4

e

i’

Mversity of P“sa)

Lecture #06

.-MarCh“11 -1 5,_ 2024

BISS 2024



Addendum:
Abstract Interpretation as closure



Expressible elements

each expressible
A element is the image

of an abstract element

da € A.c=y(a)

— _ Va. a(y(a)) =a

=

Va. y(a(y(a))) = y(a)
Galois insel.ftion —
?J%’ y:o’z Va. y(a) is expressible

the image of an abstract

element is expressible

¥(A) is the set of expressible elements



(Galois insertion as closures

C The abstract domain
can just be seen as
a subset of the concrete domain

We write A(¢)
as a shorthand for y(a(c))

A(C) is the set of
expressible elements

Since A(A(c)) = A(c)themap A : C — C is a closure operator



Example

7
§2(Z) -

No need of symbolic representations



Example
G(Z)

No need of symbolic representations



Int({2,4,6,...})

Examples

— (2.3.45.6...} = [2,00]

Sign({2,4,6,..1) = {1,2,3,456..} = Z

Int({0,2,4.6,..)) = {0,1,2.3,4,5.6...) = [0,c0]
Sign({0,2,4,6,.)=1{...,—1,0,1.23,456..} =Z
Sign*({0,2,4,6,...}) = {0,1,2,3,4,56..} = Z,

e /\\
\>< ><\
\\/



Completeness, revisited

VP . A([[cllP) = llc],A(P)
C C

A([TAP))

Completeness equation: VP . A([[c]|P) = A(l[c[]JA(P))



Recap:
to be correct or incorrect?



Verification problem

2
(c| P C Spec

. ).




Over vs Under

------------

------------



An Axiomatic Basis for
Computer Programming

Over vs Under

The Queen’s University of Belfast,* Northern Ireland

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which
were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in-
volves the elucidation of sets of axioms and rules of inference
which can be used in proofs of the properties of computer
programs. Examples are given of such axioms and rules, and

= {Phe{Q) T

~----

e

N mm



An Axiomatic Basis for
Computer Programming

Over vs Under

The Queen’s University of Belfast,* Northern Ireland

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which é I EE N Ny
were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in- i
volves the elucidation of sets of axioms and rules of inference i
which can be used in proofs of the properties of computer
programs. Examples are given of such axioms and rules, and [ Q
|
S

1Py ci@j

M e m .

m m m m 7

N mm
\ 4
- o o

Nmmm?
—
@
 m—
e

~---- ~----



An Axiomatic Basis for
Computer Programming

Over vs Under

The Queen’s University of Belfast,* Northern Ireland

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which é I EE N Ny - mmm

were first applied in the study of geometry and have later 1 .' S

been extended to other branches of mathematics. This in- i ) '

volves the elucidation of sets of axioms and rules of inference i i i A
which can be used in proofs of the properties of computer Q 1 i : i/
programs. Examples are given of such axioms and rules, and [ | ! /@'&\

| ! :

P ' ;

{ } C {Q} . | ' i

= e m m v - e aad

A

U correctness Q

'
I
>
I

N mm

)P

~---- ~----



An Axiomatic Basis for
Computer Programming

Over vs Under

The Queen’s University of Belfast,* Northern Ireland

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which é - O O Ny - m W

S
4
S
4

were first applied in the study of geometry and have later 1 4
been extended to other branches of mathematics. This in- i ) ' ' 1
volves the elucidation of sets of axioms and rules of inference i i i A : i
which can be used in proofs of the properties of computer 1 i A i/ ! il i
programs. Examples are given of such axioms and rules, and [ " : /@Q\ I @Q\ |
I i
P | ' i ) ]
C . i ! I ! i

‘ 4 \}

AR = = = ' N mm = mom P D B ——— ',

A

U correctness Q

'
I
>
I

N mm

)P

~---- ~----



An Axiomatic Basis for
Computer Programming

Over vs Under

The Queen’s University of Belfast,* Northern Ireland

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which é - O O Ny - m W

were first applied in the study of geometry and have later 1 .' S " A
been extended to other branches of mathematics. This in- i 1 ) : ! :
volves the elucidation of sets of axioms and rules of inference i i | ! !
which can be used in proofs of the properties of computer Q | i | > < ! il ]
programs. Examples are given of such axioms and rules, and [ i | @Q\ ! /’Q\ ]
| | " i | i

{P } C {Q} i ! I ! I

$ PR \ ’ ) ’

E = = = D S ——— N mm=m=m=”

U correctness Q

'—--.

