([[r]], Q)
X ⊆ P [[r]]X ⊆ Q

Th.
Condition () holds iff

which in turn implies being expressible in

† [[r]]#
AN

AN(V⟨A(P), r, Spec⟩) ≤ Spec
V⟨A(P), r, Spec⟩ AN

V Q

Backward repair

The most convenient case is when V = A(P)

additional
points, if any a point in A greatest valid

input
pointed

refinementTh.
 returns a pair such that

 and

(but may not terminate)

𝖻𝖱𝖾𝗉𝖺𝗂𝗋A(∅, A(P), r, Spec) ⟨V, N⟩
V = V⟨A(P), r, Spec⟩ ∈ AN [[r]]#

AN
V ≤ Spec

Cor. [Program (in)correctness]

If then

⟨V, N⟩ = 𝖻𝖱𝖾𝗉𝖺𝗂𝗋A(∅, A(P), r, Spec)

[[r]]P ≤ Spec ⇔ P ≤ V

Backward repair
PLDI ’22, June 13–17, 2022, San Diego, CA, USA R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

Algorithm 2: Backward repair procedure bRepair�.
1 Function bRepair� (# , b%, r,()
2 if (JrK•��# b%  () then return hb%,# i;
3 switch r do
4 case e do // basic expression
5 + := Vhb%, e,(i; & := (^ JeK•��# b% ;
6 return h+ ,# [{+ ,& } i;
7 case r0; r1 do // sequential
8 h+1,#1 i := bRepair� (# , Jr0K•��# b%, r1,() ;
9 h+0,#0 i := bRepair� (# , b%, r0,+1) ;

10 return h+0,#0 [#1 i;
11 case r0 � r1 do // choice
12 h+0,#0 i := bRepair� (# , b%, r0,() ;
13 h+1,#1 i := bRepair� (# , b%, r1,() ;
14 & := (^ JrK•��# b% ;
15 return h+0 ^+1,#0 [#1 [{& } i;
16 case r⇤0 do // Kleene star
17 b' := Jr0K•��# b% ;
18 if (b'  b%) then return inv� (# , b%, r0,() ;
19 else // unroll
20 h+1,#1 i := bRepair� (# , b% _��# b', r⇤0,() ;
21 return hb% ^+1,#1 i

22 Function inv� (# , b%, r,+1) // loop invariants
23 do
24 +0 := b% ^+1; #0 := # [{+0};
25 h+1,#1 i := bRepair� (#0,+0, r,+0) ;
26 while (+1 < +0) ;
27 return h+1,#1 i;

Theorem 7.4. Let r 2 Reg, � 2 Abs(⇠), %, Spec 2 ⇠ , and
�# =4 � � # . Then, condition (7) holds if and only if

JrK•�#
Vh�(%), r, Speci  Spec. (8)

Checking this latter condition (8) requires computing the
set Vh�(%), r, Speci, which can be as expensive as computing
JrK% . Thus, we provide a necessary condition for (8) that can
help to prove the validity of Specwithout necessarily comput-
ing Vh�(%), r, Speci. In the following, the hat-notation b% is
used for abstract elements ranging in the abstract domain �.
Lemma 7.5. Let r 2 Reg, � 2 Abs(⇠), b% 2 �, Spec 2 ⇠ , and
let �# =4 � �# be an abstraction re�nement of �. If (8) holds
(for the case �(%) = b%) then Vhb%, r, Speci is expressible in �# .

If we presume that JrK%  Spec holds, then Lemma 7.5
suggests to consider an initial abstract domain � where % is
already expressible. In fact, when b% = % = �(%) and JrK% 
Spec holds, it turns out that Vhb%, r, Speci = Vh%, r, Speci = % ,
so that the necessary condition of Lemma 7.5 is already met
by � and, therefore, by any of its re�nements �# .
The backward repair strategy bRepair� is de�ned by the

pseudocode in Algorithm 2. It exploits the auxiliary function
inv� to deal with loop invariants of r⇤. This function inv�
has in input a re�nement � � # v �, an abstract invariantb% 2 � for r⇤, a command r and a concrete speci�cation Spec
and �nds the greatest concrete element +  b% such that r⇤

will not yield alarms when executed on + . In fact, similarly
to bRepair�, inv� returns a pair h+ ,# 0i that comprises the
greatest valid input + = Vhb%, r⇤, Speci and some necessary
points # 0 such that # 0 ◆ # and Jr⇤K•��# 0+  +  Spec.
Theorem 7.6 (bRepair� and inv� are Sound). For any � 2
Abs(⇠), r 2 Reg, b% 2 �, (,+ 2 ⇠ , and # ,# 0 ✓ ⇠ :
(1) If bRepair� (# , b%, r, () = h+ ,# 0i then:

(a) + 2 � � # 0; (b) JrK•��# 0+  (; (c) + = Vhb%, r, (i.
(2) If JrK•��# b%  b% and inv� (# , b%, r, () = h+ ,# 0i then:

(a) + 2 � � # 0; (b) JrK•��# 0+  + ; (c) + = Vhb%, r⇤, (i.
Corollary 7.7 (Program (In)Correctness). Let� 2 Abs(⇠),
r 2 Reg, b% 2 �, and Spec 2 ⇠ . For any + 2 ⇠ , # 0 ✓ ⇠ such
that bRepair� (ú, b%, r, Spec) = h+ ,# 0i, we have that:
8% 0  b% . JrK% 0  Spec , JrK•��# 0% 0  Spec , % 0  + .

As a special case of Corollary 7.7, taking b% = �(%) it turns
out that JrK%  Spec if and only if %  + .

The following examples, whose programs are taken from
well-known literature, show how backward repair actually
works. All of them have been automatically veri�ed with a
proof-of-concept Haskell implementation that exploits �nite
concrete domains and explicit enumerative representations
of new abstract elements. The symbolic representations of
the new elements added by pointed shells have been obtained
by inspecting the output of this tool. Let us remark that the
main goal of this work is to set the general foundations of
AIR, independently of any speci�c class of abstract domains
and of the symbolic representation of their elements. The
application of AIR to symbolic frameworks for representing
abstract elements — notably logical formulas whose SMT
problem is decidable — is left as a stimulating future work.
Example 7.8 (Intervals). Let us consider the analysis of the
following Imp program, adapted from [38, 57]:

c =4 while (G > 0) do {G := G � 1; ~ := ~ � 1}
with input b% =4 0 < G  100 and Spec =4 ~ = 0. The analysis
of c in the domain Int of intervals returns G = 0, and the
same happens for octagons Oct, so, in both cases, obviously,
we cannot infer the validity (and certainly not the invalidity)
of Spec. We therefore apply backward repair to determine
the valid inputs for Spec. The Imp program c is encoded by
the following regular command:

r =4
�
(G > 0)?; G := G � 1; ~ := ~ � 1| {z }

r1

�⇤; (G  0)?

The call to bRepairInt (ú, b%, r, Spec) selects the case for se-
quential composition and, letting b' =4 Jr⇤1K

•
Int
b% = G 2 [0, 100],

invokes bRepairInt (ú, b', (G  0)?, Spec), which returns the
pair h&, {&}i with & =4 G 2 [0, 100] ^ (G = 0) ~ = 0).
In turn, bRepairInt (ú, b%, r⇤1,&) is then called. After one re-
cursive call to unroll the loop, we call invInt (ú, b', r1,&). It-
eratively, the largest invariant under b' ^ & = & is found,

437

PLDI ’22, June 13–17, 2022, San Diego, CA, USA R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

Algorithm 2: Backward repair procedure bRepair�.
1 Function bRepair� (# , b%, r,()
2 if (JrK•��# b%  () then return hb%,# i;
3 switch r do
4 case e do // basic expression
5 + := Vhb%, e,(i; & := (^ JeK•��# b% ;
6 return h+ ,# [{+ ,& } i;
7 case r0; r1 do // sequential
8 h+1,#1 i := bRepair� (# , Jr0K•��# b%, r1,() ;
9 h+0,#0 i := bRepair� (# , b%, r0,+1) ;

10 return h+0,#0 [#1 i;
11 case r0 � r1 do // choice
12 h+0,#0 i := bRepair� (# , b%, r0,() ;
13 h+1,#1 i := bRepair� (# , b%, r1,() ;
14 & := (^ JrK•��# b% ;
15 return h+0 ^+1,#0 [#1 [{& } i;
16 case r⇤0 do // Kleene star
17 b' := Jr0K•��# b% ;
18 if (b'  b%) then return inv� (# , b%, r0,() ;
19 else // unroll
20 h+1,#1 i := bRepair� (# , b% _��# b', r⇤0,() ;
21 return hb% ^+1,#1 i

22 Function inv� (# , b%, r,+1) // loop invariants
23 do
24 +0 := b% ^+1; #0 := # [{+0};
25 h+1,#1 i := bRepair� (#0,+0, r,+0) ;
26 while (+1 < +0) ;
27 return h+1,#1 i;

Theorem 7.4. Let r 2 Reg, � 2 Abs(⇠), %, Spec 2 ⇠ , and
�# =4 � � # . Then, condition (7) holds if and only if

JrK•�#
Vh�(%), r, Speci  Spec. (8)

Checking this latter condition (8) requires computing the
set Vh�(%), r, Speci, which can be as expensive as computing
JrK% . Thus, we provide a necessary condition for (8) that can
help to prove the validity of Specwithout necessarily comput-
ing Vh�(%), r, Speci. In the following, the hat-notation b% is
used for abstract elements ranging in the abstract domain �.
Lemma 7.5. Let r 2 Reg, � 2 Abs(⇠), b% 2 �, Spec 2 ⇠ , and
let �# =4 � �# be an abstraction re�nement of �. If (8) holds
(for the case �(%) = b%) then Vhb%, r, Speci is expressible in �# .

If we presume that JrK%  Spec holds, then Lemma 7.5
suggests to consider an initial abstract domain � where % is
already expressible. In fact, when b% = % = �(%) and JrK% 
Spec holds, it turns out that Vhb%, r, Speci = Vh%, r, Speci = % ,
so that the necessary condition of Lemma 7.5 is already met
by � and, therefore, by any of its re�nements �# .
The backward repair strategy bRepair� is de�ned by the

pseudocode in Algorithm 2. It exploits the auxiliary function
inv� to deal with loop invariants of r⇤. This function inv�
has in input a re�nement � � # v �, an abstract invariantb% 2 � for r⇤, a command r and a concrete speci�cation Spec
and �nds the greatest concrete element +  b% such that r⇤

will not yield alarms when executed on + . In fact, similarly
to bRepair�, inv� returns a pair h+ ,# 0i that comprises the
greatest valid input + = Vhb%, r⇤, Speci and some necessary
points # 0 such that # 0 ◆ # and Jr⇤K•��# 0+  +  Spec.
Theorem 7.6 (bRepair� and inv� are Sound). For any � 2
Abs(⇠), r 2 Reg, b% 2 �, (,+ 2 ⇠ , and # ,# 0 ✓ ⇠ :
(1) If bRepair� (# , b%, r, () = h+ ,# 0i then:

(a) + 2 � � # 0; (b) JrK•��# 0+  (; (c) + = Vhb%, r, (i.
(2) If JrK•��# b%  b% and inv� (# , b%, r, () = h+ ,# 0i then:

(a) + 2 � � # 0; (b) JrK•��# 0+  + ; (c) + = Vhb%, r⇤, (i.
Corollary 7.7 (Program (In)Correctness). Let� 2 Abs(⇠),
r 2 Reg, b% 2 �, and Spec 2 ⇠ . For any + 2 ⇠ , # 0 ✓ ⇠ such
that bRepair� (ú, b%, r, Spec) = h+ ,# 0i, we have that:
8% 0  b% . JrK% 0  Spec , JrK•��# 0% 0  Spec , % 0  + .

As a special case of Corollary 7.7, taking b% = �(%) it turns
out that JrK%  Spec if and only if %  + .

The following examples, whose programs are taken from
well-known literature, show how backward repair actually
works. All of them have been automatically veri�ed with a
proof-of-concept Haskell implementation that exploits �nite
concrete domains and explicit enumerative representations
of new abstract elements. The symbolic representations of
the new elements added by pointed shells have been obtained
by inspecting the output of this tool. Let us remark that the
main goal of this work is to set the general foundations of
AIR, independently of any speci�c class of abstract domains
and of the symbolic representation of their elements. The
application of AIR to symbolic frameworks for representing
abstract elements — notably logical formulas whose SMT
problem is decidable — is left as a stimulating future work.
Example 7.8 (Intervals). Let us consider the analysis of the
following Imp program, adapted from [38, 57]:

c =4 while (G > 0) do {G := G � 1; ~ := ~ � 1}
with input b% =4 0 < G  100 and Spec =4 ~ = 0. The analysis
of c in the domain Int of intervals returns G = 0, and the
same happens for octagons Oct, so, in both cases, obviously,
we cannot infer the validity (and certainly not the invalidity)
of Spec. We therefore apply backward repair to determine
the valid inputs for Spec. The Imp program c is encoded by
the following regular command:

r =4
�
(G > 0)?; G := G � 1; ~ := ~ � 1| {z }

r1

�⇤; (G  0)?

The call to bRepairInt (ú, b%, r, Spec) selects the case for se-
quential composition and, letting b' =4 Jr⇤1K

•
Int
b% = G 2 [0, 100],

invokes bRepairInt (ú, b', (G  0)?, Spec), which returns the
pair h&, {&}i with & =4 G 2 [0, 100] ^ (G = 0) ~ = 0).
In turn, bRepairInt (ú, b%, r⇤1,&) is then called. After one re-
cursive call to unroll the loop, we call invInt (ú, b', r1,&). It-
eratively, the largest invariant under b' ^ & = & is found,

437

Example

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

that is % =4 G 2 [0, 100] ^ ~ = G . Note that the addition
of % to Int is not enough, because intermediate approx-
imations for the evaluation of basic commands in r1 are
also needed by compositionality. Hence, the new elements
'1 =4 G 2 [1, 100] ^ ~ = G , '2 =4 G 2 [0, 99] ^ ~ = G + 1,
and '3 =4 G 2 [0, 99] ^ ~ = G are also added. In the end,
the call to invInt returns h%, {%,'1,'2,'3}i, so that the origi-
nal call to bRepairInt returns h'1, {%,'1,'2,'3,&}i because
'1 = % ^ b% . By Corollary 7.7, for any % 0  b% , we have that
JrK% 0  Spec i� % 0  '1. Remarkably, backward repair is able
to add the minimal relational information in a nonrelational
domain as needed to prove Spec. Since all the new elements
are octagons, incidentally, the analysis on Oct with input '1
(instead of b%) is also able to prove that Spec holds. ⇤

Example 7.9 (Predicate Abstraction). Consider the fol-
lowing program c from Fig. 1 of [4, 5] and the Cartesian
predicate abstraction domain � induced by ? =4 (I = 0) and
@ =4 (G = ~), as depicted below:

c =4 do { I := 0; G := ~;
if (F < 0) then {

G := G + 1; I := 1
}

} while (G < ~)

>

@ ? ? @

?^@ ?^@ ?^@ ?^@

?
We want to prove that JcK>  ? , whereas it turns out that
JcK•�> = @. The domain re�nement used in [4, 5] is the
reduced disjunctive completion of �, which is isomorphic to
the Boolean abstraction ⌫ =4 h®({?^@, ?^@, ?^@, ?^@}), ✓i.
The analysis with ⌫ leads exactly to the same analysis with
�1 =

4 � � {? $ @}, namely JcK•�1
> = ? ^ @.

By invoking bRepair� (ú,>, c, ?) we get as a result the pair
h>, {@ ! ?}i. In fact, letting �2 =4 � � {@ ! ?} we get
JcK•�2

> = ? ^ @ = �2 (? ^ @) = �2 (JcK>). Let us remark that
the point @ ! ? is indeed more abstract than ? $ @. ⇤

Widening. It is well known that the convergence of �xpoint
computations in non-ACC domains can be forced or accel-
erated by means of widening operators [16, 17]. A widening
over-approximates an abstract join G _�~ by a more abstract
element Gr�~. We show that backward repair is compatible
with widening operators, and that, in this case, the repaired
abstract interpreter is guaranteed to terminate.
De�nition 7.10 (Widening Operator). Given � 2 Abs(⇠),
a widening operator r� : � ⇥ � ! � is a function such
that: (i) for all G,~ 2 �, G,~ � G r� ~; and (ii) for every
sequence {G8 }82N ✓ �, the chain {~8 }82N inductively de�ned
by ~0 =4 G0 and ~8+1 =4 ~8 r� G8+1 �nitely converges (i.e.,
9: 2 N. 89 2 N. ~ 9+: = ~:). ⇤

The abstract semantics with widening of the Kleene star is
updated to (see, e.g., [45, Section 3.5]):

Jr⇤K•�b(=4 lfp
�
_b- 2 �. b- r� (b(_� JrK•�b-)

�
.

h>, {%,'1,'2,'3,+ } i bRepair(ú,>, r, Spec)
h+ , {+ } i bRepair(· · · (8 > 5)?, Spec)
h>, {%,'1,'2,'3} i bRepair(· · · , r2,+)
h b%1, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
h%, {%,'1,'2,'3} i inv(ú, b%, r1,+)
h%, {%,'1,'2,'3} i bRepair({+ },+ , r1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair({% },%, r1,%)
h'3, {%,'3} i bRepair(· · · , 8 := 8 + 1,%)
h'1, {%,'1,'2} i bRepair(· · · , (8  5)?; 9 := 9 + 8,'3)
h'2, {%,'2} i bRepair(· · · , 9 := 9 + 8,'3)
h'1, {%,'1} i bRepair(· · · , (8  5)?,'2)

h>, ;i bRepair(· · · , r3, b%1)
Figure 4. Backward repair call scheme for Example 7.13.

By termination condition (ii) ofr�, the iteration sequence for
the least �xpoint of _b- . b- r� (b(_� JrK•�b-) always �nitely
converges. We settle the problem of how a suitable widening
operator for � � # can be derived from a widening for �.
De�nition 7.11 (Pointed Widening). Given a re�nement
�# =4 � � # of � 2 Abs(⇠) and a widening r� on �, the
pointed widening r#� : �# ⇥�# ! �# is de�ned as follows:
G r#� ~ =4 ^�# {I 2 (# [{�(G) r��(~)}) | G,~ �# I}. ⇤
Theorem 7.12 (Soundness of Pointed Widening). If # ✓
⇠ is �nite, then r#� is a widening operator for � � # .

In Algorithm 2, line 20, we simply replace b% _��# b' withb% r#� (b% _��# b') in the clause dealing with the unroll of
Kleene star. This change has no consequence in the proof
of Theorem 7.6, so the main results are seamlessly extended
to widening with the additional guarantee that whenever
bRepair� (# , b%, r, () returns h+ ,# 0i, then termination of the
abstract interpreter for �# 0 is guaranteed by Theorem 7.12.
Example 7.13 (Widening). Let us revisit the illustrative
example in Section 2, where Spec =4 9  15 and

r =4

r2z }| {
8 := 1; 9 := 0| {z }

r3

; ((8  5)?; 9 := 9 + 8; 8 := 8 + 1| {z }
r1

)⇤; (8 > 5)| {z }
b

?.

The call to bRepairInt (ú,>, r, Spec) recursively computes
bRepairInt (ú, b%, b?, Spec), where b% = Jr2K•Int> = 8 2 [1, 6] ^
9 2 [0,1] (using the widening on intervals for 9), which re-
turns h+ , {+ }i: the element+ =4 (8 2 [1, 5]^ 9 2 [0,1])_(8 =
6 ^ 9 2 [0, 15]) is introduced to repair b?. This leads to
call bRepairInt (ú,>, r2,+), and, then, bRepairInt (ú, b%1, r⇤1,+),
with b%1 =4 Jr3K•Int> = (8 = 1 ^ 9 = 0). After unrolling r⇤1 to
reach the abstract invariant b% , the call to invInt (ú, b%, r1,+)
computes the largest invariant under b%^+ for r⇤1, which is % =4

8 2 [1, 6]^ 9 2 [0, 8 (8�1)/2]. Then, bRepairInt ({%}, %, r1, %) is
invoked, which adds the new abstract elements '1, '2 and '3
(cf. Section 2) to repair the local completeness of the instruc-
tions in r1. Thus, invInt (ú, b%, r1,+) returns h%, {%,'1,'2,'3}i.
The point % is then intersected with the approximations

438

 ?[[c]] ⊤ ≤ (z = 0)

Example

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

that is % =4 G 2 [0, 100] ^ ~ = G . Note that the addition
of % to Int is not enough, because intermediate approx-
imations for the evaluation of basic commands in r1 are
also needed by compositionality. Hence, the new elements
'1 =4 G 2 [1, 100] ^ ~ = G , '2 =4 G 2 [0, 99] ^ ~ = G + 1,
and '3 =4 G 2 [0, 99] ^ ~ = G are also added. In the end,
the call to invInt returns h%, {%,'1,'2,'3}i, so that the origi-
nal call to bRepairInt returns h'1, {%,'1,'2,'3,&}i because
'1 = % ^ b% . By Corollary 7.7, for any % 0  b% , we have that
JrK% 0  Spec i� % 0  '1. Remarkably, backward repair is able
to add the minimal relational information in a nonrelational
domain as needed to prove Spec. Since all the new elements
are octagons, incidentally, the analysis on Oct with input '1
(instead of b%) is also able to prove that Spec holds. ⇤

Example 7.9 (Predicate Abstraction). Consider the fol-
lowing program c from Fig. 1 of [4, 5] and the Cartesian
predicate abstraction domain � induced by ? =4 (I = 0) and
@ =4 (G = ~), as depicted below:

c =4 do { I := 0; G := ~;
if (F < 0) then {

G := G + 1; I := 1
}

} while (G < ~)

>

@ ? ? @

?^@ ?^@ ?^@ ?^@

?
We want to prove that JcK>  ? , whereas it turns out that
JcK•�> = @. The domain re�nement used in [4, 5] is the
reduced disjunctive completion of �, which is isomorphic to
the Boolean abstraction ⌫ =4 h®({?^@, ?^@, ?^@, ?^@}), ✓i.
The analysis with ⌫ leads exactly to the same analysis with
�1 =

4 � � {? $ @}, namely JcK•�1
> = ? ^ @.

By invoking bRepair� (ú,>, c, ?) we get as a result the pair
h>, {@ ! ?}i. In fact, letting �2 =4 � � {@ ! ?} we get
JcK•�2

> = ? ^ @ = �2 (? ^ @) = �2 (JcK>). Let us remark that
the point @ ! ? is indeed more abstract than ? $ @. ⇤

Widening. It is well known that the convergence of �xpoint
computations in non-ACC domains can be forced or accel-
erated by means of widening operators [16, 17]. A widening
over-approximates an abstract join G _�~ by a more abstract
element Gr�~. We show that backward repair is compatible
with widening operators, and that, in this case, the repaired
abstract interpreter is guaranteed to terminate.
De�nition 7.10 (Widening Operator). Given � 2 Abs(⇠),
a widening operator r� : � ⇥ � ! � is a function such
that: (i) for all G,~ 2 �, G,~ � G r� ~; and (ii) for every
sequence {G8 }82N ✓ �, the chain {~8 }82N inductively de�ned
by ~0 =4 G0 and ~8+1 =4 ~8 r� G8+1 �nitely converges (i.e.,
9: 2 N. 89 2 N. ~ 9+: = ~:). ⇤

The abstract semantics with widening of the Kleene star is
updated to (see, e.g., [45, Section 3.5]):

Jr⇤K•�b(=4 lfp
�
_b- 2 �. b- r� (b(_� JrK•�b-)

�
.

h>, {%,'1,'2,'3,+ } i bRepair(ú,>, r, Spec)
h+ , {+ } i bRepair(· · · (8 > 5)?, Spec)
h>, {%,'1,'2,'3} i bRepair(· · · , r2,+)
h b%1, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
h%, {%,'1,'2,'3} i inv(ú, b%, r1,+)
h%, {%,'1,'2,'3} i bRepair({+ },+ , r1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair({% },%, r1,%)
h'3, {%,'3} i bRepair(· · · , 8 := 8 + 1,%)
h'1, {%,'1,'2} i bRepair(· · · , (8  5)?; 9 := 9 + 8,'3)
h'2, {%,'2} i bRepair(· · · , 9 := 9 + 8,'3)
h'1, {%,'1} i bRepair(· · · , (8  5)?,'2)

h>, ;i bRepair(· · · , r3, b%1)
Figure 4. Backward repair call scheme for Example 7.13.

By termination condition (ii) ofr�, the iteration sequence for
the least �xpoint of _b- . b- r� (b(_� JrK•�b-) always �nitely
converges. We settle the problem of how a suitable widening
operator for � � # can be derived from a widening for �.
De�nition 7.11 (Pointed Widening). Given a re�nement
�# =4 � � # of � 2 Abs(⇠) and a widening r� on �, the
pointed widening r#� : �# ⇥�# ! �# is de�ned as follows:
G r#� ~ =4 ^�# {I 2 (# [{�(G) r��(~)}) | G,~ �# I}. ⇤
Theorem 7.12 (Soundness of Pointed Widening). If # ✓
⇠ is �nite, then r#� is a widening operator for � � # .

In Algorithm 2, line 20, we simply replace b% _��# b' withb% r#� (b% _��# b') in the clause dealing with the unroll of
Kleene star. This change has no consequence in the proof
of Theorem 7.6, so the main results are seamlessly extended
to widening with the additional guarantee that whenever
bRepair� (# , b%, r, () returns h+ ,# 0i, then termination of the
abstract interpreter for �# 0 is guaranteed by Theorem 7.12.
Example 7.13 (Widening). Let us revisit the illustrative
example in Section 2, where Spec =4 9  15 and

r =4

r2z }| {
8 := 1; 9 := 0| {z }

r3

; ((8  5)?; 9 := 9 + 8; 8 := 8 + 1| {z }
r1

)⇤; (8 > 5)| {z }
b

?.

