
Semantics-based Composition-oriented Discovery of

Web Services

ANTONIO BROGI, SARA CORFINI, RAZVAN POPESCU

Department of Computer Science, University of Pisa, Italy

Service discovery and service aggregation are two crucial issues in the emerging area of Service-
Oriented Computing (SOC). We propose a new technique for the discovery of (Web) services
that accounts for the need of composing several services to satisfy a client query. The proposed
algorithm makes use of OWL-S ontologies, and explicitly returns the sequence of atomic process
invocations that the client must perform in order to achieve the desired result. When no full
match is possible, the algorithm features a flexible matching by returning partial matches and by
suggesting additional inputs that would produce a full match.

Categories and Subject Descriptors: H.3.5 [Information Storage and Retrieval]: Online Infor-
mation Services – Web-based services; H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; I.2.4 [Artificial Intelligence]: Knowledge Representation Formalisms and
Methods

General Terms: Algorithms

Additional Key Words and Phrases: Web service discovery, Web service composition, matchmak-
ing algorithms, OWL-S ontologies

1. INTRODUCTION

Service-Oriented Computing (SOC) [Papazoglou and Georgakopoulos 2003] is emer-
ging as a new, promising computing paradigm that centres on the notion of service

as the fundamental element for developing software applications. According to [Pa-
pazoglou and Georgakopoulos 2003], services are self-describing components that
should support a rapid and low-cost composition of distributed applications. Ser-
vices are offered by service providers, which procure service implementations and
maintenance, and supply service descriptions. Service descriptions are used to ad-
vertise service capabilities, behaviour, and quality, and should provide the basis for
the discovery, binding, and composition of services. Services possess the ability of
engaging other services in order to complete complex transactions, like checking
credit, ordering products, or procurement. The platform-neutral nature of services
creates the opportunity for building composite services by composing existing ele-
mentary or complex services, possibly offered by different service providers [Yang
2003].

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2007 ACM 1529-3785/2007/0700-0001 $5.00

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007, Pages 1–0??.

2 · Antonio Brogi, Sara Corfini, Razvan Popescu

The Web service model includes three component roles — clients, providers and
registries — where providers advertise their services to registries, and clients query
registries to discover services. In this scenario, two prominent issues involved in the
development of next generation distributed software applications can be roughly
synthesised as:

(1) discovering available services that can be exploited to build a needed applica-
tion, and

(2) suitably aggregating such services in order to achieve the desired result.

The current Web services infrastructure relies on WSDL (Web Services Descrip-
tion Language) [W3C 2001b], SOAP (Simple Object Access Protocol) [W3C 2001a]
and UDDI (Universal Description & Discovery Interface) [UDDI 2000]. WSDL is
a XML-based language for describing what a service does and how to invoke it.
SOAP is a standard protocol for exchanging messages over HTTP between applica-
tions. UDDI allows for the definition of global registries where information about
services are published. Currently, UDDI is the only universally accepted standard
for Web service discovery.

The standard service infrastructure has two main limitations: it does not support
(automatic) service composition, and it does not account for semantics information.
Indeed, service descriptions are expressed by means of WSDL, by declaring a set of
message formats and their direction (incoming/outgoing). The resulting description
is purely syntactic, very much in the style of Interface Description Languages (IDLs)
in component-based software engineering. Consequently, UDDI, which supports the
definition of service registries in the style of yellow pages, is able to feature only
keyword-based matches that often give poor performance.

Given the pivotal importance of service discovery for SOC, several attempts to
enhance the discovery process are currently being pursued. One of the major efforts
in this direction is promoted by the OWL-S coalition which aims at enriching service
descriptions with semantics and behavioural information. The OWL-S coalition
proposes a semantics-based description of Web services, based on the use of OWL-
S (formerly DAML-S) ontologies [OWL-S Coalition 2004], where each service is
provided with a description consisting of three documents: service profile (“what
the service does”), service model (“how the service works”), and service grounding

(“how to access the service”).
The process of Web service discovery — often referred to as service matchmaking

— then takes as input a query as well as a service registry consisting of (service)
advertisements, and returns as output a list of matched services. A matchmaking
query typically specifies the functionality of the desired service (composition) in
terms of its inputs and outputs1.

In this paper we present a new algorithm for the composition-oriented discovery of
Web services. The algorithm — called SAM (for Service Aggregation Matchmaking)
— can be used to match queries with service registries making use of OWL-S
ontologies. SAM extends a matchmaking algorithm proposed in [Bansal and Vidal

1Although OWL-S permits to specify also preconditions and effects of service executions, we
decided not to consider their possible employment within client queries as their effectiveness in
the matchmaking process is not quite clear.

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

Semantics-based Composition-oriented Discovery of Web Services · 3

2003] by featuring a more flexible matching and, more importantly, by accounting
for service compositions. Indeed, queries that cannot be satisfied by a single service
might be frequently satisfied by composing several services together. An immediate
example of this is a client wishing to plan its holidays by booking flight tickets as
well as hotel accommodation while taking into account various parameters such as
weather, season prices, special offers, and so on.
The main features of the proposed algorithm can be summarised as follows:

– Flexible matching. The proposed algorithm (SAM) features a more flexible match-
ing w.r.t. [Bansal and Vidal 2003] as:
• SAM performs a fine-grained matching at the level of atomic processes, or sub-

services (rather than at the level of entire services as in [Bansal and Vidal
2003]).

• Rather than returning only full matches (when a single service can fully satisfy
the client request by itself), SAM also returns (when no full match is possible) a
list of partial matches. A partial match is a (composition of) sub-service(s) that
can provide only some of the outputs requested by the client. It is important
to stress that a partial match can be a valuable answer for the client, which
may have over-specified its query or may decide to use the selected services
even if its query will be only partially satisfied.

• When no full match is possible, SAM — besides returning partial matches —
is also capable to suggest to the client additional inputs that would suffice to
get a full match.

– Composition-oriented matching. More importantly, SAM is the first algorithm
(at the best of our knowledge) to provide a composition-oriented matchmaking
based on semantic descriptions of queries and services by taking into account the
service behaviour.
• When no single service can satisfy the client query, SAM checks whether there

are service compositions that can satisfy the query, possibly including multiple
executions of services.

• When SAM finds a match, it explicitly returns the sequence of atomic process
invocations that the client must perform in order to achieve the desired result.

The rest of the paper is organised as follows. Section 2 is devoted to introduce
OWL-S ontologies for service discovery, while in Section 3 we briefly discuss the
limitation of existing matchmaking algorithms based on OWL-S. In Section 4 we
describe the new algorithm for the composition-oriented discovery of services, and
we analyse its complexity, correctness and completeness in Section 5. Related work
is presented in Section 6. Some concluding remarks are drawn in Section 7.

2. BACKGROUND: A SHORT INTRODUCTION TO OWL-S

UDDI is the only universally accepted standard for the discovery of Web services.
UDDI allows for the creation of online service registries in the style of yellow pages
and employs a keyword-based matching system that often leads to poor performance
(because of the current availability of interface-level descriptions, i.e. WSDL). Ac-
cording to the Semantic Web vision [Berners-Lee et al. 2001], the introduction of
semantic information in Web service descriptions is therefore strongly required. A
step in this direction has been made by the OWL-S coalition, that defined a high

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

4 · Antonio Brogi, Sara Corfini, Razvan Popescu

level ontology-based language for describing services, named OWL-based Web Ser-
vice ontology (OWL-S). Since OWL-S is a computer-interpretable semantic markup
language providing all the needed information for describing services, OWL-S allows
for discovering, invoking and composing services in an automatic way. According to
[OWL-S Coalition 2004], a Web service is defined by an OWL-S description which
is structured in three parts providing three different views of a service: the service

profile (which describes what the service does), the service model (which describes
how the service works) and the service grounding (which describes how to interact
with the service).

The service profile provides a high-level description of a service and it consists
of three types of information regarding the organisation that provides the service,
the function computed by the service as well as some other characteristics of the
service. The provider information consists of contact information and refers to the
entity that provides the service. Service functionalities are represented by listing
the inputs required as well as the outputs produced by the service. The last type
of information is a list of service parameters containing information such as an
estimate of the maximum response time, geographic availability, cost or quality of
the service.

The service model has a process model subclass which provides a different per-
spective of a Web service, that can be viewed as a process. It is important to
note, that in this context a process is not a program to be executed, but it is a
specification of the ways a client may interact with a service. OWL-S defines three
types of processes: atomic, simple and composite. An atomic process is executed
in a single step (from the point of view of the client of the service). It can not
be decomposed further and it has an associated grounding. Atomic processes have
associated inputs and outputs (IOs) and they are the only processes that can be
directly invoked by the client. A simple process is similar to an atomic one but it
can not be invoked directly and it does not have an associated grounding. It is a
simplified and abstract view of a composite process. Finally, a composite process
consists of other processes, the composition being made with the following control
constructs: sequence, choice, split, split+join, if-then-else, any-order,
iterate and repeat-while/until. The meaning of such control constructs is the
usual meaning that they have in the conventional programming languages. More
precisely [OWL-S Coalition 2004]:

• a sequence process is a list of processes to be executed in order;

• a choice process is a bag of processes out of which only one can be chosen for
execution;

• a split process is a bag of processes to be executed concurrently;

• a split+join process is a bag of processes to be executed concurrently with
barrier synchronisation;

• an if-then-else process is a bag of two processes out of which one is chosen for
execution according to the value of a condition;

• an any-order process is a bag of processes to be executed in some unspecified
order but not concurrently;

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

Semantics-based Composition-oriented Discovery of Web Services · 5

• an iterate process is a process to be executed, without specifying how many
iterations have to be done;

• a repeat-while process is a process to be executed zero or more times, until a
condition becomes false.