- o m m P

] P

N mm
- N . A

~----

P]clQ]

Incorrectness Logic

PETER W. O’HEARN, Facebook and University College London, UK

Program correctness and incorrectness are two sides of the same coin. As a programmer, even if you would
like to have correctness, you might find yourself spending most of your time reasoning about incorrectness.
This includes informal reasoning that people do while looking at or thinking about their code, as well as that
supported by automated testing and static analysis tools. This paper describes a simple logic for program
incorrectness which is, in a sense, the other side of the coin to Hoare’s logic of correctness.




An Axiomatic Basis for
Computer Programming

Over vs Under

The Queen’s University of Belfast,* Northern Ireland

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which é - O O Ny - m W

were first applied in the study of geometry and have later 1 .' S " A
been extended to other branches of mathematics. This in- i 1 ) : ! :
volves the elucidation of sets of axioms and rules of inference i i | ! !
which can be used in proofs of the properties of computer Q | i | > < ! il ]
programs. Examples are given of such axioms and rules, and [ i | @Q\ ! /’Q\ ]
| | " i | i

{P } C {Q} i ! I ! I

$ PR \ ’ ) ’

E = = = D S ——— N mm=m=m=”

U correctness Q

'
I
> |
I

N mm

)P

~---- ~----

A

U

Flel™~ g

----

o™ m mm
- - m m .

Incorrectness Logic

PETER W. O’HEARN, Facebook and University College London, UK

Program correctness and incorrectness are two sides of the same coin. As a programmer, even if you would
like to have correctness, you might find yourself spending most of your time reasoning about incorrectness.
This includes informal reasoning that people do while looking at or thinking about their code, as well as that
supported by automated testing and static analysis tools. This paper describes a simple logic for program
incorrectness which is, in a sense, the other side of the coin to Hoare’s logic of correctness.




An Axiomatic Basis for
Computer Programming

Over vs Under

The Queen’s University of Belfast,* Northern Ireland

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which
were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in-
volves the elucidation of sets of axioms and rules of inference
which can be used in proofs of the properties of computer
programs. Examples are given of such axioms and rules, and

- [P} c {Q}

--'

~----

Incorrectness

Incorrectness Logic

PETER W. O’HEARN, Facebook and University College London, UK

Program correctness and incorrectness are two sides of the same coin. As a programmer, even if you would
like to have correctness, you might find yourself spending most of your time reasoning about incorrectness.
This includes informal reasoning that people do while looking at or thinking about their code, as well as that
supported by automated testing and static analysis tools. This paper describes a simple logic for program
incorrectness which is, in a sense, the other side of the coin to Hoare’s logic of correctness.




An Axiomatic Basis for
Computer Programming

Over vs Under

The Queen’s University of Belfast,* Northern Ireland

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which ¢ I O N Ny
were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in- i
volves the elucidation of sets of axioms and rules of inference i
which can be used in proofs of the properties of computer
programs. Examples are given of such axioms and rules, and [ Q
i
$

- [P} c {Q}

N e mm
\

~----

Incorrectness

=== .‘

(. ) :

1 1

1

A '.