The call to bRepairInt (ú,>, r, Spec) recursively computes
bRepairInt (ú, b%, b?, Spec), where b% = Jr2K•Int> = 8 2 [1, 6] ^
9 2 [0,1] (using the widening on intervals for 9), which re-
turns h+ , {+ }i: the element+ =4 (8 2 [1, 5]^ 9 2 [0,1])_(8 =
6 ^ 9 2 [0, 15]) is introduced to repair b?. This leads to
call bRepairInt (ú,>, r2,+), and, then, bRepairInt (ú, b%1, r⇤1,+),
with b%1 =4 Jr3K•Int> = (8 = 1 ^ 9 = 0). After unrolling r⇤1 to
reach the abstract invariant b% , the call to invInt (ú, b%, r1,+)
computes the largest invariant under b%^+ for r⇤1, which is % =4

8 2 [1, 6]^ 9 2 [0, 8 (8�1)/2]. Then, bRepairInt ({%}, %, r1, %) is
invoked, which adds the new abstract elements '1, '2 and '3
(cf. Section 2) to repair the local completeness of the instruc-
tions in r1. Thus, invInt (ú, b%, r1,+) returns h%, {%,'1,'2,'3}i.
The point % is then intersected with the approximations

438

 ?[[c]] ⊤ ≤ (z = 0)
w=0

Example

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

that is % =4 G 2 [0, 100] ^ ~ = G . Note that the addition
of % to Int is not enough, because intermediate approx-
imations for the evaluation of basic commands in r1 are
also needed by compositionality. Hence, the new elements
'1 =4 G 2 [1, 100] ^ ~ = G , '2 =4 G 2 [0, 99] ^ ~ = G + 1,
and '3 =4 G 2 [0, 99] ^ ~ = G are also added. In the end,
the call to invInt returns h%, {%,'1,'2,'3}i, so that the origi-
nal call to bRepairInt returns h'1, {%,'1,'2,'3,&}i because
'1 = % ^ b% . By Corollary 7.7, for any % 0  b% , we have that
JrK% 0  Spec i� % 0  '1. Remarkably, backward repair is able
to add the minimal relational information in a nonrelational
domain as needed to prove Spec. Since all the new elements
are octagons, incidentally, the analysis on Oct with input '1
(instead of b%) is also able to prove that Spec holds. ⇤

Example 7.9 (Predicate Abstraction). Consider the fol-
lowing program c from Fig. 1 of [4, 5] and the Cartesian
predicate abstraction domain � induced by ? =4 (I = 0) and
@ =4 (G = ~), as depicted below:

c =4 do { I := 0; G := ~;
if (F < 0) then {

G := G + 1; I := 1
}

} while (G < ~)

>

@ ? ? @

?^@ ?^@ ?^@ ?^@

?
We want to prove that JcK>  ? , whereas it turns out that
JcK•�> = @. The domain re�nement used in [4, 5] is the
reduced disjunctive completion of �, which is isomorphic to
the Boolean abstraction ⌫ =4 h®({?^@, ?^@, ?^@, ?^@}), ✓i.
The analysis with ⌫ leads exactly to the same analysis with
�1 =

4 � � {? $ @}, namely JcK•�1
> = ? ^ @.

By invoking bRepair� (ú,>, c, ?) we get as a result the pair
h>, {@ ! ?}i. In fact, letting �2 =4 � � {@ ! ?} we get
JcK•�2

> = ? ^ @ = �2 (? ^ @) = �2 (JcK>). Let us remark that
the point @ ! ? is indeed more abstract than ? $ @. ⇤

Widening. It is well known that the convergence of �xpoint
computations in non-ACC domains can be forced or accel-
erated by means of widening operators [16, 17]. A widening
over-approximates an abstract join G _�~ by a more abstract
element Gr�~. We show that backward repair is compatible
with widening operators, and that, in this case, the repaired
abstract interpreter is guaranteed to terminate.
De�nition 7.10 (Widening Operator). Given � 2 Abs(⇠),
a widening operator r� : � ⇥ � ! � is a function such
that: (i) for all G,~ 2 �, G,~ � G r� ~; and (ii) for every
sequence {G8 }82N ✓ �, the chain {~8 }82N inductively de�ned
by ~0 =4 G0 and ~8+1 =4 ~8 r� G8+1 �nitely converges (i.e.,
9: 2 N. 89 2 N. ~ 9+: = ~:). ⇤

The abstract semantics with widening of the Kleene star is
updated to (see, e.g., [45, Section 3.5]):

Jr⇤K•�b(=4 lfp
�
_b- 2 �. b- r� (b(_� JrK•�b-)

�
.

h>, {%,'1,'2,'3,+ } i bRepair(ú,>, r, Spec)
h+ , {+ } i bRepair(· · · (8 > 5)?, Spec)
h>, {%,'1,'2,'3} i bRepair(· · · , r2,+)
h b%1, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
h%, {%,'1,'2,'3} i inv(ú, b%, r1,+)
h%, {%,'1,'2,'3} i bRepair({+ },+ , r1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair({% },%, r1,%)
h'3, {%,'3} i bRepair(· · · , 8 := 8 + 1,%)
h'1, {%,'1,'2} i bRepair(· · · , (8  5)?; 9 := 9 + 8,'3)
h'2, {%,'2} i bRepair(· · · , 9 := 9 + 8,'3)
h'1, {%,'1} i bRepair(· · · , (8  5)?,'2)

h>, ;i bRepair(· · · , r3, b%1)
Figure 4. Backward repair call scheme for Example 7.13.

By termination condition (ii) ofr�, the iteration sequence for
the least �xpoint of _b- . b- r� (b(_� JrK•�b-) always �nitely
converges. We settle the problem of how a suitable widening
operator for � � # can be derived from a widening for �.
De�nition 7.11 (Pointed Widening). Given a re�nement
�# =4 � � # of � 2 Abs(⇠) and a widening r� on �, the
pointed widening r#� : �# ⇥�# ! �# is de�ned as follows:
G r#� ~ =4 ^�# {I 2 (# [{�(G) r��(~)}) | G,~ �# I}. ⇤
Theorem 7.12 (Soundness of Pointed Widening). If # ✓
⇠ is �nite, then r#� is a widening operator for � � # .

In Algorithm 2, line 20, we simply replace b% _��# b' withb% r#� (b% _��# b') in the clause dealing with the unroll of
Kleene star. This change has no consequence in the proof
of Theorem 7.6, so the main results are seamlessly extended
to widening with the additional guarantee that whenever
bRepair� (# , b%, r, () returns h+ ,# 0i, then termination of the
abstract interpreter for �# 0 is guaranteed by Theorem 7.12.
Example 7.13 (Widening). Let us revisit the illustrative
example in Section 2, where Spec =4 9  15 and

r =4

r2z }| {
8 := 1; 9 := 0| {z }

r3

; ((8  5)?; 9 := 9 + 8; 8 := 8 + 1| {z }
r1

)⇤; (8 > 5)| {z }
b

?.

The call to bRepairInt (ú,>, r, Spec) recursively computes
bRepairInt (ú, b%, b?, Spec), where b% = Jr2K•Int> = 8 2 [1, 6] ^
9 2 [0,1] (using the widening on intervals for 9), which re-
turns h+ , {+ }i: the element+ =4 (8 2 [1, 5]^ 9 2 [0,1])_(8 =
6 ^ 9 2 [0, 15]) is introduced to repair b?. This leads to
call bRepairInt (ú,>, r2,+), and, then, bRepairInt (ú, b%1, r⇤1,+),
with b%1 =4 Jr3K•Int> = (8 = 1 ^ 9 = 0). After unrolling r⇤1 to
reach the abstract invariant b% , the call to invInt (ú, b%, r1,+)
computes the largest invariant under b%^+ for r⇤1, which is % =4

8 2 [1, 6]^ 9 2 [0, 8 (8�1)/2]. Then, bRepairInt ({%}, %, r1, %) is
invoked, which adds the new abstract elements '1, '2 and '3
(cf. Section 2) to repair the local completeness of the instruc-
tions in r1. Thus, invInt (ú, b%, r1,+) returns h%, {%,'1,'2,'3}i.
The point % is then intersected with the approximations

438

 ?[[c]] ⊤ ≤ (z = 0)z=0 , x=y

w=0

Example

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

that is % =4 G 2 [0, 100] ^ ~ = G . Note that the addition
of % to Int is not enough, because intermediate approx-
imations for the evaluation of basic commands in r1 are
also needed by compositionality. Hence, the new elements
'1 =4 G 2 [1, 100] ^ ~ = G , '2 =4 G 2 [0, 99] ^ ~ = G + 1,
and '3 =4 G 2 [0, 99] ^ ~ = G are also added. In the end,
the call to invInt returns h%, {%,'1,'2,'3}i, so that the origi-
nal call to bRepairInt returns h'1, {%,'1,'2,'3,&}i because
'1 = % ^ b% . By Corollary 7.7, for any % 0  b% , we have that
JrK% 0  Spec i� % 0  '1. Remarkably, backward repair is able
to add the minimal relational information in a nonrelational
domain as needed to prove Spec. Since all the new elements
are octagons, incidentally, the analysis on Oct with input '1
(instead of b%) is also able to prove that Spec holds. ⇤

Example 7.9 (Predicate Abstraction). Consider the fol-
lowing program c from Fig. 1 of [4, 5] and the Cartesian
predicate abstraction domain � induced by ? =4 (I = 0) and
@ =4 (G = ~), as depicted below:

c =4 do { I := 0; G := ~;
if (F < 0) then {

G := G + 1; I := 1
}

} while (G < ~)

>

@ ? ? @

?^@ ?^@ ?^@ ?^@

?
We want to prove that JcK>  ? , whereas it turns out that
JcK•�> = @. The domain re�nement used in [4, 5] is the
reduced disjunctive completion of �, which is isomorphic to
the Boolean abstraction ⌫ =4 h®({?^@, ?^@, ?^@, ?^@}), ✓i.
The analysis with ⌫ leads exactly to the same analysis with
�1 =

4 � � {? $ @}, namely JcK•�1
> = ? ^ @.

By invoking bRepair� (ú,>, c, ?) we get as a result the pair
h>, {@ ! ?}i. In fact, letting �2 =4 � � {@ ! ?} we get
JcK•�2

> = ? ^ @ = �2 (? ^ @) = �2 (JcK>). Let us remark that
the point @ ! ? is indeed more abstract than ? $ @. ⇤

Widening. It is well known that the convergence of �xpoint
computations in non-ACC domains can be forced or accel-
erated by means of widening operators [16, 17]. A widening
over-approximates an abstract join G _�~ by a more abstract
element Gr�~. We show that backward repair is compatible
with widening operators, and that, in this case, the repaired
abstract interpreter is guaranteed to terminate.
De�nition 7.10 (Widening Operator). Given � 2 Abs(⇠),
a widening operator r� : � ⇥ � ! � is a function such
that: (i) for all G,~ 2 �, G,~ � G r� ~; and (ii) for every
sequence {G8 }82N ✓ �, the chain {~8 }82N inductively de�ned
by ~0 =4 G0 and ~8+1 =4 ~8 r� G8+1 �nitely converges (i.e.,
9: 2 N. 89 2 N. ~ 9+: = ~:). ⇤

The abstract semantics with widening of the Kleene star is
updated to (see, e.g., [45, Section 3.5]):

Jr⇤K•�b(=4 lfp
�
_b- 2 �. b- r� (b(_� JrK•�b-)

�
.

h>, {%,'1,'2,'3,+ } i bRepair(ú,>, r, Spec)
h+ , {+ } i bRepair(· · · (8 > 5)?, Spec)
h>, {%,'1,'2,'3} i bRepair(· · · , r2,+)
h b%1, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
h%, {%,'1,'2,'3} i inv(ú, b%, r1,+)
h%, {%,'1,'2,'3} i bRepair({+ },+ , r1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair({% },%, r1,%)
h'3, {%,'3} i bRepair(· · · , 8 := 8 + 1,%)
h'1, {%,'1,'2} i bRepair(· · · , (8  5)?; 9 := 9 + 8,'3)
h'2, {%,'2} i bRepair(· · · , 9 := 9 + 8,'3)
h'1, {%,'1} i bRepair(· · · , (8  5)?,'2)

h>, ;i bRepair(· · · , r3, b%1)
Figure 4. Backward repair call scheme for Example 7.13.

By termination condition (ii) ofr�, the iteration sequence for
the least �xpoint of _b- . b- r� (b(_� JrK•�b-) always �nitely
converges. We settle the problem of how a suitable widening
operator for � � # can be derived from a widening for �.
De�nition 7.11 (Pointed Widening). Given a re�nement
�# =4 � � # of � 2 Abs(⇠) and a widening r� on �, the
pointed widening r#� : �# ⇥�# ! �# is de�ned as follows:
G r#� ~ =4 ^�# {I 2 (# [{�(G) r��(~)}) | G,~ �# I}. ⇤
Theorem 7.12 (Soundness of Pointed Widening). If # ✓
⇠ is �nite, then r#� is a widening operator for � � # .

In Algorithm 2, line 20, we simply replace b% _��# b' withb% r#� (b% _��# b') in the clause dealing with the unroll of
Kleene star. This change has no consequence in the proof
of Theorem 7.6, so the main results are seamlessly extended
to widening with the additional guarantee that whenever
bRepair� (# , b%, r, () returns h+ ,# 0i, then termination of the
abstract interpreter for �# 0 is guaranteed by Theorem 7.12.
Example 7.13 (Widening). Let us revisit the illustrative
example in Section 2, where Spec =4 9  15 and

r =4

r2z }| {
8 := 1; 9 := 0| {z }

r3

; ((8  5)?; 9 := 9 + 8; 8 := 8 + 1| {z }
r1

)⇤; (8 > 5)| {z }
b

?.

The call to bRepairInt (ú,>, r, Spec) recursively computes
bRepairInt (ú, b%, b?, Spec), where b% = Jr2K•Int> = 8 2 [1, 6] ^
9 2 [0,1] (using the widening on intervals for 9), which re-
turns h+ , {+ }i: the element+ =4 (8 2 [1, 5]^ 9 2 [0,1])_(8 =
6 ^ 9 2 [0, 15]) is introduced to repair b?. This leads to
call bRepairInt (ú,>, r2,+), and, then, bRepairInt (ú, b%1, r⇤1,+),
with b%1 =4 Jr3K•Int> = (8 = 1 ^ 9 = 0). After unrolling r⇤1 to
reach the abstract invariant b% , the call to invInt (ú, b%, r1,+)
computes the largest invariant under b%^+ for r⇤1, which is % =4

8 2 [1, 6]^ 9 2 [0, 8 (8�1)/2]. Then, bRepairInt ({%}, %, r1, %) is
invoked, which adds the new abstract elements '1, '2 and '3
(cf. Section 2) to repair the local completeness of the instruc-
tions in r1. Thus, invInt (ú, b%, r1,+) returns h%, {%,'1,'2,'3}i.
The point % is then intersected with the approximations

438

 ?[[c]] ⊤ ≤ (z = 0)z=0 , x=y

w=0

z=0 , x=y

Example

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

that is % =4 G 2 [0, 100] ^ ~ = G . Note that the addition
of % to Int is not enough, because intermediate approx-
imations for the evaluation of basic commands in r1 are
also needed by compositionality. Hence, the new elements
'1 =4 G 2 [1, 100] ^ ~ = G , '2 =4 G 2 [0, 99] ^ ~ = G + 1,
and '3 =4 G 2 [0, 99] ^ ~ = G are also added. In the end,
the call to invInt returns h%, {%,'1,'2,'3}i, so that the origi-
nal call to bRepairInt returns h'1, {%,'1,'2,'3,&}i because
'1 = % ^ b% . By Corollary 7.7, for any % 0  b% , we have that
JrK% 0  Spec i� % 0  '1. Remarkably, backward repair is able
to add the minimal relational information in a nonrelational
domain as needed to prove Spec. Since all the new elements
are octagons, incidentally, the analysis on Oct with input '1
(instead of b%) is also able to prove that Spec holds. ⇤

Example 7.9 (Predicate Abstraction). Consider the fol-
lowing program c from Fig. 1 of [4, 5] and the Cartesian
predicate abstraction domain � induced by ? =4 (I = 0) and
@ =4 (G = ~), as depicted below:

c =4 do { I := 0; G := ~;
if (F < 0) then {

G := G + 1; I := 1
}

} while (G < ~)

>

@ ? ? @

?^@ ?^@ ?^@ ?^@

?
We want to prove that JcK>  ? , whereas it turns out that
JcK•�> = @. The domain re�nement used in [4, 5] is the
reduced disjunctive completion of �, which is isomorphic to
the Boolean abstraction ⌫ =4 h®({?^@, ?^@, ?^@, ?^@}), ✓i.
The analysis with ⌫ leads exactly to the same analysis with
�1 =

4 � � {? $ @}, namely JcK•�1
> = ? ^ @.

By invoking bRepair� (ú,>, c, ?) we get as a result the pair
h>, {@ ! ?}i. In fact, letting �2 =4 � � {@ ! ?} we get
JcK•�2

> = ? ^ @ = �2 (? ^ @) = �2 (JcK>). Let us remark that
the point @ ! ? is indeed more abstract than ? $ @. ⇤

Widening. It is well known that the convergence of �xpoint
computations in non-ACC domains can be forced or accel-
erated by means of widening operators [16, 17]. A widening
over-approximates an abstract join G _�~ by a more abstract
element Gr�~. We show that backward repair is compatible
with widening operators, and that, in this case, the repaired
abstract interpreter is guaranteed to terminate.
De�nition 7.10 (Widening Operator). Given � 2 Abs(⇠),
a widening operator r� : � ⇥ � ! � is a function such
that: (i) for all G,~ 2 �, G,~ � G r� ~; and (ii) for every
sequence {G8 }82N ✓ �, the chain {~8 }82N inductively de�ned
by ~0 =4 G0 and ~8+1 =4 ~8 r� G8+1 �nitely converges (i.e.,
9: 2 N. 89 2 N. ~ 9+: = ~:). ⇤

The abstract semantics with widening of the Kleene star is
updated to (see, e.g., [45, Section 3.5]):

Jr⇤K•�b(=4 lfp
�
_b- 2 �. b- r� (b(_� JrK•�b-)

�
.

h>, {%,'1,'2,'3,+ } i bRepair(ú,>, r, Spec)
h+ , {+ } i bRepair(· · · (8 > 5)?, Spec)
h>, {%,'1,'2,'3} i bRepair(· · · , r2,+)
h b%1, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
h%, {%,'1,'2,'3} i inv(ú, b%, r1,+)
h%, {%,'1,'2,'3} i bRepair({+ },+ , r1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair({% },%, r1,%)
h'3, {%,'3} i bRepair(· · · , 8 := 8 + 1,%)
h'1, {%,'1,'2} i bRepair(· · · , (8  5)?; 9 := 9 + 8,'3)
h'2, {%,'2} i bRepair(· · · , 9 := 9 + 8,'3)
h'1, {%,'1} i bRepair(· · · , (8  5)?,'2)

h>, ;i bRepair(· · · , r3, b%1)
Figure 4. Backward repair call scheme for Example 7.13.

By termination condition (ii) ofr�, the iteration sequence for
the least �xpoint of _b- . b- r� (b(_� JrK•�b-) always �nitely
converges. We settle the problem of how a suitable widening
operator for � � # can be derived from a widening for �.
De�nition 7.11 (Pointed Widening). Given a re�nement
�# =4 � � # of � 2 Abs(⇠) and a widening r� on �, the
pointed widening r#� : �# ⇥�# ! �# is de�ned as follows:
G r#� ~ =4 ^�# {I 2 (# [{�(G) r��(~)}) | G,~ �# I}. ⇤
Theorem 7.12 (Soundness of Pointed Widening). If # ✓
⇠ is �nite, then r#� is a widening operator for � � # .

In Algorithm 2, line 20, we simply replace b% _��# b' withb% r#� (b% _��# b') in the clause dealing with the unroll of
Kleene star. This change has no consequence in the proof
of Theorem 7.6, so the main results are seamlessly extended
to widening with the additional guarantee that whenever
bRepair� (# , b%, r, () returns h+ ,# 0i, then termination of the
abstract interpreter for �# 0 is guaranteed by Theorem 7.12.
Example 7.13 (Widening). Let us revisit the illustrative
example in Section 2, where Spec =4 9  15 and

r =4

r2z }| {
8 := 1; 9 := 0| {z }

r3

; ((8  5)?; 9 := 9 + 8; 8 := 8 + 1| {z }
r1

)⇤; (8 > 5)| {z }
b

?.

The call to bRepairInt (ú,>, r, Spec) recursively computes
bRepairInt (ú, b%, b?, Spec), where b% = Jr2K•Int> = 8 2 [1, 6] ^
9 2 [0,1] (using the widening on intervals for 9), which re-
turns h+ , {+ }i: the element+ =4 (8 2 [1, 5]^ 9 2 [0,1])_(8 =
6 ^ 9 2 [0, 15]) is introduced to repair b?. This leads to
call bRepairInt (ú,>, r2,+), and, then, bRepairInt (ú, b%1, r⇤1,+),
with b%1 =4 Jr3K•Int> = (8 = 1 ^ 9 = 0). After unrolling r⇤1 to
reach the abstract invariant b% , the call to invInt (ú, b%, r1,+)
computes the largest invariant under b%^+ for r⇤1, which is % =4

8 2 [1, 6]^ 9 2 [0, 8 (8�1)/2]. Then, bRepairInt ({%}, %, r1, %) is
invoked, which adds the new abstract elements '1, '2 and '3
(cf. Section 2) to repair the local completeness of the instruc-
tions in r1. Thus, invInt (ú, b%, r1,+) returns h%, {%,'1,'2,'3}i.
The point % is then intersected with the approximations

438

 ?[[c]] ⊤ ≤ (z = 0)z=0 , x=y

w=0

z=0 , x=y

z=0 , x=y

Example

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

that is % =4 G 2 [0, 100] ^ ~ = G . Note that the addition
of % to Int is not enough, because intermediate approx-
imations for the evaluation of basic commands in r1 are
also needed by compositionality. Hence, the new elements
'1 =4 G 2 [1, 100] ^ ~ = G , '2 =4 G 2 [0, 99] ^ ~ = G + 1,
and '3 =4 G 2 [0, 99] ^ ~ = G are also added. In the end,
the call to invInt returns h%, {%,'1,'2,'3}i, so that the origi-
nal call to bRepairInt returns h'1, {%,'1,'2,'3,&}i because
'1 = % ^ b% . By Corollary 7.7, for any % 0  b% , we have that
JrK% 0  Spec i� % 0  '1. Remarkably, backward repair is able
to add the minimal relational information in a nonrelational
domain as needed to prove Spec. Since all the new elements
are octagons, incidentally, the analysis on Oct with input '1
(instead of b%) is also able to prove that Spec holds. ⇤

Example 7.9 (Predicate Abstraction). Consider the fol-
lowing program c from Fig. 1 of [4, 5] and the Cartesian
predicate abstraction domain � induced by ? =4 (I = 0) and
@ =4 (G = ~), as depicted below:

c =4 do { I := 0; G := ~;
if (F < 0) then {

G := G + 1; I := 1
}

} while (G < ~)

>

@ ? ? @

?^@ ?^@ ?^@ ?^@

?
We want to prove that JcK>  ? , whereas it turns out that
JcK•�> = @. The domain re�nement used in [4, 5] is the
reduced disjunctive completion of �, which is isomorphic to
the Boolean abstraction ⌫ =4 h®({?^@, ?^@, ?^@, ?^@}), ✓i.
The analysis with ⌫ leads exactly to the same analysis with
�1 =

4 � � {? $ @}, namely JcK•�1
> = ? ^ @.

By invoking bRepair� (ú,>, c, ?) we get as a result the pair
h>, {@ ! ?}i. In fact, letting �2 =4 � � {@ ! ?} we get
JcK•�2

> = ? ^ @ = �2 (? ^ @) = �2 (JcK>). Let us remark that
the point @ ! ? is indeed more abstract than ? $ @. ⇤

Widening. It is well known that the convergence of �xpoint
computations in non-ACC domains can be forced or accel-
erated by means of widening operators [16, 17]. A widening
over-approximates an abstract join G _�~ by a more abstract
element Gr�~. We show that backward repair is compatible
with widening operators, and that, in this case, the repaired
abstract interpreter is guaranteed to terminate.
De�nition 7.10 (Widening Operator). Given � 2 Abs(⇠),
a widening operator r� : � ⇥ � ! � is a function such
that: (i) for all G,~ 2 �, G,~ � G r� ~; and (ii) for every
sequence {G8 }82N ✓ �, the chain {~8 }82N inductively de�ned
by ~0 =4 G0 and ~8+1 =4 ~8 r� G8+1 �nitely converges (i.e.,
9: 2 N. 89 2 N. ~ 9+: = ~:). ⇤

The abstract semantics with widening of the Kleene star is
updated to (see, e.g., [45, Section 3.5]):

Jr⇤K•�b(=4 lfp
�
_b- 2 �. b- r� (b(_� JrK•�b-)

�
.

h>, {%,'1,'2,'3,+ } i bRepair(ú,>, r, Spec)
h+ , {+ } i bRepair(· · · (8 > 5)?, Spec)
h>, {%,'1,'2,'3} i bRepair(· · · , r2,+)
h b%1, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
h%, {%,'1,'2,'3} i inv(ú, b%, r1,+)
h%, {%,'1,'2,'3} i bRepair({+ },+ , r1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair({% },%, r1,%)
h'3, {%,'3} i bRepair(· · · , 8 := 8 + 1,%)
h'1, {%,'1,'2} i bRepair(· · · , (8  5)?; 9 := 9 + 8,'3)
h'2, {%,'2} i bRepair(· · · , 9 := 9 + 8,'3)
h'1, {%,'1} i bRepair(· · · , (8  5)?,'2)

h>, ;i bRepair(· · · , r3, b%1)
Figure 4. Backward repair call scheme for Example 7.13.

By termination condition (ii) ofr�, the iteration sequence for
the least �xpoint of _b- . b- r� (b(_� JrK•�b-) always �nitely
converges. We settle the problem of how a suitable widening
operator for � � # can be derived from a widening for �.
De�nition 7.11 (Pointed Widening). Given a re�nement
�# =4 � � # of � 2 Abs(⇠) and a widening r� on �, the
pointed widening r#� : �# ⇥�# ! �# is de�ned as follows:
G r#� ~ =4 ^�# {I 2 (# [{�(G) r��(~)}) | G,~ �# I}. ⇤
Theorem 7.12 (Soundness of Pointed Widening). If # ✓
⇠ is �nite, then r#� is a widening operator for � � # .

In Algorithm 2, line 20, we simply replace b% _��# b' withb% r#� (b% _��# b') in the clause dealing with the unroll of
Kleene star. This change has no consequence in the proof
of Theorem 7.6, so the main results are seamlessly extended
to widening with the additional guarantee that whenever
bRepair� (# , b%, r, () returns h+ ,# 0i, then termination of the
abstract interpreter for �# 0 is guaranteed by Theorem 7.12.
Example 7.13 (Widening). Let us revisit the illustrative
example in Section 2, where Spec =4 9  15 and

r =4

r2z }| {
8 := 1; 9 := 0| {z }

r3

; ((8  5)?; 9 := 9 + 8; 8 := 8 + 1| {z }
r1

)⇤; (8 > 5)| {z }
b

?.

The call to bRepairInt (ú,>, r, Spec) recursively computes
bRepairInt (ú, b%, b?, Spec), where b% = Jr2K•Int> = 8 2 [1, 6] ^
9 2 [0,1] (using the widening on intervals for 9), which re-
turns h+ , {+ }i: the element+ =4 (8 2 [1, 5]^ 9 2 [0,1])_(8 =
6 ^ 9 2 [0, 15]) is introduced to repair b?. This leads to
call bRepairInt (ú,>, r2,+), and, then, bRepairInt (ú, b%1, r⇤1,+),
with b%1 =4 Jr3K•Int> = (8 = 1 ^ 9 = 0). After unrolling r⇤1 to
reach the abstract invariant b% , the call to invInt (ú, b%, r1,+)
computes the largest invariant under b%^+ for r⇤1, which is % =4

8 2 [1, 6]^ 9 2 [0, 8 (8�1)/2]. Then, bRepairInt ({%}, %, r1, %) is
invoked, which adds the new abstract elements '1, '2 and '3
(cf. Section 2) to repair the local completeness of the instruc-
tions in r1. Thus, invInt (ú, b%, r1,+) returns h%, {%,'1,'2,'3}i.
The point % is then intersected with the approximations

438

 ?[[c]] ⊤ ≤ (z = 0)z=0 , x=y

w=0

z=0 , x=y

w 0≠

z=0 , x=y

Example

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

that is % =4 G 2 [0, 100] ^ ~ = G . Note that the addition
of % to Int is not enough, because intermediate approx-
imations for the evaluation of basic commands in r1 are
also needed by compositionality. Hence, the new elements
'1 =4 G 2 [1, 100] ^ ~ = G , '2 =4 G 2 [0, 99] ^ ~ = G + 1,
and '3 =4 G 2 [0, 99] ^ ~ = G are also added. In the end,
the call to invInt returns h%, {%,'1,'2,'3}i, so that the origi-
nal call to bRepairInt returns h'1, {%,'1,'2,'3,&}i because
'1 = % ^ b% . By Corollary 7.7, for any % 0  b% , we have that
JrK% 0  Spec i� % 0  '1. Remarkably, backward repair is able
to add the minimal relational information in a nonrelational
domain as needed to prove Spec. Since all the new elements
are octagons, incidentally, the analysis on Oct with input '1
(instead of b%) is also able to prove that Spec holds. ⇤

Example 7.9 (Predicate Abstraction). Consider the fol-
lowing program c from Fig. 1 of [4, 5] and the Cartesian
predicate abstraction domain � induced by ? =4 (I = 0) and
@ =4 (G = ~), as depicted below:

c =4 do { I := 0; G := ~;
if (F < 0) then {

G := G + 1; I := 1
}

} while (G < ~)

>

@ ? ? @

?^@ ?^@ ?^@ ?^@

?
We want to prove that JcK>  ? , whereas it turns out that
JcK•�> = @. The domain re�nement used in [4, 5] is the
reduced disjunctive completion of �, which is isomorphic to
the Boolean abstraction ⌫ =4 h®({?^@, ?^@, ?^@, ?^@}), ✓i.
The analysis with ⌫ leads exactly to the same analysis with
�1 =

4 � � {? $ @}, namely JcK•�1
> = ? ^ @.