• a repeat-until process is a process to be executed at least once, until a condition
becomes true.

The inputs and the outputs of a composite process correspond to the set of all
inputs and respectively to the set of all outputs of its sub-processes.

While both the service profile and the service model are abstract representations
of a service, the service grounding is the only concrete specialisation of the service.
It provides detailed information about how to access and how to interact with the
service by specifying protocol as well as message format information. The main
purpose of the OWL-S grounding is to show the way to concretely organise the
inputs and the outputs of an atomic process (that is, the elements needed for inter-
acting with the service) as a message. To this end, OWL-S exploits the extensive
work made in the area of concrete message specification by relying on WSDL and
SOAP, that is a standard protocol for information exchange in decentralised and
distributed environments.

In the rest of the paper we concentrate on the OWL-S process model because
it provides essential information for discovering and composing services, which is
the goal of our algorithm. Indeed, even if the information contained in the service
profile would be sufficient for (single) Web service discovery, it would not suffice for
composing services. More precisely, the profile-based service discovery/composition
does not suffice in the case of complex services, while in the case of atomic services
the information provided by the profile coincides with the information advertised
by the process model. The service profile consists of a list of inputs and outputs
and it does not provide any information about the order in which the inputs are
requested, or the outputs are returned. Thus, we argue that it is not possible to
compose services in a semi-automatic engineered way using their profile contents
only.

We present next the process model of an Electronics Store service that sells
electronic items like notebooks or digital cameras. The service firstly asks the client
for the preferred country and returns in response the service availability in such
country. Next, it continues with the authentication of the client, that can choose
between logging in to an existing account or creating a new account. Finally, the
service starts the selling phase, during which the client can buy a notebook or a
digital camera.

The tree structure of the Electronics Store service is illustrated in Figure 2,
while (a fragment of) its OWL-S code is presented in the Appendix. The root
composite process is Electronics Store which is a sequence process composed
of an atomic process, country choice, as well as two choice processes, login

and product choice. The login process is composed of two atomic processes,
create account and load account, while the product choice process is composed
of two sequence processes, digital camera buy sequence and notebook buy se-

quence. Both digital camera buy sequence and notebook buy sequence proces-
ses are composed of two atomic processes, that are digital camera buy and digi-

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

6 · Antonio Brogi, Sara Corfini, Razvan Popescu

tal camera payment, as well as notebook buy and notebook payment respectively.

3. WEB SERVICE DISCOVERY USING OWL-S ONTOLOGIES

Paolucci et al. propose in [Paolucci et al. 2002] the first matchmaking approach
based on the DAML-S service profile. Their algorithm takes as input a client
query, a repository of DAML-S Web services, as well as the shared type ontology,
and searches for services able to satisfy the query. The client specifies the query
as a list of provided inputs and requested outputs. An advertisement matches the
request [Paolucci et al. 2002] if all the outputs of the request match outputs of
the advertisement, and dually, all the inputs of the advertisement match inputs
of the request. The matched services have associated a degree of match: exact

(when the inputs/outputs of the advertisement are equivalent to the inputs/outputs
of the request), plug-in (when the inputs/outputs of the advertisement include
the inputs/outputs of the request), or subsumes (when the inputs/outputs of the
request include the inputs/outputs of the advertisement). For example, considering
the ontology fragment shown in Figure 1, we have a plug-in match if the client
asks for a piano and the provider replies with musical instruments as well as we
have a subsumes match if the client asks for musical instruments and the provider
replies with a piano. [Paolucci et al. 2002] sorts matched services by selecting first
the match with the highest score in the outputs. Input matching is used only as a
secondary score to tie breaks between equally scoring outputs.

Fig. 1. A fragment of a musical instruments ontology.

Unfortunately, the matching based on the service profile is similar somehow to
matching two black boxes, and it allows to match a service request asking for
two outputs o1 and o2 with a service advertisement that provides either o1 or o2

but not necessarily both o1 and o2 (e.g., a choice process). Indeed, in order to
clearly specify the behaviour of such service one would have to provide two service
profiles corresponding to the two alternatives. As one may note this would lead to
advertising a large number of profiles, even for simple services. Moreover, analysing
Web services only through their service profile (i.e., their IOs), severely affects the
process of discovery of service compositions that satisfy a request (in the case of
complex services). Indeed, as explained in Section 2, the service profile does not
describe the internal behaviour of a service and hence it does not provide valuable
information needed for composing services.

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

Semantics-based Composition-oriented Discovery of Web Services · 7

Bansal and Vidal present in [Bansal 2002; Bansal and Vidal 2003] an improvement
to the matchmaking process by using an algorithm based on the DAML-S process
model. Similarly to Paolucci et al., their algorithm takes as input a query specifying
the desired IOs as well as a repository of DAML-S Web services and returns one
of the following degrees of match: exact, plug-in, subsumes, or failed. A ser-
vice request matches a service advertisement if the request provides all the inputs
(possibly more) needed by the advertisement while the advertisement generates all
the outputs (possibly more) needed by the requester. The algorithm of Bansal and
Vidal constructs a tree for each process model analysed during the matchmaking
process. Indeed, as described in Section 2, the process model decomposes a service
into its constituent processes, which can be either composite (i.e., they consist,
in turn, of other processes) or atomic (i.e., they are not decomposable). Due to
the hierarchical nature of a service, Bansal and Vidal represent it as a tree, where
composite and atomic processes respectively correspond to intermediary nodes and
leaves. The root of the tree is the composite process representing the entire Web
service.

Fig. 2. Process model of an Electronics Store Service.

Let us consider the Electronics Store service presented in Section 2: it consists
of a sequence process composed by an atomic process, country choice, as well as
of two choice processes, login and product choice. The root of the generated

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

8 · Antonio Brogi, Sara Corfini, Razvan Popescu

Fig. 3. Process model of an Online Bank Service.

tree corresponds to the Electronics Store process. The root has three children:
a leaf corresponding to the country choice process, and two intermediary nodes
corresponding to the login and the product choice processes. The login process
is composed in turn of two atomic processes, create account and load account.
In the generated tree, the intermediary node login has two leaves corresponding to
the create account and the load account processes. At the end of this process
the tree shown in Figure 2 is obtained. The algorithm of Bansal and Vidal takes
into account the process model trees of the advertisements as well as the ontological
relations between matched IOs. The matchmaking algorithm begins at the root of
the advertisement tree and recursively visits all its subtrees finishing at the leaves.
For each composite node (e.g., sequence, choice, and so on) as well as for atomic
nodes a corresponding matching algorithm is employed. For example, in the case
of a sequence process, if the outputs requested by the query can be satisfied by all
its children collectively then we have a success, otherwise a failure. In the case of a
choice process we get a success or a failure depending on whether there exists at
least one child able to provide by itself all the outputs desired by the query. In the
case of an atomic node, we have a match if all its inputs are contained in the query
and if its outputs contain at least one query output. A detailed description of the
matching algorithms corresponding to several composite processes can be found in
[Bansal 2002].

Two of the main limitations of the approaches proposed by Paolucci et al. as well
as by Bansal and Vidal are single service discovery and single service execution.
Indeed, their algorithms are not considering neither compositions of services nor
multiple executions of services, and look (inside a repository) for a single service
capable to fulfil the request by itself.

For example, let us consider a registry containing two services: Electronics-

Store (Figure 2) and Online Bank (Figure 3). The former sells electronic items
like notebooks or digital cameras. The latter is able to create virtual credit cards: a
client obtains a credit card number and a credit card type through a bank transfer.
We assume for simplicity that all concepts contained in the OWL-S descriptions

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

Semantics-based Composition-oriented Discovery of Web Services · 9

are defined in a single shared ontology. Consider next the query specifying:

– inputs: username, password, country, camera Model, camera Make, notebook Model,

notebook Make, c/a Number, info Bank, delivery Type and address, and

– outputs: buy Receipt Camera and buy Receipt Notebook.

The algorithms of Paolucci et al. as well as of Bansal and Vidal give a failed

match because there is no service in the registry able to fulfil the request by
itself. One may note that c card Type and c card Number are needed as in-
puts by both atomic processes Digital Camera Payment and Notebook Payment

of the Electronics Store service, yet they are not provided by the query. Still,
they can be obtained by executing the Online Bank service. In other words,
while the first service cannot satisfy the query, a suitable composition of the two
services can. Moreover, the two atomic processes Digital Camera Payment and
Notebook Payment are contained in two distinct subtrees whose common root is
a choice process. For this reason, such processes cannot be both executed in a
single run. Hence, both the Electronics Store and Online Bank services have to
be executed twice.

In the following section we present SAM – a composition-oriented algorithm for
service discovery that overcomes the above described limitations, on the one hand
by analysing the OWL-S process model of the advertised services and, on the other
hand by performing a fine-grained matchmaking. Our algorithm searches for a
suitable composition capable to satisfy the request. SAM is able to cope with
multiple executions of services and it returns a precise sequence of atomic processes
that the client has to invoke in order to obtain the desired outputs.