Il

Incorrectness Logic
PETER W. O’HEARN, Facebook and University College London, UK
Program correctness and incorrectness are two sides of the same coin. As a programmer, even if you would

like to have correctness, you might find yourself spending most of your time reasoning about incorrectness.
This includes informal reasoning that people do while looking at or thinking about their code, as well as that
supported by automated testing and static analysis tools. This paper describes a simple logic for program
incorrectness which is, in a sense, the other side of the coin to Hoare’s logic of correctness.

e — T



The Idea




ABSTRACT INTERPRETATION : A UNIFIED LATTICE MODEL FOR STATIC ANALYSIS

OF PROGRAMS BY CONSTRUCTION OR APPROXIMATION OF FIXPOINTS

Patrick Cousot and Radhia Cousot™ "

Laboratoire d'Informatique, U.S.M.G., BP. 53
38041 Grenoble cedex, France

The Idea




ABSTRACT INTERPRETATION : A UNIFIED LATTICE MODEL FOR STATIC ANALYSIS

OF PROGRAMS BY CONSTRUCTION OR APPROXIMATION OF FIXPOINTS -
. * . Kk
Patrick Cousot and Radhia Cousot ‘ ’ I ‘ ’a

Laboratoire d'Informatique, U.S.M.G., BP. 53
38041 Grenoble cedex, France

O C [[c]IP

[cP C A(Q)

=~
&

4

A R R E R R RS
A
U

Pi [P

~----

A

U




ABSTRACT INTERPRETATION : A UNIFIED LATTICE MODEL FOR STATIC ANALYSIS

OF PROGRAMS BY CONSTRUCTION OR APPROXIMATION OF FIXPOINTS o
. * . Kk
Patrick Cousot and Radhia Cousot ‘ ’ I ea

Laboratoire d'Informatique, U.S.M.G., BP. 53
38041 Grenoble cedex, France

QO C [c]P
[cllP C A(Q)

=~
&

4

A R R E R R RS
A
U

- o o oy

~____} Ic| P

A

U




ABSTRACT INTERPRETATION : A UNIFIED LATTICE MODEL FOR STATIC ANALYSIS

OF PROGRAMS BY CONSTRUCTION OR APPROXIMATION OF FIXPOINTS o
. * . Kk
Patrick Cousot and Radhia Cousot ‘ ’ I ea

Laboratoire d'Informatique, U.S.M.G., BP. 53
38041 Grenoble cedex, France

QO C [c]P
[cllP C A(Q)

=~
&

4

AR E R R

A(S =95 4
(Spec) = Spec g

- o o oy

~____} Ic| P

A

U




ABSTRACT INTERPRETATION : A UNIFIED LATTICE MODEL FOR STATIC ANALYSIS

OF PROGRAMS BY CONSTRUCTION OR APPROXIMATION OF FIXPOINTS o
. * . Kk
Patrick Cousot and Radhia Cousot ‘ ’ I ea

Laboratoire d'Informatique, U.S.M.G., BP. 53

38041 Gremoble cedex, France Lccal COmpleteneSS

O C [[c]IP

----’

[c]P € A(Q)
A(Spec) = Spec




ABSTRACT INTERPRETATION : A UNIFIED LATTICE MODEL FOR STATIC ANALYSIS

OF PROGRAMS BY CONSTRUCTION OR APPROXIMATION OF FIXPOINTS o
. * . Kk
Patrick Cousot and Radhia Cousot ‘ ’ I ea

Laboratoire d'Informatique, U.S.M.G., BP. 53

38041 Gremoble cedex, France Lccal COmpleteneSS

A(Q) C Spec
N

O C [[c]IP

[c]lP € A(Q)
A(Spec) = Spec

----’

Ic| P C Spec
<~
] P () C Spec




ABSTRACT INTERPRETATION : A UNIFIED LATTICE MODEL FOR STATIC ANALYSIS

OF PROGRAMS BY CONSTRUCTION OR APPROXIMATION OF FIXPOINTS o
. * . Kk
Patrick Cousot and Radhia Cousot ‘ ’ I ea

Laboratoire d'Informatique, U.S.M.G., BP. 53

38041 Gremoble cedex, France Lccal COmpleteneSS

A(Q) C Spec
N

O C [[c]IP

[c]P € A(Q)
A(Spec) = Spec

----’

