
From OWL-S descriptions to Petri nets ⋆

Antonio Brogi, Sara Corfini, Stefano Iardella

Department of Computer Science, University of Pisa, Italy

Abstract. While OWL-S advertisements provide a rich (ontological and
behavioural) description of Web services, there are no tools that support
formal analyses of OWL-S services. In this paper we present a transla-
tor from OWL-S descriptions to Petri nets which makes such analyses
possible thanks to the many tools available for Petri nets.

1 Introduction

Service-oriented Computing [1] centers on the notion of service as the funda-
mental element for developing distributed software applications. Web service
composition is receiving increasing attention as it fosters rapid application de-
velopment via service reuse. WSDL [2] is the current standard for describing Web
service interfaces, yet, WSDL descriptions do not include information on the in-
teraction behaviour of services. This inhibits the possibility of a priori verifying
important behavioural properties of service compositions, such as lock-freedom
or replaceability.

Various efforts have been recently devoted to propose more expressive de-
scription languages capable of modelling service behaviour. The OWL-based
Web Service ontology (OWL-S, [3]) is one of the major efforts in this direction.
OWL-S is a computer-interpretable semantic mark-up language, where, for the
first time, ontology-based descriptions of service functionality and of interac-
tion service behaviour coexist. This is probably the major strength of OWL-S,
which paves the way for the full automation of service discovery, invocation and
composition. In particular, OWL-S service descriptions (e.g., the service process
model) provide the needed information for the a priori analysis and verification
of service invocations and compositions.

While some tools for describing OWL-S services (e.g., Protégé [4]) and for
matching OWL-S service advertisements (e.g., OWLSM [5]) are already avail-
able, there is no tool – at the best of our knowledge – that supports formal
analyses of OWL-S services.

The main objective of this work was to feature a tool – named OWLS2PNML

– capable of translating OWL-S service descriptions into Petri nets, thus paving
the way for analysing and verifying OWL-S services by exploiting some of the
many tools available for Petri nets [6].

In particular, OWLS2PNML translates an OWL-S process model (express-
ing service behaviour) into a Petri net described by a PNML file. The Petri

⋆ Work partially supported by the SMEPP project (EU-FP6-IST 0333563).



Net Mark-up Language (PNML, [7]) is an XML-based interchange format for
describing Petri nets. There are two good reasons for choosing PNML:

• First, PNML is emerging as the de facto standard language for expressing
(different types of) Petri nets, and various Petri net tools capable of manip-
ulating PNML files are available (e.g., [8, 9]).

• Second, there are translators available capable of converting other types of
service descriptions into PNML. This is particularly interesting since it is
not realistic to imagine that all service descriptions will be written in OWL-
S. For instance, WS-BPEL [10] has recently become the OASIS standard
for expressing Web service compositions. The availability of translators (like
[11]) from WS-BPEL to PNML hence suggests the adoption of PNML as a
lingua franca for expressing and for reasoning about heterogeneous service
descriptions.

The two main contributions of OWLS2PNML can be hence summarised as
follows:

1. OWLS2PNML makes it possible to animate OWL-S services. Indeed, after
translating OWL-S process models into PNML files, the latters can be loaded
into some available Petri net tool (e.g., [8]) and animated in order to observe
the possible actual service behaviour.

2. OWLS2PNML makes it possible to reason with heterogeneous services. For
instance, we can translate an OWL-S service and a WS-BPEL service into
PNML, and then check their (behavioural) equivalence by exploiting the var-
ious existing (Petri net-based) algorithms and tools (e.g., [12]). The avail-
ability of suitable congruences for Web services expressed in terms of Petri
nets (e.g., [13]) allows to address two crucial issues in Service-oriented Com-
puting: service replaceability and modular service development.

The OWLS2PNML translator has been developed in the context of the SAM

project [14]. SAM is a matchmaking system for discovering compositions of
(OWL-S) semantic Web services. One of the main feature of SAM is the abil-
ity of performing a behaviour-aware matching, namely, SAM is able to discover
(compositions of) services that feature a desired behaviour. SAM defines a Petri
net-based methodology for checking the equivalence of service behaviour, hence,
OWLS2PNML directly plugs-in into SAM by translating OWL-S services into
Petri nets.

The rest of the paper is organised as follows. Section 2 provides a short
introduction to OWL-S and to PNML. OWLS2PNML is described in Section 3,
after presenting a Petri nets semantics for OWL-S. Finally, we discuss related
work and we draw some concluding remarks in Section 4.