By invoking bRepair� (ú,>, c, ?) we get as a result the pair
h>, {@ ! ?}i. In fact, letting �2 =4 � � {@ ! ?} we get
JcK•�2

> = ? ^ @ = �2 (? ^ @) = �2 (JcK>). Let us remark that
the point @ ! ? is indeed more abstract than ? $ @. ⇤

Widening. It is well known that the convergence of �xpoint
computations in non-ACC domains can be forced or accel-
erated by means of widening operators [16, 17]. A widening
over-approximates an abstract join G _�~ by a more abstract
element Gr�~. We show that backward repair is compatible
with widening operators, and that, in this case, the repaired
abstract interpreter is guaranteed to terminate.
De�nition 7.10 (Widening Operator). Given � 2 Abs(⇠),
a widening operator r� : � ⇥ � ! � is a function such
that: (i) for all G,~ 2 �, G,~ � G r� ~; and (ii) for every
sequence {G8 }82N ✓ �, the chain {~8 }82N inductively de�ned
by ~0 =4 G0 and ~8+1 =4 ~8 r� G8+1 �nitely converges (i.e.,
9: 2 N. 89 2 N. ~ 9+: = ~:). ⇤

The abstract semantics with widening of the Kleene star is
updated to (see, e.g., [45, Section 3.5]):

Jr⇤K•�b(=4 lfp
�
_b- 2 �. b- r� (b(_� JrK•�b-)

�
.

h>, {%,'1,'2,'3,+ } i bRepair(ú,>, r, Spec)
h+ , {+ } i bRepair(· · · (8 > 5)?, Spec)
h>, {%,'1,'2,'3} i bRepair(· · · , r2,+)
h b%1, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
h%, {%,'1,'2,'3} i inv(ú, b%, r1,+)
h%, {%,'1,'2,'3} i bRepair({+ },+ , r1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair({% },%, r1,%)
h'3, {%,'3} i bRepair(· · · , 8 := 8 + 1,%)
h'1, {%,'1,'2} i bRepair(· · · , (8  5)?; 9 := 9 + 8,'3)
h'2, {%,'2} i bRepair(· · · , 9 := 9 + 8,'3)
h'1, {%,'1} i bRepair(· · · , (8  5)?,'2)

h>, ;i bRepair(· · · , r3, b%1)
Figure 4. Backward repair call scheme for Example 7.13.

By termination condition (ii) ofr�, the iteration sequence for
the least �xpoint of _b- . b- r� (b(_� JrK•�b-) always �nitely
converges. We settle the problem of how a suitable widening
operator for � � # can be derived from a widening for �.
De�nition 7.11 (Pointed Widening). Given a re�nement
�# =4 � � # of � 2 Abs(⇠) and a widening r� on �, the
pointed widening r#� : �# ⇥�# ! �# is de�ned as follows:
G r#� ~ =4 ^�# {I 2 (# [{�(G) r��(~)}) | G,~ �# I}. ⇤
Theorem 7.12 (Soundness of Pointed Widening). If # ✓
⇠ is �nite, then r#� is a widening operator for � � # .

In Algorithm 2, line 20, we simply replace b% _��# b' withb% r#� (b% _��# b') in the clause dealing with the unroll of
Kleene star. This change has no consequence in the proof
of Theorem 7.6, so the main results are seamlessly extended
to widening with the additional guarantee that whenever
bRepair� (# , b%, r, () returns h+ ,# 0i, then termination of the
abstract interpreter for �# 0 is guaranteed by Theorem 7.12.
Example 7.13 (Widening). Let us revisit the illustrative
example in Section 2, where Spec =4 9  15 and

r =4

r2z }| {
8 := 1; 9 := 0| {z }

r3

; ((8  5)?; 9 := 9 + 8; 8 := 8 + 1| {z }
r1

)⇤; (8 > 5)| {z }
b

?.

The call to bRepairInt (ú,>, r, Spec) recursively computes
bRepairInt (ú, b%, b?, Spec), where b% = Jr2K•Int> = 8 2 [1, 6] ^
9 2 [0,1] (using the widening on intervals for 9), which re-
turns h+ , {+ }i: the element+ =4 (8 2 [1, 5]^ 9 2 [0,1])_(8 =
6 ^ 9 2 [0, 15]) is introduced to repair b?. This leads to
call bRepairInt (ú,>, r2,+), and, then, bRepairInt (ú, b%1, r⇤1,+),
with b%1 =4 Jr3K•Int> = (8 = 1 ^ 9 = 0). After unrolling r⇤1 to
reach the abstract invariant b% , the call to invInt (ú, b%, r1,+)
computes the largest invariant under b%^+ for r⇤1, which is % =4

8 2 [1, 6]^ 9 2 [0, 8 (8�1)/2]. Then, bRepairInt ({%}, %, r1, %) is
invoked, which adds the new abstract elements '1, '2 and '3
(cf. Section 2) to repair the local completeness of the instruc-
tions in r1. Thus, invInt (ú, b%, r1,+) returns h%, {%,'1,'2,'3}i.
The point % is then intersected with the approximations

438

 ?[[c]] ⊤ ≤ (z = 0)z=0 , x=y

w=0

z=0 , x=y

w 0≠

z=0 , x=y

z=0 , x=y

Example

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

that is % =4 G 2 [0, 100] ^ ~ = G . Note that the addition
of % to Int is not enough, because intermediate approx-
imations for the evaluation of basic commands in r1 are
also needed by compositionality. Hence, the new elements
'1 =4 G 2 [1, 100] ^ ~ = G , '2 =4 G 2 [0, 99] ^ ~ = G + 1,
and '3 =4 G 2 [0, 99] ^ ~ = G are also added. In the end,
the call to invInt returns h%, {%,'1,'2,'3}i, so that the origi-
nal call to bRepairInt returns h'1, {%,'1,'2,'3,&}i because
'1 = % ^ b% . By Corollary 7.7, for any % 0  b% , we have that
JrK% 0  Spec i� % 0  '1. Remarkably, backward repair is able
to add the minimal relational information in a nonrelational
domain as needed to prove Spec. Since all the new elements
are octagons, incidentally, the analysis on Oct with input '1
(instead of b%) is also able to prove that Spec holds. ⇤

Example 7.9 (Predicate Abstraction). Consider the fol-
lowing program c from Fig. 1 of [4, 5] and the Cartesian
predicate abstraction domain � induced by ? =4 (I = 0) and
@ =4 (G = ~), as depicted below:

c =4 do { I := 0; G := ~;
if (F < 0) then {

G := G + 1; I := 1
}

} while (G < ~)

>

@ ? ? @

?^@ ?^@ ?^@ ?^@

?
We want to prove that JcK>  ? , whereas it turns out that
JcK•�> = @. The domain re�nement used in [4, 5] is the
reduced disjunctive completion of �, which is isomorphic to
the Boolean abstraction ⌫ =4 h®({?^@, ?^@, ?^@, ?^@}), ✓i.
The analysis with ⌫ leads exactly to the same analysis with
�1 =

4 � � {? $ @}, namely JcK•�1
> = ? ^ @.

By invoking bRepair� (ú,>, c, ?) we get as a result the pair
h>, {@ ! ?}i. In fact, letting �2 =4 � � {@ ! ?} we get
JcK•�2

> = ? ^ @ = �2 (? ^ @) = �2 (JcK>). Let us remark that
the point @ ! ? is indeed more abstract than ? $ @. ⇤

Widening. It is well known that the convergence of �xpoint
computations in non-ACC domains can be forced or accel-
erated by means of widening operators [16, 17]. A widening
over-approximates an abstract join G _�~ by a more abstract
element Gr�~. We show that backward repair is compatible
with widening operators, and that, in this case, the repaired
abstract interpreter is guaranteed to terminate.
De�nition 7.10 (Widening Operator). Given � 2 Abs(⇠),
a widening operator r� : � ⇥ � ! � is a function such
that: (i) for all G,~ 2 �, G,~ � G r� ~; and (ii) for every
sequence {G8 }82N ✓ �, the chain {~8 }82N inductively de�ned
by ~0 =4 G0 and ~8+1 =4 ~8 r� G8+1 �nitely converges (i.e.,
9: 2 N. 89 2 N. ~ 9+: = ~:). ⇤

The abstract semantics with widening of the Kleene star is
updated to (see, e.g., [45, Section 3.5]):

Jr⇤K•�b(=4 lfp
�
_b- 2 �. b- r� (b(_� JrK•�b-)

�
.

h>, {%,'1,'2,'3,+ } i bRepair(ú,>, r, Spec)
h+ , {+ } i bRepair(· · · (8 > 5)?, Spec)
h>, {%,'1,'2,'3} i bRepair(· · · , r2,+)
h b%1, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
h%, {%,'1,'2,'3} i inv(ú, b%, r1,+)
h%, {%,'1,'2,'3} i bRepair({+ },+ , r1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair({% },%, r1,%)
h'3, {%,'3} i bRepair(· · · , 8 := 8 + 1,%)
h'1, {%,'1,'2} i bRepair(· · · , (8  5)?; 9 := 9 + 8,'3)
h'2, {%,'2} i bRepair(· · · , 9 := 9 + 8,'3)
h'1, {%,'1} i bRepair(· · · , (8  5)?,'2)

h>, ;i bRepair(· · · , r3, b%1)
Figure 4. Backward repair call scheme for Example 7.13.

By termination condition (ii) ofr�, the iteration sequence for
the least �xpoint of _b- . b- r� (b(_� JrK•�b-) always �nitely
converges. We settle the problem of how a suitable widening
operator for � � # can be derived from a widening for �.
De�nition 7.11 (Pointed Widening). Given a re�nement
�# =4 � � # of � 2 Abs(⇠) and a widening r� on �, the
pointed widening r#� : �# ⇥�# ! �# is de�ned as follows:
G r#� ~ =4 ^�# {I 2 (# [{�(G) r��(~)}) | G,~ �# I}. ⇤
Theorem 7.12 (Soundness of Pointed Widening). If # ✓
⇠ is �nite, then r#� is a widening operator for � � # .

In Algorithm 2, line 20, we simply replace b% _��# b' withb% r#� (b% _��# b') in the clause dealing with the unroll of
Kleene star. This change has no consequence in the proof
of Theorem 7.6, so the main results are seamlessly extended
to widening with the additional guarantee that whenever
bRepair� (# , b%, r, () returns h+ ,# 0i, then termination of the
abstract interpreter for �# 0 is guaranteed by Theorem 7.12.
Example 7.13 (Widening). Let us revisit the illustrative
example in Section 2, where Spec =4 9  15 and

r =4

r2z }| {
8 := 1; 9 := 0| {z }

r3

; ((8  5)?; 9 := 9 + 8; 8 := 8 + 1| {z }
r1

)⇤; (8 > 5)| {z }
b

?.

The call to bRepairInt (ú,>, r, Spec) recursively computes
bRepairInt (ú, b%, b?, Spec), where b% = Jr2K•Int> = 8 2 [1, 6] ^
9 2 [0,1] (using the widening on intervals for 9), which re-
turns h+ , {+ }i: the element+ =4 (8 2 [1, 5]^ 9 2 [0,1])_(8 =
6 ^ 9 2 [0, 15]) is introduced to repair b?. This leads to
call bRepairInt (ú,>, r2,+), and, then, bRepairInt (ú, b%1, r⇤1,+),
with b%1 =4 Jr3K•Int> = (8 = 1 ^ 9 = 0). After unrolling r⇤1 to
reach the abstract invariant b% , the call to invInt (ú, b%, r1,+)
computes the largest invariant under b%^+ for r⇤1, which is % =4

8 2 [1, 6]^ 9 2 [0, 8 (8�1)/2]. Then, bRepairInt ({%}, %, r1, %) is
invoked, which adds the new abstract elements '1, '2 and '3
(cf. Section 2) to repair the local completeness of the instruc-
tions in r1. Thus, invInt (ú, b%, r1,+) returns h%, {%,'1,'2,'3}i.
The point % is then intersected with the approximations

438

 ?[[c]] ⊤ ≤ (z = 0)z=0 , x=y

w=0

z=0 , x=y

w 0≠

z=0 , x=y

z=1 , x=y+1

z=0 , x=y

Example

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

that is % =4 G 2 [0, 100] ^ ~ = G . Note that the addition
of % to Int is not enough, because intermediate approx-
imations for the evaluation of basic commands in r1 are
also needed by compositionality. Hence, the new elements
'1 =4 G 2 [1, 100] ^ ~ = G , '2 =4 G 2 [0, 99] ^ ~ = G + 1,
and '3 =4 G 2 [0, 99] ^ ~ = G are also added. In the end,
the call to invInt returns h%, {%,'1,'2,'3}i, so that the origi-
nal call to bRepairInt returns h'1, {%,'1,'2,'3,&}i because
'1 = % ^ b% . By Corollary 7.7, for any % 0  b% , we have that
JrK% 0  Spec i� % 0  '1. Remarkably, backward repair is able
to add the minimal relational information in a nonrelational
domain as needed to prove Spec. Since all the new elements
are octagons, incidentally, the analysis on Oct with input '1
(instead of b%) is also able to prove that Spec holds. ⇤

Example 7.9 (Predicate Abstraction). Consider the fol-
lowing program c from Fig. 1 of [4, 5] and the Cartesian
predicate abstraction domain � induced by ? =4 (I = 0) and
@ =4 (G = ~), as depicted below:

c =4 do { I := 0; G := ~;
if (F < 0) then {

G := G + 1; I := 1
}

} while (G < ~)

>

@ ? ? @

?^@ ?^@ ?^@ ?^@

?
We want to prove that JcK>  ? , whereas it turns out that
JcK•�> = @. The domain re�nement used in [4, 5] is the
reduced disjunctive completion of �, which is isomorphic to
the Boolean abstraction ⌫ =4 h®({?^@, ?^@, ?^@, ?^@}), ✓i.
The analysis with ⌫ leads exactly to the same analysis with
�1 =

4 � � {? $ @}, namely JcK•�1
> = ? ^ @.

By invoking bRepair� (ú,>, c, ?) we get as a result the pair
h>, {@ ! ?}i. In fact, letting �2 =4 � � {@ ! ?} we get
JcK•�2

> = ? ^ @ = �2 (? ^ @) = �2 (JcK>). Let us remark that
the point @ ! ? is indeed more abstract than ? $ @. ⇤

Widening. It is well known that the convergence of �xpoint
computations in non-ACC domains can be forced or accel-
erated by means of widening operators [16, 17]. A widening
over-approximates an abstract join G _�~ by a more abstract
element Gr�~. We show that backward repair is compatible
with widening operators, and that, in this case, the repaired
abstract interpreter is guaranteed to terminate.
De�nition 7.10 (Widening Operator). Given � 2 Abs(⇠),
a widening operator r� : � ⇥ � ! � is a function such
that: (i) for all G,~ 2 �, G,~ � G r� ~; and (ii) for every
sequence {G8 }82N ✓ �, the chain {~8 }82N inductively de�ned
by ~0 =4 G0 and ~8+1 =4 ~8 r� G8+1 �nitely converges (i.e.,
9: 2 N. 89 2 N. ~ 9+: = ~:). ⇤

The abstract semantics with widening of the Kleene star is
updated to (see, e.g., [45, Section 3.5]):

Jr⇤K•�b(=4 lfp
�
_b- 2 �. b- r� (b(_� JrK•�b-)

�
.

h>, {%,'1,'2,'3,+ } i bRepair(ú,>, r, Spec)
h+ , {+ } i bRepair(· · · (8 > 5)?, Spec)
h>, {%,'1,'2,'3} i bRepair(· · · , r2,+)
h b%1, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
h%, {%,'1,'2,'3} i inv(ú, b%, r1,+)
h%, {%,'1,'2,'3} i bRepair({+ },+ , r1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair({% },%, r1,%)
h'3, {%,'3} i bRepair(· · · , 8 := 8 + 1,%)
h'1, {%,'1,'2} i bRepair(· · · , (8  5)?; 9 := 9 + 8,'3)
h'2, {%,'2} i bRepair(· · · , 9 := 9 + 8,'3)
h'1, {%,'1} i bRepair(· · · , (8  5)?,'2)

h>, ;i bRepair(· · · , r3, b%1)
Figure 4. Backward repair call scheme for Example 7.13.

By termination condition (ii) ofr�, the iteration sequence for
the least �xpoint of _b- . b- r� (b(_� JrK•�b-) always �nitely
converges. We settle the problem of how a suitable widening
operator for � � # can be derived from a widening for �.
De�nition 7.11 (Pointed Widening). Given a re�nement
�# =4 � � # of � 2 Abs(⇠) and a widening r� on �, the
pointed widening r#� : �# ⇥�# ! �# is de�ned as follows:
G r#� ~ =4 ^�# {I 2 (# [{�(G) r��(~)}) | G,~ �# I}. ⇤
Theorem 7.12 (Soundness of Pointed Widening). If # ✓
⇠ is �nite, then r#� is a widening operator for � � # .

In Algorithm 2, line 20, we simply replace b% _��# b' withb% r#� (b% _��# b') in the clause dealing with the unroll of
Kleene star. This change has no consequence in the proof
of Theorem 7.6, so the main results are seamlessly extended
to widening with the additional guarantee that whenever
bRepair� (# , b%, r, () returns h+ ,# 0i, then termination of the
abstract interpreter for �# 0 is guaranteed by Theorem 7.12.
Example 7.13 (Widening). Let us revisit the illustrative
example in Section 2, where Spec =4 9  15 and

r =4

r2z }| {
8 := 1; 9 := 0| {z }

r3

; ((8  5)?; 9 := 9 + 8; 8 := 8 + 1| {z }
r1

)⇤; (8 > 5)| {z }
b

?.

The call to bRepairInt (ú,>, r, Spec) recursively computes
bRepairInt (ú, b%, b?, Spec), where b% = Jr2K•Int> = 8 2 [1, 6] ^
9 2 [0,1] (using the widening on intervals for 9), which re-
turns h+ , {+ }i: the element+ =4 (8 2 [1, 5]^ 9 2 [0,1])_(8 =
6 ^ 9 2 [0, 15]) is introduced to repair b?. This leads to
call bRepairInt (ú,>, r2,+), and, then, bRepairInt (ú, b%1, r⇤1,+),
with b%1 =4 Jr3K•Int> = (8 = 1 ^ 9 = 0). After unrolling r⇤1 to
reach the abstract invariant b% , the call to invInt (ú, b%, r1,+)
computes the largest invariant under b%^+ for r⇤1, which is % =4

8 2 [1, 6]^ 9 2 [0, 8 (8�1)/2]. Then, bRepairInt ({%}, %, r1, %) is
invoked, which adds the new abstract elements '1, '2 and '3
(cf. Section 2) to repair the local completeness of the instruc-
tions in r1. Thus, invInt (ú, b%, r1,+) returns h%, {%,'1,'2,'3}i.
The point % is then intersected with the approximations

438

 ?[[c]] ⊤ ≤ (z = 0)z=0 , x=y

w=0

z=0 , x=y

w 0≠

z=0 , x=y

z=1 , x=y+1

z=1 , x=y+1

z=0 , x=y

Example

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

that is % =4 G 2 [0, 100] ^ ~ = G . Note that the addition
of % to Int is not enough, because intermediate approx-
imations for the evaluation of basic commands in r1 are
also needed by compositionality. Hence, the new elements
'1 =4 G 2 [1, 100] ^ ~ = G , '2 =4 G 2 [0, 99] ^ ~ = G + 1,
and '3 =4 G 2 [0, 99] ^ ~ = G are also added. In the end,
the call to invInt returns h%, {%,'1,'2,'3}i, so that the origi-
nal call to bRepairInt returns h'1, {%,'1,'2,'3,&}i because
'1 = % ^ b% . By Corollary 7.7, for any % 0  b% , we have that
JrK% 0  Spec i� % 0  '1. Remarkably, backward repair is able
to add the minimal relational information in a nonrelational
domain as needed to prove Spec. Since all the new elements
are octagons, incidentally, the analysis on Oct with input '1
(instead of b%) is also able to prove that Spec holds. ⇤

Example 7.9 (Predicate Abstraction). Consider the fol-
lowing program c from Fig. 1 of [4, 5] and the Cartesian
predicate abstraction domain � induced by ? =4 (I = 0) and
@ =4 (G = ~), as depicted below:

c =4 do { I := 0; G := ~;
if (F < 0) then {

G := G + 1; I := 1
}

} while (G < ~)

>

@ ? ? @

?^@ ?^@ ?^@ ?^@

?
We want to prove that JcK>  ? , whereas it turns out that
JcK•�> = @. The domain re�nement used in [4, 5] is the
reduced disjunctive completion of �, which is isomorphic to
the Boolean abstraction ⌫ =4 h®({?^@, ?^@, ?^@, ?^@}), ✓i.
The analysis with ⌫ leads exactly to the same analysis with
�1 =

4 � � {? $ @}, namely JcK•�1
> = ? ^ @.

By invoking bRepair� (ú,>, c, ?) we get as a result the pair
h>, {@ ! ?}i. In fact, letting �2 =4 � � {@ ! ?} we get
JcK•�2

> = ? ^ @ = �2 (? ^ @) = �2 (JcK>). Let us remark that
the point @ ! ? is indeed more abstract than ? $ @. ⇤

Widening. It is well known that the convergence of �xpoint
computations in non-ACC domains can be forced or accel-
erated by means of widening operators [16, 17]. A widening
over-approximates an abstract join G _�~ by a more abstract
element Gr�~. We show that backward repair is compatible
with widening operators, and that, in this case, the repaired
abstract interpreter is guaranteed to terminate.
De�nition 7.10 (Widening Operator). Given � 2 Abs(⇠),
a widening operator r� : � ⇥ � ! � is a function such
that: (i) for all G,~ 2 �, G,~ � G r� ~; and (ii) for every
sequence {G8 }82N ✓ �, the chain {~8 }82N inductively de�ned
by ~0 =4 G0 and ~8+1 =4 ~8 r� G8+1 �nitely converges (i.e.,
9: 2 N. 89 2 N. ~ 9+: = ~:). ⇤

The abstract semantics with widening of the Kleene star is
updated to (see, e.g., [45, Section 3.5]):

Jr⇤K•�b(=4 lfp
�
_b- 2 �. b- r� (b(_� JrK•�b-)

�
.

h>, {%,'1,'2,'3,+ } i bRepair(ú,>, r, Spec)
h+ , {+ } i bRepair(· · · (8 > 5)?, Spec)
h>, {%,'1,'2,'3} i bRepair(· · · , r2,+)
h b%1, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
h%, {%,'1,'2,'3} i inv(ú, b%, r1,+)
h%, {%,'1,'2,'3} i bRepair({+ },+ , r1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair({% },%, r1,%)
h'3, {%,'3} i bRepair(· · · , 8 := 8 + 1,%)
h'1, {%,'1,'2} i bRepair(· · · , (8  5)?; 9 := 9 + 8,'3)
h'2, {%,'2} i bRepair(· · · , 9 := 9 + 8,'3)
h'1, {%,'1} i bRepair(· · · , (8  5)?,'2)

h>, ;i bRepair(· · · , r3, b%1)
Figure 4. Backward repair call scheme for Example 7.13.

By termination condition (ii) ofr�, the iteration sequence for
the least �xpoint of _b- . b- r� (b(_� JrK•�b-) always �nitely
converges. We settle the problem of how a suitable widening
operator for � � # can be derived from a widening for �.
De�nition 7.11 (Pointed Widening). Given a re�nement
�# =4 � � # of � 2 Abs(⇠) and a widening r� on �, the
pointed widening r#� : �# ⇥�# ! �# is de�ned as follows:
G r#� ~ =4 ^�# {I 2 (# [{�(G) r��(~)}) | G,~ �# I}. ⇤
Theorem 7.12 (Soundness of Pointed Widening). If # ✓
⇠ is �nite, then r#� is a widening operator for � � # .

In Algorithm 2, line 20, we simply replace b% _��# b' withb% r#� (b% _��# b') in the clause dealing with the unroll of
Kleene star. This change has no consequence in the proof
of Theorem 7.6, so the main results are seamlessly extended
to widening with the additional guarantee that whenever
bRepair� (# , b%, r, () returns h+ ,# 0i, then termination of the
abstract interpreter for �# 0 is guaranteed by Theorem 7.12.
Example 7.13 (Widening). Let us revisit the illustrative
example in Section 2, where Spec =4 9  15 and

r =4

r2z }| {
8 := 1; 9 := 0| {z }

r3

; ((8  5)?; 9 := 9 + 8; 8 := 8 + 1| {z }
r1

)⇤; (8 > 5)| {z }
b

?.