Ic| P C Spec
<~
] P () C Spec




2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) | 978-1-6654-4895-6/20/$31.00 ©2021 IEEE | DOIL: 10.1109/LICS52264.2021.9470608

A Logic for
Locally Complete Abstract Interpretations

Roberto Bruni*, Roberto Giacobazzit, Roberta Gori*, Francesco Ranzato®
*University of Pisa, Italy
iUniversity of Verona, Italy
§University of Padova, Italy

In loving memory of Anna Maria De Paolis and Dina Gorini

Abstract—We introduce the notion of local completeness in
abstract interpretation and define a logic for proving both the
correctness and incorrectness of some program specification.
Abstract interpretation is extensively used to design sound-by-
construction program analyses that over-approximate program
behaviours. Completeness of an abstract interpretation A for
all possible programs and inputs would be an ideal situation
for verifying correctness specifications, because the analysis can
be done compositionally and no false alert will arise. Our first
result shows that the class of programs whose abstract analysis
on A is complete for all inputs has a severely limited expres-
siveness. A novel notion of local completeness weakens the above
requirements by considering only some specific, rather than all,
program inputs and thus finds wider applicability. In fact, our
main contribution is the design of a proof system, parameterized
by an abstraction A, that, for the first time, combines over- and
under-approximations of program behaviours. Thanks to local
completeness, in a provable triple -4 [P] c [Q)], the assertion
Q@ is an under-approximation of the strongest post-condition
post[c](P) such that the abstractions in A of ) and post[c]|(P)
coincide. This means that () is never too coarse, namely, under
mild assumptions, the abstract interpretation of c does not yield
false alerts for the input P iff Q has no alert. Thus, -4 [P] c [Q)]
not only ensures that all the alerts raised in Q are true ones, but
also that if () does not raise alerts then c is correct.

I. INTRODUCTION

Technology, you can’t live without. But any coin has two
sides and software failures are increasingly more frequent and
their consequences are more disruptive in the Digital Age than
ever before. Quoting Dijkstra’s speech at the Turing Award
lecture [11], the only effective way to raise the confidence
level of a program significantly is to give a convincing proof
of its correctness. Since correctness proof attempts may fail
even when the program is correct, also incorrectness proofs
would be needed to catch actual bugs, because you can’t fix
what you can’t see. Code-review processes and test-driven
development are widely adopted best practices in software
companies. Nevertheless, the problem is far from being solved
and static reasoning should be extended to bug catching, as
advocated by O’Hearn’s incorrectness logic (IL) [24].

Static program analysis has been investigated and used
for over half century and is a major methodology to help
programmers and software engineers in producing reliable
code [4], [12], [15], [18], [23], [27], [28]. Static analysis is
based on symbolic reasoning techniques to prove program
properties without running them. Given a program c and a

978-1-6654-4895-6/21/$31.00 (©2021 IEEE

correctness specification Spec, the aim of a static verification
is either to prove that the behaviour of c satisfies Spec or to
raise some alerts that point out which circumstances may cause
a violation of Spec. The conditional is needed because, starting
with the fundamental works by Hoare [18], program verifiers
tend to over-approximate the program behaviour: this is an
unavoidable consequence of the will to solve an otherwise un-
decidable analysis problem. As any alerting system, program
analysis turns out to be credible, when few, ideally zero, false
alerts are reported to the user [9]. The dual perspective has
been recently tackled by incorrectness logic [24]: exploiting
under-approximations, any violation exposed by the analysis is
a true alert. This makes IL a credible support for code-review,
but Spec may be violated even when no alert is reported.