2 A short introduction to OWL-S and PNML

The next two subsections provide a short recap on OWL-S and PNML. A com-
plete specification of OWL-S and PNML can be found in [3] and [7], respectively.



2.1 OWL-S: Semantic Markup for Web Services

OWL-S [3] is an ontology-based language for semantically describing services.
An OWL-S advertisement is structured in three parts, viz. the service profile,
the process model and the grounding, each of them providing a different view of
a service. Briefly, the service profile provides a high-level description of a service,
which includes both functional (i.e., inputs/outputs) and extra-functional prop-
erties (i.e., service name, service category, cost/quality of service, and so on).
The process model details the service behaviour, in particular, it describes how
the service performs its component tasks. The service grounding explains how
to access the service by specifying protocol and message format information.

The OWL-S process model is the starting point of the OWLS2PNML transla-
tor. More precisely, the process model describes a service as a composite process
which consists, in turn, of composite processes and/or atomic processes. An
atomic process can not be decomposed further and it executes in a single step
(similarly to a black box providing a functionality), while a composite process
is built up by using a few control constructs: sequence (i.e., sequential exe-
cution), if-then-else (conditional execution), choice (non-deterministic ex-
ecution), split (parallel execution), split+join (parallel execution with syn-
chronization), any-order (unordered sequential execution), repeat-while and
repeat-until (iterative execution). Hence, for instance, an if-then-else pro-
cess is a bag of two processes out of which one is chosen for execution according
to the value of a condition, an any-order process is a bag of processes to be
executed in some unspecified order but not concurrently, and a repeat-until

process is a process to be executed at least one, until a condition becomes true.

2.2 PNML: Petri Net Markup Language

The Petri Net Markup Language (PNML) [7] is an XML-based interchange for-
mat for Petri nets, which is independent of specific tools and platforms. The
PNML technology is structured in three (fixed) parts: the meta model, which
defines the basic structure of a PNML file, the type definition interface, which
allows the definition of new Petri net types, and the feature definition interface,
which allows the definition of new features for Petri nets. The PNML technology
is complemented by an evolving part, namely the conventions document, which
contains the definition of a set of standard features of Petri nets.

The meta model of (basic) PNML defines those objects that basically rep-
resent the graph structure of Petri nets, that is, places, transitions and arcs.
Each object may have labels, whose functionality is to assign further meaning
to objects. For example, a label can represent the name of a place/transition,
the initial marking of a place, or the inscription of an arc. The definition of
all standard labels is provided (and maintained) by the conventions document,
while the legal (combinations of) labels of a specific Petri net type are defined in
a Petri Net Type Definition (PNTD) document. The XML syntax of the PNML
meta model is straightforward: PNML objects (viz., places, transitions and arcs)
are translated into PNML elements (viz., <place>, <transition> and <arc>).



Additional XML elements are defined for the labels defined by specific Petri net
types. For example, the element <name> could be a label for a place object (i.e.,
<name> is a child XML element of <place>). Each element within a PNML file
has a unique identifier, which can be used to refer to this element.

3 From OWL-S to PNML

3.1 A Petri nets semantic for OWL-S

As we anticipated in the introduction, OWLS2PNML has been designed in the
context of a matchmaking system for discovering compositions of semantic Web
services, called SAM (for Service Aggregation Matchmaking). SAM models ser-
vice behaviour by means of CPR nets (for Consume-Produce-Read nets), a vari-
ant of standard condition/event1 Petri nets that we defined in [13]. A feature
of CPR nets is that they are equipped with two disjoint sets of places, namely,
control places (to be consumed and produced) and data places (to be produced
and read). Hereafter, we recall the formal definition of CPR nets.

Definition 1 (CPR net). A consume-produce-read net (simply, CPR net) N

is a tuple (CN ,DN , TN , FN , IN ) where

– CN is a finite set of control places,
– DN is a finite set of data places (disjoint from CN ),
– TN is a finite set of transitions,
– FN ⊆ (CN × TN ) ∪ (TN × CN ) is the control flow relation,
– IN ⊆ (DN × TN ) ∪ (TN × DN ) is the data flow relation.