4. SERVICE AGGREGATION MATCHMAKING (SAM)

Before showing in detail the behaviour of our approach, it is worth to specify some
assumptions. We firstly suppose that SAM is able to access a (local) service registry
storing OWL-S descriptions. Moreover, we do not deal with cross-ontology issues,
since, for simplicity, we suppose that all the concepts referenced by the OWL-S
descriptions are defined in a single shared ontology. Although we left this feature as
future work, it is worth mentioning that full-fledged cross-ontology matchings over
service descriptions employing different ontologies could be addressed, for example,
by plugging-in existing “ontology-crossers”, such as [Navas-Delgado et al. 2005].
Finally, we assume that SAM input queries are expressed in terms of required
inputs and produced outputs of the service the client is searching for. We leave
the inclusion of additional information such as preconditions, effects or Quality of
Service (as in [Kritikos 2005]) as future work.

SAM adopts the matchmaking strategy proposed in [Bansal and Vidal 2003], as it
involves the process model in the phase of service discovery. However, SAM extends
the approach of Bansal and Vidal by introducing a more flexible matching. Its goal
is to determine whether a query can be satisfied by a (composition of) service(s),
advertised in an OWL-S registry.

The algorithm consists of three main phases (which will be described in the next
three subsections):

(1) Translation of each service in the registry into a tree structure;

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

10 · Antonio Brogi, Sara Corfini, Razvan Popescu

(2) Construction of a graph representing the dependencies among atomic processes
of the matched services;

(3) Analysis of such dependency graph to determine a service composition capable
to satisfy the query (or part of it, when no service composition can fully satisfy
the query).

4.1 Translation of services into trees

The first phase of the algorithm consists of two steps: in the first one, SAM trans-
lates services into trees, and in the second one, it computes dependencies among
their leaves.

Step 1. According to [Bansal and Vidal 2003], SAM stores services as trees, by ex-
ploiting the hierarchical nature of their process models. As previously described in
Section 3, intermediary nodes correspond to composite processes and may have the
type sequence, choice, if-then-else, split, split+join, any-order, iterate,
repeat-until and repeat-while, while leaves correspond to atomic processes.
However, in order to simplify the next phase of the algorithm (i.e., the construction
of the dependency graph), such trees have to be translated further. The follow-
ing recursive function Transf generates trees containing only sequence-, choice-,
split+join- and split-typed intermediary nodes.

• Transf(atomic(A)) = A;

• Transf(sequence(P1, ..., Pn)) = sequence(Transf(P1), ..., Transf(Pn));

• Transf(choice(P1, ..., Pn)) = choice(Transf(P1), ..., Transf(Pn));

• Transf(if-then-else(P, Q)) = choice(Transf(P), Transf(Q));

• Transf(split(P1, ..., Pn)) = split(Transf(P1), ..., Transf(Pn));

• Transf(split+join(P1, ..., Pn)) = split+join(Transf(P1), ..., Transf(Pn));

• Transf(any-order(P1, ..., Pn)) =
choice(sequence(P ′

1, ..., P
′
n), ..., sequence(P ′

n, ..., P ′
1))

where P ′
i = Transf(Pi) with i = 1, ..., n;

• Transf(iterate(P)) =
n = Alt(P);
P ′ = Transf(P);
if (n = 1) then return P ′

else return(choice(P ′, sequence(P ′, P ′), ..., sequence(P ′, ..., P ′

︸ ︷︷ ︸

n

)));

As one may note, Transf does not affect sequence, choice, split+join and
split nodes, while it defines how if-then-else, any-order and iterate have to
be translated. More precisely, if-then-else nodes are replaced by choice nodes.
Indeed, if-then-else behaves as choice, except for the specified condition, which,
being a run-time issue, is not taken into account by SAM. Any-order is expanded
into a choice among all possible permutations of its child nodes. Figure 4, for
example, shows how Transf translates an any-order with two atomic children.

It is important to note that SAM tackles the discovery process by matching the
concepts (i.e., types) corresponding to the inputs/outputs of the query with the

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

Semantics-based Composition-oriented Discovery of Web Services · 11

Fig. 4. Translation of any-order.

concepts corresponding to the inputs (offered)/outputs (requested) by the adver-
tisements. (For example, SAM matches a query asking for two car outputs with
an advertisement that outputs a car, even though the query specifies multiple data
outputs.) Consequently, SAM expands the iterate into a choice among all possi-
ble iterated executions of its child node, as illustrated in Figure 5. In other words,
SAM transforms an iterate(P) process into a choice of sequences, where each
sequence is a possible iterated execution of P . The auxiliary function Alt (given
hereafter) supports Transf during the translation of iterate(P) and it computes
the number of times the process P has to be executed in order to yield all the
concepts producible by its atomic process children.

Namely, Alt(atomic(A)) = 1;
Alt(choice(P1, ..., Pn)) = Alt(P1) + ... + Alt(Pn);
Alt(sequence(P1, ..., Pn)) = Alt(any-order(P1, ..., Pn))

= Alt(split(P1, ..., Pn)) = Alt(split+join(P1, ..., Pn))
= Alt(P1) × ... × Alt(Pn);

Alt(iterate(P)) = 0;

Note that if an iterate process P has an iterate-typed ancestor Q, then the
algorithm transforms first Q and then P . That is why we set Alt(iterate(P))
= 0 in the pseudo-code above. It is important to note that this definition of
Transf(iterate(P)) is suitable when P has to be executed at least once (i.e.,
iterate instantiated as repeat-until). If P may be skipped (i.e., iterate in-
stantiated as repeat-while), the definition of Transf(iterate(P)) can be easily
expanded by adding a nop branch to the choice among all possible iterated exe-
cutions of P .

Fig. 5. Translation of iterate.

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

12 · Antonio Brogi, Sara Corfini, Razvan Popescu

Let us consider, for example, an iterate process (see Figure 6) whose child
is a choice process (call it C), which consists, in turn, of two atomic processes
A1 and A2. In order to produce the outputs of both A1 and A2, the choice

process has to be executed twice, first to generate the outputs of A1, and second to
generate the outputs of A2 (or vice-versa). Indeed, Alt(C) returns 2, as Alt(C) =
Alt(A1) + Alt(A2) = 1 + 1.

Fig. 6. Example translation of an iterate process.

Step 2. At the end of the first step, services are stored as trees including sequence,
choice, split+join, split and atomic nodes. Each tree summarises the interac-
tion protocol (i.e., the execution order of the operations) of the service it describes.
The second step computes for each stored tree T and for each atomic node A of
T the predecessors of A as well as those nodes which are in a mutual exclusion
relationship with A, that is, the nodes that cannot be executed if A is executed.

The set of predecessors of an atomic node A is a set of sets, where each set
contains the nodes corresponding to atomic processes that must be completed before
executing A. SAM computes the predecessors of A by means of two recursive
functions summarised next – Prev, initially invoked over A and its parent, and
Last. Intuitively speaking, Prev searches for the closest ancestor of A which is a
non left-most child of a sequence node. Let R be the left sibling of such ancestor.
The predecessors of A are the last executable atomic processes in R, computed by
means of the function Last.

• Prev(P, nil) = ∅;

• Prev(P , X) = Prev(X , parent(X))
where X = choice(Q1, ..., Qn) ∨

X = split(Q1, ..., Qn) ∨
X = spli+join(Q1, ..., Qn) ;

• Prev(Qi, sequence(Q1, ..., Qn)) = Last(Qi−1) with i ≥ 2 ;

• Prev(Q1, sequence(Q1, ..., Qn)) =
Prev(sequence(P1, ..., Pn), parent(sequence(P1, ..., Pn)));

• Last(A) =
{
{A}

}
;

• Last(sequence(P1, ..., Pn)) = Last(Pn);

• Last(choice(P1, ..., Pn)) = Last(P1)
⋃

...
⋃

Last(Pn);

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

Semantics-based Composition-oriented Discovery of Web Services · 13

• Last(split(P1, ..., Pn)) = Prev(split(P1, ..., Pn), parent(split(P1, ..., Pn)));

• Last(split+join(P1, ..., Pn)) =
{
t1∪...∪ tn | t1 ∈ Last(P1) ∧ ... ∧ tn ∈ Last(Pn)

}
;

For instance, let us consider the Electronics Store service illustrated in Figure
2. In order to compute the predecessors of Notebook Buy atomic node, we invoke
the function Prev with parameters Notebook Buy and Notebook Buy Sequence (i.e.,
the parent of Notebook Buy). In this example, Prev returns the last executable
atomic processes of Login node (i.e., Last(Login)), namely,

{
{ Create Account},

{Load Account}
}
. Therefore, either Create Account or Load Account must be

completed before executing Notebook Buy.
The set of nodes which are in a mutual exclusion relationship with an atomic node

A consists of those nodes that cannot be executed if A is executed. SAM computes
such set by means of two recursive functions, FindChoice, initially invoked over
an atomic node and its parent, and Leaf, defined below. The intuitive behaviour
of the function FindChoice is the following. Given an atomic node A, for each
choice-typed ancestor P of A, FindChoice collects the leaves of each child node of
P (computed by the auxiliary simple function Leaf) with the exception of the child
including A. Such collected leaf nodes are in a mutual exclusion relationship with
A.