Abstract interpretation [6]—[8] is a well-established frame-
work for designing sound-by-construction over-approxima-
tions of the program behaviour. Given an abstraction A,
instead of verifying whether the strongest post-condition
post[c|(P) for a program c and a pre-condition P (also written
[c] P) satisfies a correctness specification Spec, a (sound) ab-
stract over-approximation A(post[c|(P)) is considered. While
it is obvious that if A(post[c](P)) satisfies Spec then the
program is correct, it may happen that A(post[c](P)) does
not satisfy Spec even if the program is correct, because
A introduced false alerts. Once the specification Spec and
its abstract approximation in A coincide, the ideal program
analysis is achieved by assuring that a sound analysis is also
complete, so that no false alert is ever raised.

Technically, in a domain A of abstract program stores,
with abstraction and concretization maps « and v resp.,
any store property P is, in general, over-approximated by
A(P) = ya(P) O P. Assuming that Spec is expressible
in A means that Spec = A(Spec) holds. For instance, in
the abstract domain of intervals Int (see Example IIL.5) the
property x > 0 is expressible by the infinite interval [0, +o0].
By contrast, x # 0 is not expressible in Int, since the least
over-approximating interval is Int(z # 0) = Z 2 Z ~ {0}.
An abstract semantics associates with each program c a
computable function post4[c| : A — A on the abstraction A
(also written [[c]]ﬁA). By soundness of abstract interpretation, if
v(post 4[c]a(P)) C Spec then {P} c {Spec} is a valid Hoare
triple. However, when ~y(post4[c]a(P)) € Spec we cannot
conclude that { P} ¢ {Spec} is not valid, because any witness
in y(post4[c]a(P)) \ Spec is just a potentially false alert.

Authorized licensed use limited to: University of Pisa. Downloaded on February 28,2024 at 10:24:30 UTC from IEEE Xplore. Restrictions apply.

LICS 2021

any locally complete under approximation
either proves the program correct or
iIncorrect (without false positives

‘




Local completeness




Expressible specifications

Assume A(Spec) = Spec
Take apost O € C

if O € Spec
then Q C A(Q) € Spec

If O C Spec
then A(Q) C A(Spec) = Spec

O C Spec & A(Q) C Spec




Example

Int(x > 0) =[0,00] = (x > 0)

fQ, £ (|x] =1)
then Int(Q,) = [=1,1] & (x > 0)

fQ, = (x>0Ax%5=0)
then Int(Q,) = [5,00] C (x > 0)

O C Spec & A(Q) C Spec




The role of completeness

correctness of Al
if [c];A(P) C Spec
then [[c]|P C Spec

[clIP C A([c]IP) C [c]%A(P) C Spec

If completeness holds

if [c]JA(P) € Spec
then [[c]|P € Spec

A(LIP) = [l AP) ¢ Spec
& [c]lP € Spec

[cllP C Spec < [[cl[}A(P) C Spec




Example

+, X complete in Int
c=x:=3x:x:=x+2
P=(xe{l1,3,6))

[[C]]IntInt(P) — [[C]]Int[1’6] —
[5,20]€ (x < 15)
<
[cllP € (x < 15)

However, not all elements In
[16,20] are true positives!




Sources of incompleteness

* Completeness is preserved by ; , U and fix

Incompleteness can only be introduced by atomic commands ¢

assignments: settled for many domains

?

guards: troublesome

if the beca [[e]] is incomplete, then any (sound) [[e]] \ is incomplete
.e., Incompleteness is an intrinsic property of a domain



Completeness for guards

Completeness equation: VP . A([[e]|P) = A([[e]]JA(P))

must be a strict
Lemma. [a necessary condition for complete guards]
If a test b is complete in A, then b and —b are expressible in A

Proof. Assume b not expressible, take P = b and show —b is not complete.



Examples

Int: the test (x = 0) is not complete (x # 0 not expressible)

Int: the test (x > 5) might be complete (but it is not)

Sign 7

. RN
Sign: the test (x > 5) is not complete R

D

e /\\

Sign™: the test (x > 0) might be complete (and it is indeed) _ \>< ><\:
\\/



Completeness for guards

Th. |a necessary and sufficient condition for complete guards]

Let b and b be expressible in A.
The test b is complete in A
Iff
the join of any two abstract points below b and —b is expressible.