The call to bRepairInt (ú,>, r, Spec) recursively computes
bRepairInt (ú, b%, b?, Spec), where b% = Jr2K•Int> = 8 2 [1, 6] ^
9 2 [0,1] (using the widening on intervals for 9), which re-
turns h+ , {+ }i: the element+ =4 (8 2 [1, 5]^ 9 2 [0,1])_(8 =
6 ^ 9 2 [0, 15]) is introduced to repair b?. This leads to
call bRepairInt (ú,>, r2,+), and, then, bRepairInt (ú, b%1, r⇤1,+),
with b%1 =4 Jr3K•Int> = (8 = 1 ^ 9 = 0). After unrolling r⇤1 to
reach the abstract invariant b% , the call to invInt (ú, b%, r1,+)
computes the largest invariant under b%^+ for r⇤1, which is % =4

8 2 [1, 6]^ 9 2 [0, 8 (8�1)/2]. Then, bRepairInt ({%}, %, r1, %) is
invoked, which adds the new abstract elements '1, '2 and '3
(cf. Section 2) to repair the local completeness of the instruc-
tions in r1. Thus, invInt (ú, b%, r1,+) returns h%, {%,'1,'2,'3}i.
The point % is then intersected with the approximations

438

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

that is % =4 G 2 [0, 100] ^ ~ = G . Note that the addition
of % to Int is not enough, because intermediate approx-
imations for the evaluation of basic commands in r1 are
also needed by compositionality. Hence, the new elements
'1 =4 G 2 [1, 100] ^ ~ = G , '2 =4 G 2 [0, 99] ^ ~ = G + 1,
and '3 =4 G 2 [0, 99] ^ ~ = G are also added. In the end,
the call to invInt returns h%, {%,'1,'2,'3}i, so that the origi-
nal call to bRepairInt returns h'1, {%,'1,'2,'3,&}i because
'1 = % ^ b% . By Corollary 7.7, for any % 0  b% , we have that
JrK% 0  Spec i� % 0  '1. Remarkably, backward repair is able
to add the minimal relational information in a nonrelational
domain as needed to prove Spec. Since all the new elements
are octagons, incidentally, the analysis on Oct with input '1
(instead of b%) is also able to prove that Spec holds. ⇤

Example 7.9 (Predicate Abstraction). Consider the fol-
lowing program c from Fig. 1 of [4, 5] and the Cartesian
predicate abstraction domain � induced by ? =4 (I = 0) and
@ =4 (G = ~), as depicted below:

c =4 do { I := 0; G := ~;
if (F < 0) then {

G := G + 1; I := 1
}

} while (G < ~)

>

@ ? ? @

?^@ ?^@ ?^@ ?^@

?
We want to prove that JcK>  ? , whereas it turns out that
JcK•�> = @. The domain re�nement used in [4, 5] is the
reduced disjunctive completion of �, which is isomorphic to
the Boolean abstraction ⌫ =4 h®({?^@, ?^@, ?^@, ?^@}), ✓i.
The analysis with ⌫ leads exactly to the same analysis with
�1 =

4 � � {? $ @}, namely JcK•�1
> = ? ^ @.

By invoking bRepair� (ú,>, c, ?) we get as a result the pair
h>, {@ ! ?}i. In fact, letting �2 =4 � � {@ ! ?} we get
JcK•�2

> = ? ^ @ = �2 (? ^ @) = �2 (JcK>). Let us remark that
the point @ ! ? is indeed more abstract than ? $ @. ⇤

Widening. It is well known that the convergence of �xpoint
computations in non-ACC domains can be forced or accel-
erated by means of widening operators [16, 17]. A widening
over-approximates an abstract join G _�~ by a more abstract
element Gr�~. We show that backward repair is compatible
with widening operators, and that, in this case, the repaired
abstract interpreter is guaranteed to terminate.
De�nition 7.10 (Widening Operator). Given � 2 Abs(⇠),
a widening operator r� : � ⇥ � ! � is a function such
that: (i) for all G,~ 2 �, G,~ � G r� ~; and (ii) for every
sequence {G8 }82N ✓ �, the chain {~8 }82N inductively de�ned
by ~0 =4 G0 and ~8+1 =4 ~8 r� G8+1 �nitely converges (i.e.,
9: 2 N. 89 2 N. ~ 9+: = ~:). ⇤

The abstract semantics with widening of the Kleene star is
updated to (see, e.g., [45, Section 3.5]):

Jr⇤K•�b(=4 lfp
�
_b- 2 �. b- r� (b(_� JrK•�b-)

�
.

h>, {%,'1,'2,'3,+ } i bRepair(ú,>, r, Spec)
h+ , {+ } i bRepair(· · · (8 > 5)?, Spec)
h>, {%,'1,'2,'3} i bRepair(· · · , r2,+)
h b%1, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
h%, {%,'1,'2,'3} i inv(ú, b%, r1,+)
h%, {%,'1,'2,'3} i bRepair({+ },+ , r1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair({% },%, r1,%)
h'3, {%,'3} i bRepair(· · · , 8 := 8 + 1,%)
h'1, {%,'1,'2} i bRepair(· · · , (8  5)?; 9 := 9 + 8,'3)
h'2, {%,'2} i bRepair(· · · , 9 := 9 + 8,'3)
h'1, {%,'1} i bRepair(· · · , (8  5)?,'2)

h>, ;i bRepair(· · · , r3, b%1)
Figure 4. Backward repair call scheme for Example 7.13.

By termination condition (ii) ofr�, the iteration sequence for
the least �xpoint of _b- . b- r� (b(_� JrK•�b-) always �nitely
converges. We settle the problem of how a suitable widening
operator for � � # can be derived from a widening for �.
De�nition 7.11 (Pointed Widening). Given a re�nement
�# =4 � � # of � 2 Abs(⇠) and a widening r� on �, the
pointed widening r#� : �# ⇥�# ! �# is de�ned as follows:
G r#� ~ =4 ^�# {I 2 (# [{�(G) r��(~)}) | G,~ �# I}. ⇤
Theorem 7.12 (Soundness of Pointed Widening). If # ✓
⇠ is �nite, then r#� is a widening operator for � � # .

In Algorithm 2, line 20, we simply replace b% _��# b' withb% r#� (b% _��# b') in the clause dealing with the unroll of
Kleene star. This change has no consequence in the proof
of Theorem 7.6, so the main results are seamlessly extended
to widening with the additional guarantee that whenever
bRepair� (# , b%, r, () returns h+ ,# 0i, then termination of the
abstract interpreter for �# 0 is guaranteed by Theorem 7.12.
Example 7.13 (Widening). Let us revisit the illustrative
example in Section 2, where Spec =4 9  15 and

r =4

r2z }| {
8 := 1; 9 := 0| {z }

r3

; ((8  5)?; 9 := 9 + 8; 8 := 8 + 1| {z }
r1

)⇤; (8 > 5)| {z }
b

?.

The call to bRepairInt (ú,>, r, Spec) recursively computes
bRepairInt (ú, b%, b?, Spec), where b% = Jr2K•Int> = 8 2 [1, 6] ^
9 2 [0,1] (using the widening on intervals for 9), which re-
turns h+ , {+ }i: the element+ =4 (8 2 [1, 5]^ 9 2 [0,1])_(8 =
6 ^ 9 2 [0, 15]) is introduced to repair b?. This leads to
call bRepairInt (ú,>, r2,+), and, then, bRepairInt (ú, b%1, r⇤1,+),
with b%1 =4 Jr3K•Int> = (8 = 1 ^ 9 = 0). After unrolling r⇤1 to
reach the abstract invariant b% , the call to invInt (ú, b%, r1,+)
computes the largest invariant under b%^+ for r⇤1, which is % =4

8 2 [1, 6]^ 9 2 [0, 8 (8�1)/2]. Then, bRepairInt ({%}, %, r1, %) is
invoked, which adds the new abstract elements '1, '2 and '3
(cf. Section 2) to repair the local completeness of the instruc-
tions in r1. Thus, invInt (ú, b%, r1,+) returns h%, {%,'1,'2,'3}i.
The point % is then intersected with the approximations

438

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

that is % =4 G 2 [0, 100] ^ ~ = G . Note that the addition
of % to Int is not enough, because intermediate approx-
imations for the evaluation of basic commands in r1 are
also needed by compositionality. Hence, the new elements
'1 =4 G 2 [1, 100] ^ ~ = G , '2 =4 G 2 [0, 99] ^ ~ = G + 1,
and '3 =4 G 2 [0, 99] ^ ~ = G are also added. In the end,
the call to invInt returns h%, {%,'1,'2,'3}i, so that the origi-
nal call to bRepairInt returns h'1, {%,'1,'2,'3,&}i because
'1 = % ^ b% . By Corollary 7.7, for any % 0  b% , we have that
JrK% 0  Spec i� % 0  '1. Remarkably, backward repair is able
to add the minimal relational information in a nonrelational
domain as needed to prove Spec. Since all the new elements
are octagons, incidentally, the analysis on Oct with input '1
(instead of b%) is also able to prove that Spec holds. ⇤

Example 7.9 (Predicate Abstraction). Consider the fol-
lowing program c from Fig. 1 of [4, 5] and the Cartesian
predicate abstraction domain � induced by ? =4 (I = 0) and
@ =4 (G = ~), as depicted below:

c =4 do { I := 0; G := ~;
if (F < 0) then {

G := G + 1; I := 1
}

} while (G < ~)

>

@ ? ? @

?^@ ?^@ ?^@ ?^@

?
We want to prove that JcK>  ? , whereas it turns out that
JcK•�> = @. The domain re�nement used in [4, 5] is the
reduced disjunctive completion of �, which is isomorphic to
the Boolean abstraction ⌫ =4 h®({?^@, ?^@, ?^@, ?^@}), ✓i.
The analysis with ⌫ leads exactly to the same analysis with
�1 =

4 � � {? $ @}, namely JcK•�1
> = ? ^ @.

By invoking bRepair� (ú,>, c, ?) we get as a result the pair
h>, {@ ! ?}i. In fact, letting �2 =4 � � {@ ! ?} we get
JcK•�2

> = ? ^ @ = �2 (? ^ @) = �2 (JcK>). Let us remark that
the point @ ! ? is indeed more abstract than ? $ @. ⇤

Widening. It is well known that the convergence of �xpoint
computations in non-ACC domains can be forced or accel-
erated by means of widening operators [16, 17]. A widening
over-approximates an abstract join G _�~ by a more abstract
element Gr�~. We show that backward repair is compatible
with widening operators, and that, in this case, the repaired
abstract interpreter is guaranteed to terminate.
De�nition 7.10 (Widening Operator). Given � 2 Abs(⇠),
a widening operator r� : � ⇥ � ! � is a function such
that: (i) for all G,~ 2 �, G,~ � G r� ~; and (ii) for every
sequence {G8 }82N ✓ �, the chain {~8 }82N inductively de�ned
by ~0 =4 G0 and ~8+1 =4 ~8 r� G8+1 �nitely converges (i.e.,
9: 2 N. 89 2 N. ~ 9+: = ~:). ⇤

The abstract semantics with widening of the Kleene star is
updated to (see, e.g., [45, Section 3.5]):

Jr⇤K•�b(=4 lfp
�
_b- 2 �. b- r� (b(_� JrK•�b-)

�
.

h>, {%,'1,'2,'3,+ } i bRepair(ú,>, r, Spec)
h+ , {+ } i bRepair(· · · (8 > 5)?, Spec)
h>, {%,'1,'2,'3} i bRepair(· · · , r2,+)
h b%1, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
h%, {%,'1,'2,'3} i inv(ú, b%, r1,+)
h%, {%,'1,'2,'3} i bRepair({+ },+ , r1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair({% },%, r1,%)
h'3, {%,'3} i bRepair(· · · , 8 := 8 + 1,%)
h'1, {%,'1,'2} i bRepair(· · · , (8  5)?; 9 := 9 + 8,'3)
h'2, {%,'2} i bRepair(· · · , 9 := 9 + 8,'3)
h'1, {%,'1} i bRepair(· · · , (8  5)?,'2)

h>, ;i bRepair(· · · , r3, b%1)
Figure 4. Backward repair call scheme for Example 7.13.

By termination condition (ii) ofr�, the iteration sequence for
the least �xpoint of _b- . b- r� (b(_� JrK•�b-) always �nitely
converges. We settle the problem of how a suitable widening
operator for � � # can be derived from a widening for �.
De�nition 7.11 (Pointed Widening). Given a re�nement
�# =4 � � # of � 2 Abs(⇠) and a widening r� on �, the
pointed widening r#� : �# ⇥�# ! �# is de�ned as follows:
G r#� ~ =4 ^�# {I 2 (# [{�(G) r��(~)}) | G,~ �# I}. ⇤
Theorem 7.12 (Soundness of Pointed Widening). If # ✓
⇠ is �nite, then r#� is a widening operator for � � # .

In Algorithm 2, line 20, we simply replace b% _��# b' withb% r#� (b% _��# b') in the clause dealing with the unroll of
Kleene star. This change has no consequence in the proof
of Theorem 7.6, so the main results are seamlessly extended
to widening with the additional guarantee that whenever
bRepair� (# , b%, r, () returns h+ ,# 0i, then termination of the
abstract interpreter for �# 0 is guaranteed by Theorem 7.12.
Example 7.13 (Widening). Let us revisit the illustrative
example in Section 2, where Spec =4 9  15 and

r =4

r2z }| {
8 := 1; 9 := 0| {z }

r3

; ((8  5)?; 9 := 9 + 8; 8 := 8 + 1| {z }
r1

)⇤; (8 > 5)| {z }
b

?.

The call to bRepairInt (ú,>, r, Spec) recursively computes
bRepairInt (ú, b%, b?, Spec), where b% = Jr2K•Int> = 8 2 [1, 6] ^
9 2 [0,1] (using the widening on intervals for 9), which re-
turns h+ , {+ }i: the element+ =4 (8 2 [1, 5]^ 9 2 [0,1])_(8 =
6 ^ 9 2 [0, 15]) is introduced to repair b?. This leads to
call bRepairInt (ú,>, r2,+), and, then, bRepairInt (ú, b%1, r⇤1,+),
with b%1 =4 Jr3K•Int> = (8 = 1 ^ 9 = 0). After unrolling r⇤1 to
reach the abstract invariant b% , the call to invInt (ú, b%, r1,+)
computes the largest invariant under b%^+ for r⇤1, which is % =4

8 2 [1, 6]^ 9 2 [0, 8 (8�1)/2]. Then, bRepairInt ({%}, %, r1, %) is
invoked, which adds the new abstract elements '1, '2 and '3
(cf. Section 2) to repair the local completeness of the instruc-
tions in r1. Thus, invInt (ú, b%, r1,+) returns h%, {%,'1,'2,'3}i.
The point % is then intersected with the approximations

438

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

that is % =4 G 2 [0, 100] ^ ~ = G . Note that the addition
of % to Int is not enough, because intermediate approx-
imations for the evaluation of basic commands in r1 are
also needed by compositionality. Hence, the new elements
'1 =4 G 2 [1, 100] ^ ~ = G , '2 =4 G 2 [0, 99] ^ ~ = G + 1,
and '3 =4 G 2 [0, 99] ^ ~ = G are also added. In the end,
the call to invInt returns h%, {%,'1,'2,'3}i, so that the origi-
nal call to bRepairInt returns h'1, {%,'1,'2,'3,&}i because
'1 = % ^ b% . By Corollary 7.7, for any % 0  b% , we have that
JrK% 0  Spec i� % 0  '1. Remarkably, backward repair is able
to add the minimal relational information in a nonrelational
domain as needed to prove Spec. Since all the new elements
are octagons, incidentally, the analysis on Oct with input '1
(instead of b%) is also able to prove that Spec holds. ⇤

Example 7.9 (Predicate Abstraction). Consider the fol-
lowing program c from Fig. 1 of [4, 5] and the Cartesian
predicate abstraction domain � induced by ? =4 (I = 0) and
@ =4 (G = ~), as depicted below:

c =4 do { I := 0; G := ~;
if (F < 0) then {

G := G + 1; I := 1
}

} while (G < ~)

>

@ ? ? @

?^@ ?^@ ?^@ ?^@

?
We want to prove that JcK>  ? , whereas it turns out that
JcK•�> = @. The domain re�nement used in [4, 5] is the
reduced disjunctive completion of �, which is isomorphic to
the Boolean abstraction ⌫ =4 h®({?^@, ?^@, ?^@, ?^@}), ✓i.
The analysis with ⌫ leads exactly to the same analysis with
�1 =

4 � � {? $ @}, namely JcK•�1
> = ? ^ @.

By invoking bRepair� (ú,>, c, ?) we get as a result the pair
h>, {@ ! ?}i. In fact, letting �2 =4 � � {@ ! ?} we get
JcK•�2

> = ? ^ @ = �2 (? ^ @) = �2 (JcK>). Let us remark that
the point @ ! ? is indeed more abstract than ? $ @. ⇤

Widening. It is well known that the convergence of �xpoint
computations in non-ACC domains can be forced or accel-
erated by means of widening operators [16, 17]. A widening
over-approximates an abstract join G _�~ by a more abstract
element Gr�~. We show that backward repair is compatible
with widening operators, and that, in this case, the repaired
abstract interpreter is guaranteed to terminate.
De�nition 7.10 (Widening Operator). Given � 2 Abs(⇠),
a widening operator r� : � ⇥ � ! � is a function such
that: (i) for all G,~ 2 �, G,~ � G r� ~; and (ii) for every
sequence {G8 }82N ✓ �, the chain {~8 }82N inductively de�ned
by ~0 =4 G0 and ~8+1 =4 ~8 r� G8+1 �nitely converges (i.e.,
9: 2 N. 89 2 N. ~ 9+: = ~:). ⇤

The abstract semantics with widening of the Kleene star is
updated to (see, e.g., [45, Section 3.5]):

Jr⇤K•�b(=4 lfp
�
_b- 2 �. b- r� (b(_� JrK•�b-)

�
.

h>, {%,'1,'2,'3,+ } i bRepair(ú,>, r, Spec)
h+ , {+ } i bRepair(· · · (8 > 5)?, Spec)
h>, {%,'1,'2,'3} i bRepair(· · · , r2,+)
h b%1, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
h%, {%,'1,'2,'3} i inv(ú, b%, r1,+)
h%, {%,'1,'2,'3} i bRepair({+ },+ , r1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair({% },%, r1,%)
h'3, {%,'3} i bRepair(· · · , 8 := 8 + 1,%)
h'1, {%,'1,'2} i bRepair(· · · , (8  5)?; 9 := 9 + 8,'3)
h'2, {%,'2} i bRepair(· · · , 9 := 9 + 8,'3)
h'1, {%,'1} i bRepair(· · · , (8  5)?,'2)

h>, ;i bRepair(· · · , r3, b%1)
Figure 4. Backward repair call scheme for Example 7.13.

By termination condition (ii) ofr�, the iteration sequence for
the least �xpoint of _b- . b- r� (b(_� JrK•�b-) always �nitely
converges. We settle the problem of how a suitable widening
operator for � � # can be derived from a widening for �.
De�nition 7.11 (Pointed Widening). Given a re�nement
�# =4 � � # of � 2 Abs(⇠) and a widening r� on �, the
pointed widening r#� : �# ⇥�# ! �# is de�ned as follows:
G r#� ~ =4 ^�# {I 2 (# [{�(G) r��(~)}) | G,~ �# I}. ⇤
Theorem 7.12 (Soundness of Pointed Widening). If # ✓
⇠ is �nite, then r#� is a widening operator for � � # .

In Algorithm 2, line 20, we simply replace b% _��# b' withb% r#� (b% _��# b') in the clause dealing with the unroll of
Kleene star. This change has no consequence in the proof
of Theorem 7.6, so the main results are seamlessly extended
to widening with the additional guarantee that whenever
bRepair� (# , b%, r, () returns h+ ,# 0i, then termination of the
abstract interpreter for �# 0 is guaranteed by Theorem 7.12.
Example 7.13 (Widening). Let us revisit the illustrative
example in Section 2, where Spec =4 9  15 and

r =4

r2z }| {
8 := 1; 9 := 0| {z }

r3

; ((8  5)?; 9 := 9 + 8; 8 := 8 + 1| {z }
r1

)⇤; (8 > 5)| {z }
b

?.

The call to bRepairInt (ú,>, r, Spec) recursively computes
bRepairInt (ú, b%, b?, Spec), where b% = Jr2K•Int> = 8 2 [1, 6] ^
9 2 [0,1] (using the widening on intervals for 9), which re-
turns h+ , {+ }i: the element+ =4 (8 2 [1, 5]^ 9 2 [0,1])_(8 =
6 ^ 9 2 [0, 15]) is introduced to repair b?. This leads to
call bRepairInt (ú,>, r2,+), and, then, bRepairInt (ú, b%1, r⇤1,+),
with b%1 =4 Jr3K•Int> = (8 = 1 ^ 9 = 0). After unrolling r⇤1 to
reach the abstract invariant b% , the call to invInt (ú, b%, r1,+)
computes the largest invariant under b%^+ for r⇤1, which is % =4

8 2 [1, 6]^ 9 2 [0, 8 (8�1)/2]. Then, bRepairInt ({%}, %, r1, %) is
invoked, which adds the new abstract elements '1, '2 and '3
(cf. Section 2) to repair the local completeness of the instruc-
tions in r1. Thus, invInt (ú, b%, r1,+) returns h%, {%,'1,'2,'3}i.
The point % is then intersected with the approximations

438

 ?[[c]] ⊤ ≤ (z = 0)z=0 , x=y

w=0

z=0 , x=y

w 0≠

z=0 , x=y

z=1 , x=y+1

z=1 , x=y+1

z=0 , x=y

Example

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

that is % =4 G 2 [0, 100] ^ ~ = G . Note that the addition
of % to Int is not enough, because intermediate approx-
imations for the evaluation of basic commands in r1 are
also needed by compositionality. Hence, the new elements
'1 =4 G 2 [1, 100] ^ ~ = G , '2 =4 G 2 [0, 99] ^ ~ = G + 1,
and '3 =4 G 2 [0, 99] ^ ~ = G are also added. In the end,
the call to invInt returns h%, {%,'1,'2,'3}i, so that the origi-
nal call to bRepairInt returns h'1, {%,'1,'2,'3,&}i because
'1 = % ^ b% . By Corollary 7.7, for any % 0  b% , we have that
JrK% 0  Spec i� % 0  '1. Remarkably, backward repair is able
to add the minimal relational information in a nonrelational
domain as needed to prove Spec. Since all the new elements
are octagons, incidentally, the analysis on Oct with input '1
(instead of b%) is also able to prove that Spec holds. ⇤

Example 7.9 (Predicate Abstraction). Consider the fol-
lowing program c from Fig. 1 of [4, 5] and the Cartesian
predicate abstraction domain � induced by ? =4 (I = 0) and
@ =4 (G = ~), as depicted below:

c =4 do { I := 0; G := ~;
if (F < 0) then {

G := G + 1; I := 1
}

} while (G < ~)

>

@ ? ? @

?^@ ?^@ ?^@ ?^@

?
We want to prove that JcK>  ? , whereas it turns out that
JcK•�> = @. The domain re�nement used in [4, 5] is the
reduced disjunctive completion of �, which is isomorphic to
the Boolean abstraction ⌫ =4 h®({?^@, ?^@, ?^@, ?^@}), ✓i.
The analysis with ⌫ leads exactly to the same analysis with
�1 =

4 � � {? $ @}, namely JcK•�1
> = ? ^ @.

By invoking bRepair� (ú,>, c, ?) we get as a result the pair
h>, {@ ! ?}i. In fact, letting �2 =4 � � {@ ! ?} we get
JcK•�2

> = ? ^ @ = �2 (? ^ @) = �2 (JcK>). Let us remark that
the point @ ! ? is indeed more abstract than ? $ @. ⇤

Widening. It is well known that the convergence of �xpoint
computations in non-ACC domains can be forced or accel-
erated by means of widening operators [16, 17]. A widening
over-approximates an abstract join G _�~ by a more abstract
element Gr�~. We show that backward repair is compatible
with widening operators, and that, in this case, the repaired
abstract interpreter is guaranteed to terminate.
De�nition 7.10 (Widening Operator). Given � 2 Abs(⇠),
a widening operator r� : � ⇥ � ! � is a function such
that: (i) for all G,~ 2 �, G,~ � G r� ~; and (ii) for every
sequence {G8 }82N ✓ �, the chain {~8 }82N inductively de�ned
by ~0 =4 G0 and ~8+1 =4 ~8 r� G8+1 �nitely converges (i.e.,
9: 2 N. 89 2 N. ~ 9+: = ~:). ⇤

The abstract semantics with widening of the Kleene star is
updated to (see, e.g., [45, Section 3.5]):

Jr⇤K•�b(=4 lfp
�
_b- 2 �. b- r� (b(_� JrK•�b-)

�
.

h>, {%,'1,'2,'3,+ } i bRepair(ú,>, r, Spec)
h+ , {+ } i bRepair(· · · (8 > 5)?, Spec)
h>, {%,'1,'2,'3} i bRepair(· · · , r2,+)
h b%1, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
h%, {%,'1,'2,'3} i inv(ú, b%, r1,+)
h%, {%,'1,'2,'3} i bRepair({+ },+ , r1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair({% },%, r1,%)
h'3, {%,'3} i bRepair(· · · , 8 := 8 + 1,%)
h'1, {%,'1,'2} i bRepair(· · · , (8  5)?; 9 := 9 + 8,'3)
h'2, {%,'2} i bRepair(· · · , 9 := 9 + 8,'3)
h'1, {%,'1} i bRepair(· · · , (8  5)?,'2)

h>, ;i bRepair(· · · , r3, b%1)
Figure 4. Backward repair call scheme for Example 7.13.

By termination condition (ii) ofr�, the iteration sequence for
the least �xpoint of _b- . b- r� (b(_� JrK•�b-) always �nitely
converges. We settle the problem of how a suitable widening
operator for � � # can be derived from a widening for �.
De�nition 7.11 (Pointed Widening). Given a re�nement
�# =4 � � # of � 2 Abs(⇠) and a widening r� on �, the
pointed widening r#� : �# ⇥�# ! �# is de�ned as follows:
G r#� ~ =4 ^�# {I 2 (# [{�(G) r��(~)}) | G,~ �# I}. ⇤
Theorem 7.12 (Soundness of Pointed Widening). If # ✓
⇠ is �nite, then r#� is a widening operator for � � # .

In Algorithm 2, line 20, we simply replace b% _��# b' withb% r#� (b% _��# b') in the clause dealing with the unroll of
Kleene star. This change has no consequence in the proof
of Theorem 7.6, so the main results are seamlessly extended
to widening with the additional guarantee that whenever
bRepair� (# , b%, r, () returns h+ ,# 0i, then termination of the
abstract interpreter for �# 0 is guaranteed by Theorem 7.12.
Example 7.13 (Widening). Let us revisit the illustrative
example in Section 2, where Spec =4 9  15 and

r =4

r2z }| {
8 := 1; 9 := 0| {z }

r3

; ((8  5)?; 9 := 9 + 8; 8 := 8 + 1| {z }
r1

)⇤; (8 > 5)| {z }
b

?.

The call to bRepairInt (ú,>, r, Spec) recursively computes
bRepairInt (ú, b%, b?, Spec), where b% = Jr2K•Int> = 8 2 [1, 6] ^
9 2 [0,1] (using the widening on intervals for 9), which re-
turns h+ , {+ }i: the element+ =4 (8 2 [1, 5]^ 9 2 [0,1])_(8 =
6 ^ 9 2 [0, 15]) is introduced to repair b?. This leads to
call bRepairInt (ú,>, r2,+), and, then, bRepairInt (ú, b%1, r⇤1,+),
with b%1 =4 Jr3K•Int> = (8 = 1 ^ 9 = 0). After unrolling r⇤1 to
reach the abstract invariant b% , the call to invInt (ú, b%, r1,+)
computes the largest invariant under b%^+ for r⇤1, which is % =4

8 2 [1, 6]^ 9 2 [0, 8 (8�1)/2]. Then, bRepairInt ({%}, %, r1, %) is
invoked, which adds the new abstract elements '1, '2 and '3
(cf. Section 2) to repair the local completeness of the instruc-
tions in r1. Thus, invInt (ú, b%, r1,+) returns h%, {%,'1,'2,'3}i.
The point % is then intersected with the approximations

438

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

that is % =4 G 2 [0, 100] ^ ~ = G . Note that the addition
of % to Int is not enough, because intermediate approx-
imations for the evaluation of basic commands in r1 are
also needed by compositionality. Hence, the new elements
'1 =4 G 2 [1, 100] ^ ~ = G , '2 =4 G 2 [0, 99] ^ ~ = G + 1,
and '3 =4 G 2 [0, 99] ^ ~ = G are also added. In the end,
the call to invInt returns h%, {%,'1,'2,'3}i, so that the origi-
nal call to bRepairInt returns h'1, {%,'1,'2,'3,&}i because
'1 = % ^ b% . By Corollary 7.7, for any % 0  b% , we have that
JrK% 0  Spec i� % 0  '1. Remarkably, backward repair is able
to add the minimal relational information in a nonrelational
domain as needed to prove Spec. Since all the new elements
are octagons, incidentally, the analysis on Oct with input '1
(instead of b%) is also able to prove that Spec holds. ⇤

Example 7.9 (Predicate Abstraction). Consider the fol-
lowing program c from Fig. 1 of [4, 5] and the Cartesian
predicate abstraction domain � induced by ? =4 (I = 0) and
@ =4 (G = ~), as depicted below:

c =4 do { I := 0; G := ~;
if (F < 0) then {

G := G + 1; I := 1
}

} while (G < ~)

>

@ ? ? @

?^@ ?^@ ?^@ ?^@

?
We want to prove that JcK>  ? , whereas it turns out that
JcK•�> = @. The domain re�nement used in [4, 5] is the
reduced disjunctive completion of �, which is isomorphic to
the Boolean abstraction ⌫ =4 h®({?^@, ?^@, ?^@, ?^@}), ✓i.
The analysis with ⌫ leads exactly to the same analysis with
�1 =

4 � � {? $ @}, namely JcK•�1
> = ? ^ @.