• FindChoice(P, nil) = ∅;

• FindChoice(P, choice(Q1, ..., Qn)) =
FindChoice(choice(Q1, ..., Qn), parent(choice(Q1, ..., Qn))) ∪
⋃n

i=1 Leaf(Qi) with (Qi 6= P) ;

• FindChoice(P , X) = FindChoice(X , parent(X))
where X = sequence(Q1, ..., Qn) ∨

X = split(Q1, ..., Qn) ∨
X = spli+join(Q1, ..., Qn);

• Leaf(A) = {A};

• Leaf(sequence(Q1, ..., Qn) = Leaf(choice(Q1, ..., Qn)
= Leaf(split(Q1, ..., Qn) = Leaf(split+join(Q1, ..., Qn)
=

⋃n

i=1 Leaf(Qi);

For example, let us consider again the Electronics Store service depicted in
Figure 2. In order to compute the set of leaf nodes in exclusive relationship
with the Notebook Buy atomic process, we invoke FindChoice with parameters
Notebook Buy and Notebook Buy Sequence (i.e., the parent of Notebook Buy).
In this case, FindChoice returns the leaves of the Digital Camera Buy Sequence

node (i.e., Leaf(Digital Camera Buy Sequence)), namely, {Digital Camera Buy,
Digital Camera Payment}. This means that if Notebook Buy is executed, both
Digital Camera Buy and Digital Camera Payment cannot be executed. Dually,
Notebook Buy cannot be executed if Digital Camera Buy and Digital Camera Pa-

yment have been executed.
Finally, it is worth observing that the two steps of this phase are both completely

query-independent. Hence, they can be pre-computed before query answering time,
without affecting the efficiency of the matchmaking process.

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

14 · Antonio Brogi, Sara Corfini, Razvan Popescu

4.2 Construction of the Dependency Graph

The matchmaking process starts with the second phase, whose objective is to con-
struct a BF-hypergraph representing the dependencies among matched services.
We hereafter include the defintions of hypergraph, directed hypergraph and BF-
hypergraph, as described in [Gallo et al. 1993].

Def. 4.1. A hypergraph is a pair H = (V, E), where V = v1, v2, ..., vn is the set of
vertices (or nodes) and E = E1, E2, ..., Em, with Ei ⊆ V for i = 1, ..., m, is the set
of hyperedges. Note that when |Ei| = 2, i = 1, ..., m, the hypergraph is a standard
graph.

Def. 4.2. A directed hypergraph is a hypergraph with directed hyperedges. A
directed hyperedge is an ordered pair, E = (X, Y), of (possibly empty) disjoint
subsets of vertices; X is the tail of E, denoted by T (E), while Y is its head,
denoted by H(E).

Def. 4.3. A BF-hypergraph, or simply BF-graph is a hypergraph whose hyper-
edges are either B-edges or F-edges. A backward hyperedge, or simply B-edge, is a
hyperedge E = (T (E), H(E)) with |H(E)| = 1 (Figure 7a). A forward hyperedge,
or simply F-edge, is a hyperedge E = (T (E), H(E)) with |T (E)| = 1 (Figure 7b).

Fig. 7. A B-edge (a) and a F-edge (b).

Using the definition of the BF-hypergraphs, we can now describe the behaviour
of the second phase. In the matchmaking process performed by SAM, the match
regards exclusively atomic processes – the only processes that can be directly in-
voked by the client. As a consequence, the hypergraph produced as the result of
the matchmaking phase has two node types: process nodes and data nodes, the
former corresponding to matched atomic processes and the latter to data taken as
input or produced as output by such processes. An hyperedge E = (T (E), H(E))
of the dependency graph has one of the following five types:

– Epd = ({p}, O) : there is a F-edge from a process node p to the set O of data
nodes which are outputs of p.

– Edp = (I, {p}) : there is a B-edge from a set I of data nodes which are inputs of
p to the process node p.

– Edd = (D, {d}) : there is a B-edge from a set D of data nodes which are subtypes
of d to the data node d.

– Esc = (P, {p}) : there is a B-edge from a set P of process nodes which are
predecessors of p to the process node p. A hyperedge of type Esc is a sequencing

constraint.

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

Semantics-based Composition-oriented Discovery of Web Services · 15

– Exc = ({p}, P) : there is a F-edge from a process node p to the set P of process
nodes which are in a mutual exclusion relationship with p. A hyperedge of type
Exc is an excluding constraint.

Initially, the graph contains only the data nodes corresponding to the inputs and
the outputs of the query (line 2 in the following pseudo-code). The graph is built
during the matchmaking phase that is implemented by a recursive function Match.

The behaviour of Match is summarised by the pseudo-code listed in Figure 8,
where IA and OA denote the inputs and the outputs of an atomic process A,
respectively. Let also PredA be the set of atomic processes which have to be
executed before A, and ChoiceA be the set of atomic processes which can be
executed only if A is not executed. PredA and ChoiceA are both pre-computed
as described previously in Subsection 4.1. The expression d1 ≺ d2 means that d1

is a sub-concept of d2 as well as the expression d ⊏ H means that d is a sub-
concept of at least one data node belonging to the dependency graph H . Similarly,
the expression d ⊐ H means that H contains at least one data node that is a
sub-concept of d.

The function Match is invoked over each service (line 4) contained in the service
registry. Match starts its execution at the root of the process model tree (line 4) and
it is recursively invoked over children nodes (lines 15, 23). The execution finishes
at leaf nodes, where Match verifies the compatibility between the inputs and the
outputs of the corresponding atomic process and the data nodes currently present
in the graph. Match deals with the following types of OWL-S nodes: sequence,
choice, split, split+join and atomic. For atomic nodes (line 6), Match checks
whether the corresponding atomic process is already contained in the graph (line
7). If this is not the case, Match verifies the compatibility between the inputs and
the outputs of the atomic node and the data nodes currently contained in the graph
(line 9). An atomic process matches if and only if:

– either all its inputs are available because they are part of the query or because
they are returned as outputs by other previously matched atomic processes,

– or at least one of its outputs is part of the query or it is an input for some
previously matched atomic process.

According to the OWL-S specification [OWL-S Coalition 2004], we assume that
an output o is compatible with an input i if and only if either o and i represent the
same concept (exact match), or o represents a sub-concept of i (“o plugs-in i”, or
equivalently “i subsumes o”). For example, if there is a match between an output o

of an atomic process P and a data node d contained in the graph, as o is a subtype
of d, we create and insert in the graph a new process node P , a new data node o,
a Edd-typed hyperedge from o to d, and a Epd-typed hyperedge from p to o.

When the algorithm finds a new matched atomic process, it invokes the function
Add (line 10), which firstly creates a corresponding process node A and adds it to
the graph (line 26). For each output o (line 27) of A, Add creates and inserts in the
graph (if not already present) a new data node (line 29), and for each data node
d in the graph which is a super-type of o (line 30), it adds o to the the tail of the
Edd-typed hyperedge, if it exists, whose head is d (line 31). Otherwise, Add inserts
a new directed Edd-typed hyperedge from o to d (line 32). Next, Add inserts a new

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

16 · Antonio Brogi, Sara Corfini, Razvan Popescu

1. Build DG(ServiceRegistry SR, Query Q, HyperGraph H)
2. forall data d in Q do add a new data node d to H;
3. repeat

4. forall services s in SR do Match(Root(s), H);
5. until no process node is added to H;

6. boolean Match(Atomic node A, HyperGraph H)

7. if (A ∈ H) then return true

8. else

9. if (∀i ∈ IA : i ∈ H ∨ i ⊐ H) ∨ (∃o ∈ OA : o ∈ H ∨ o ⊏ H) then

10. Add(A, H);
11. return true;
12. else return false;

13. boolean Match(Sequence node sequence(P1 , ..., Pn), HyperGraph H)
14. forall Pi in {P1, ..., Pn} do

15. if (Match(Pi, H)) then

16. forall atomic node A in ({P1, ..., Pn} \ {Pi}) do

17. if (A /∈ H) then Add(A, H);
18. return true;
19. return false;

20. boolean Match(Choice node choice(P1, ..., Pn), HyperGraph H)
21. boolean matched = false;
22. forall Pi in {P1, ..., Pn} do

23. matched = matched ∨ Match(Pi, H);
24. return matched;

25. Add(Atomic node A, HyperGraph H)
26. add a new process node A to H;
27. forall outputs o in OA do

28. if (o 6∈ H) then

29. add a new data node o to H;
30. forall data node d in H : o ≺ d do

31. if (∃E : E ∈ Edd ∧ H(E) = {d}) then T (E) = T (E) ∪ {o}
32. else add a new directed hyperedge ({o}, {d}) ∈ Edd;
33. add a new directed hyperedge ({A}, OA) ∈ Epd to H;
34. forall inputs i in IA do

35. if (i 6∈ H) then

36. add a new data node i to H;
37. D = ∅;
38. forall data node d in H : d ≺ i do D = D ∪ {d};
39. if (D 6= ∅) then add a new directed hyperedge Edd = (D, {i});
40. add a new directed hyperedge (IA, {A}) ∈ Edp to H;
41. if (R = {P : P ∈ ChoiceA ∧ P ∈ H} 6= 0) then

42. add a new directed hyperedge ({A}, R) ∈ Exc to H;
43. forall choice node C in ChoiceA do

44. if (C ∈ H) then

45. if (∃E ∈ Exc : T (E) = {C}) then H(E) = H(E) ∪ {A}
46. else add a new directed hyperedge ({C}, {A}) ∈ Exc to H;
47. forall sets of predecessors Q in PredA do

48. if (R = {P : P ∈ Q ∧ P ∈ H} 6= 0) then

49. add a new directed hyperedge (R, {A}) ∈ Esc to H;

Fig. 8. Pseudo-code of the dependency graph construction.