When defining CPR nets in [13], we considered that an OWL-S atomic op-
eration can be executed only if all its inputs are available and all the operations
that must occur before its execution have been completed (according to [3]).
Consequently, we mapped atomic operations into transitions, and we employed
places and transition firing rules to model both the availability of data (viz., the
data flow) and the executability of atomic operations (viz., the control flow).
In particular, an atomic operation T is modelled as a transition t having an
input/output data place for each input/output of T , an input control place to
denote that t is executable, as well as an output control place to denote that t

has completed its execution. The graphical notation of CPR nets is illustrated in
Figure 1, where diamonds represent control places, while circles and rectangles
represent data places and transitions, respectively.

As illustrated by the straight lines of Figure 1, data places can be read,
produced but not consumed. This feature of CPR nets is motivated by SAM,
which abstracts from the multiplicity of data in modelling services [14].

1 In this paper as well as in [13] we consider Petri nets which describe the “life-cycle”
of a single service session. Yet, the properties of C/E Petri nets avoid that (possible)
different service sessions overlap.



Fig. 1. Modelling atomic operations as CPR net transitions.

We defined the formal encoding of OWL-S composite processes into CPR nets
in [15]. Yet, for the lack of space, we include hereafter only a short description
of how OWL-S composite processes can be directly mapped into CPR nets.

Let us define a service as a triple (i, P, f) where P denotes the CPR net
representing the service, and i and f denote the initial and the final control
places of P , respectively. To define compositional operators it is sufficient to
properly coordinate the initial and final control places of the employed services.
For instance, let us consider the sequential composition of two services (i1, P1, f1)
and (i2, P2, f2). This is a CPR net consisting of the two services plus a transition
whose starting control place is f1 and the final control place is i2. By doing so,
P1 has to be completed before P2 can start.

The mapping of OWL-S composite processes into CPR nets is illustrated in
Figure 2, where the PX-labelled boxes represent (ix, PX , fx) services, the dark
gray rectangles denote empty transitions, and the light gray diamonds denote
the starting and final control places of the resulting nets. Note that, to simplify
reading, we omitted data places from the nets of Figure 2.

Petri nets have been already employed to model Web services. In particular,
we refer to the WorkFlow nets (WFN) defined by van der Aalst in [16] and
designed to model the workflow of services. In [17] WFNs have been enriched
(i.e., open WFNs) with communication places, which constitute the interface of
the net. We introduced CPR nets since both WFNs and open WFNs abstract
from the (whole) data flow of a service, that, yet, is crucial for matchmaking
systems (e.g., [14]) which discover, compose and analyse semantic services relying
on their ontology-annotated data.

3.2 A Petri net type definition for CPR nets

One of the major guiding principles of PNML is flexibility, that is the ability of
representing any kind of Petri nets with its specific extensions and features. In
order to define a new type of Petri net supported to PNML, it suffices: (1) to
extend the conventions document with the specific feature of the new Petri net
type, and (2) to determine the legal labels for the new Petri net type.

The presence of two disjoint sets of data and control places is the distinguish-
ing feature of CPR nets. In particular, a data place is associated with the type
of the data it represents (in case of OWL-S, a type is an ontology concept). We
hence differentiate between data and control places, and define the PNML speci-
fication of CPR nets as a simple extension of the PNML specification of standard



Fig. 2. Modelling OWL-S composite operations as CPR nets.

condition/event nets. We first extended the conventions document with the def-
inition of a new label <ontology>. The value of an <ontology> label is the URI
identifying a specific ontology concept. Next, we established the legal labels for
CPR nets in a new Petri Net Type Definition file. In particular, <place> elements
can use labels <name>, <ontology> and <initialMarking>, <transition> ele-
ments can use <name> labels, and <arc> elements can use <inscription> labels.
The presence of an <ontology> label allows us to distinguish between data and
control places.

3.3 OWLS2PNML: Implementation details

The OWLS2PNML prototype implements the Petri nets semantic for OWL-S
described in [13] and summarised in Subsection 3.1.

A non-trivial issue in implementing OWLS2PNML was how to handle the
sharing of the input/output data among different processes. Indeed, the OWL-
S process model allows – via the mechanism of the input/output binding –
to define when an input/output data has to be shared by multiple processes.
OWLS2PNML addresses such an issue by performing a suitable analysis of OWL-
S process models. Namely, for instance, if two atomic processes p1 and p2 share
an input/output data d, OWLS2PNML creates a single data place d which is
linked with both transitions p1 and p2.