By invoking bRepair� (ú,>, c, ?) we get as a result the pair
h>, {@ ! ?}i. In fact, letting �2 =4 � � {@ ! ?} we get
JcK•�2

> = ? ^ @ = �2 (? ^ @) = �2 (JcK>). Let us remark that
the point @ ! ? is indeed more abstract than ? $ @. ⇤

Widening. It is well known that the convergence of �xpoint
computations in non-ACC domains can be forced or accel-
erated by means of widening operators [16, 17]. A widening
over-approximates an abstract join G _�~ by a more abstract
element Gr�~. We show that backward repair is compatible
with widening operators, and that, in this case, the repaired
abstract interpreter is guaranteed to terminate.
De�nition 7.10 (Widening Operator). Given � 2 Abs(⇠),
a widening operator r� : � ⇥ � ! � is a function such
that: (i) for all G,~ 2 �, G,~ � G r� ~; and (ii) for every
sequence {G8 }82N ✓ �, the chain {~8 }82N inductively de�ned
by ~0 =4 G0 and ~8+1 =4 ~8 r� G8+1 �nitely converges (i.e.,
9: 2 N. 89 2 N. ~ 9+: = ~:). ⇤

The abstract semantics with widening of the Kleene star is
updated to (see, e.g., [45, Section 3.5]):

Jr⇤K•�b(=4 lfp
�
_b- 2 �. b- r� (b(_� JrK•�b-)

�
.

h>, {%,'1,'2,'3,+ } i bRepair(ú,>, r, Spec)
h+ , {+ } i bRepair(· · · (8 > 5)?, Spec)
h>, {%,'1,'2,'3} i bRepair(· · · , r2,+)
h b%1, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
h%, {%,'1,'2,'3} i inv(ú, b%, r1,+)
h%, {%,'1,'2,'3} i bRepair({+ },+ , r1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair({% },%, r1,%)
h'3, {%,'3} i bRepair(· · · , 8 := 8 + 1,%)
h'1, {%,'1,'2} i bRepair(· · · , (8  5)?; 9 := 9 + 8,'3)
h'2, {%,'2} i bRepair(· · · , 9 := 9 + 8,'3)
h'1, {%,'1} i bRepair(· · · , (8  5)?,'2)

h>, ;i bRepair(· · · , r3, b%1)
Figure 4. Backward repair call scheme for Example 7.13.

By termination condition (ii) ofr�, the iteration sequence for
the least �xpoint of _b- . b- r� (b(_� JrK•�b-) always �nitely
converges. We settle the problem of how a suitable widening
operator for � � # can be derived from a widening for �.
De�nition 7.11 (Pointed Widening). Given a re�nement
�# =4 � � # of � 2 Abs(⇠) and a widening r� on �, the
pointed widening r#� : �# ⇥�# ! �# is de�ned as follows:
G r#� ~ =4 ^�# {I 2 (# [{�(G) r��(~)}) | G,~ �# I}. ⇤
Theorem 7.12 (Soundness of Pointed Widening). If # ✓
⇠ is �nite, then r#� is a widening operator for � � # .

In Algorithm 2, line 20, we simply replace b% _��# b' withb% r#� (b% _��# b') in the clause dealing with the unroll of
Kleene star. This change has no consequence in the proof
of Theorem 7.6, so the main results are seamlessly extended
to widening with the additional guarantee that whenever
bRepair� (# , b%, r, () returns h+ ,# 0i, then termination of the
abstract interpreter for �# 0 is guaranteed by Theorem 7.12.
Example 7.13 (Widening). Let us revisit the illustrative
example in Section 2, where Spec =4 9  15 and

r =4

r2z }| {
8 := 1; 9 := 0| {z }

r3

; ((8  5)?; 9 := 9 + 8; 8 := 8 + 1| {z }
r1

)⇤; (8 > 5)| {z }
b

?.

The call to bRepairInt (ú,>, r, Spec) recursively computes
bRepairInt (ú, b%, b?, Spec), where b% = Jr2K•Int> = 8 2 [1, 6] ^
9 2 [0,1] (using the widening on intervals for 9), which re-
turns h+ , {+ }i: the element+ =4 (8 2 [1, 5]^ 9 2 [0,1])_(8 =
6 ^ 9 2 [0, 15]) is introduced to repair b?. This leads to
call bRepairInt (ú,>, r2,+), and, then, bRepairInt (ú, b%1, r⇤1,+),
with b%1 =4 Jr3K•Int> = (8 = 1 ^ 9 = 0). After unrolling r⇤1 to
reach the abstract invariant b% , the call to invInt (ú, b%, r1,+)
computes the largest invariant under b%^+ for r⇤1, which is % =4

8 2 [1, 6]^ 9 2 [0, 8 (8�1)/2]. Then, bRepairInt ({%}, %, r1, %) is
invoked, which adds the new abstract elements '1, '2 and '3
(cf. Section 2) to repair the local completeness of the instruc-
tions in r1. Thus, invInt (ú, b%, r1,+) returns h%, {%,'1,'2,'3}i.
The point % is then intersected with the approximations

438

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

that is % =4 G 2 [0, 100] ^ ~ = G . Note that the addition
of % to Int is not enough, because intermediate approx-
imations for the evaluation of basic commands in r1 are
also needed by compositionality. Hence, the new elements
'1 =4 G 2 [1, 100] ^ ~ = G , '2 =4 G 2 [0, 99] ^ ~ = G + 1,
and '3 =4 G 2 [0, 99] ^ ~ = G are also added. In the end,
the call to invInt returns h%, {%,'1,'2,'3}i, so that the origi-
nal call to bRepairInt returns h'1, {%,'1,'2,'3,&}i because
'1 = % ^ b% . By Corollary 7.7, for any % 0  b% , we have that
JrK% 0  Spec i� % 0  '1. Remarkably, backward repair is able
to add the minimal relational information in a nonrelational
domain as needed to prove Spec. Since all the new elements
are octagons, incidentally, the analysis on Oct with input '1
(instead of b%) is also able to prove that Spec holds. ⇤

Example 7.9 (Predicate Abstraction). Consider the fol-
lowing program c from Fig. 1 of [4, 5] and the Cartesian
predicate abstraction domain � induced by ? =4 (I = 0) and
@ =4 (G = ~), as depicted below:

c =4 do { I := 0; G := ~;
if (F < 0) then {

G := G + 1; I := 1
}

} while (G < ~)

>

@ ? ? @

?^@ ?^@ ?^@ ?^@

?
We want to prove that JcK>  ? , whereas it turns out that
JcK•�> = @. The domain re�nement used in [4, 5] is the
reduced disjunctive completion of �, which is isomorphic to
the Boolean abstraction ⌫ =4 h®({?^@, ?^@, ?^@, ?^@}), ✓i.
The analysis with ⌫ leads exactly to the same analysis with
�1 =

4 � � {? $ @}, namely JcK•�1
> = ? ^ @.

By invoking bRepair� (ú,>, c, ?) we get as a result the pair
h>, {@ ! ?}i. In fact, letting �2 =4 � � {@ ! ?} we get
JcK•�2

> = ? ^ @ = �2 (? ^ @) = �2 (JcK>). Let us remark that
the point @ ! ? is indeed more abstract than ? $ @. ⇤

Widening. It is well known that the convergence of �xpoint
computations in non-ACC domains can be forced or accel-
erated by means of widening operators [16, 17]. A widening
over-approximates an abstract join G _�~ by a more abstract
element Gr�~. We show that backward repair is compatible
with widening operators, and that, in this case, the repaired
abstract interpreter is guaranteed to terminate.
De�nition 7.10 (Widening Operator). Given � 2 Abs(⇠),
a widening operator r� : � ⇥ � ! � is a function such
that: (i) for all G,~ 2 �, G,~ � G r� ~; and (ii) for every
sequence {G8 }82N ✓ �, the chain {~8 }82N inductively de�ned
by ~0 =4 G0 and ~8+1 =4 ~8 r� G8+1 �nitely converges (i.e.,
9: 2 N. 89 2 N. ~ 9+: = ~:). ⇤

The abstract semantics with widening of the Kleene star is
updated to (see, e.g., [45, Section 3.5]):

Jr⇤K•�b(=4 lfp
�
_b- 2 �. b- r� (b(_� JrK•�b-)

�
.

h>, {%,'1,'2,'3,+ } i bRepair(ú,>, r, Spec)
h+ , {+ } i bRepair(· · · (8 > 5)?, Spec)
h>, {%,'1,'2,'3} i bRepair(· · · , r2,+)
h b%1, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
h%, {%,'1,'2,'3} i inv(ú, b%, r1,+)
h%, {%,'1,'2,'3} i bRepair({+ },+ , r1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair({% },%, r1,%)
h'3, {%,'3} i bRepair(· · · , 8 := 8 + 1,%)
h'1, {%,'1,'2} i bRepair(· · · , (8  5)?; 9 := 9 + 8,'3)
h'2, {%,'2} i bRepair(· · · , 9 := 9 + 8,'3)
h'1, {%,'1} i bRepair(· · · , (8  5)?,'2)

h>, ;i bRepair(· · · , r3, b%1)
Figure 4. Backward repair call scheme for Example 7.13.

By termination condition (ii) ofr�, the iteration sequence for
the least �xpoint of _b- . b- r� (b(_� JrK•�b-) always �nitely
converges. We settle the problem of how a suitable widening
operator for � � # can be derived from a widening for �.
De�nition 7.11 (Pointed Widening). Given a re�nement
�# =4 � � # of � 2 Abs(⇠) and a widening r� on �, the
pointed widening r#� : �# ⇥�# ! �# is de�ned as follows:
G r#� ~ =4 ^�# {I 2 (# [{�(G) r��(~)}) | G,~ �# I}. ⇤
Theorem 7.12 (Soundness of Pointed Widening). If # ✓
⇠ is �nite, then r#� is a widening operator for � � # .

In Algorithm 2, line 20, we simply replace b% _��# b' withb% r#� (b% _��# b') in the clause dealing with the unroll of
Kleene star. This change has no consequence in the proof
of Theorem 7.6, so the main results are seamlessly extended
to widening with the additional guarantee that whenever
bRepair� (# , b%, r, () returns h+ ,# 0i, then termination of the
abstract interpreter for �# 0 is guaranteed by Theorem 7.12.
Example 7.13 (Widening). Let us revisit the illustrative
example in Section 2, where Spec =4 9  15 and

r =4

r2z }| {
8 := 1; 9 := 0| {z }

r3

; ((8  5)?; 9 := 9 + 8; 8 := 8 + 1| {z }
r1

)⇤; (8 > 5)| {z }
b

?.

The call to bRepairInt (ú,>, r, Spec) recursively computes
bRepairInt (ú, b%, b?, Spec), where b% = Jr2K•Int> = 8 2 [1, 6] ^
9 2 [0,1] (using the widening on intervals for 9), which re-
turns h+ , {+ }i: the element+ =4 (8 2 [1, 5]^ 9 2 [0,1])_(8 =
6 ^ 9 2 [0, 15]) is introduced to repair b?. This leads to
call bRepairInt (ú,>, r2,+), and, then, bRepairInt (ú, b%1, r⇤1,+),
with b%1 =4 Jr3K•Int> = (8 = 1 ^ 9 = 0). After unrolling r⇤1 to
reach the abstract invariant b% , the call to invInt (ú, b%, r1,+)
computes the largest invariant under b%^+ for r⇤1, which is % =4

8 2 [1, 6]^ 9 2 [0, 8 (8�1)/2]. Then, bRepairInt ({%}, %, r1, %) is
invoked, which adds the new abstract elements '1, '2 and '3
(cf. Section 2) to repair the local completeness of the instruc-
tions in r1. Thus, invInt (ú, b%, r1,+) returns h%, {%,'1,'2,'3}i.
The point % is then intersected with the approximations

438

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

that is % =4 G 2 [0, 100] ^ ~ = G . Note that the addition
of % to Int is not enough, because intermediate approx-
imations for the evaluation of basic commands in r1 are
also needed by compositionality. Hence, the new elements
'1 =4 G 2 [1, 100] ^ ~ = G , '2 =4 G 2 [0, 99] ^ ~ = G + 1,
and '3 =4 G 2 [0, 99] ^ ~ = G are also added. In the end,
the call to invInt returns h%, {%,'1,'2,'3}i, so that the origi-
nal call to bRepairInt returns h'1, {%,'1,'2,'3,&}i because
'1 = % ^ b% . By Corollary 7.7, for any % 0  b% , we have that
JrK% 0  Spec i� % 0  '1. Remarkably, backward repair is able
to add the minimal relational information in a nonrelational
domain as needed to prove Spec. Since all the new elements
are octagons, incidentally, the analysis on Oct with input '1
(instead of b%) is also able to prove that Spec holds. ⇤

Example 7.9 (Predicate Abstraction). Consider the fol-
lowing program c from Fig. 1 of [4, 5] and the Cartesian
predicate abstraction domain � induced by ? =4 (I = 0) and
@ =4 (G = ~), as depicted below:

c =4 do { I := 0; G := ~;
if (F < 0) then {

G := G + 1; I := 1
}

} while (G < ~)

>

@ ? ? @

?^@ ?^@ ?^@ ?^@

?
We want to prove that JcK>  ? , whereas it turns out that
JcK•�> = @. The domain re�nement used in [4, 5] is the
reduced disjunctive completion of �, which is isomorphic to
the Boolean abstraction ⌫ =4 h®({?^@, ?^@, ?^@, ?^@}), ✓i.
The analysis with ⌫ leads exactly to the same analysis with
�1 =

4 � � {? $ @}, namely JcK•�1
> = ? ^ @.

By invoking bRepair� (ú,>, c, ?) we get as a result the pair
h>, {@ ! ?}i. In fact, letting �2 =4 � � {@ ! ?} we get
JcK•�2

> = ? ^ @ = �2 (? ^ @) = �2 (JcK>). Let us remark that
the point @ ! ? is indeed more abstract than ? $ @. ⇤

Widening. It is well known that the convergence of �xpoint
computations in non-ACC domains can be forced or accel-
erated by means of widening operators [16, 17]. A widening
over-approximates an abstract join G _�~ by a more abstract
element Gr�~. We show that backward repair is compatible
with widening operators, and that, in this case, the repaired
abstract interpreter is guaranteed to terminate.
De�nition 7.10 (Widening Operator). Given � 2 Abs(⇠),
a widening operator r� : � ⇥ � ! � is a function such
that: (i) for all G,~ 2 �, G,~ � G r� ~; and (ii) for every
sequence {G8 }82N ✓ �, the chain {~8 }82N inductively de�ned
by ~0 =4 G0 and ~8+1 =4 ~8 r� G8+1 �nitely converges (i.e.,
9: 2 N. 89 2 N. ~ 9+: = ~:). ⇤

The abstract semantics with widening of the Kleene star is
updated to (see, e.g., [45, Section 3.5]):

Jr⇤K•�b(=4 lfp
�
_b- 2 �. b- r� (b(_� JrK•�b-)

�
.

h>, {%,'1,'2,'3,+ } i bRepair(ú,>, r, Spec)
h+ , {+ } i bRepair(· · · (8 > 5)?, Spec)
h>, {%,'1,'2,'3} i bRepair(· · · , r2,+)
h b%1, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
h%, {%,'1,'2,'3} i inv(ú, b%, r1,+)
h%, {%,'1,'2,'3} i bRepair({+ },+ , r1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair({% },%, r1,%)
h'3, {%,'3} i bRepair(· · · , 8 := 8 + 1,%)
h'1, {%,'1,'2} i bRepair(· · · , (8  5)?; 9 := 9 + 8,'3)
h'2, {%,'2} i bRepair(· · · , 9 := 9 + 8,'3)
h'1, {%,'1} i bRepair(· · · , (8  5)?,'2)

h>, ;i bRepair(· · · , r3, b%1)
Figure 4. Backward repair call scheme for Example 7.13.

By termination condition (ii) ofr�, the iteration sequence for
the least �xpoint of _b- . b- r� (b(_� JrK•�b-) always �nitely
converges. We settle the problem of how a suitable widening
operator for � � # can be derived from a widening for �.
De�nition 7.11 (Pointed Widening). Given a re�nement
�# =4 � � # of � 2 Abs(⇠) and a widening r� on �, the
pointed widening r#� : �# ⇥�# ! �# is de�ned as follows:
G r#� ~ =4 ^�# {I 2 (# [{�(G) r��(~)}) | G,~ �# I}. ⇤
Theorem 7.12 (Soundness of Pointed Widening). If # ✓
⇠ is �nite, then r#� is a widening operator for � � # .

In Algorithm 2, line 20, we simply replace b% _��# b' withb% r#� (b% _��# b') in the clause dealing with the unroll of
Kleene star. This change has no consequence in the proof
of Theorem 7.6, so the main results are seamlessly extended
to widening with the additional guarantee that whenever
bRepair� (# , b%, r, () returns h+ ,# 0i, then termination of the
abstract interpreter for �# 0 is guaranteed by Theorem 7.12.
Example 7.13 (Widening). Let us revisit the illustrative
example in Section 2, where Spec =4 9  15 and

r =4

r2z }| {
8 := 1; 9 := 0| {z }

r3

; ((8  5)?; 9 := 9 + 8; 8 := 8 + 1| {z }
r1

)⇤; (8 > 5)| {z }
b

?.

The call to bRepairInt (ú,>, r, Spec) recursively computes
bRepairInt (ú, b%, b?, Spec), where b% = Jr2K•Int> = 8 2 [1, 6] ^
9 2 [0,1] (using the widening on intervals for 9), which re-
turns h+ , {+ }i: the element+ =4 (8 2 [1, 5]^ 9 2 [0,1])_(8 =
6 ^ 9 2 [0, 15]) is introduced to repair b?. This leads to
call bRepairInt (ú,>, r2,+), and, then, bRepairInt (ú, b%1, r⇤1,+),
with b%1 =4 Jr3K•Int> = (8 = 1 ^ 9 = 0). After unrolling r⇤1 to
reach the abstract invariant b% , the call to invInt (ú, b%, r1,+)
computes the largest invariant under b%^+ for r⇤1, which is % =4

8 2 [1, 6]^ 9 2 [0, 8 (8�1)/2]. Then, bRepairInt ({%}, %, r1, %) is
invoked, which adds the new abstract elements '1, '2 and '3
(cf. Section 2) to repair the local completeness of the instruc-
tions in r1. Thus, invInt (ú, b%, r1,+) returns h%, {%,'1,'2,'3}i.
The point % is then intersected with the approximations

438

 ?[[c]] ⊤ ≤ (z = 0)

 [[c]]#
A ⊤ = q ≰ p

z=0 , x=y

w=0

z=0 , x=y

w 0≠

z=0 , x=y

z=1 , x=y+1

z=1 , x=y+1

z=0 , x=y

Example

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

that is % =4 G 2 [0, 100] ^ ~ = G . Note that the addition
of % to Int is not enough, because intermediate approx-
imations for the evaluation of basic commands in r1 are
also needed by compositionality. Hence, the new elements
'1 =4 G 2 [1, 100] ^ ~ = G , '2 =4 G 2 [0, 99] ^ ~ = G + 1,
and '3 =4 G 2 [0, 99] ^ ~ = G are also added. In the end,
the call to invInt returns h%, {%,'1,'2,'3}i, so that the origi-
nal call to bRepairInt returns h'1, {%,'1,'2,'3,&}i because
'1 = % ^ b% . By Corollary 7.7, for any % 0  b% , we have that
JrK% 0  Spec i� % 0  '1. Remarkably, backward repair is able
to add the minimal relational information in a nonrelational
domain as needed to prove Spec. Since all the new elements
are octagons, incidentally, the analysis on Oct with input '1
(instead of b%) is also able to prove that Spec holds. ⇤

Example 7.9 (Predicate Abstraction). Consider the fol-
lowing program c from Fig. 1 of [4, 5] and the Cartesian
predicate abstraction domain � induced by ? =4 (I = 0) and
@ =4 (G = ~), as depicted below:

c =4 do { I := 0; G := ~;
if (F < 0) then {

G := G + 1; I := 1
}

} while (G < ~)

>

@ ? ? @

?^@ ?^@ ?^@ ?^@

?
We want to prove that JcK>  ? , whereas it turns out that
JcK•�> = @. The domain re�nement used in [4, 5] is the
reduced disjunctive completion of �, which is isomorphic to
the Boolean abstraction ⌫ =4 h®({?^@, ?^@, ?^@, ?^@}), ✓i.
The analysis with ⌫ leads exactly to the same analysis with
�1 =

4 � � {? $ @}, namely JcK•�1
> = ? ^ @.

By invoking bRepair� (ú,>, c, ?) we get as a result the pair
h>, {@ ! ?}i. In fact, letting �2 =4 � � {@ ! ?} we get
JcK•�2

> = ? ^ @ = �2 (? ^ @) = �2 (JcK>). Let us remark that
the point @ ! ? is indeed more abstract than ? $ @. ⇤

Widening. It is well known that the convergence of �xpoint
computations in non-ACC domains can be forced or accel-
erated by means of widening operators [16, 17]. A widening
over-approximates an abstract join G _�~ by a more abstract
element Gr�~. We show that backward repair is compatible
with widening operators, and that, in this case, the repaired
abstract interpreter is guaranteed to terminate.
De�nition 7.10 (Widening Operator). Given � 2 Abs(⇠),
a widening operator r� : � ⇥ � ! � is a function such
that: (i) for all G,~ 2 �, G,~ � G r� ~; and (ii) for every
sequence {G8 }82N ✓ �, the chain {~8 }82N inductively de�ned
by ~0 =4 G0 and ~8+1 =4 ~8 r� G8+1 �nitely converges (i.e.,
9: 2 N. 89 2 N. ~ 9+: = ~:). ⇤

The abstract semantics with widening of the Kleene star is
updated to (see, e.g., [45, Section 3.5]):

Jr⇤K•�b(=4 lfp
�
_b- 2 �. b- r� (b(_� JrK•�b-)

�
.

h>, {%,'1,'2,'3,+ } i bRepair(ú,>, r, Spec)
h+ , {+ } i bRepair(· · · (8 > 5)?, Spec)
h>, {%,'1,'2,'3} i bRepair(· · · , r2,+)
h b%1, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
h%, {%,'1,'2,'3} i inv(ú, b%, r1,+)
h%, {%,'1,'2,'3} i bRepair({+ },+ , r1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair({% },%, r1,%)
h'3, {%,'3} i bRepair(· · · , 8 := 8 + 1,%)
h'1, {%,'1,'2} i bRepair(· · · , (8  5)?; 9 := 9 + 8,'3)
h'2, {%,'2} i bRepair(· · · , 9 := 9 + 8,'3)
h'1, {%,'1} i bRepair(· · · , (8  5)?,'2)

h>, ;i bRepair(· · · , r3, b%1)
Figure 4. Backward repair call scheme for Example 7.13.

By termination condition (ii) ofr�, the iteration sequence for
the least �xpoint of _b- . b- r� (b(_� JrK•�b-) always �nitely
converges. We settle the problem of how a suitable widening
operator for � � # can be derived from a widening for �.
De�nition 7.11 (Pointed Widening). Given a re�nement
�# =4 � � # of � 2 Abs(⇠) and a widening r� on �, the
pointed widening r#� : �# ⇥�# ! �# is de�ned as follows:
G r#� ~ =4 ^�# {I 2 (# [{�(G) r��(~)}) | G,~ �# I}. ⇤
Theorem 7.12 (Soundness of Pointed Widening). If # ✓
⇠ is �nite, then r#� is a widening operator for � � # .

In Algorithm 2, line 20, we simply replace b% _��# b' withb% r#� (b% _��# b') in the clause dealing with the unroll of
Kleene star. This change has no consequence in the proof
of Theorem 7.6, so the main results are seamlessly extended
to widening with the additional guarantee that whenever
bRepair� (# , b%, r, () returns h+ ,# 0i, then termination of the
abstract interpreter for �# 0 is guaranteed by Theorem 7.12.
Example 7.13 (Widening). Let us revisit the illustrative
example in Section 2, where Spec =4 9  15 and

r =4

r2z }| {
8 := 1; 9 := 0| {z }

r3

; ((8  5)?; 9 := 9 + 8; 8 := 8 + 1| {z }
r1

)⇤; (8 > 5)| {z }
b

?.

The call to bRepairInt (ú,>, r, Spec) recursively computes
bRepairInt (ú, b%, b?, Spec), where b% = Jr2K•Int> = 8 2 [1, 6] ^
9 2 [0,1] (using the widening on intervals for 9), which re-
turns h+ , {+ }i: the element+ =4 (8 2 [1, 5]^ 9 2 [0,1])_(8 =
6 ^ 9 2 [0, 15]) is introduced to repair b?. This leads to
call bRepairInt (ú,>, r2,+), and, then, bRepairInt (ú, b%1, r⇤1,+),
with b%1 =4 Jr3K•Int> = (8 = 1 ^ 9 = 0). After unrolling r⇤1 to
reach the abstract invariant b% , the call to invInt (ú, b%, r1,+)
computes the largest invariant under b%^+ for r⇤1, which is % =4

8 2 [1, 6]^ 9 2 [0, 8 (8�1)/2]. Then, bRepairInt ({%}, %, r1, %) is
invoked, which adds the new abstract elements '1, '2 and '3
(cf. Section 2) to repair the local completeness of the instruc-
tions in r1. Thus, invInt (ú, b%, r1,+) returns h%, {%,'1,'2,'3}i.
The point % is then intersected with the approximations

438

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

that is % =4 G 2 [0, 100] ^ ~ = G . Note that the addition
of % to Int is not enough, because intermediate approx-
imations for the evaluation of basic commands in r1 are
also needed by compositionality. Hence, the new elements
'1 =4 G 2 [1, 100] ^ ~ = G , '2 =4 G 2 [0, 99] ^ ~ = G + 1,
and '3 =4 G 2 [0, 99] ^ ~ = G are also added. In the end,
the call to invInt returns h%, {%,'1,'2,'3}i, so that the origi-
nal call to bRepairInt returns h'1, {%,'1,'2,'3,&}i because
'1 = % ^ b% . By Corollary 7.7, for any % 0  b% , we have that
JrK% 0  Spec i� % 0  '1. Remarkably, backward repair is able
to add the minimal relational information in a nonrelational
domain as needed to prove Spec. Since all the new elements
are octagons, incidentally, the analysis on Oct with input '1
(instead of b%) is also able to prove that Spec holds. ⇤

Example 7.9 (Predicate Abstraction). Consider the fol-
lowing program c from Fig. 1 of [4, 5] and the Cartesian
predicate abstraction domain � induced by ? =4 (I = 0) and
@ =4 (G = ~), as depicted below:

c =4 do { I := 0; G := ~;
if (F < 0) then {

G := G + 1; I := 1
}

} while (G < ~)

>

@ ? ? @

?^@ ?^@ ?^@ ?^@

?
We want to prove that JcK>  ? , whereas it turns out that
JcK•�> = @. The domain re�nement used in [4, 5] is the
reduced disjunctive completion of �, which is isomorphic to
the Boolean abstraction ⌫ =4 h®({?^@, ?^@, ?^@, ?^@}), ✓i.
The analysis with ⌫ leads exactly to the same analysis with
�1 =

4 � � {? $ @}, namely JcK•�1
> = ? ^ @.