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

Semantics-based Composition-oriented Discovery of Web Services · 17

directed Epd-typed hyperedge from A to the outputs of A (line 33). Dually, for
each input i (line 34) of A, Add creates and inserts (if not already present) a new
data node (line 36) and a new directed Edd-typed hyperedge from the nodes in the
graph which are sub-types of i to i (line 37–39). Next, it adds a new directed Edp-
typed hyperedge from the inputs of A to A (line 40). Moreover, if A is in a mutual
exclusion relationship with some process nodes included in the graph (line 41), then
Add inserts a new directed Exc-typed hyperedge from A to such nodes (line 42).
For each process node C in a mutual exclusion relationship with A included in the
graph (line 43–44), the algorithm adds A to the head of the Exc-typed hyperedge,
if exists, whose tail is C (line 45). Otherwise, Add inserts a new directed Exc-typed
hyperedge from C to A (line 46). Finally, for each set of predecessors of A (line
47), the algorithm inserts a new directed Esc-typed hyperedge from such set to A

(lines 48–49).
In the case of a sequence node (line 13), Match verifies if the corresponding

sub-tree (line 14) contains at least one matched atomic node (lines 15). If so, all
(matched and unmatched) atomic nodes contained in the sub-tree (line 16) are
inserted in the dependency graph, by invoking the function Add (line 17), together
with their IOs and all the necessary dependencies and constraints (lines 25–45). For
a choice node (line 20) Match adds to the graph only the matched atomic node
children (line 23).

It is important to observe that in the case of split and split+join nodes,
Match behaves as previously described for sequence nodes (lines 13–19). The
matchmaking phase cycles over the registry until no more process nodes can be
added to the dependency graph (line 5).

Example. Let us consider now the motivating example presented in Section 3, that
we will use to illustrate our algorithm throughout the rest of this section. Hence,
the registry contains the two services Electronics Store and Online Bank, while
the query is the following:

– inputs: username, password, country, camera Model, camera Make, notebook Model,

notebook Make, c/a Number, info Bank, delivery Type and address, and

– outputs: buy Receipt Camera and buy Receipt Notebook.

Let us suppose that Match is invoked first over the Electronics Store service.
The root of the Electronics Store advertisement tree is a sequence node, so
Match verifies if the tree contains at least one matched atomic process. For instance
the Country Choice atomic process matches the query, as its input (country)
belongs to the query inputs. Therefore, all (matched and unmatched) atomic
processes of Electronics Store are inserted in the dependency graph. Next,
Match is invoked over the Online Bank service, whose root is a sequence node.
Again, Match verifies if Online Bank contains at least a matched atomic process.
For example, Bank Load Account atomic process matches the query as both its in-
puts (username and password) belong to the query inputs. Hence, all the atomic
processes of Online Bank are inserted in the dependency graph, as well. The de-
pendency graph produced by SAM is depicted in Figure 9, where data and process
nodes are graphically represented by ellipses and rectangles, respectively. One
may note, for instance, the excluding constraints between the Load Account and
Create Account atomic processes as well as between the Bank Load Account and

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

18 · Antonio Brogi, Sara Corfini, Razvan Popescu

Fig. 9. Dependency graph.

Bank Create Account. Indeed, all such atomic processes are leaves of subtrees
whose common root is a choice process. One also may notice the sequencing con-
straints between Country Choice and Load Account, between Load Account and
Digital Camera Buy, between Digital Camera Buy and Digital Camera Payme-

nt and so on. Indeed, all these atomic processes are leaves of a subtree whose root
is a sequence process.

3

4.3 Analysis of the Dependency Graph

The second phase of the algorithm analyses the dependency graph constructed dur-
ing the first phase and it consists of the five steps described next. The corresponding
pseudo-code, which is referenced in the following paragraphs (by indicating the ref-
erenced pseudo-code line number) is presented at the end of this subsection.

Step 1. Reachability of query outputs. The dependency graph includes a data
node for each query input and output, regardless of whether or not these data have
been matched during the first phase. SAM firstly checks whether there are query
output nodes in the graph H that do not have incoming hyperedges from process
nodes (line 1). Indeed, such disconnected query outputs cannot be produced as no
service in the registry can generate them. If there are disconnected query outputs
in the graph (line 2), the client has to choose (line 3) whether the matchmaking
process should nevertheless continue, by discarding such outputs from the query
(line 4), or abort (line 5). In the latter case SAM terminates with a failure (line

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

Semantics-based Composition-oriented Discovery of Web Services · 19

5). In the former case SAM removes the disconnected query outputs (line 4) and
continues with Step 2.

Example. The dependency graph illustrated in Figure 9 contains no disconnected
query outputs. Indeed, in this example, all query outputs are produced by at least
an atomic process.

3

Step 2. Yellow Colouring. In this step SAM identifies — by colouring them
in yellow — all processes which may be useful for generating the query outputs.
Initially all nodes in the graph are white (line 6). The white colour is used to denote
all process and data nodes that do not have yet proved to be useful for satisfying the
query. SAM first colours in yellow all the query outputs (line 7). It then recursively
paints in yellow all process and data nodes that are white and that belong to the
tail of an hyperedge whose head includes at least one yellow coloured node (lines
8–9). Note that the yellow paint spreads over subtype data nodes (i.e., if d1 is
yellow, d2 is white and d2 is a subtype of d1, then d2 is coloured in yellow as well).
On the other hand, excluding constraints are not taken into account here (i.e., the
yellow paint does not spread over excluding constraints). The process of painting
in yellow finishes when there is no other node that can be coloured. At the end
of this step all yellow process nodes correspond to processes that might have to be
executed to generate the query outputs. Dually, yellow data nodes correspond to
data that “might be useful as input”/“might be generated as output” to/by yellow
processes in order to generate the query outputs. All nodes that are still white at
the end of this phase are not needed for fulfilling the request (and could be removed
from the graph). One may note that more nodes than necessary may have been
painted. The algorithm then continues with Step 3.

Example. During the second step, SAM paints in yellow all the data nodes cor-
responding to the query outputs and it recursively paints in yellow all process
and data nodes linked to other yellow nodes. At the end of this step all nodes con-
tained in the graph are painted in yellow with the exception of available Service,
account Receipt and availability (data nodes). Indeed, such data nodes are
not part of the query outputs and they are not taken as input by a process node
useful for satisfying the client request. The dependency graph at the end of the
second step is illustrated in Figure 10.

3

Step 3. Red&Black Colouring. The goal of this step is to identify — by painting
them in red — the processes which contribute to generate the query outputs and
which can actually be executed if the query inputs are provided. To describe this
step it is convenient to introduce the notion of firable process. A process node

P is firable in a hypergraph H if P is yellow and all its input data nodes are

red, and if there is at least one set of predecessors of P then at least one set of

predecessors of P is red coloured. (A set S of processes is red coloured if and only
if all processes in S are red coloured). The algorithm firstly paints in red all data
nodes corresponding to the query inputs (line 11). While there is at least one yellow
query output node and at least one firable process (line 12), the algorithm selects
a firable process for execution (line 14). If there are several firable processes linked
through excluding constraints then SAM non-deterministically chooses one such

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

20 · Antonio Brogi, Sara Corfini, Razvan Popescu

Fig. 10. Dependency graph at the end of the second step.

firable process node (line 15) and paints it in red (line 16). Every non-deterministic
choice corresponds to a “fork” into several instances. After painting a process in
red, all its output data nodes are coloured in red (line 17) and all their supertype
data nodes are coloured in red (line 18) as well (i.e., the red paint spreads over
outgoing data to data hyperedges). Moreover all the process nodes linked to it by
excluding constraints are inhibited by painting them in black (line 19). (We do
so as, for example, by colouring in red a Pay with Credit Card process we should
inhibit another Pay with Cash process linked to it by an excluding constraint.)
When painting in red a process node, the algorithm adds it to an initially empty
process sequence list (line 16).

It is worth noting that, once a process node is coloured in red, it can not be
coloured in black at a later moment, as proved in the following.

Property 4.4. A red process node cannot be coloured in black.

Proof. Consider a red node R. R might be coloured in black at a later moment
by another node B such that B is yellow and there is an excluding constraint
between R and B. Furthermore, due to the excluding constraint between R and
B, and due to the fact that R has been coloured in red, we infer that B has been

coloured in black as well (together with all the other processes having excluding
constraints with R). However, this is a contradiction as B cannot be yellow and

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

Semantics-based Composition-oriented Discovery of Web Services · 21

black at the same time.

Each instance of this step finishes either with a success if all query outputs
become red (line 21), or with a failure if there are no more firable processes but
there is still at least one yellow query output (line 20). It is important to note
that if there are several firable processes linked through excluding constraints then
the non deterministic choose operator (line 15) splits the current execution of
this step into a number of instances equal to the number of firable processes, each
such instance corresponding to painting in red the respective process node and
further on its outputs as well as to inhibiting the processes linked to it by excluding
constraints. As a result of this step we shall obtain a set of triples

<success/failure, coloured graph H , process sequence>.