Completeness illustrated

o T
O O @
o .. A \ doesa,Ua, EA?
/ CllUCl.z O ® ’ »
® ‘/’\ /ob
Clz“ O . ® Qal






Example

o T
° ®
° °
o ® ® Int
Bl ® °
(0,1,10,11} o o
® ° ®

/ \ /' [6@1

[10,11]

§0(£)
{0,1,10,11} ¢ Int



Incompleteness everywhere

Unfortunately, common tests are incomplete in most domains

One possibility:

take the most abstract domain A, (called complete shell) that:
1) refines A, and

2) is complete for the test b

ok, but:
may cause a blow up (abstract domains are closed under meet)

operations that where complete in A may be incomplete in A,




Local completeness

We don’t need completeness for all inputs:
e.g., b = (x > 0) is complete in Intfor P = {—10,0,1,10)

Local completeness equation: }é A(llellP) =A(]e]A(P))

We say that ¢ is locally complete in A for input P and write

Cie)

ldea: we focus on completeness along traversed states
» (which can be collected as underapproximation)




Local Completeness Logic
(LCL)



O’Hearn’s triples LCL triples

pre

(=

condition

[P] ¢ [O] -, [P] c [O]

condition

abstract

post
condition

any output matching the postcondition can be reached by executing the command
can be reached by executing the command on some input matching the precondition
+

post
condition

any output matching the postcondition

domain

Oon some Input matChmg the precondltlon for any input matching the precondition executing the
command establishes the abstraction of the postcondition

[cIP2Q  [EREEERAQ 2[cIP2Q

under Includes just over under Includes just

approximation! reachable states approximation! @ approximation! reachable states




Atomic commands

local -
requirement A
C p(e )

m [transfer]

Floyd’s rule

for assignments (]:1?)(61)

C(b)

. [P16? [P AD]




Atomic commands

Ci@)
4 [Plx:=al3dx". Plx'/x] Ax = alx'/x]]

Fie (X EL=T7, 7} x:=3x+1[x e {—-20,22}]



Atomic commands

Chb)

—, [P]1b? [P A D)

Fo e (=7.71x>02 [xe {7}]7 €3

Int(lx > 0?M{=7,7}) =1Int({7}) = [7,7] # [1,7] = Int([1,7]) = Int([[x > O?[I[=7,7]) = Int(lx > O? ]| Int({—=7,7}))

Int([x > 0?[{—=7,1,7}) =Int({1,7}) = [1,7] = Int([1,7]) = Int(lx > O?]I[—=7,7]) = Int([[x > O? ][ Int({—7,1,7}))

I_Int [.X & {_79197}] x> 07 [X = {1,7}] ?Q




Consequence rule

preserve preserve
abstraction abstraction

P'=P=AF) Fp[Plr]Q] 0= 0 = A(Q)

R
(reversed Hoare)

we can weaken the pre and
shrink the post, but not too much!
scalable bug detection

Irelax]



Convexity

Lemma. [convexity]
f C5(e) and P = R = A(P) then C4(e)

Proof.
Assume A([[e]|P) = A([[e]|A(P))
we want to prove A(|[e]|R) = A([[e]|A(R))

A(llellP) < A([lelIR) < A([lelAR)) = A(lle]lA(P)) = A([[e]lP)



Conseqguence rule

preserve preserve

abstraction abstraction

P'=P=AF) Fo[Plr]Q] Q0= 0 = A(Q)

B
(reversed Hoare)

A(P") A(Q')

Irelax]




Conseqguence rule

preserve preserve

abstraction abstraction

P'=P=AF) Fo[Plr]Q] Q0= 0 = A(Q)

IL style I_A [P] r [Q]
(reversed Hoare)

A(P)= A(P) A(Q")

Irelax]




Conseqguence rule

preserve preserve

abstraction abstraction

P'=P=AF) Fo[Plr]Q] Q0= 0 = A(Q)

IL style I_A [P] r [Q]
(reversed Hoare)