By invoking bRepair� (ú,>, c, ?) we get as a result the pair
h>, {@ ! ?}i. In fact, letting �2 =4 � � {@ ! ?} we get
JcK•�2

> = ? ^ @ = �2 (? ^ @) = �2 (JcK>). Let us remark that
the point @ ! ? is indeed more abstract than ? $ @. ⇤

Widening. It is well known that the convergence of �xpoint
computations in non-ACC domains can be forced or accel-
erated by means of widening operators [16, 17]. A widening
over-approximates an abstract join G _�~ by a more abstract
element Gr�~. We show that backward repair is compatible
with widening operators, and that, in this case, the repaired
abstract interpreter is guaranteed to terminate.
De�nition 7.10 (Widening Operator). Given � 2 Abs(⇠),
a widening operator r� : � ⇥ � ! � is a function such
that: (i) for all G,~ 2 �, G,~ � G r� ~; and (ii) for every
sequence {G8 }82N ✓ �, the chain {~8 }82N inductively de�ned
by ~0 =4 G0 and ~8+1 =4 ~8 r� G8+1 �nitely converges (i.e.,
9: 2 N. 89 2 N. ~ 9+: = ~:). ⇤

The abstract semantics with widening of the Kleene star is
updated to (see, e.g., [45, Section 3.5]):

Jr⇤K•�b(=4 lfp
�
_b- 2 �. b- r� (b(_� JrK•�b-)

�
.

h>, {%,'1,'2,'3,+ } i bRepair(ú,>, r, Spec)
h+ , {+ } i bRepair(· · · (8 > 5)?, Spec)
h>, {%,'1,'2,'3} i bRepair(· · · , r2,+)
h b%1, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
h%, {%,'1,'2,'3} i inv(ú, b%, r1,+)
h%, {%,'1,'2,'3} i bRepair({+ },+ , r1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair({% },%, r1,%)
h'3, {%,'3} i bRepair(· · · , 8 := 8 + 1,%)
h'1, {%,'1,'2} i bRepair(· · · , (8  5)?; 9 := 9 + 8,'3)
h'2, {%,'2} i bRepair(· · · , 9 := 9 + 8,'3)
h'1, {%,'1} i bRepair(· · · , (8  5)?,'2)

h>, ;i bRepair(· · · , r3, b%1)
Figure 4. Backward repair call scheme for Example 7.13.

By termination condition (ii) ofr�, the iteration sequence for
the least �xpoint of _b- . b- r� (b(_� JrK•�b-) always �nitely
converges. We settle the problem of how a suitable widening
operator for � � # can be derived from a widening for �.
De�nition 7.11 (Pointed Widening). Given a re�nement
�# =4 � � # of � 2 Abs(⇠) and a widening r� on �, the
pointed widening r#� : �# ⇥�# ! �# is de�ned as follows:
G r#� ~ =4 ^�# {I 2 (# [{�(G) r��(~)}) | G,~ �# I}. ⇤
Theorem 7.12 (Soundness of Pointed Widening). If # ✓
⇠ is �nite, then r#� is a widening operator for � � # .

In Algorithm 2, line 20, we simply replace b% _��# b' withb% r#� (b% _��# b') in the clause dealing with the unroll of
Kleene star. This change has no consequence in the proof
of Theorem 7.6, so the main results are seamlessly extended
to widening with the additional guarantee that whenever
bRepair� (# , b%, r, () returns h+ ,# 0i, then termination of the
abstract interpreter for �# 0 is guaranteed by Theorem 7.12.
Example 7.13 (Widening). Let us revisit the illustrative
example in Section 2, where Spec =4 9  15 and

r =4

r2z }| {
8 := 1; 9 := 0| {z }

r3

; ((8  5)?; 9 := 9 + 8; 8 := 8 + 1| {z }
r1

)⇤; (8 > 5)| {z }
b

?.

The call to bRepairInt (ú,>, r, Spec) recursively computes
bRepairInt (ú, b%, b?, Spec), where b% = Jr2K•Int> = 8 2 [1, 6] ^
9 2 [0,1] (using the widening on intervals for 9), which re-
turns h+ , {+ }i: the element+ =4 (8 2 [1, 5]^ 9 2 [0,1])_(8 =
6 ^ 9 2 [0, 15]) is introduced to repair b?. This leads to
call bRepairInt (ú,>, r2,+), and, then, bRepairInt (ú, b%1, r⇤1,+),
with b%1 =4 Jr3K•Int> = (8 = 1 ^ 9 = 0). After unrolling r⇤1 to
reach the abstract invariant b% , the call to invInt (ú, b%, r1,+)
computes the largest invariant under b%^+ for r⇤1, which is % =4

8 2 [1, 6]^ 9 2 [0, 8 (8�1)/2]. Then, bRepairInt ({%}, %, r1, %) is
invoked, which adds the new abstract elements '1, '2 and '3
(cf. Section 2) to repair the local completeness of the instruc-
tions in r1. Thus, invInt (ú, b%, r1,+) returns h%, {%,'1,'2,'3}i.
The point % is then intersected with the approximations

438

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

that is % =4 G 2 [0, 100] ^ ~ = G . Note that the addition
of % to Int is not enough, because intermediate approx-
imations for the evaluation of basic commands in r1 are
also needed by compositionality. Hence, the new elements
'1 =4 G 2 [1, 100] ^ ~ = G , '2 =4 G 2 [0, 99] ^ ~ = G + 1,
and '3 =4 G 2 [0, 99] ^ ~ = G are also added. In the end,
the call to invInt returns h%, {%,'1,'2,'3}i, so that the origi-
nal call to bRepairInt returns h'1, {%,'1,'2,'3,&}i because
'1 = % ^ b% . By Corollary 7.7, for any % 0  b% , we have that
JrK% 0  Spec i� % 0  '1. Remarkably, backward repair is able
to add the minimal relational information in a nonrelational
domain as needed to prove Spec. Since all the new elements
are octagons, incidentally, the analysis on Oct with input '1
(instead of b%) is also able to prove that Spec holds. ⇤

Example 7.9 (Predicate Abstraction). Consider the fol-
lowing program c from Fig. 1 of [4, 5] and the Cartesian
predicate abstraction domain � induced by ? =4 (I = 0) and
@ =4 (G = ~), as depicted below:

c =4 do { I := 0; G := ~;
if (F < 0) then {

G := G + 1; I := 1
}

} while (G < ~)

>

@ ? ? @

?^@ ?^@ ?^@ ?^@

?
We want to prove that JcK>  ? , whereas it turns out that
JcK•�> = @. The domain re�nement used in [4, 5] is the
reduced disjunctive completion of �, which is isomorphic to
the Boolean abstraction ⌫ =4 h®({?^@, ?^@, ?^@, ?^@}), ✓i.
The analysis with ⌫ leads exactly to the same analysis with
�1 =

4 � � {? $ @}, namely JcK•�1
> = ? ^ @.

By invoking bRepair� (ú,>, c, ?) we get as a result the pair
h>, {@ ! ?}i. In fact, letting �2 =4 � � {@ ! ?} we get
JcK•�2

> = ? ^ @ = �2 (? ^ @) = �2 (JcK>). Let us remark that
the point @ ! ? is indeed more abstract than ? $ @. ⇤

Widening. It is well known that the convergence of �xpoint
computations in non-ACC domains can be forced or accel-
erated by means of widening operators [16, 17]. A widening
over-approximates an abstract join G _�~ by a more abstract
element Gr�~. We show that backward repair is compatible
with widening operators, and that, in this case, the repaired
abstract interpreter is guaranteed to terminate.
De�nition 7.10 (Widening Operator). Given � 2 Abs(⇠),
a widening operator r� : � ⇥ � ! � is a function such
that: (i) for all G,~ 2 �, G,~ � G r� ~; and (ii) for every
sequence {G8 }82N ✓ �, the chain {~8 }82N inductively de�ned
by ~0 =4 G0 and ~8+1 =4 ~8 r� G8+1 �nitely converges (i.e.,
9: 2 N. 89 2 N. ~ 9+: = ~:). ⇤

The abstract semantics with widening of the Kleene star is
updated to (see, e.g., [45, Section 3.5]):

Jr⇤K•�b(=4 lfp
�
_b- 2 �. b- r� (b(_� JrK•�b-)

�
.

h>, {%,'1,'2,'3,+ } i bRepair(ú,>, r, Spec)
h+ , {+ } i bRepair(· · · (8 > 5)?, Spec)
h>, {%,'1,'2,'3} i bRepair(· · · , r2,+)
h b%1, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
h%, {%,'1,'2,'3} i inv(ú, b%, r1,+)
h%, {%,'1,'2,'3} i bRepair({+ },+ , r1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair({% },%, r1,%)
h'3, {%,'3} i bRepair(· · · , 8 := 8 + 1,%)
h'1, {%,'1,'2} i bRepair(· · · , (8  5)?; 9 := 9 + 8,'3)
h'2, {%,'2} i bRepair(· · · , 9 := 9 + 8,'3)
h'1, {%,'1} i bRepair(· · · , (8  5)?,'2)

h>, ;i bRepair(· · · , r3, b%1)
Figure 4. Backward repair call scheme for Example 7.13.

By termination condition (ii) ofr�, the iteration sequence for
the least �xpoint of _b- . b- r� (b(_� JrK•�b-) always �nitely
converges. We settle the problem of how a suitable widening
operator for � � # can be derived from a widening for �.
De�nition 7.11 (Pointed Widening). Given a re�nement
�# =4 � � # of � 2 Abs(⇠) and a widening r� on �, the
pointed widening r#� : �# ⇥�# ! �# is de�ned as follows:
G r#� ~ =4 ^�# {I 2 (# [{�(G) r��(~)}) | G,~ �# I}. ⇤
Theorem 7.12 (Soundness of Pointed Widening). If # ✓
⇠ is �nite, then r#� is a widening operator for � � # .

In Algorithm 2, line 20, we simply replace b% _��# b' withb% r#� (b% _��# b') in the clause dealing with the unroll of
Kleene star. This change has no consequence in the proof
of Theorem 7.6, so the main results are seamlessly extended
to widening with the additional guarantee that whenever
bRepair� (# , b%, r, () returns h+ ,# 0i, then termination of the
abstract interpreter for �# 0 is guaranteed by Theorem 7.12.
Example 7.13 (Widening). Let us revisit the illustrative
example in Section 2, where Spec =4 9  15 and

r =4

r2z }| {
8 := 1; 9 := 0| {z }

r3

; ((8  5)?; 9 := 9 + 8; 8 := 8 + 1| {z }
r1

)⇤; (8 > 5)| {z }
b

?.

The call to bRepairInt (ú,>, r, Spec) recursively computes
bRepairInt (ú, b%, b?, Spec), where b% = Jr2K•Int> = 8 2 [1, 6] ^
9 2 [0,1] (using the widening on intervals for 9), which re-
turns h+ , {+ }i: the element+ =4 (8 2 [1, 5]^ 9 2 [0,1])_(8 =
6 ^ 9 2 [0, 15]) is introduced to repair b?. This leads to
call bRepairInt (ú,>, r2,+), and, then, bRepairInt (ú, b%1, r⇤1,+),
with b%1 =4 Jr3K•Int> = (8 = 1 ^ 9 = 0). After unrolling r⇤1 to
reach the abstract invariant b% , the call to invInt (ú, b%, r1,+)
computes the largest invariant under b%^+ for r⇤1, which is % =4

8 2 [1, 6]^ 9 2 [0, 8 (8�1)/2]. Then, bRepairInt ({%}, %, r1, %) is
invoked, which adds the new abstract elements '1, '2 and '3
(cf. Section 2) to repair the local completeness of the instruc-
tions in r1. Thus, invInt (ú, b%, r1,+) returns h%, {%,'1,'2,'3}i.
The point % is then intersected with the approximations

438

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

that is % =4 G 2 [0, 100] ^ ~ = G . Note that the addition
of % to Int is not enough, because intermediate approx-
imations for the evaluation of basic commands in r1 are
also needed by compositionality. Hence, the new elements
'1 =4 G 2 [1, 100] ^ ~ = G , '2 =4 G 2 [0, 99] ^ ~ = G + 1,
and '3 =4 G 2 [0, 99] ^ ~ = G are also added. In the end,
the call to invInt returns h%, {%,'1,'2,'3}i, so that the origi-
nal call to bRepairInt returns h'1, {%,'1,'2,'3,&}i because
'1 = % ^ b% . By Corollary 7.7, for any % 0  b% , we have that
JrK% 0  Spec i� % 0  '1. Remarkably, backward repair is able
to add the minimal relational information in a nonrelational
domain as needed to prove Spec. Since all the new elements
are octagons, incidentally, the analysis on Oct with input '1
(instead of b%) is also able to prove that Spec holds. ⇤

Example 7.9 (Predicate Abstraction). Consider the fol-
lowing program c from Fig. 1 of [4, 5] and the Cartesian
predicate abstraction domain � induced by ? =4 (I = 0) and
@ =4 (G = ~), as depicted below:

c =4 do { I := 0; G := ~;
if (F < 0) then {

G := G + 1; I := 1
}

} while (G < ~)

>

@ ? ? @

?^@ ?^@ ?^@ ?^@

?
We want to prove that JcK>  ? , whereas it turns out that
JcK•�> = @. The domain re�nement used in [4, 5] is the
reduced disjunctive completion of �, which is isomorphic to
the Boolean abstraction ⌫ =4 h®({?^@, ?^@, ?^@, ?^@}), ✓i.
The analysis with ⌫ leads exactly to the same analysis with
�1 =

4 � � {? $ @}, namely JcK•�1
> = ? ^ @.

By invoking bRepair� (ú,>, c, ?) we get as a result the pair
h>, {@ ! ?}i. In fact, letting �2 =4 � � {@ ! ?} we get
JcK•�2

> = ? ^ @ = �2 (? ^ @) = �2 (JcK>). Let us remark that
the point @ ! ? is indeed more abstract than ? $ @. ⇤

Widening. It is well known that the convergence of �xpoint
computations in non-ACC domains can be forced or accel-
erated by means of widening operators [16, 17]. A widening
over-approximates an abstract join G _�~ by a more abstract
element Gr�~. We show that backward repair is compatible
with widening operators, and that, in this case, the repaired
abstract interpreter is guaranteed to terminate.
De�nition 7.10 (Widening Operator). Given � 2 Abs(⇠),
a widening operator r� : � ⇥ � ! � is a function such
that: (i) for all G,~ 2 �, G,~ � G r� ~; and (ii) for every
sequence {G8 }82N ✓ �, the chain {~8 }82N inductively de�ned
by ~0 =4 G0 and ~8+1 =4 ~8 r� G8+1 �nitely converges (i.e.,
9: 2 N. 89 2 N. ~ 9+: = ~:). ⇤

The abstract semantics with widening of the Kleene star is
updated to (see, e.g., [45, Section 3.5]):

Jr⇤K•�b(=4 lfp
�
_b- 2 �. b- r� (b(_� JrK•�b-)

�
.

h>, {%,'1,'2,'3,+ } i bRepair(ú,>, r, Spec)
h+ , {+ } i bRepair(· · · (8 > 5)?, Spec)
h>, {%,'1,'2,'3} i bRepair(· · · , r2,+)
h b%1, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
h%, {%,'1,'2,'3} i inv(ú, b%, r1,+)
h%, {%,'1,'2,'3} i bRepair({+ },+ , r1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair({% },%, r1,%)
h'3, {%,'3} i bRepair(· · · , 8 := 8 + 1,%)
h'1, {%,'1,'2} i bRepair(· · · , (8  5)?; 9 := 9 + 8,'3)
h'2, {%,'2} i bRepair(· · · , 9 := 9 + 8,'3)
h'1, {%,'1} i bRepair(· · · , (8  5)?,'2)

h>, ;i bRepair(· · · , r3, b%1)
Figure 4. Backward repair call scheme for Example 7.13.

By termination condition (ii) ofr�, the iteration sequence for
the least �xpoint of _b- . b- r� (b(_� JrK•�b-) always �nitely
converges. We settle the problem of how a suitable widening
operator for � � # can be derived from a widening for �.
De�nition 7.11 (Pointed Widening). Given a re�nement
�# =4 � � # of � 2 Abs(⇠) and a widening r� on �, the
pointed widening r#� : �# ⇥�# ! �# is de�ned as follows:
G r#� ~ =4 ^�# {I 2 (# [{�(G) r��(~)}) | G,~ �# I}. ⇤
Theorem 7.12 (Soundness of Pointed Widening). If # ✓
⇠ is �nite, then r#� is a widening operator for � � # .

In Algorithm 2, line 20, we simply replace b% _��# b' withb% r#� (b% _��# b') in the clause dealing with the unroll of
Kleene star. This change has no consequence in the proof
of Theorem 7.6, so the main results are seamlessly extended
to widening with the additional guarantee that whenever
bRepair� (# , b%, r, () returns h+ ,# 0i, then termination of the
abstract interpreter for �# 0 is guaranteed by Theorem 7.12.
Example 7.13 (Widening). Let us revisit the illustrative
example in Section 2, where Spec =4 9  15 and

r =4

r2z }| {
8 := 1; 9 := 0| {z }

r3

; ((8  5)?; 9 := 9 + 8; 8 := 8 + 1| {z }
r1

)⇤; (8 > 5)| {z }
b

?.

The call to bRepairInt (ú,>, r, Spec) recursively computes
bRepairInt (ú, b%, b?, Spec), where b% = Jr2K•Int> = 8 2 [1, 6] ^
9 2 [0,1] (using the widening on intervals for 9), which re-
turns h+ , {+ }i: the element+ =4 (8 2 [1, 5]^ 9 2 [0,1])_(8 =
6 ^ 9 2 [0, 15]) is introduced to repair b?. This leads to
call bRepairInt (ú,>, r2,+), and, then, bRepairInt (ú, b%1, r⇤1,+),
with b%1 =4 Jr3K•Int> = (8 = 1 ^ 9 = 0). After unrolling r⇤1 to
reach the abstract invariant b% , the call to invInt (ú, b%, r1,+)
computes the largest invariant under b%^+ for r⇤1, which is % =4

8 2 [1, 6]^ 9 2 [0, 8 (8�1)/2]. Then, bRepairInt ({%}, %, r1, %) is
invoked, which adds the new abstract elements '1, '2 and '3
(cf. Section 2) to repair the local completeness of the instruc-
tions in r1. Thus, invInt (ú, b%, r1,+) returns h%, {%,'1,'2,'3}i.
The point % is then intersected with the approximations

438

 ?[[c]] ⊤ ≤ (z = 0)

 [[c]]#
A ⊤ = q ≰ p

 𝖻𝖱𝖾𝗉𝖺𝗂𝗋A(∅, ⊤ , c, p) = ⟨ ⊤ , {q ⇒ p}⟩

z=0 , x=y

w=0

z=0 , x=y

w 0≠

z=0 , x=y

z=1 , x=y+1

z=1 , x=y+1

z=0 , x=y

Example

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

that is % =4 G 2 [0, 100] ^ ~ = G . Note that the addition
of % to Int is not enough, because intermediate approx-
imations for the evaluation of basic commands in r1 are
also needed by compositionality. Hence, the new elements
'1 =4 G 2 [1, 100] ^ ~ = G , '2 =4 G 2 [0, 99] ^ ~ = G + 1,
and '3 =4 G 2 [0, 99] ^ ~ = G are also added. In the end,
the call to invInt returns h%, {%,'1,'2,'3}i, so that the origi-
nal call to bRepairInt returns h'1, {%,'1,'2,'3,&}i because
'1 = % ^ b% . By Corollary 7.7, for any % 0  b% , we have that
JrK% 0  Spec i� % 0  '1. Remarkably, backward repair is able
to add the minimal relational information in a nonrelational
domain as needed to prove Spec. Since all the new elements
are octagons, incidentally, the analysis on Oct with input '1
(instead of b%) is also able to prove that Spec holds. ⇤

Example 7.9 (Predicate Abstraction). Consider the fol-
lowing program c from Fig. 1 of [4, 5] and the Cartesian
predicate abstraction domain � induced by ? =4 (I = 0) and
@ =4 (G = ~), as depicted below:

c =4 do { I := 0; G := ~;
if (F < 0) then {

G := G + 1; I := 1
}

} while (G < ~)

>

@ ? ? @

?^@ ?^@ ?^@ ?^@

?
We want to prove that JcK>  ? , whereas it turns out that
JcK•�> = @. The domain re�nement used in [4, 5] is the
reduced disjunctive completion of �, which is isomorphic to
the Boolean abstraction ⌫ =4 h®({?^@, ?^@, ?^@, ?^@}), ✓i.
The analysis with ⌫ leads exactly to the same analysis with
�1 =

4 � � {? $ @}, namely JcK•�1
> = ? ^ @.

By invoking bRepair� (ú,>, c, ?) we get as a result the pair
h>, {@ ! ?}i. In fact, letting �2 =4 � � {@ ! ?} we get
JcK•�2

> = ? ^ @ = �2 (? ^ @) = �2 (JcK>). Let us remark that
the point @ ! ? is indeed more abstract than ? $ @. ⇤

Widening. It is well known that the convergence of �xpoint
computations in non-ACC domains can be forced or accel-
erated by means of widening operators [16, 17]. A widening
over-approximates an abstract join G _�~ by a more abstract
element Gr�~. We show that backward repair is compatible
with widening operators, and that, in this case, the repaired
abstract interpreter is guaranteed to terminate.
De�nition 7.10 (Widening Operator). Given � 2 Abs(⇠),
a widening operator r� : � ⇥ � ! � is a function such
that: (i) for all G,~ 2 �, G,~ � G r� ~; and (ii) for every
sequence {G8 }82N ✓ �, the chain {~8 }82N inductively de�ned
by ~0 =4 G0 and ~8+1 =4 ~8 r� G8+1 �nitely converges (i.e.,
9: 2 N. 89 2 N. ~ 9+: = ~:). ⇤

The abstract semantics with widening of the Kleene star is
updated to (see, e.g., [45, Section 3.5]):

Jr⇤K•�b(=4 lfp
�
_b- 2 �. b- r� (b(_� JrK•�b-)

�
.

h>, {%,'1,'2,'3,+ } i bRepair(ú,>, r, Spec)
h+ , {+ } i bRepair(· · · (8 > 5)?, Spec)
h>, {%,'1,'2,'3} i bRepair(· · · , r2,+)
h b%1, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
h%, {%,'1,'2,'3} i inv(ú, b%, r1,+)
h%, {%,'1,'2,'3} i bRepair({+ },+ , r1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair({% },%, r1,%)
h'3, {%,'3} i bRepair(· · · , 8 := 8 + 1,%)
h'1, {%,'1,'2} i bRepair(· · · , (8  5)?; 9 := 9 + 8,'3)
h'2, {%,'2} i bRepair(· · · , 9 := 9 + 8,'3)
h'1, {%,'1} i bRepair(· · · , (8  5)?,'2)

h>, ;i bRepair(· · · , r3, b%1)
Figure 4. Backward repair call scheme for Example 7.13.

By termination condition (ii) ofr�, the iteration sequence for
the least �xpoint of _b- . b- r� (b(_� JrK•�b-) always �nitely
converges. We settle the problem of how a suitable widening
operator for � � # can be derived from a widening for �.
De�nition 7.11 (Pointed Widening). Given a re�nement
�# =4 � � # of � 2 Abs(⇠) and a widening r� on �, the
pointed widening r#� : �# ⇥�# ! �# is de�ned as follows:
G r#� ~ =4 ^�# {I 2 (# [{�(G) r��(~)}) | G,~ �# I}. ⇤
Theorem 7.12 (Soundness of Pointed Widening). If # ✓
⇠ is �nite, then r#� is a widening operator for � � # .

In Algorithm 2, line 20, we simply replace b% _��# b' withb% r#� (b% _��# b') in the clause dealing with the unroll of
Kleene star. This change has no consequence in the proof
of Theorem 7.6, so the main results are seamlessly extended
to widening with the additional guarantee that whenever
bRepair� (# , b%, r, () returns h+ ,# 0i, then termination of the
abstract interpreter for �# 0 is guaranteed by Theorem 7.12.
Example 7.13 (Widening). Let us revisit the illustrative
example in Section 2, where Spec =4 9  15 and

r =4

r2z }| {
8 := 1; 9 := 0| {z }

r3

; ((8  5)?; 9 := 9 + 8; 8 := 8 + 1| {z }
r1

)⇤; (8 > 5)| {z }
b

?.

The call to bRepairInt (ú,>, r, Spec) recursively computes
bRepairInt (ú, b%, b?, Spec), where b% = Jr2K•Int> = 8 2 [1, 6] ^
9 2 [0,1] (using the widening on intervals for 9), which re-
turns h+ , {+ }i: the element+ =4 (8 2 [1, 5]^ 9 2 [0,1])_(8 =
6 ^ 9 2 [0, 15]) is introduced to repair b?. This leads to
call bRepairInt (ú,>, r2,+), and, then, bRepairInt (ú, b%1, r⇤1,+),
with b%1 =4 Jr3K•Int> = (8 = 1 ^ 9 = 0). After unrolling r⇤1 to
reach the abstract invariant b% , the call to invInt (ú, b%, r1,+)
computes the largest invariant under b%^+ for r⇤1, which is % =4

8 2 [1, 6]^ 9 2 [0, 8 (8�1)/2]. Then, bRepairInt ({%}, %, r1, %) is
invoked, which adds the new abstract elements '1, '2 and '3
(cf. Section 2) to repair the local completeness of the instruc-
tions in r1. Thus, invInt (ú, b%, r1,+) returns h%, {%,'1,'2,'3}i.
The point % is then intersected with the approximations

438

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

that is % =4 G 2 [0, 100] ^ ~ = G . Note that the addition
of % to Int is not enough, because intermediate approx-
imations for the evaluation of basic commands in r1 are
also needed by compositionality. Hence, the new elements
'1 =4 G 2 [1, 100] ^ ~ = G , '2 =4 G 2 [0, 99] ^ ~ = G + 1,
and '3 =4 G 2 [0, 99] ^ ~ = G are also added. In the end,
the call to invInt returns h%, {%,'1,'2,'3}i, so that the origi-
nal call to bRepairInt returns h'1, {%,'1,'2,'3,&}i because
'1 = % ^ b% . By Corollary 7.7, for any % 0  b% , we have that
JrK% 0  Spec i� % 0  '1. Remarkably, backward repair is able
to add the minimal relational information in a nonrelational
domain as needed to prove Spec. Since all the new elements
are octagons, incidentally, the analysis on Oct with input '1
(instead of b%) is also able to prove that Spec holds. ⇤

Example 7.9 (Predicate Abstraction). Consider the fol-
lowing program c from Fig. 1 of [4, 5] and the Cartesian
predicate abstraction domain � induced by ? =4 (I = 0) and
@ =4 (G = ~), as depicted below:

c =4 do { I := 0; G := ~;
if (F < 0) then {

G := G + 1; I := 1
}

} while (G < ~)

>

@ ? ? @

?^@ ?^@ ?^@ ?^@

?
We want to prove that JcK>  ? , whereas it turns out that
JcK•�> = @. The domain re�nement used in [4, 5] is the
reduced disjunctive completion of �, which is isomorphic to
the Boolean abstraction ⌫ =4 h®({?^@, ?^@, ?^@, ?^@}), ✓i.
The analysis with ⌫ leads exactly to the same analysis with
�1 =

4 � � {? $ @}, namely JcK•�1
> = ? ^ @.