Example. During the third step SAM starts by painting in red all yellow data
nodes corresponding to the query inputs. At this point, only Country Choice

and Bank Load Account process nodes are firable, as all their data inputs are
red and they have no predecessors. Let us consider that SAM chooses to exe-
cute the Country Choice process. By doing so, SAM paints it in red and adds
it to the process sequence list. Moreover, the Load Account process becomes
firable as its predecessor is now red. By further assuming that SAM selects the
Load Account process for execution, SAM paints Load Account in red and then
inhibits the Create Account process by painting it in black. One may note that
in this case the algorithm does not need to split the execution in two instances
as the Load Account is linked through an excluding constraint to a process node
which is not firable. Next, SAM paints in red the Bank Load Account, adds it
to the process sequence list and inhibits the Bank Create Account process.
At this moment both Digital Camera Buy and Notebook Buy process nodes are
firable. Given that they are linked through excluding constraints, SAM splits the
execution in two instances: the first one paints in red the Digital Camera Buy

process and it paints in black the Notebook Buy and Notebook Payment processes,
while the second paints in red the Notebook Buy process and it paints in black the
Digital Camera Buy and Digital Camera Payment processes. The first instance
continues by painting in red Virtual Credit Card $ and Digital Camera Payment

and by inhibiting the Virtual Credit Card e. Next, it finishes with a failure
as it generates only the buy Receipt Camera query output. Similarly, the sec-
ond instance paints in red Virtual Credit Card $ and Notebook Payment, it in-
hibits the Virtual Credit Card e and it terminates with a failure as it produces
the buy Receipt Notebook query output only. Hence, the process sequence
list resulting from the first instance is [Country Choice, Load Account, Bank L-

oad Account, Digital Camera Buy, Virtual Credit Card $, Digital Camera -

Payment]. The second instance produces the following process sequence list:
[Country Choice, Load Account, Bank Load Account, Notebook Buy, Virtual -

Credit Card $, Notebook Payment]. The dependency graph resulting from the
first instance at the end of the third step is shown in Figure 11.

3

Step 4. Analysis of Triples. The algorithm further checks whether there exists
at least one tuple <success, H, process sequence> (line 22). If so, it returns

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

22 · Antonio Brogi, Sara Corfini, Razvan Popescu

Fig. 11. Dependency graph at the end of the third step.

to the client an ordered list of all the successful tuples Ti = {<success, Hi, pro-
cess sequencei>} (line 23). Such list can be ordered by taking into account
the client’s preferences (expressed together with the query). Such preferences can
include minimal number of matched services, minimal process sequence length,
and so on.
Now, in the case that all the triples generated by Step 3 are failures (line 24), SAM
checks whether there exists a set of failures that together are able to generate all
outputs requested by the query (line 25). This means that each query output has
to be produced (i.e., has to be coloured in red) by at least one failure in such set.
If so, the request can be satisfied by simply considering one sequence of failures
in this set. It is important to note again that the choice of such set is made with
respect to client’s preferences. If such a set exists, the process finishes by returning
to the client a sequence obtained by the concatenation of all process sequences
corresponding to the considered failures in the set (line 26). In this case we have
a success obtained from the aggregation of a set of failures.
If instead there is no such set of failures that can collectively satisfy the query (line
27), it means that there are query outputs that remain yellow in all graphs obtained
at the end of Step 3. In such case, the algorithm returns a partial match, namely,

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

Semantics-based Composition-oriented Discovery of Web Services · 23

a set of failures able to collectively produce some, yet not all query outputs. The
algorithm then computes the intersection of the sets of all the unsatisfiable query
outputs for all failures (line 30). Next, similarly to the previous case, it considers
a set of failures able to collectively satisfy the producible outputs (line 32) (i.e.,
the query outputs less the unsatisfiable ones (line 31)). The algorithm further asks
the client whether it wishes more information with respect to what is needed to
completely satisfy the request (line 28). This information consists of the additional
inputs that are needed in order to be able to unlock and to execute other processes
so as to fully satisfy the request. If the client agrees (line 29) then SAM continues
with Step 5. Otherwise it terminates (line 39).

Example. At the fourth step SAM starts by checking whether there exists at least
one instance returning a success. Due to that both instances generated during the
previous step return a failure, SAM checks whether their union is able to generate
all the requested outputs. Consequently, SAM obtains a success from the aggrega-
tion of the process sequences corresponding to the two failures. SAM finishes
by returning to the client the following process sequence: [[Country Choice,
Load Account, Bank Load Account, Digital Camera Buy, Virtual Credit Card $,
Digital Camera Payment], [Country Choice, Load Account, Bank Load Account,
Digital Notebook Buy, Virtual Credit Card $, Notebook Payment]].

3

Step 5. Individuating Additional Inputs. During this last step the algorithm
looks for additional inputs that have to be provided in order to have further firable

processes that help generating the unsatisfiable query outputs. Hence, for each
failure (line 33) and for each unsatisfied output (line 34), SAM looks for yellow
process nodes that generate this output (line 36). The set of additional inputs
needed for producing this output in the respective failure firstly comes from con-
sidering all yellow input data nodes of these processes (line 37). Morever, each such
process could be the head of a chain of sequencing constraints. This means that
all processes on such chain have to be executed before the head process, as they
are its predecessors. Hence, the set of additional inputs will contain also the yellow
input data nodes of all such predecessors (lines 40–46). Then, since an output can
be generated by two or more processes, and since a process can have more than
one yellow predecessors, several sets of additional inputs may be computed. In
such a case SAM returns an ordered list comprising all the possible sets of addi-
tional inputs (lines 35,43). Such list can be ordered by taking into account some
client preferences, such as minimal number of matched services, minimal number
of suggested additional inputs and so on.

Example. For this example, the last step of the algorithm is not executed as the
request has been fulfilled.

To illustrate the behaviour of this step, let us now consider the same query pre-
sented in Section 3 where the country concept has been removed. At the end of the
second step, the produced dependency graph is the same as the one illustrated in
Figure 10. At the beginning of the third step only the Bank Load Account process
is firable. Hence, SAM paints it in red and adds it to the process sequence list,
while the Bank Create Account process is painted in black. At this point, there
are no more firable processes, but there are still yellow query outputs. Therefore,

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

24 · Antonio Brogi, Sara Corfini, Razvan Popescu

— STEP 1 → Reachability of Query Outputs —
1. U = {d | d ∈ OQ∧ 6 ∃P, D : ({P}, D) ∈ Epd ∧ d ∈ D)};
2. if U 6= ∅ then

3. Query client whether to go ahead ignoring U ;
4. if client says yes then OQ = OQ \ U ;
5. else return(“The query cannot be satisfied”);
6. Paint in white all X s.t. X ∈ N ;
— STEP 2 → Yellow Colouring —
7. Paint in yellow all d s.t. d ∈ OQ;
8. while (∃E ∈ Edp ∪ Epd ∪ Edd ∪ Esc ∧ (∃Y ∈ H(E) : Y yellow) ∧ (∃X ∈ T (E) : Xwhite)) do

9. forall X in T (E) do Paint X in yellow;
— STEP 3 → Red & Black Colouring —

10. Initialise ProcessSequence;
11. Paint in red all d s.t. d ∈ IQ ∧ d yellow;
12. while (F irable(H) 6= ∅ ∧ ∃d ∈ OQ : d yellow) do

13. if ∃P ′ : (P ′ ∈ F irable(H)) ∧ (∄E = ({P ′}, H(E)) ∈ Exc : H(E) ∩ F irable(H) 6= ∅) then

14. P = P ′;
15. else P = choose(F irable(H));
16. Paint P in red and add P to ProcessSequence;
17. ∀d : d yellow ∧ ∃E = ({P}, H(E)) ∈ Epd : d ∈ H(E): paint d in red;
18. ∀d′ : d′ yellow ∧ ∃E = (T (E), {d′}) ∈ Edd : d ∈ T (E) ∧ d red : paint d′ in red;
19. ∀P ′ : P ′ yellow ∧ ∃E = ({P}, H(E)) ∈ Exc : P ′ ∈ H(E): paint P ′ in black;
20. if ∃d : d yellow ∧ d ∈ OQ then failure;
21. else success;
— STEP 4 →Analysis of Triples —

22. if there exists at least one success then

23. return an ordered list of (successful) results;
24. else

25. if ∃ a set S of failures s.t. ∀d ∈ OQ ∃F ∈ S : d ∈ OF then

26. return a concatenation of the ProcessSequences of all graphs in S;
27. else

28. Query client whether it wants info on additional inputs;
29. if client says yes then

30. NonProducibleOutputs = {d|d ∈ OQ ∧ ∀ failure F : d yellow in F};
31. ProducibleOutputs = OQ \ NonProducibleOutputs;
32. Let S be a set of failures s.t.∀d ∈ ProducibleOutputs ∃F ∈ S : d ∈ OF ;
— STEP 5 → Individuating Additional Inputs —

33. forall failure F in S do

34. forall d ∈ NonProducibleOutputs do

35. print “Additional inputs nedeed for” + d + “in” + F + “:”;
36. P = {Q | ∃E = ({Q}, H(E)) ∈ Epd ∧ d ∈ H(E)};
37. forall P ′ in P do AdditionalInputs(P ′ , F, ∅);
38. return (a concatenation of the ProcessSequences of all graphs in S);
39. else failure;

40. AdditionalInputs(set of process nodes P , Failure F , set of data nodes AI)
41. forall P ′ in P do AI = AI ∪ {d | (d ∈ IP ′ ∧ d yellow)};
42. if (∄E = (T (E), H(E)) ∈ Esc : H(E) = {Q}, Q ∈ P) then print “–” + AI;
43. else

44. forall (t1, ..., tn) in {{T (E1) ∪ ... ∪ T (En)} |
45. ∃Ei = (T (Ei), {Pi}) ∈ Esc : Pi ∈ P, i ∈ (1...n), n = |P |} do

46. AdditionalInputs((t1 , ..., tn), F, AI);

Fig. 12. Pseudo-code of the dependency graph analysis.