OWLS2PNML has been implemented as a Java servlet and it is accessible from
http://www.di.unipi.it/∼corfini/owls2pnml.html. As one may note in Figure
3, the simple Web interface of OWLS2PNML requires as input an URL (or a file
system path) pointing to an OWL-S service description, and returns as output
the PNML code describing the Petri net representation of the given service.

The choice of Java as developing language has been mainly motivated by
the availability of many supporting libraries, such as the MindSwap OWL-S API

(http://www.mindswap.org/2004/owl-s/api/) to parse OWL-S descriptions, and



Fig. 3. The OWLS2PNML Web interface.

the XML JDOM API (http://www.jdom.org/) to write PNML files. Although the
MindSwap OWL-S API presents some limitations (e.g., it does not cope with
OWL-S pre-conditions and effects2), it is the only one to deal with all the OWL-
S control constructs. In spite of the availability of specific instruments to generate
PNML code, such as the PNML framework (http://www-src.lip6.fr/logiciels/
mars/PNML/pfUsers.html), we used the more widely known XML JDOM API.

3.4 Examples

In this subsection we illustrate the contribution of OWLS2PNML by presenting
two examples which highlight the importance of animating (OWL-S) services
and of checking service equivalence, respectively.

Let us first discuss the importance of animating OWL-S services to detect
undesired behaviour. Consider the ExampleOne service, operating in the bank
domain, which builds a credit offer, given the requested amount of credit, the
balance and the guarantee provided by a customer. The full OWL-S code of the
ExampleOne process model, as well as of all the services employed in this sub-
section, is available at http://www.di.unipi.it/∼corfini/owls/processmodels/.
For the convenience of the reader, we show in Figure 4 a more compact – yet
manually built – tree representation of the ExampleOne process model, rather
than listing the actual OWL-S code (which is more than 500 lines long).

As one can note in Figure 4, ExampleOne consists of an any-order process
composed, in turn, of a sequence process and of an atomic process. An any-order

process is a bag of processes to be executed in some unspecified order but not
concurrently. In particular, for the ExampleOne service, this means that if the

2 Such limitation was not a problem for developing the OWLS2PNML prototype as
OWL-S pre-conditions and effects are not present in the service descriptions trans-
lated by OWLS2PNML.



Fig. 4. The OWL-S process model of the ExampleOne service.

Fig. 5. CPR net representation of the ExampleOne service.

execution of the any-order process starts from the sequence process, all the
child processes of the sequence (i.e., evaluateSecurity and makeOffer) have
to be completed before executing the computeRating atomic process. Yet, we may
note that this behaviour (i.e., the sequential execution of evaluateSecurity, make-

Offer, computeRating) leads to a dead-lock. Indeed, given as input amountOf-

Credit, balance and guarantee, the evaluateSecurity atomic process is executed,
yet, makeOffer can not execute, as it needs rating as input, which is provided
by computeRating, that, in turn, can not be executed before makeOffer com-
pletes. Regrettably, this undesired behaviour is hard to be detected by directly
analysing the long “static” OWL-S code. OWLS2PNML enables the possibility
of animating OWL-S services, so to verify the actual service behaviour.

OWLS2PNML generates a Petri net representation of a given OWL-S process
model, that can be next simulated by exploiting some of the many existing tools
for simulating nets (e.g., WoPeD [8]). Figure 5 illustrates the Petri net generated
by OWLS2PNML for the ExampleOne service. By animating the net, namely, by
inserting tokens in the data places corresponding to amountOfCredit, balance and
guarantee, it is easy to detect the above described undesired behaviour. Indeed,
the net simulation stops after executing evaluateSecurity.

Let us now discuss the issue of service replaceability, that is, the ability of
verifying whether a service taking part in a complex application can be replaced
with a different service, without altering the behaviour of the whole application.
Consider, for instance, the RatingOne service taking part in a credit banking
system. RatingOne takes as input the requested amount of credit, the balance
and the provided guarantee of a customer, it computes three separate evaluations



Fig. 6. The OWL-S process model of the RatingOne service.

Fig. 7. The OWL-S process model of the RatingTwo service.

of the customer and next it returns an average rating. For the convenience of the
reader, we give in Figure 6 a tree-view of the OWL-S process model describing
RatingOne, thus avoiding to list the complete OWL-S code. Let us now suppose
that the banking system wants to substitute RatingOne with the RatingTwo

service. RatingTwo, illustrated in Figure 7, may be more convenient for the bank,
as it does not always compute three separate and expensive customer evaluations,
e.g., it computes a second and next a third customer evaluation only if the
previous rating exceeds a threshold value.