By invoking bRepair� (ú,>, c, ?) we get as a result the pair
h>, {@ ! ?}i. In fact, letting �2 =4 � � {@ ! ?} we get
JcK•�2

> = ? ^ @ = �2 (? ^ @) = �2 (JcK>). Let us remark that
the point @ ! ? is indeed more abstract than ? $ @. ⇤

Widening. It is well known that the convergence of �xpoint
computations in non-ACC domains can be forced or accel-
erated by means of widening operators [16, 17]. A widening
over-approximates an abstract join G _�~ by a more abstract
element Gr�~. We show that backward repair is compatible
with widening operators, and that, in this case, the repaired
abstract interpreter is guaranteed to terminate.
De�nition 7.10 (Widening Operator). Given � 2 Abs(⇠),
a widening operator r� : � ⇥ � ! � is a function such
that: (i) for all G,~ 2 �, G,~ � G r� ~; and (ii) for every
sequence {G8 }82N ✓ �, the chain {~8 }82N inductively de�ned
by ~0 =4 G0 and ~8+1 =4 ~8 r� G8+1 �nitely converges (i.e.,
9: 2 N. 89 2 N. ~ 9+: = ~:). ⇤

The abstract semantics with widening of the Kleene star is
updated to (see, e.g., [45, Section 3.5]):

Jr⇤K•�b(=4 lfp
�
_b- 2 �. b- r� (b(_� JrK•�b-)

�
.

h>, {%,'1,'2,'3,+ } i bRepair(ú,>, r, Spec)
h+ , {+ } i bRepair(· · · (8 > 5)?, Spec)
h>, {%,'1,'2,'3} i bRepair(· · · , r2,+)
h b%1, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
h%, {%,'1,'2,'3} i inv(ú, b%, r1,+)
h%, {%,'1,'2,'3} i bRepair({+ },+ , r1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair({% },%, r1,%)
h'3, {%,'3} i bRepair(· · · , 8 := 8 + 1,%)
h'1, {%,'1,'2} i bRepair(· · · , (8  5)?; 9 := 9 + 8,'3)
h'2, {%,'2} i bRepair(· · · , 9 := 9 + 8,'3)
h'1, {%,'1} i bRepair(· · · , (8  5)?,'2)

h>, ;i bRepair(· · · , r3, b%1)
Figure 4. Backward repair call scheme for Example 7.13.

By termination condition (ii) ofr�, the iteration sequence for
the least �xpoint of _b- . b- r� (b(_� JrK•�b-) always �nitely
converges. We settle the problem of how a suitable widening
operator for � � # can be derived from a widening for �.
De�nition 7.11 (Pointed Widening). Given a re�nement
�# =4 � � # of � 2 Abs(⇠) and a widening r� on �, the
pointed widening r#� : �# ⇥�# ! �# is de�ned as follows:
G r#� ~ =4 ^�# {I 2 (# [{�(G) r��(~)}) | G,~ �# I}. ⇤
Theorem 7.12 (Soundness of Pointed Widening). If # ✓
⇠ is �nite, then r#� is a widening operator for � � # .

In Algorithm 2, line 20, we simply replace b% _��# b' withb% r#� (b% _��# b') in the clause dealing with the unroll of
Kleene star. This change has no consequence in the proof
of Theorem 7.6, so the main results are seamlessly extended
to widening with the additional guarantee that whenever
bRepair� (# , b%, r, () returns h+ ,# 0i, then termination of the
abstract interpreter for �# 0 is guaranteed by Theorem 7.12.
Example 7.13 (Widening). Let us revisit the illustrative
example in Section 2, where Spec =4 9  15 and

r =4

r2z }| {
8 := 1; 9 := 0| {z }

r3

; ((8  5)?; 9 := 9 + 8; 8 := 8 + 1| {z }
r1

)⇤; (8 > 5)| {z }
b

?.

The call to bRepairInt (ú,>, r, Spec) recursively computes
bRepairInt (ú, b%, b?, Spec), where b% = Jr2K•Int> = 8 2 [1, 6] ^
9 2 [0,1] (using the widening on intervals for 9), which re-
turns h+ , {+ }i: the element+ =4 (8 2 [1, 5]^ 9 2 [0,1])_(8 =
6 ^ 9 2 [0, 15]) is introduced to repair b?. This leads to
call bRepairInt (ú,>, r2,+), and, then, bRepairInt (ú, b%1, r⇤1,+),
with b%1 =4 Jr3K•Int> = (8 = 1 ^ 9 = 0). After unrolling r⇤1 to
reach the abstract invariant b% , the call to invInt (ú, b%, r1,+)
computes the largest invariant under b%^+ for r⇤1, which is % =4

8 2 [1, 6]^ 9 2 [0, 8 (8�1)/2]. Then, bRepairInt ({%}, %, r1, %) is
invoked, which adds the new abstract elements '1, '2 and '3
(cf. Section 2) to repair the local completeness of the instruc-
tions in r1. Thus, invInt (ú, b%, r1,+) returns h%, {%,'1,'2,'3}i.
The point % is then intersected with the approximations

438

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

that is % =4 G 2 [0, 100] ^ ~ = G . Note that the addition
of % to Int is not enough, because intermediate approx-
imations for the evaluation of basic commands in r1 are
also needed by compositionality. Hence, the new elements
'1 =4 G 2 [1, 100] ^ ~ = G , '2 =4 G 2 [0, 99] ^ ~ = G + 1,
and '3 =4 G 2 [0, 99] ^ ~ = G are also added. In the end,
the call to invInt returns h%, {%,'1,'2,'3}i, so that the origi-
nal call to bRepairInt returns h'1, {%,'1,'2,'3,&}i because
'1 = % ^ b% . By Corollary 7.7, for any % 0  b% , we have that
JrK% 0  Spec i� % 0  '1. Remarkably, backward repair is able
to add the minimal relational information in a nonrelational
domain as needed to prove Spec. Since all the new elements
are octagons, incidentally, the analysis on Oct with input '1
(instead of b%) is also able to prove that Spec holds. ⇤

Example 7.9 (Predicate Abstraction). Consider the fol-
lowing program c from Fig. 1 of [4, 5] and the Cartesian
predicate abstraction domain � induced by ? =4 (I = 0) and
@ =4 (G = ~), as depicted below:

c =4 do { I := 0; G := ~;
if (F < 0) then {

G := G + 1; I := 1
}

} while (G < ~)

>

@ ? ? @

?^@ ?^@ ?^@ ?^@

?
We want to prove that JcK>  ? , whereas it turns out that
JcK•�> = @. The domain re�nement used in [4, 5] is the
reduced disjunctive completion of �, which is isomorphic to
the Boolean abstraction ⌫ =4 h®({?^@, ?^@, ?^@, ?^@}), ✓i.
The analysis with ⌫ leads exactly to the same analysis with
�1 =

4 � � {? $ @}, namely JcK•�1
> = ? ^ @.

By invoking bRepair� (ú,>, c, ?) we get as a result the pair
h>, {@ ! ?}i. In fact, letting �2 =4 � � {@ ! ?} we get
JcK•�2

> = ? ^ @ = �2 (? ^ @) = �2 (JcK>). Let us remark that
the point @ ! ? is indeed more abstract than ? $ @. ⇤

Widening. It is well known that the convergence of �xpoint
computations in non-ACC domains can be forced or accel-
erated by means of widening operators [16, 17]. A widening
over-approximates an abstract join G _�~ by a more abstract
element Gr�~. We show that backward repair is compatible
with widening operators, and that, in this case, the repaired
abstract interpreter is guaranteed to terminate.
De�nition 7.10 (Widening Operator). Given � 2 Abs(⇠),
a widening operator r� : � ⇥ � ! � is a function such
that: (i) for all G,~ 2 �, G,~ � G r� ~; and (ii) for every
sequence {G8 }82N ✓ �, the chain {~8 }82N inductively de�ned
by ~0 =4 G0 and ~8+1 =4 ~8 r� G8+1 �nitely converges (i.e.,
9: 2 N. 89 2 N. ~ 9+: = ~:). ⇤

The abstract semantics with widening of the Kleene star is
updated to (see, e.g., [45, Section 3.5]):

Jr⇤K•�b(=4 lfp
�
_b- 2 �. b- r� (b(_� JrK•�b-)

�
.

h>, {%,'1,'2,'3,+ } i bRepair(ú,>, r, Spec)
h+ , {+ } i bRepair(· · · (8 > 5)?, Spec)
h>, {%,'1,'2,'3} i bRepair(· · · , r2,+)
h b%1, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
h%, {%,'1,'2,'3} i inv(ú, b%, r1,+)
h%, {%,'1,'2,'3} i bRepair({+ },+ , r1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair({% },%, r1,%)
h'3, {%,'3} i bRepair(· · · , 8 := 8 + 1,%)
h'1, {%,'1,'2} i bRepair(· · · , (8  5)?; 9 := 9 + 8,'3)
h'2, {%,'2} i bRepair(· · · , 9 := 9 + 8,'3)
h'1, {%,'1} i bRepair(· · · , (8  5)?,'2)

h>, ;i bRepair(· · · , r3, b%1)
Figure 4. Backward repair call scheme for Example 7.13.

By termination condition (ii) ofr�, the iteration sequence for
the least �xpoint of _b- . b- r� (b(_� JrK•�b-) always �nitely
converges. We settle the problem of how a suitable widening
operator for � � # can be derived from a widening for �.
De�nition 7.11 (Pointed Widening). Given a re�nement
�# =4 � � # of � 2 Abs(⇠) and a widening r� on �, the
pointed widening r#� : �# ⇥�# ! �# is de�ned as follows:
G r#� ~ =4 ^�# {I 2 (# [{�(G) r��(~)}) | G,~ �# I}. ⇤
Theorem 7.12 (Soundness of Pointed Widening). If # ✓
⇠ is �nite, then r#� is a widening operator for � � # .

In Algorithm 2, line 20, we simply replace b% _��# b' withb% r#� (b% _��# b') in the clause dealing with the unroll of
Kleene star. This change has no consequence in the proof
of Theorem 7.6, so the main results are seamlessly extended
to widening with the additional guarantee that whenever
bRepair� (# , b%, r, () returns h+ ,# 0i, then termination of the
abstract interpreter for �# 0 is guaranteed by Theorem 7.12.
Example 7.13 (Widening). Let us revisit the illustrative
example in Section 2, where Spec =4 9  15 and

r =4

r2z }| {
8 := 1; 9 := 0| {z }

r3

; ((8  5)?; 9 := 9 + 8; 8 := 8 + 1| {z }
r1

)⇤; (8 > 5)| {z }
b

?.

The call to bRepairInt (ú,>, r, Spec) recursively computes
bRepairInt (ú, b%, b?, Spec), where b% = Jr2K•Int> = 8 2 [1, 6] ^
9 2 [0,1] (using the widening on intervals for 9), which re-
turns h+ , {+ }i: the element+ =4 (8 2 [1, 5]^ 9 2 [0,1])_(8 =
6 ^ 9 2 [0, 15]) is introduced to repair b?. This leads to
call bRepairInt (ú,>, r2,+), and, then, bRepairInt (ú, b%1, r⇤1,+),
with b%1 =4 Jr3K•Int> = (8 = 1 ^ 9 = 0). After unrolling r⇤1 to
reach the abstract invariant b% , the call to invInt (ú, b%, r1,+)
computes the largest invariant under b%^+ for r⇤1, which is % =4

8 2 [1, 6]^ 9 2 [0, 8 (8�1)/2]. Then, bRepairInt ({%}, %, r1, %) is
invoked, which adds the new abstract elements '1, '2 and '3
(cf. Section 2) to repair the local completeness of the instruc-
tions in r1. Thus, invInt (ú, b%, r1,+) returns h%, {%,'1,'2,'3}i.
The point % is then intersected with the approximations

438

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

that is % =4 G 2 [0, 100] ^ ~ = G . Note that the addition
of % to Int is not enough, because intermediate approx-
imations for the evaluation of basic commands in r1 are
also needed by compositionality. Hence, the new elements
'1 =4 G 2 [1, 100] ^ ~ = G , '2 =4 G 2 [0, 99] ^ ~ = G + 1,
and '3 =4 G 2 [0, 99] ^ ~ = G are also added. In the end,
the call to invInt returns h%, {%,'1,'2,'3}i, so that the origi-
nal call to bRepairInt returns h'1, {%,'1,'2,'3,&}i because
'1 = % ^ b% . By Corollary 7.7, for any % 0  b% , we have that
JrK% 0  Spec i� % 0  '1. Remarkably, backward repair is able
to add the minimal relational information in a nonrelational
domain as needed to prove Spec. Since all the new elements
are octagons, incidentally, the analysis on Oct with input '1
(instead of b%) is also able to prove that Spec holds. ⇤

Example 7.9 (Predicate Abstraction). Consider the fol-
lowing program c from Fig. 1 of [4, 5] and the Cartesian
predicate abstraction domain � induced by ? =4 (I = 0) and
@ =4 (G = ~), as depicted below:

c =4 do { I := 0; G := ~;
if (F < 0) then {

G := G + 1; I := 1
}

} while (G < ~)

>

@ ? ? @

?^@ ?^@ ?^@ ?^@

?
We want to prove that JcK>  ? , whereas it turns out that
JcK•�> = @. The domain re�nement used in [4, 5] is the
reduced disjunctive completion of �, which is isomorphic to
the Boolean abstraction ⌫ =4 h®({?^@, ?^@, ?^@, ?^@}), ✓i.
The analysis with ⌫ leads exactly to the same analysis with
�1 =

4 � � {? $ @}, namely JcK•�1
> = ? ^ @.

By invoking bRepair� (ú,>, c, ?) we get as a result the pair
h>, {@ ! ?}i. In fact, letting �2 =4 � � {@ ! ?} we get
JcK•�2

> = ? ^ @ = �2 (? ^ @) = �2 (JcK>). Let us remark that
the point @ ! ? is indeed more abstract than ? $ @. ⇤

Widening. It is well known that the convergence of �xpoint
computations in non-ACC domains can be forced or accel-
erated by means of widening operators [16, 17]. A widening
over-approximates an abstract join G _�~ by a more abstract
element Gr�~. We show that backward repair is compatible
with widening operators, and that, in this case, the repaired
abstract interpreter is guaranteed to terminate.
De�nition 7.10 (Widening Operator). Given � 2 Abs(⇠),
a widening operator r� : � ⇥ � ! � is a function such
that: (i) for all G,~ 2 �, G,~ � G r� ~; and (ii) for every
sequence {G8 }82N ✓ �, the chain {~8 }82N inductively de�ned
by ~0 =4 G0 and ~8+1 =4 ~8 r� G8+1 �nitely converges (i.e.,
9: 2 N. 89 2 N. ~ 9+: = ~:). ⇤

The abstract semantics with widening of the Kleene star is
updated to (see, e.g., [45, Section 3.5]):

Jr⇤K•�b(=4 lfp
�
_b- 2 �. b- r� (b(_� JrK•�b-)

�
.

h>, {%,'1,'2,'3,+ } i bRepair(ú,>, r, Spec)
h+ , {+ } i bRepair(· · · (8 > 5)?, Spec)
h>, {%,'1,'2,'3} i bRepair(· · · , r2,+)
h b%1, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
h%, {%,'1,'2,'3} i inv(ú, b%, r1,+)
h%, {%,'1,'2,'3} i bRepair({+ },+ , r1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair({% },%, r1,%)
h'3, {%,'3} i bRepair(· · · , 8 := 8 + 1,%)
h'1, {%,'1,'2} i bRepair(· · · , (8  5)?; 9 := 9 + 8,'3)
h'2, {%,'2} i bRepair(· · · , 9 := 9 + 8,'3)
h'1, {%,'1} i bRepair(· · · , (8  5)?,'2)

h>, ;i bRepair(· · · , r3, b%1)
Figure 4. Backward repair call scheme for Example 7.13.

By termination condition (ii) ofr�, the iteration sequence for
the least �xpoint of _b- . b- r� (b(_� JrK•�b-) always �nitely
converges. We settle the problem of how a suitable widening
operator for � � # can be derived from a widening for �.
De�nition 7.11 (Pointed Widening). Given a re�nement
�# =4 � � # of � 2 Abs(⇠) and a widening r� on �, the
pointed widening r#� : �# ⇥�# ! �# is de�ned as follows:
G r#� ~ =4 ^�# {I 2 (# [{�(G) r��(~)}) | G,~ �# I}. ⇤
Theorem 7.12 (Soundness of Pointed Widening). If # ✓
⇠ is �nite, then r#� is a widening operator for � � # .

In Algorithm 2, line 20, we simply replace b% _��# b' withb% r#� (b% _��# b') in the clause dealing with the unroll of
Kleene star. This change has no consequence in the proof
of Theorem 7.6, so the main results are seamlessly extended
to widening with the additional guarantee that whenever
bRepair� (# , b%, r, () returns h+ ,# 0i, then termination of the
abstract interpreter for �# 0 is guaranteed by Theorem 7.12.
Example 7.13 (Widening). Let us revisit the illustrative
example in Section 2, where Spec =4 9  15 and

r =4

r2z }| {
8 := 1; 9 := 0| {z }

r3

; ((8  5)?; 9 := 9 + 8; 8 := 8 + 1| {z }
r1

)⇤; (8 > 5)| {z }
b

?.

The call to bRepairInt (ú,>, r, Spec) recursively computes
bRepairInt (ú, b%, b?, Spec), where b% = Jr2K•Int> = 8 2 [1, 6] ^
9 2 [0,1] (using the widening on intervals for 9), which re-
turns h+ , {+ }i: the element+ =4 (8 2 [1, 5]^ 9 2 [0,1])_(8 =
6 ^ 9 2 [0, 15]) is introduced to repair b?. This leads to
call bRepairInt (ú,>, r2,+), and, then, bRepairInt (ú, b%1, r⇤1,+),
with b%1 =4 Jr3K•Int> = (8 = 1 ^ 9 = 0). After unrolling r⇤1 to
reach the abstract invariant b% , the call to invInt (ú, b%, r1,+)
computes the largest invariant under b%^+ for r⇤1, which is % =4

8 2 [1, 6]^ 9 2 [0, 8 (8�1)/2]. Then, bRepairInt ({%}, %, r1, %) is
invoked, which adds the new abstract elements '1, '2 and '3
(cf. Section 2) to repair the local completeness of the instruc-
tions in r1. Thus, invInt (ú, b%, r1,+) returns h%, {%,'1,'2,'3}i.
The point % is then intersected with the approximations

438

 ?[[c]] ⊤ ≤ (z = 0)

 [[c]]#
A ⊤ = q ≰ p

 𝖻𝖱𝖾𝗉𝖺𝗂𝗋A(∅, ⊤ , c, p) = ⟨ ⊤ , {q ⇒ p}⟩
 [[c]]#

Aq⇒p
⊤ = p ∧ q ≤ p

z=0 , x=y

w=0

z=0 , x=y

w 0≠

z=0 , x=y

z=1 , x=y+1

z=1 , x=y+1

z=0 , x=y

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

that is % =4 G 2 [0, 100] ^ ~ = G . Note that the addition
of % to Int is not enough, because intermediate approx-
imations for the evaluation of basic commands in r1 are
also needed by compositionality. Hence, the new elements
'1 =4 G 2 [1, 100] ^ ~ = G , '2 =4 G 2 [0, 99] ^ ~ = G + 1,
and '3 =4 G 2 [0, 99] ^ ~ = G are also added. In the end,
the call to invInt returns h%, {%,'1,'2,'3}i, so that the origi-
nal call to bRepairInt returns h'1, {%,'1,'2,'3,&}i because
'1 = % ^ b% . By Corollary 7.7, for any % 0  b% , we have that
JrK% 0  Spec i� % 0  '1. Remarkably, backward repair is able
to add the minimal relational information in a nonrelational
domain as needed to prove Spec. Since all the new elements
are octagons, incidentally, the analysis on Oct with input '1
(instead of b%) is also able to prove that Spec holds. ⇤

Example 7.9 (Predicate Abstraction). Consider the fol-
lowing program c from Fig. 1 of [4, 5] and the Cartesian
predicate abstraction domain � induced by ? =4 (I = 0) and
@ =4 (G = ~), as depicted below:

c =4 do { I := 0; G := ~;
if (F < 0) then {

G := G + 1; I := 1
}

} while (G < ~)

>

@ ? ? @

?^@ ?^@ ?^@ ?^@

?
We want to prove that JcK>  ? , whereas it turns out that
JcK•�> = @. The domain re�nement used in [4, 5] is the
reduced disjunctive completion of �, which is isomorphic to
the Boolean abstraction ⌫ =4 h®({?^@, ?^@, ?^@, ?^@}), ✓i.
The analysis with ⌫ leads exactly to the same analysis with
�1 =

4 � � {? $ @}, namely JcK•�1
> = ? ^ @.

By invoking bRepair� (ú,>, c, ?) we get as a result the pair
h>, {@ ! ?}i. In fact, letting �2 =4 � � {@ ! ?} we get
JcK•�2

> = ? ^ @ = �2 (? ^ @) = �2 (JcK>). Let us remark that
the point @ ! ? is indeed more abstract than ? $ @. ⇤

Widening. It is well known that the convergence of �xpoint
computations in non-ACC domains can be forced or accel-
erated by means of widening operators [16, 17]. A widening
over-approximates an abstract join G _�~ by a more abstract
element Gr�~. We show that backward repair is compatible
with widening operators, and that, in this case, the repaired
abstract interpreter is guaranteed to terminate.
De�nition 7.10 (Widening Operator). Given � 2 Abs(⇠),
a widening operator r� : � ⇥ � ! � is a function such
that: (i) for all G,~ 2 �, G,~ � G r� ~; and (ii) for every
sequence {G8 }82N ✓ �, the chain {~8 }82N inductively de�ned
by ~0 =4 G0 and ~8+1 =4 ~8 r� G8+1 �nitely converges (i.e.,
9: 2 N. 89 2 N. ~ 9+: = ~:). ⇤

The abstract semantics with widening of the Kleene star is
updated to (see, e.g., [45, Section 3.5]):

Jr⇤K•�b(=4 lfp
�
_b- 2 �. b- r� (b(_� JrK•�b-)

�
.

h>, {%,'1,'2,'3,+ } i bRepair(ú,>, r, Spec)
h+ , {+ } i bRepair(· · · (8 > 5)?, Spec)
h>, {%,'1,'2,'3} i bRepair(· · · , r2,+)
h b%1, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
h%, {%,'1,'2,'3} i inv(ú, b%, r1,+)
h%, {%,'1,'2,'3} i bRepair({+ },+ , r1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair({% },%, r1,%)
h'3, {%,'3} i bRepair(· · · , 8 := 8 + 1,%)
h'1, {%,'1,'2} i bRepair(· · · , (8  5)?; 9 := 9 + 8,'3)
h'2, {%,'2} i bRepair(· · · , 9 := 9 + 8,'3)
h'1, {%,'1} i bRepair(· · · , (8  5)?,'2)

h>, ;i bRepair(· · · , r3, b%1)
Figure 4. Backward repair call scheme for Example 7.13.

By termination condition (ii) ofr�, the iteration sequence for
the least �xpoint of _b- . b- r� (b(_� JrK•�b-) always �nitely
converges. We settle the problem of how a suitable widening
operator for � � # can be derived from a widening for �.
De�nition 7.11 (Pointed Widening). Given a re�nement
�# =4 � � # of � 2 Abs(⇠) and a widening r� on �, the
pointed widening r#� : �# ⇥�# ! �# is de�ned as follows:
G r#� ~ =4 ^�# {I 2 (# [{�(G) r��(~)}) | G,~ �# I}. ⇤
Theorem 7.12 (Soundness of Pointed Widening). If # ✓
⇠ is �nite, then r#� is a widening operator for � � # .

In Algorithm 2, line 20, we simply replace b% _��# b' withb% r#� (b% _��# b') in the clause dealing with the unroll of
Kleene star. This change has no consequence in the proof
of Theorem 7.6, so the main results are seamlessly extended
to widening with the additional guarantee that whenever
bRepair� (# , b%, r, () returns h+ ,# 0i, then termination of the
abstract interpreter for �# 0 is guaranteed by Theorem 7.12.
Example 7.13 (Widening). Let us revisit the illustrative
example in Section 2, where Spec =4 9  15 and

r =4

r2z }| {
8 := 1; 9 := 0| {z }

r3

; ((8  5)?; 9 := 9 + 8; 8 := 8 + 1| {z }
r1

)⇤; (8 > 5)| {z }
b

?.

The call to bRepairInt (ú,>, r, Spec) recursively computes
bRepairInt (ú, b%, b?, Spec), where b% = Jr2K•Int> = 8 2 [1, 6] ^
9 2 [0,1] (using the widening on intervals for 9), which re-
turns h+ , {+ }i: the element+ =4 (8 2 [1, 5]^ 9 2 [0,1])_(8 =
6 ^ 9 2 [0, 15]) is introduced to repair b?. This leads to
call bRepairInt (ú,>, r2,+), and, then, bRepairInt (ú, b%1, r⇤1,+),
with b%1 =4 Jr3K•Int> = (8 = 1 ^ 9 = 0). After unrolling r⇤1 to
reach the abstract invariant b% , the call to invInt (ú, b%, r1,+)
computes the largest invariant under b%^+ for r⇤1, which is % =4

8 2 [1, 6]^ 9 2 [0, 8 (8�1)/2]. Then, bRepairInt ({%}, %, r1, %) is
invoked, which adds the new abstract elements '1, '2 and '3
(cf. Section 2) to repair the local completeness of the instruc-
tions in r1. Thus, invInt (ú, b%, r1,+) returns h%, {%,'1,'2,'3}i.
The point % is then intersected with the approximations

438

Example

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

that is % =4 G 2 [0, 100] ^ ~ = G . Note that the addition
of % to Int is not enough, because intermediate approx-
imations for the evaluation of basic commands in r1 are
also needed by compositionality. Hence, the new elements
'1 =4 G 2 [1, 100] ^ ~ = G , '2 =4 G 2 [0, 99] ^ ~ = G + 1,
and '3 =4 G 2 [0, 99] ^ ~ = G are also added. In the end,
the call to invInt returns h%, {%,'1,'2,'3}i, so that the origi-
nal call to bRepairInt returns h'1, {%,'1,'2,'3,&}i because
'1 = % ^ b% . By Corollary 7.7, for any % 0  b% , we have that
JrK% 0  Spec i� % 0  '1. Remarkably, backward repair is able
to add the minimal relational information in a nonrelational
domain as needed to prove Spec. Since all the new elements
are octagons, incidentally, the analysis on Oct with input '1
(instead of b%) is also able to prove that Spec holds. ⇤

Example 7.9 (Predicate Abstraction). Consider the fol-
lowing program c from Fig. 1 of [4, 5] and the Cartesian
predicate abstraction domain � induced by ? =4 (I = 0) and
@ =4 (G = ~), as depicted below:

c =4 do { I := 0; G := ~;
if (F < 0) then {

G := G + 1; I := 1
}

} while (G < ~)

>

@ ? ? @

?^@ ?^@ ?^@ ?^@

?
We want to prove that JcK>  ? , whereas it turns out that
JcK•�> = @. The domain re�nement used in [4, 5] is the
reduced disjunctive completion of �, which is isomorphic to
the Boolean abstraction ⌫ =4 h®({?^@, ?^@, ?^@, ?^@}), ✓i.
The analysis with ⌫ leads exactly to the same analysis with
�1 =

4 � � {? $ @}, namely JcK•�1
> = ? ^ @.