A(P)=A(P) A(Q) =A(Q)

Irelax]




Conseqguence rule

preserve preserve

abstraction abstraction

P'=P=AF) Fo[Plr]Q] Q0= 0 = A(Q)

B
(reversed Hoare)

A(P)=A(P) A(Q) =A(Q)

Irelax]

| adPIrio] §




Consequence rule

=4 [P] r QO]

Irelax]

Hie (X €E{=7,0,7}] r[x € {—5, —2,8}]
Fr X € 1—7,0,3,7}] r[x € {—5,8}]

9



Consequence rule

=4 [P] r QO]

Irelax]

Hie (X €E{=7,0,7}] r[x € {—5, —2,8}]
Fie (X € 1—7,0,7.9}] r[x € {—2,8}]

X



one-step

unroll

Fixpoint acceleration

4 [P1r[R] H4[PVRIF*[Q] F4[P17[Q] O = A(P)
rec] -, [P] r* [O] iterate] =, [P] r* [PV O]

locally complete under-approximation!
scalable bug detection

Sign', cSien = 10

gignt [Pl = < 07 [{—10, —1}] —Signt [({—10, —1}] @ := @ * 10 [{—100, —10}]

~gignt [Pl z < 0732 := x * 10 [{—100, —10}] {—100, =10} C Sign(P) = Zs0
FSigt [Pl (z < 0752 := = » 10)™ [{—100, —10, —1, 100}]
P = {-10,-1,100}

(iterate)



Sequential composition &

l_A d Fq R l_A R %) O]
— [Pl rr, (0] sed|

Froe Ltrue] x < 075 x:=—x[x € |1,00]]



Choice

l_A | P Fq [Q1] l_A | P ) [Qz]

FAPTr 110V 0]

1 [true] iIf x < O then x := — x else skip [x € [0,00]]



Validity, soundness,
completeness



The rules of LCL

PP<P<AP) F4[P]r]Q] Q<Q <AQ)
Fa [P]r Q)
Fa [Pl [Q1] Fa[P]re Q2

(relax)

P Y A nen@vael O
FalPIr(R] FalPVRIC QL alPIrlQ] Q= AP) L
- [PLr Q) ralPlriPve
Auxiliary rules
TalPIrlQ] Q<P (invariant)
-4 [P] v [P Vn e€N. F4 [P, r |[Ppiq) (limit)

A [Fol v [Vien P




Validity

A LCL triple b, [P] r [Q] is valid if Q C [7]|P C A(Q)

Is 7 [X > 0] x := 10x [x > 10] valid? o
Is 1 [Xx > 0,y > 0] x := yx [x > 0] valid? o

s Fgign [* > 0,y > 0] x :=yx [x =42,y = 7] valid? @

s Fgign [X > 0] (x := x + 1)* [x > 0] valid? o



Logical correctness

Th.
f 4 [P] r[Q] then Q C [[FIP C A(Q) = [FI,A(P)

Proof.
By induction on the derivation.



Verification

Th.

If A(Spec) = Spec, then any provable triple =, [P]| r [ O]
either shows the program correct (O C Spec)

or exposes some true positives (O\ Spec # @)

Proof.

[7[|P C Spec & A[[r]|P C Spec
< A(Q) € Spec
< 0 C Spec



Verification

Th.

elither shows the pr-
or exposes sorn ¢

Proof.

[7[|P C Spec & A[[r]|P C Spec
< A(Q) € Spec
< 0 C Spec



Logical completeness

Th.
If A is complete for any atomic command in r,
then any valid triple =, [P] r || can be derived

Proof.
We first derive =, [P| r [| 7] ],
then use [relax] with O C [[r]|P



Intrinsic logical incompleteness

Th.
For any Turing complete language and any non-trivial
abstraction A, there are valid triples that cannot be proved

Proof.
See full version of LICS 2001 paper

Roberto Bruni, Roberto Giacobazzi, Roberta Gori, Francesco Ranzato:
A Correctness and Incorrectness Program Logic. |. ACM 70(2): 15:1-15:45 (2023)