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

Semantics-based Composition-oriented Discovery of Web Services · 25

the third step ends with a failure. As the only available triple is a failure, the
fourth step is unable to find a set of failures that collectively are able to provide
all query outputs. Next, SAM asks the client whether it wants more information
about the generated process sequence list and about how it may be possible to fully
satisfy the query. If it agrees, SAM continues with the fifth step when it looks for
each unsatisfied output for yellow process nodes that generate it. In our case, the
process nodes Digital Camera Payment and Notebook Payment can respectively
generate the outputs buy Receipt Camera and buy Receipt Notebook. Yet, their
executions are conditioned by the execution of their predecessors and moreover,
such processes need c Card Number and c Card Type to be provided as inputs.
Hence, a possible list of such additional inputs (for both the unsatisfied outputs) is:
{country, c Card Number, c Card Type}. Indeed, all inputs needed for the execu-
tion of predecessor processes of Digital Camera Payment and Notebook Payment

are contained in the query with the exception of country.
3

The pseudo-code listed in Figure 12 summarises the analysis of the dependency
graph described so far, where H = (N, E) denotes the dependency graph produced
by the second phase (as explained in Subsection 4.2, E = Edp∪Epd∪Edd∪Esc∪Exc).
Let Ip and Op denote the inputs and the outputs of a process P respectively, and
let Q = {IQ, OQ} denote the query. Let also OF be the set of data output nodes
that are red in failure F .

5. ANALYSIS OF COMPLEXITY, CORRECTNESS AND COMPLETENESS

In this section we discuss the time complexity as well as the correcteness and
completeness of SAM.

5.1 Complexity analysis

Let us first sketch the worst-case analysis of the time complexity TSAM(S) of exe-
cuting SAM on a registry containing |S| services. TSAM(S) derives from the time
needed to perform the two phases at query answering time, namely TGC(S) to
construct the dependency graph and TGA(S) to analyse it. To construct the de-
pendency graph, SAM will cycle over the service registry at most |AP | times, where
|AP | is the number of atomic processes contained in the services in the registry.
At each cycle, SAM will perform at most |AP | invocations to the base case of
function Match to determine whether some atomic process P matches. Each of
such calls will compare the set DP of inputs and outputs of the process with the
data nodes ND already present in the graph. Since |DP | can be maximised by
a constant and |ND| ∈ O(|AP |), each cycle will perform at most |AP |2 compar-
isons. Since inserting the matched process requires also at most |AP |2 operations,
and since |AP | ∈ O(|S|), we have that TGC(S) ∈ O(|S|3). In the analysis of the
dependency graph, the red&black colouring step is the most expensive task, by
performing |N | + |E| steps (where |N | and |E| are the number of nodes and edges
in the graph, respectively) for each instance. Each non-deterministic choice in-
volves a set of atomic processes Ci = {P1, ..., Pn} such that there is an excluding
constraint outgoing from each Px ∈ Ci and reaching a Py ∈ Ci. Consequently,
the dependency graph employs a number k of non-deterministic choice sets Ci,

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

26 · Antonio Brogi, Sara Corfini, Razvan Popescu

where k ∈ [0,
⌈
|AP |

2

⌉

]. Let cmax = max(|Ci|), and dually, cmin = min(|Ci|), where

i ∈ [1, k]. Then SAM can generate at most c
|AP |
cmin

max instances. For each instance the
red&black colouring step performs |N | + |E| ∈ O(|AP |2) steps. The time com-

plexity of the red&black colouring step is TR&B(S) = c
|AP |
cmin

max ·O(|AP |2). Hence, the
analysis of the dependency graph requires exponential time, namely TGA(S) ∈ NP ,
and the overall time complexity TSAM(S) ∈ NP as well.

Finally, it is worth mentioning the time complexity of the additional inputs step,
performed in case of query unsatisfaction. Similarly to the red&black colouring step,
it performs |N | + |E| steps for each instance (i.e., failure). Hence, the additional
inputs step requires exponential time as well.

While the asymptotic complexity of the version of SAM described in this paper is
high, we reckon that the efficiency of SAM can be sensibly improved in the following
directions:

– The efficiency of the graph analysis can be improved by enumerating the nonde-
terministic choices rather than by splitting several instances whenever a choose
operation is executed. While this does not affect the worst-case asymptotic com-
plexity, it does sensibly improve the average response time of SAM, and it has
been already implemented in the last version of SAM.

– Reducing the number of candidate services to be considered (in particular during
the graph construction phase) would obviously improve the efficiency of SAM.
This can be achieved by means of a preselection phase – e.g., based on UDDI
as well as on some functional analysis. For instance, UDDI can be used to filter
services that match a requested value in a taxonomy such as NAICS or UNSPSC.
A reason for doing so comes from the ambiguity of the service parameters. For
example, queries requesting travel services that output a “date” would match
services from the banking domain, health systems, travel agencies, and so on.
This would lead to a large number of services being added to the dependency
graph. Still, by firstly filtering services from the “travel domain”, for example,
services that are of no interest to the client would be discarded.

– Fresh indexing and/or ranking techniques (as search engines do for Web pages)
help to reduce the complexity at query time (e.g., anticipating the construction
of (part of) the dependency graph). However, the problem in this case seems to
be a bit harder than for text indexing due to caching issues raised for at least
two reasons: (a) adding/removing one parameter in a query may radically change
the results associated to a query, and (b) Web services are typically non-uniform
(i.e., not constantly offered/available in the same way over time).

5.2 Correctness

As detailed in Subsection 4.3, in the case of a success, SAM outputs a list of atomic
processes which represents the sequence of process invocations to be performed in
order to fulfill the given query. Let us now formally define when a successful list of
atomic processes satisfies both the data-flow and the control-flow requirements.

Def. 5.1. Let R = {S1, . . . , Sm} be a set of services. A list of atomic processes

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

Semantics-based Composition-oriented Discovery of Web Services · 27

(APL2 for short) a1.a2 . . . an, where each ai belongs to a service Sj ∈ R, satisfies

a given query Q if and only if:

• it satisfies the control-flow contraints – the sequence of executions of a1, . . . , an

does not violate the process models of services in R, namely, it violates neither
sequencing nor excluding constraints, and

• it satisfies the data-flow constraints – the query outputs are a subset of the
outputs of a1 . . . an, and the inputs of every ai ∈ APL are provided either by the
query inputs or by the outputs of a1 . . . ai−1.

The following proposition establishes the correctness of SAM, namely, that each
list of atomic processes returned by SAM respects Definition 5.1.

Proposition 5.2. Let APL = a1.a2 . . . an be a list of atomic processes returned

by SAM for a given query Q. Then, APL satisfies Q.

Proof. (sketch) Let APL be a list of atomic processes returned by SAM for Q,
and suppose that APL does not satisfy Q. This means that either (1) APL violates
the control-flow constraints, or (2.a) at least an input of ai ∈ APL is not available,
or (2.b) at least an output of Q is not produced by any ai ∈ APL.

We can easily prove that (2.a) and (2.b) cannot hold. Indeed, if ai belongs to
APL, then ai was firable, since SAM added it to APL. Hence, all the inputs of
ai either belong to Q or they are produced as output by a process that SAM has
previously added to APL. Furthermore, if APL has been successfully returned by
SAM, then all the query outputs are red, that is, each of them is produced by at
least a process in APL.

Next, we prove that (1) cannot hold, either. Indeed, after applying the Transf
function (see Subsection 4.1), the process models of the available services employ
sequence, choice, split and split+join composite processes, which yield se-
quencing and excluding constraints only. The APL returned by SAM is either (i)
a success (i.e., a simple APL), or (ii) a concatenation of several failures (i.e., of
several APLs).

We consider first (i). If APL violates the sequencing contraints, then there exists
ai ∈ APL such that there is no set of predecessors P ∈ Prev(ai, parent(ai)) (see
Subsection 4.1) such that P ⊆ {a1, . . . , ai−1}. On the other hand, if SAM added it
to APL, then ai had to be executable. Hence, at least a set of predecessors of ai

had been executed and consequently added to APL before ai. Similarly, if APL

violates the excluding constraints, then there exists ai ∈ APL and ak ∈ APL, such
that k < i and ak ∈ FindChoice(ai, parent(ai)) (see Subsection 4.1). However, if
ak belongs to APL, then ak had been coloured in red and ai would have had been
coloured in black, since there is an excluding constraint between ak and ai. Hence
we have a contradiction because ai is red, since it belongs to APL.

We now consider (ii). Let F = APL1.APL2. . . . APLn be a concatenation of
APLs. Since every APLk ∈ F corresponds to an independent execution trace
of the services in the registry, F violates the process model constraints if there
exists at least APLi ∈ F such that APLi violates such constraints. However, this

2For the sake of simplicity we assume that all process names in an APL are all distinct, since
they actually denote atomic process invocations.

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

28 · Antonio Brogi, Sara Corfini, Razvan Popescu

Fig. 13. Example showing process model multiple instances in the dependency hypergraph.

contradicts the previous proof of (i), since APLi can not violate the process model
constraints.

Hence, SAM is correct.