By invoking bRepair� (ú,>, c, ?) we get as a result the pair
h>, {@ ! ?}i. In fact, letting �2 =4 � � {@ ! ?} we get
JcK•�2

> = ? ^ @ = �2 (? ^ @) = �2 (JcK>). Let us remark that
the point @ ! ? is indeed more abstract than ? $ @. ⇤

Widening. It is well known that the convergence of �xpoint
computations in non-ACC domains can be forced or accel-
erated by means of widening operators [16, 17]. A widening
over-approximates an abstract join G _�~ by a more abstract
element Gr�~. We show that backward repair is compatible
with widening operators, and that, in this case, the repaired
abstract interpreter is guaranteed to terminate.
De�nition 7.10 (Widening Operator). Given � 2 Abs(⇠),
a widening operator r� : � ⇥ � ! � is a function such
that: (i) for all G,~ 2 �, G,~ � G r� ~; and (ii) for every
sequence {G8 }82N ✓ �, the chain {~8 }82N inductively de�ned
by ~0 =4 G0 and ~8+1 =4 ~8 r� G8+1 �nitely converges (i.e.,
9: 2 N. 89 2 N. ~ 9+: = ~:). ⇤

The abstract semantics with widening of the Kleene star is
updated to (see, e.g., [45, Section 3.5]):

Jr⇤K•�b(=4 lfp
�
_b- 2 �. b- r� (b(_� JrK•�b-)

�
.

h>, {%,'1,'2,'3,+ } i bRepair(ú,>, r, Spec)
h+ , {+ } i bRepair(· · · (8 > 5)?, Spec)
h>, {%,'1,'2,'3} i bRepair(· · · , r2,+)
h b%1, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
h%, {%,'1,'2,'3} i inv(ú, b%, r1,+)
h%, {%,'1,'2,'3} i bRepair({+ },+ , r1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair({% },%, r1,%)
h'3, {%,'3} i bRepair(· · · , 8 := 8 + 1,%)
h'1, {%,'1,'2} i bRepair(· · · , (8  5)?; 9 := 9 + 8,'3)
h'2, {%,'2} i bRepair(· · · , 9 := 9 + 8,'3)
h'1, {%,'1} i bRepair(· · · , (8  5)?,'2)

h>, ;i bRepair(· · · , r3, b%1)
Figure 4. Backward repair call scheme for Example 7.13.

By termination condition (ii) ofr�, the iteration sequence for
the least �xpoint of _b- . b- r� (b(_� JrK•�b-) always �nitely
converges. We settle the problem of how a suitable widening
operator for � � # can be derived from a widening for �.
De�nition 7.11 (Pointed Widening). Given a re�nement
�# =4 � � # of � 2 Abs(⇠) and a widening r� on �, the
pointed widening r#� : �# ⇥�# ! �# is de�ned as follows:
G r#� ~ =4 ^�# {I 2 (# [{�(G) r��(~)}) | G,~ �# I}. ⇤
Theorem 7.12 (Soundness of Pointed Widening). If # ✓
⇠ is �nite, then r#� is a widening operator for � � # .

In Algorithm 2, line 20, we simply replace b% _��# b' withb% r#� (b% _��# b') in the clause dealing with the unroll of
Kleene star. This change has no consequence in the proof
of Theorem 7.6, so the main results are seamlessly extended
to widening with the additional guarantee that whenever
bRepair� (# , b%, r, () returns h+ ,# 0i, then termination of the
abstract interpreter for �# 0 is guaranteed by Theorem 7.12.
Example 7.13 (Widening). Let us revisit the illustrative
example in Section 2, where Spec =4 9  15 and

r =4

r2z }| {
8 := 1; 9 := 0| {z }

r3

; ((8  5)?; 9 := 9 + 8; 8 := 8 + 1| {z }
r1

)⇤; (8 > 5)| {z }
b

?.

The call to bRepairInt (ú,>, r, Spec) recursively computes
bRepairInt (ú, b%, b?, Spec), where b% = Jr2K•Int> = 8 2 [1, 6] ^
9 2 [0,1] (using the widening on intervals for 9), which re-
turns h+ , {+ }i: the element+ =4 (8 2 [1, 5]^ 9 2 [0,1])_(8 =
6 ^ 9 2 [0, 15]) is introduced to repair b?. This leads to
call bRepairInt (ú,>, r2,+), and, then, bRepairInt (ú, b%1, r⇤1,+),
with b%1 =4 Jr3K•Int> = (8 = 1 ^ 9 = 0). After unrolling r⇤1 to
reach the abstract invariant b% , the call to invInt (ú, b%, r1,+)
computes the largest invariant under b%^+ for r⇤1, which is % =4

8 2 [1, 6]^ 9 2 [0, 8 (8�1)/2]. Then, bRepairInt ({%}, %, r1, %) is
invoked, which adds the new abstract elements '1, '2 and '3
(cf. Section 2) to repair the local completeness of the instruc-
tions in r1. Thus, invInt (ú, b%, r1,+) returns h%, {%,'1,'2,'3}i.
The point % is then intersected with the approximations

438

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

that is % =4 G 2 [0, 100] ^ ~ = G . Note that the addition
of % to Int is not enough, because intermediate approx-
imations for the evaluation of basic commands in r1 are
also needed by compositionality. Hence, the new elements
'1 =4 G 2 [1, 100] ^ ~ = G , '2 =4 G 2 [0, 99] ^ ~ = G + 1,
and '3 =4 G 2 [0, 99] ^ ~ = G are also added. In the end,
the call to invInt returns h%, {%,'1,'2,'3}i, so that the origi-
nal call to bRepairInt returns h'1, {%,'1,'2,'3,&}i because
'1 = % ^ b% . By Corollary 7.7, for any % 0  b% , we have that
JrK% 0  Spec i� % 0  '1. Remarkably, backward repair is able
to add the minimal relational information in a nonrelational
domain as needed to prove Spec. Since all the new elements
are octagons, incidentally, the analysis on Oct with input '1
(instead of b%) is also able to prove that Spec holds. ⇤

Example 7.9 (Predicate Abstraction). Consider the fol-
lowing program c from Fig. 1 of [4, 5] and the Cartesian
predicate abstraction domain � induced by ? =4 (I = 0) and
@ =4 (G = ~), as depicted below:

c =4 do { I := 0; G := ~;
if (F < 0) then {

G := G + 1; I := 1
}

} while (G < ~)

>

@ ? ? @

?^@ ?^@ ?^@ ?^@

?
We want to prove that JcK>  ? , whereas it turns out that
JcK•�> = @. The domain re�nement used in [4, 5] is the
reduced disjunctive completion of �, which is isomorphic to
the Boolean abstraction ⌫ =4 h®({?^@, ?^@, ?^@, ?^@}), ✓i.
The analysis with ⌫ leads exactly to the same analysis with
�1 =

4 � � {? $ @}, namely JcK•�1
> = ? ^ @.

By invoking bRepair� (ú,>, c, ?) we get as a result the pair
h>, {@ ! ?}i. In fact, letting �2 =4 � � {@ ! ?} we get
JcK•�2

> = ? ^ @ = �2 (? ^ @) = �2 (JcK>). Let us remark that
the point @ ! ? is indeed more abstract than ? $ @. ⇤

Widening. It is well known that the convergence of �xpoint
computations in non-ACC domains can be forced or accel-
erated by means of widening operators [16, 17]. A widening
over-approximates an abstract join G _�~ by a more abstract
element Gr�~. We show that backward repair is compatible
with widening operators, and that, in this case, the repaired
abstract interpreter is guaranteed to terminate.
De�nition 7.10 (Widening Operator). Given � 2 Abs(⇠),
a widening operator r� : � ⇥ � ! � is a function such
that: (i) for all G,~ 2 �, G,~ � G r� ~; and (ii) for every
sequence {G8 }82N ✓ �, the chain {~8 }82N inductively de�ned
by ~0 =4 G0 and ~8+1 =4 ~8 r� G8+1 �nitely converges (i.e.,
9: 2 N. 89 2 N. ~ 9+: = ~:). ⇤

The abstract semantics with widening of the Kleene star is
updated to (see, e.g., [45, Section 3.5]):

Jr⇤K•�b(=4 lfp
�
_b- 2 �. b- r� (b(_� JrK•�b-)

�
.

h>, {%,'1,'2,'3,+ } i bRepair(ú,>, r, Spec)
h+ , {+ } i bRepair(· · · (8 > 5)?, Spec)
h>, {%,'1,'2,'3} i bRepair(· · · , r2,+)
h b%1, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
h%, {%,'1,'2,'3} i inv(ú, b%, r1,+)
h%, {%,'1,'2,'3} i bRepair({+ },+ , r1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair({% },%, r1,%)
h'3, {%,'3} i bRepair(· · · , 8 := 8 + 1,%)
h'1, {%,'1,'2} i bRepair(· · · , (8  5)?; 9 := 9 + 8,'3)
h'2, {%,'2} i bRepair(· · · , 9 := 9 + 8,'3)
h'1, {%,'1} i bRepair(· · · , (8  5)?,'2)

h>, ;i bRepair(· · · , r3, b%1)
Figure 4. Backward repair call scheme for Example 7.13.

By termination condition (ii) ofr�, the iteration sequence for
the least �xpoint of _b- . b- r� (b(_� JrK•�b-) always �nitely
converges. We settle the problem of how a suitable widening
operator for � � # can be derived from a widening for �.
De�nition 7.11 (Pointed Widening). Given a re�nement
�# =4 � � # of � 2 Abs(⇠) and a widening r� on �, the
pointed widening r#� : �# ⇥�# ! �# is de�ned as follows:
G r#� ~ =4 ^�# {I 2 (# [{�(G) r��(~)}) | G,~ �# I}. ⇤
Theorem 7.12 (Soundness of Pointed Widening). If # ✓
⇠ is �nite, then r#� is a widening operator for � � # .

In Algorithm 2, line 20, we simply replace b% _��# b' withb% r#� (b% _��# b') in the clause dealing with the unroll of
Kleene star. This change has no consequence in the proof
of Theorem 7.6, so the main results are seamlessly extended
to widening with the additional guarantee that whenever
bRepair� (# , b%, r, () returns h+ ,# 0i, then termination of the
abstract interpreter for �# 0 is guaranteed by Theorem 7.12.
Example 7.13 (Widening). Let us revisit the illustrative
example in Section 2, where Spec =4 9  15 and

r =4

r2z }| {
8 := 1; 9 := 0| {z }

r3

; ((8  5)?; 9 := 9 + 8; 8 := 8 + 1| {z }
r1

)⇤; (8 > 5)| {z }
b

?.

The call to bRepairInt (ú,>, r, Spec) recursively computes
bRepairInt (ú, b%, b?, Spec), where b% = Jr2K•Int> = 8 2 [1, 6] ^
9 2 [0,1] (using the widening on intervals for 9), which re-
turns h+ , {+ }i: the element+ =4 (8 2 [1, 5]^ 9 2 [0,1])_(8 =
6 ^ 9 2 [0, 15]) is introduced to repair b?. This leads to
call bRepairInt (ú,>, r2,+), and, then, bRepairInt (ú, b%1, r⇤1,+),
with b%1 =4 Jr3K•Int> = (8 = 1 ^ 9 = 0). After unrolling r⇤1 to
reach the abstract invariant b% , the call to invInt (ú, b%, r1,+)
computes the largest invariant under b%^+ for r⇤1, which is % =4

8 2 [1, 6]^ 9 2 [0, 8 (8�1)/2]. Then, bRepairInt ({%}, %, r1, %) is
invoked, which adds the new abstract elements '1, '2 and '3
(cf. Section 2) to repair the local completeness of the instruc-
tions in r1. Thus, invInt (ú, b%, r1,+) returns h%, {%,'1,'2,'3}i.
The point % is then intersected with the approximations

438

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

that is % =4 G 2 [0, 100] ^ ~ = G . Note that the addition
of % to Int is not enough, because intermediate approx-
imations for the evaluation of basic commands in r1 are
also needed by compositionality. Hence, the new elements
'1 =4 G 2 [1, 100] ^ ~ = G , '2 =4 G 2 [0, 99] ^ ~ = G + 1,
and '3 =4 G 2 [0, 99] ^ ~ = G are also added. In the end,
the call to invInt returns h%, {%,'1,'2,'3}i, so that the origi-
nal call to bRepairInt returns h'1, {%,'1,'2,'3,&}i because
'1 = % ^ b% . By Corollary 7.7, for any % 0  b% , we have that
JrK% 0  Spec i� % 0  '1. Remarkably, backward repair is able
to add the minimal relational information in a nonrelational
domain as needed to prove Spec. Since all the new elements
are octagons, incidentally, the analysis on Oct with input '1
(instead of b%) is also able to prove that Spec holds. ⇤

Example 7.9 (Predicate Abstraction). Consider the fol-
lowing program c from Fig. 1 of [4, 5] and the Cartesian
predicate abstraction domain � induced by ? =4 (I = 0) and
@ =4 (G = ~), as depicted below:

c =4 do { I := 0; G := ~;
if (F < 0) then {

G := G + 1; I := 1
}

} while (G < ~)

>

@ ? ? @

?^@ ?^@ ?^@ ?^@

?
We want to prove that JcK>  ? , whereas it turns out that
JcK•�> = @. The domain re�nement used in [4, 5] is the
reduced disjunctive completion of �, which is isomorphic to
the Boolean abstraction ⌫ =4 h®({?^@, ?^@, ?^@, ?^@}), ✓i.
The analysis with ⌫ leads exactly to the same analysis with
�1 =

4 � � {? $ @}, namely JcK•�1
> = ? ^ @.

By invoking bRepair� (ú,>, c, ?) we get as a result the pair
h>, {@ ! ?}i. In fact, letting �2 =4 � � {@ ! ?} we get
JcK•�2

> = ? ^ @ = �2 (? ^ @) = �2 (JcK>). Let us remark that
the point @ ! ? is indeed more abstract than ? $ @. ⇤

Widening. It is well known that the convergence of �xpoint
computations in non-ACC domains can be forced or accel-
erated by means of widening operators [16, 17]. A widening
over-approximates an abstract join G _�~ by a more abstract
element Gr�~. We show that backward repair is compatible
with widening operators, and that, in this case, the repaired
abstract interpreter is guaranteed to terminate.
De�nition 7.10 (Widening Operator). Given � 2 Abs(⇠),
a widening operator r� : � ⇥ � ! � is a function such
that: (i) for all G,~ 2 �, G,~ � G r� ~; and (ii) for every
sequence {G8 }82N ✓ �, the chain {~8 }82N inductively de�ned
by ~0 =4 G0 and ~8+1 =4 ~8 r� G8+1 �nitely converges (i.e.,
9: 2 N. 89 2 N. ~ 9+: = ~:). ⇤

The abstract semantics with widening of the Kleene star is
updated to (see, e.g., [45, Section 3.5]):

Jr⇤K•�b(=4 lfp
�
_b- 2 �. b- r� (b(_� JrK•�b-)

�
.

h>, {%,'1,'2,'3,+ } i bRepair(ú,>, r, Spec)
h+ , {+ } i bRepair(· · · (8 > 5)?, Spec)
h>, {%,'1,'2,'3} i bRepair(· · · , r2,+)
h b%1, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
h%, {%,'1,'2,'3} i inv(ú, b%, r1,+)
h%, {%,'1,'2,'3} i bRepair({+ },+ , r1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair({% },%, r1,%)
h'3, {%,'3} i bRepair(· · · , 8 := 8 + 1,%)
h'1, {%,'1,'2} i bRepair(· · · , (8  5)?; 9 := 9 + 8,'3)
h'2, {%,'2} i bRepair(· · · , 9 := 9 + 8,'3)
h'1, {%,'1} i bRepair(· · · , (8  5)?,'2)

h>, ;i bRepair(· · · , r3, b%1)
Figure 4. Backward repair call scheme for Example 7.13.

By termination condition (ii) ofr�, the iteration sequence for
the least �xpoint of _b- . b- r� (b(_� JrK•�b-) always �nitely
converges. We settle the problem of how a suitable widening
operator for � � # can be derived from a widening for �.
De�nition 7.11 (Pointed Widening). Given a re�nement
�# =4 � � # of � 2 Abs(⇠) and a widening r� on �, the
pointed widening r#� : �# ⇥�# ! �# is de�ned as follows:
G r#� ~ =4 ^�# {I 2 (# [{�(G) r��(~)}) | G,~ �# I}. ⇤
Theorem 7.12 (Soundness of Pointed Widening). If # ✓
⇠ is �nite, then r#� is a widening operator for � � # .

In Algorithm 2, line 20, we simply replace b% _��# b' withb% r#� (b% _��# b') in the clause dealing with the unroll of
Kleene star. This change has no consequence in the proof
of Theorem 7.6, so the main results are seamlessly extended
to widening with the additional guarantee that whenever
bRepair� (# , b%, r, () returns h+ ,# 0i, then termination of the
abstract interpreter for �# 0 is guaranteed by Theorem 7.12.
Example 7.13 (Widening). Let us revisit the illustrative
example in Section 2, where Spec =4 9  15 and

r =4

r2z }| {
8 := 1; 9 := 0| {z }

r3

; ((8  5)?; 9 := 9 + 8; 8 := 8 + 1| {z }
r1

)⇤; (8 > 5)| {z }
b

?.

The call to bRepairInt (ú,>, r, Spec) recursively computes
bRepairInt (ú, b%, b?, Spec), where b% = Jr2K•Int> = 8 2 [1, 6] ^
9 2 [0,1] (using the widening on intervals for 9), which re-
turns h+ , {+ }i: the element+ =4 (8 2 [1, 5]^ 9 2 [0,1])_(8 =
6 ^ 9 2 [0, 15]) is introduced to repair b?. This leads to
call bRepairInt (ú,>, r2,+), and, then, bRepairInt (ú, b%1, r⇤1,+),
with b%1 =4 Jr3K•Int> = (8 = 1 ^ 9 = 0). After unrolling r⇤1 to
reach the abstract invariant b% , the call to invInt (ú, b%, r1,+)
computes the largest invariant under b%^+ for r⇤1, which is % =4

8 2 [1, 6]^ 9 2 [0, 8 (8�1)/2]. Then, bRepairInt ({%}, %, r1, %) is
invoked, which adds the new abstract elements '1, '2 and '3
(cf. Section 2) to repair the local completeness of the instruc-
tions in r1. Thus, invInt (ú, b%, r1,+) returns h%, {%,'1,'2,'3}i.
The point % is then intersected with the approximations

438

Abstract Interpretation Repair PLDI ’22, June 13–17, 2022, San Diego, CA, USA

that is % =4 G 2 [0, 100] ^ ~ = G . Note that the addition
of % to Int is not enough, because intermediate approx-
imations for the evaluation of basic commands in r1 are
also needed by compositionality. Hence, the new elements
'1 =4 G 2 [1, 100] ^ ~ = G , '2 =4 G 2 [0, 99] ^ ~ = G + 1,
and '3 =4 G 2 [0, 99] ^ ~ = G are also added. In the end,
the call to invInt returns h%, {%,'1,'2,'3}i, so that the origi-
nal call to bRepairInt returns h'1, {%,'1,'2,'3,&}i because
'1 = % ^ b% . By Corollary 7.7, for any % 0  b% , we have that
JrK% 0  Spec i� % 0  '1. Remarkably, backward repair is able
to add the minimal relational information in a nonrelational
domain as needed to prove Spec. Since all the new elements
are octagons, incidentally, the analysis on Oct with input '1
(instead of b%) is also able to prove that Spec holds. ⇤

Example 7.9 (Predicate Abstraction). Consider the fol-
lowing program c from Fig. 1 of [4, 5] and the Cartesian
predicate abstraction domain � induced by ? =4 (I = 0) and
@ =4 (G = ~), as depicted below:

c =4 do { I := 0; G := ~;
if (F < 0) then {

G := G + 1; I := 1
}

} while (G < ~)

>

@ ? ? @

?^@ ?^@ ?^@ ?^@

?
We want to prove that JcK>  ? , whereas it turns out that
JcK•�> = @. The domain re�nement used in [4, 5] is the
reduced disjunctive completion of �, which is isomorphic to
the Boolean abstraction ⌫ =4 h®({?^@, ?^@, ?^@, ?^@}), ✓i.
The analysis with ⌫ leads exactly to the same analysis with
�1 =

4 � � {? $ @}, namely JcK•�1
> = ? ^ @.

By invoking bRepair� (ú,>, c, ?) we get as a result the pair
h>, {@ ! ?}i. In fact, letting �2 =4 � � {@ ! ?} we get
JcK•�2

> = ? ^ @ = �2 (? ^ @) = �2 (JcK>). Let us remark that
the point @ ! ? is indeed more abstract than ? $ @. ⇤

Widening. It is well known that the convergence of �xpoint
computations in non-ACC domains can be forced or accel-
erated by means of widening operators [16, 17]. A widening
over-approximates an abstract join G _�~ by a more abstract
element Gr�~. We show that backward repair is compatible
with widening operators, and that, in this case, the repaired
abstract interpreter is guaranteed to terminate.
De�nition 7.10 (Widening Operator). Given � 2 Abs(⇠),
a widening operator r� : � ⇥ � ! � is a function such
that: (i) for all G,~ 2 �, G,~ � G r� ~; and (ii) for every
sequence {G8 }82N ✓ �, the chain {~8 }82N inductively de�ned
by ~0 =4 G0 and ~8+1 =4 ~8 r� G8+1 �nitely converges (i.e.,
9: 2 N. 89 2 N. ~ 9+: = ~:). ⇤

The abstract semantics with widening of the Kleene star is
updated to (see, e.g., [45, Section 3.5]):

Jr⇤K•�b(=4 lfp
�
_b- 2 �. b- r� (b(_� JrK•�b-)

�
.

h>, {%,'1,'2,'3,+ } i bRepair(ú,>, r, Spec)
h+ , {+ } i bRepair(· · · (8 > 5)?, Spec)
h>, {%,'1,'2,'3} i bRepair(· · · , r2,+)
h b%1, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair(· · · , r⇤1,+)
h%, {%,'1,'2,'3} i inv(ú, b%, r1,+)
h%, {%,'1,'2,'3} i bRepair({+ },+ , r1,+)
· · ·
h%, {%,'1,'2,'3} i bRepair({% },%, r1,%)
h'3, {%,'3} i bRepair(· · · , 8 := 8 + 1,%)
h'1, {%,'1,'2} i bRepair(· · · , (8  5)?; 9 := 9 + 8,'3)
h'2, {%,'2} i bRepair(· · · , 9 := 9 + 8,'3)
h'1, {%,'1} i bRepair(· · · , (8  5)?,'2)

h>, ;i bRepair(· · · , r3, b%1)
Figure 4. Backward repair call scheme for Example 7.13.

By termination condition (ii) ofr�, the iteration sequence for
the least �xpoint of _b- . b- r� (b(_� JrK•�b-) always �nitely
converges. We settle the problem of how a suitable widening
operator for � � # can be derived from a widening for �.
De�nition 7.11 (Pointed Widening). Given a re�nement
�# =4 � � # of � 2 Abs(⇠) and a widening r� on �, the
pointed widening r#� : �# ⇥�# ! �# is de�ned as follows:
G r#� ~ =4 ^�# {I 2 (# [{�(G) r��(~)}) | G,~ �# I}. ⇤
Theorem 7.12 (Soundness of Pointed Widening). If # ✓
⇠ is �nite, then r#� is a widening operator for � � # .

In Algorithm 2, line 20, we simply replace b% _��# b' withb% r#� (b% _��# b') in the clause dealing with the unroll of
Kleene star. This change has no consequence in the proof
of Theorem 7.6, so the main results are seamlessly extended
to widening with the additional guarantee that whenever
bRepair� (# , b%, r, () returns h+ ,# 0i, then termination of the
abstract interpreter for �# 0 is guaranteed by Theorem 7.12.
Example 7.13 (Widening). Let us revisit the illustrative
example in Section 2, where Spec =4 9  15 and

r =4

r2z }| {
8 := 1; 9 := 0| {z }

r3

; ((8  5)?; 9 := 9 + 8; 8 := 8 + 1| {z }
r1

)⇤; (8 > 5)| {z }
b

?.

The call to bRepairInt (ú,>, r, Spec) recursively computes
bRepairInt (ú, b%, b?, Spec), where b% = Jr2K•Int> = 8 2 [1, 6] ^
9 2 [0,1] (using the widening on intervals for 9), which re-
turns h+ , {+ }i: the element+ =4 (8 2 [1, 5]^ 9 2 [0,1])_(8 =
6 ^ 9 2 [0, 15]) is introduced to repair b?. This leads to
call bRepairInt (ú,>, r2,+), and, then, bRepairInt (ú, b%1, r⇤1,+),
with b%1 =4 Jr3K•Int> = (8 = 1 ^ 9 = 0). After unrolling r⇤1 to
reach the abstract invariant b% , the call to invInt (ú, b%, r1,+)
computes the largest invariant under b%^+ for r⇤1, which is % =4

8 2 [1, 6]^ 9 2 [0, 8 (8�1)/2]. Then, bRepairInt ({%}, %, r1, %) is
invoked, which adds the new abstract elements '1, '2 and '3
(cf. Section 2) to repair the local completeness of the instruc-
tions in r1. Thus, invInt (ú, b%, r1,+) returns h%, {%,'1,'2,'3}i.
The point % is then intersected with the approximations

438

 ?[[c]] ⊤ ≤ (z = 0)

 [[c]]#
A ⊤ = q ≰ p

 𝖻𝖱𝖾𝗉𝖺𝗂𝗋A(∅, ⊤ , c, p) = ⟨ ⊤ , {q ⇒ p}⟩
 [[c]]#

Aq⇒p
⊤ = p ∧ q ≤ p

z=0 , x=y

w=0

z=0 , x=y

w 0≠

z=0 , x=y

z=1 , x=y+1

z=1 , x=y+1

z=0 , x=y

Questions

Question 1
Which is the greatest valid input set ?

(recall that)

V⟨P, b?, Q⟩
V⟨P, r, Q⟩ ≜ P ∩ wlp([[r]], Q)

e.g.

V⟨P, b?, Q⟩ = P ∧ (Q ∨ ¬b)

V⟨(x ≥ 0), x ≠ 0?, (x < 5)⟩ = {0,1,2,3,4}