Putting pieces together

A IL triple [P]| r [O] is valid if O C [[r]|P
Th. Any valid IL triple can be derived

[P C A(Q)
A LCL triple -, [P] r [Q] is valid if Q C [F]IP C A(Q) * mUStQhCé'd[[f}rP A=1{T}
any O C || r

Th. If A is complete for any atomic command in r,
A must be complete

then any valid triple =, | P] r | (] can be derived

AXC
Th. For any non-trivial abstraction A, there are valid LCL * A must be trivial ><
triples that cannot be proved A=1{T}




Consequences
A=1{T
m e

Cp(e) transfer) L =L SAP) FalPIr[Q] Q<@ <AQ)
AP e [HP] —a [P]r Q)
Fa [P [R] Fa [R] e [Q (seq) Fa [Pl Q1] Fa [P]re [Q2 (join)
Fa [P] risre [Q) Fa [P i@y [Q1V Qo
—a [P] r[R] -4 [PVR] Q] —a [P] r Q) QSA(P)M

A |P]r* Q] (rec) [P [PVQ (iterate)



Consequences

A={T}
(transfer) P <P Fa [P r Q] Q<@
-4 [P] e [[e] P] FalPlrl@
—4 [Pl r [R] FalR]r [Q (seq) Fa [Pl n (@] Fa [Pl [Q] fioin)
= [P] ri:ro [Q] = A [P] ri @ ro [Ql\/QQ] J
APl r|[R] Fa [PV R (Q (rec) a4 P r Q) (iterate)

—a [P [PV Q)

(relax)



How to handle ok and er @&

A={T)} C = @({ok,er} x X)

€ : O shorthandfor {e: 0| o€ O} = {e} X O
[[skip]](ok:QUer:R)éok:QUer:R
[x:=all(ock: QUer:R) = ok :{o[x— [[a]lc]|c € O} Uer: R
[error)][(ck : QUer:R)Zer: OUR
[b?T(ok: QUer:R)=ok:(OAb)Uer: R
[x := nondet()][(ck : QUer:R)Z ok :{olx—Vv]|oEeO,ve Z})Uer: R

Lemma
[r]l(ck : OUer:R)=er:RU U |7]](ok : o)
=10,



IL as LCL &

Il’s relational Il’s relational
semantics semantics
Lemma.

[7]l(ok : P) = ok : [[r]lok(P) U er : [[r]ler(P)

Corollary. |[/IL as an instance of LCL]
|P| r|ok: Oller : R]inIL iff I—{T} lok : P]r|ok: OUer: R]



Questions




Question 1
Which LCL triples are valid for any r and P ?

=y [P 7 [false] Q

- [P] r [true] X,

Fgign [X > 10] r [false] €3

- wip(, P r [Pl €3



Question 2

Find a derivation for the IL triple
Foce X < 10,y > 20]1f x > y then z:=xelse z :=y [x < 10,y > 20,z = max(x, y)|

lx < 10,y > 20]
If x > y then
[false]
7= X
[false]
else

lx < 10,y > 20]
Z:=Yy

lx < 10,z =y > 20] =[x < 10,y > 20,z = max(x, y)]
lx < 10,y > 20,z = max(x, y)]



Question 3

Are these “mixed” HL+LCL inference rules valid ?

—a [Pl O] =4 [Pl O]
Py riA(Q)] tAP)} rA(Q)

f =, [P] r Q] then [[F]|P C A(Q), hence (P} r{A(Q)} is valid

f =, [P] r [Q] then [*TA(P) C [*I"A(P) = A(Q), hence
{A(P)} r {A(Q)} is valid



*Exam 8

Prove that [conj] is unsound for LCL

—ALlP ] 7 [Ql] —ALP5 | 7 [Qz]

TN AT RN



*Exam 9

Show that the following rule is not sound

=4 | P] x := nondet() [P|v/x]]

arbitrary
value