The problem for the bank is hence to establish if RatingOne can be replaced
with RatingTwo, without altering the behaviour of its credit system. Yet, by con-
centrating on the OWL-S descriptions (i.e., XML-based code) of RatingOne and
RatingTwo, there is no the possibility of easily verifying the behavioural equiva-
lence of the two services, so to establish that RatingTwo can replace RatingOne.

OWLS2PNML enables the analysis of OWL-S services, since the translation
of OWL-S services into Petri nets allows the re-use of the many methodologies,
algorithms and tools (e.g., [12]) developed to check the equivalence of Petri
nets. For example, let us consider the behavioural congruence for Web services
defined in [13], where service behaviour is modelled by means of CPR nets.
The behavioural congruence of [13] defines equivalent two given nets N1 and



Fig. 8. CPR net representation of the RatingOne service.

Fig. 9. CPR net representation of the RatingTwo service.

N2 if each state of N1 can be reached by N2 (and vice versa). A state of a
CPR net is the marking of its observable places, that is, those places that can
be externally observed and that can interact with the external environment.
Hence, such a congruence abstracts from internal transition steps by equating
structurally different, yet externally indistinguishable services.

Figures 8 and 9 illustrate the (graphical representation of the) CPR nets
achieved by executing OWLS2PNML on RatingOne and RatingTwo. Suppose that
the bank is interested only in observing the final rating, not the intermediate
ones. The observable places are hence the following: amountOfCredit, balance,
guarantee and rating. Furthermore, note that the initial control place i as well
as the final control place f have to be observed, in order to check the correct
termination of both services. We can hence equate the nets of Figures 8 and
9 without observing firstRating, secondRating and thirdRating. By doing so, the
nets are equivalent, indeed, although structurally different, they result externally
indistinguishable. It is worth observing again that it is not possible to verify such
an equivalence by directly reasoning on OWL-S descriptions.



4 Concluding remarks

In this paper we presented a tool – named OWSL2PNML – capable of translating
OWL-S service descriptions into Petri nets. As already anticipated in the intro-
duction, the main contribution of OWSL2PNML is to make possible to analyse
and verify OWL-S services, as it allows to employ some of the many tools avail-
able for Petri nets. OWSL2PNML, which implements the Petri net semantics for
OWL-S that we described in [13], has been developed in the context of the SAM

project [14], whose objective is the discovery of compositions of OWL-S semantic
Web services featuring a specific behaviour.

The first Petri nets semantics for DAML-S (the predecessor of OWL-S) was
defined by Narayanan and McIlraith in [18]. Yet, their semantics is not compo-
sitional, and it does not deal with the any-order control construct. The Petri
nets semantics of [18] was implemented by the DaGen tool [19], which translates
DAML-S descriptions into reference Petri nets. DaGen is a plug-in for the Refer-
ence Net Workshop (Renew, http://www.renew.de), a Petri net simulator that
allows for the graphical drawing and for the execution of reference nets. Yet,
DaGen does not generate intermediary files describing the Petri net resulting
from the translation process. On the other hand, as we stated in the introduc-
tion, we believe that the ability of OWLS2PNML to describe nets by means of
PNML files is suitable for two good reasons: (1) various Petri nets tools capable
of manipulating PNML files are available [8, 9], and (2) PNML can be used as
lingua franca for expressing and for reasoning about service descriptions, since
the availability of translators, e.g., from WS-BPEL into PNML [11].

It is also worth mentioning the work of Elenius et al. that presented in
[4] an OWL-S editor, implemented as a plug-in of the Protégé OWL ontol-
ogy editor (http://protege.stanford.edu). An interesting under development
feature of [4] is the ability of executing OWL-S services, currently restricted to
atomic processes only. Indeed, [4] is partially able to process the OWL-S ground-
ing, which describes how to concretely invoke the service operations. Note that
OWSL2PNML does not analyse the OWL-S grounding as it is the objective of
other components of the SAM project, where OWSL2PNML takes part.

OWSL2PNML is still a prototype, and as such it has some known limita-
tions. One of them is that OWSL2PNML requires correct OWL-S descriptions
as input. We plan to add a validation step in order to verify the correctness of
the OWL-S descriptions to be translated. A second line for future work can be
the handling of graphical information, which can be associated to each element
(i.e., place, transition, arc) of the net, in order to allow Petri net tools to visu-
alise the “best-view” of the loaded net. Another important direction of future
work is to complement OWLS2PNML with a tool capable of checking the behav-
ioural equivalence of different services expressed as CPR nets, in particular by
implementing the definifion of CPR net bisimulation presented in [13]. Finally,
an interesting (although perhaps non-trivial) issue is to convert Petri nets into
OWL-S descriptions. For instance, a Petri net-based matchmaking system (e.g.,
[14]) may exploit such a translator to generate a OWL-S description of the result
of its discovery process.



References

1. Papazoglou, M.P., Georgakopoulos, D.: Service-Oriented Computing. Communi-
cations of the ACM 46(10) (2003) 24–28

2. WSDL Coaltion: Web Service Description Language (WSDL) version 2.0 (2007)
http://www.w3.org/TR/wsdl20/.

3. OWL-S Coalition: OWL-S: Semantic Markup for Web Service (2006)
http://www.ai.sri.com/daml/services/owl-s/1.2/overview/.

4. Elenius, D., Denker, G., Martin, D., Gilham, F., Khouri, J., Sadaati, S.,
Senanayake, R.: The OWL-S Editor - A Development Tool for Semantic Web Ser-
vices. In Gómez-Pérez, A., Euzenat, J., eds.: ESWC 2005, LNCS 3532, Springer
(2005) 78–92

5. M. Jaeger et al.: OWLSM (2004) http://owlsm.projects.semwebcentral.org/.
6. (Petri nets World) http://www.informatik.uni-hamburg.de/TGI/PetriNets/.
7. Billington, J., Christensen, S., van Hee, K.M., Kindler, E., Kummer, O., Petrucci,

L., Post, R., Stehno, C., Weber, M.: The Petri Net Markup Language: Concepts,
Technology, and Tools. In van der Aalst, W.M.P., Best, E., eds.: ICATPN 2003,
LNCS 2679, Springer (2003) 483–505

8. The WoPeD Team: Workflow Petri Net Designer (2007) http://www.woped.org/.
9. Research Group Petri Net Technology: Petri Net Kernel (2002)

http://www2.informatik.hu-berlin.de/top/pnk/.
10. BPEL Coalition: WS-BPEL 2.0 (2006) http://docs.oasis-open.org/wsbpel/

2.0/wsbpel-v2.0.pdf.
11. Ouyang, C., Verbeek, E., van der Aalst, W., Breutel, S., Dumas, M., ter Hofstede,

A.: WofBPEL: A Tool for Automated Analysis of BPEL Processes. In Benatallah,
B., Casati, F., Traverso, P., eds.: ICSOC, LNCS 3826, Springer (2005) 484–489

12. Fernandez, J.C., Mounier, L.: “On the Fly” verification of behavioural equivalences
and preorders. In Larsen, K., Skou, A., eds.: Computer Aided Verification, LNCS

575, Springer (1992) 181–191
13. Bonchi, F., Brogi, A., Corfini, S., Gadducci, F.: A Behavioural Congruence for Web

services. In Arbab, F., Sarjani, M., eds.: Fundamentals of Software Engineering,
LNCS (To appear), Springer (2007)

14. Benigni, F., Brogi, A., Corfini, S.: Discovering Service Compositions That Feature
a Desired Behaviour. In Krämer, B., Lin, K., Narasimhan, P., eds.: ICSOC 2007,
LNCS 4749, Springer (2007) 56–68

15. Bonchi, F., Brogi, A., Corfini, S., Gadducci, F.: Compositional Specification of
Web Services via Behavioural Equivalence: A Case Study. (2007) Submitted to
Trustworthy Global Computing (TGC 2007).

16. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management.
Journal of Circuits, Systems, and Computers 8(1) (1998) 21–66

17. Massuthe, P., Reisig, W., Schmidt, K.: An operating guideline approach to the
SOA. Annals of Mathematics, Computing & Teleinformatics 1(3) (2005) 35–43

18. Narayanan, S., McIlraith, S.A.: Simulation, verification and automated composi-
tion of web services. In: WWW 2002, ACM Press (2002) 77–88

19. Moldt, D., Ortmann, J.: DaGen: A Tool for Automatic Translation from DAML-S
to High-Level Petri Nets. In Wermelinger, M., Margaria, T., eds.: FASE 2004,
LNCS 2984, Springer (2004) 209–213