5.3 Completeness

Consider the example in Figure 13 (left hand-side), the query asking for z as output,
as well as the APL = A.B.C. Note that the x output of process A is needed as
input by process B. Furthermore, C inputs the y output of B, and it produces
z. Hence, in order to satisfy the query, one should execute first A, then B, and
then C. However, this cannot be done in a single instance of the process model in
the Figure, since A and B are mutually excluding processes. The desired output
could be produced however by instantiating the process model two times – first
for obtaining x through the execution of A, and second for obtaining y from the
execution of B. It is important to note that the invoker should act as a sort of
“proxy” by getting the x output of A from an instance, and feeding it as input to
B in the other instance. Note further that, by assuming a proxy-like invoker for
which data is persistent, C could be executed in either of the two instances.

Currently, SAM does not cope with scenarios as the above one, which involves
exchanging data across multiple instances of the same service. This is because,
during the red colouring phase SAM can only paint in red A, and this leads to
painting in black (viz., “burning”) B. As a result SAM returns a failure, as it
cannot paint in red the output z of C requested by the query.

However, SAM can be slightly modified to cope with such scenarios by duplicat-
ing, for each matched service containing a choice process, the processes that are
added to the hypergraph, together with their sequencing and excluding constraints,
and their data dependencies. Informally, the duplicates correspond to instances of
the matched process models. In this way all the non-deterministic executions of ser-
vices containing choice processes are introduced in the hypergraph. As explained
in Subsection 4.1, the Alt function applied to a process tree node P computes the
number of times P has to be executed in order to yield all the concepts producible
by its atomic process children. Hence, SAM can duplicate process models P con-
taining choice processes “Alt(Root(P)) − 1” times in order to represent explicitly
in the hypergraph all the possible distinct alternative executions of P needed to
obtain all the outputs of its children atomic processes. This can be simply imple-
mented in the pseudocode of Figure 8, by adding a parameter (i.e., int alt) to the

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

Semantics-based Composition-oriented Discovery of Web Services · 29

Match function (lines 6, 13, 20) and by invoking Match(Root(s), H, Alt(s)) for each
service s in the registry (line 4), as well as by invoking the Add function Alt(s)
times (line 10, 17).

For our example, Alt(SEQ) gives a value of two, and the hypergraph one obtains
is given in Figure 13 (right hand-side). Note that we have used indices for the
process names in the hypergraph so as to explicitly show the two instances. Now,
during the red colouring phase, both A1 and A2 are firable. Assume SAM paints
in red A1. This leads to painting in black B1. However, SAM does not terminate
now with a failure, since B2 is firable, and by painting it in red the y data node
becomes red as well. Consequently, both C1 and C2 are firable, and by executing
either of them, SAM paints in red the z datum requested by the query.

With this extension, we argue that SAM would be able to generate an APL

whenever there exists an APL for a given query. However, this extension decreases
further the efficiency of SAM, as the size of the hypergraph linearly increases with
Alt. Given the high complexity of SAM, we plan to devote our immediate future
efforts to try to improve the algorithm efficiency, rather than sacrificing further
efficiency in order to achieve completeness.

6. RELATED WORK

In the Introduction we argued that WSDL does not provide neither semantics nor
behavioural information, hence affecting the process of automating both the dis-
covery and composition of Web services. The problem has recently attracted quite
some attention, as witnessed by the definition of several new service description
languages. Some of them focus on behavioural aspects, such as BPEL [Andrews,
T., et al. 2003], WS-CDL [Kavantzas et al. 2004], YAWL [van der Aalst and ter
Hofstede 2005], while others centre on semantics features such as WSDL-S [Akki-
raju et al. 2005], OWL-S [OWL-S Coalition 2004] (which we briefly described in
Section 2), WSMO [J. de Bruijn et al. 2005] and SWSO [Battle, S., et al. 2005].
Given the recent availability of richer service descriptions, many proposals to dis-
cover and/or to compose services have been advanced. According to the different
kinds of information they exploit, such proposals can be classified in three groups:
sematics-based approaches, behaviour-based approaches as well as semantics- and
behaviour-based approaches.

Paolucci et al. proposed in [Paolucci et al. 2002] the first semantics-based algo-
rithm for Web service discovery. Their algorithm performs an interface-level match-
ing between service requests and service advertisements described as DAML-S ser-
vice profiles. As already noted in Section 3, the algorithm described in [Paolucci
et al. 2002] is however limited to discovering a single service, and it does not address
the issue of discovering service compositions.

To overcome the drawbacks of UDDI, Kawamura et al. developed in [Kawa-
mura et al. 2004] a matchmaker that enhances the search functionality of UDDI
by enriching WSDL service descriptions with semantic descriptions in the style of
DAML-S service profiles. This proposal tries to take advantage of the wide spread
use of UDDI, as well as of the semantic power of the ontology descriptions of Web
services. However, it suffers from the same limitations of [Paolucci et al. 2002].

Li and Horrocks describe in [Li and Horrocks 2004] an algorithm for matching

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

30 · Antonio Brogi, Sara Corfini, Razvan Popescu

DAML-S service descriptions based on a description logic reasoner. The authors
mention that an off-line classification of service advertisements (in a DL TBox)
could be employed to speeds up the matching process. Still, they note that remov-
ing advertisements from the TBox is more difficult. An important limitation of
their approach is that they do not address composition-oriented service discovery.
Furthermore, we argue that it is quite difficult for the client to express a query
matching a service S without prior knowledge about the description of S.

Kifer et al. [Kifer et al. 2004] employ WSMO to define a logical framework based
on Flora-2 for service discovery. The two main stages of locating a service are (1)
discovery – which finds services that might satisfy the request, and (2) contract-

ing which checks whether the request can be actually fulfilled. A feature of their
approach is the usage of wgMediators for matching client goals with service capabil-
ities. Still, they do not tackle the discovery of service compositions. Furthermore,
we argue that client requests may be difficult to be modelled by ordinary clients.

Aversano et al. and Benatallah et al. respectively proposed in [Aversano et al.
2004] and [Benatallah et al. 2003] two approaches which extend [Paolucci et al.
2002] with the discovery of service compositions. The algorithm of Aversano et
al. analyses DAML-S service profiles (as [Paolucci et al. 2002]) and, by performing
a cross-ontology matching (over service descriptions employing different ontologies),
it searches for service compositions capable of satisfying the client request (when no
single service can fulfill the request). The algorithm of Benetallah et al. [Benatallah
et al. 2003] computes the combinations of Web services that best match a given
request by resolving a best covering problem in the domain of hypergraphs theory.
Each available service becomes a vertex in the hypergraph while each query output
OQ becomes an edge populated by those services that produce an output equivalent
to OQ. The problem of computing the best service combinations can be reduced
to the computation of the minimal transversals (i.e., covers) with the minimal
cost of the hyperpgraph, where the notion of cost is defined in terms of the missing
information of the request with respect to the considered service combination. Both
the approaches of Aversano et al. and of Benatallah et al. are based on analysing
DAML-S service profiles only, and hence they do not consider the service behaviour.
Moreover, whilst Aversano et al. consider the possibility that the missing input of
a service (i.e., the inputs not contained in the client request) could be produced as
output by other services, Benetallah et al. do not take into account this feature.
Comparing SAM with [Aversano et al. 2004] and [Benatallah et al. 2003], one may
note that SAM analyses the process model of services in order to perform a finer-
grained matchmaking, at the level of atomic processes inside services rather than
at the level of entire services. Moreover, when no service composition can satisfy
the query, SAM is also capable of suggesting additional inputs that would suffice to
get a full match.

The algorithm proposed by Bansal and Vidal in [Bansal and Vidal 2003] belongs
to the third category, namely to the semantics- and behaviour-based approaches,
as it analyses OWL-S process models. As we already discussed in Section 3, SAM
extends [Bansal and Vidal 2003] by considering both compositions and multiple
executions of services.

Ben Mokhtar et al. have recently proposed in [Mokhtar et al. 2005] an algorithm

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

Semantics-based Composition-oriented Discovery of Web Services · 31

for Web service discovery and composition based on both OWL-S service profile
and process model. They model both services and the client request as finite state
automata and their goal is to reconstruct the client query automaton by using frag-
ments of the available services. A similar work has been presented by Hashemian
and Mavaddat in [Hashemian and Mavaddat 2005]. They propose a graph-based
approach for composing Web services based on the OWL-S process model, and they
formally model both services and the client query as interface automata [de Alfaro
and Henzinger 2001]. Both the approaches of Ben Mokhtar et al. and of Hashemian
and Mavaddat address the composition of OWL-S services by focussing on analysing
input/output dependencies among services. On the other hand, they do not con-
sider the ordering of atomic processes (inside services) which is crucial in order to
determine the behaviour of a service composition, e.g., to determine whether it may
deadlock or not. Moreover, the approaches of Ben Mokhtar et al. and of Hashemian
and Mavaddat assume that the user query is expressed as an automaton or as an
interface automaton respectively. Instead,SAMonly requires a query formed by a
list of inputs and outputs (belonging to an ontology) of the desired service. We
believe that for a common user the former approach is quite complicated.

Miller et al. have recently contributed to the realization of METEOR-S [MET-
EOR-S Team 2004] which is an active research initiative that aims at annotating,
discovering and composing semantic Web services. METEOR-S consists of two
parts: the front-end [Rajasekaran et al. 2005], which deals with development, an-
notation and discovery of services, and the back-end [Sivashanmugam et al. 2004],
which addresses the Web service composition issue. However, METEOR-S is a semi-
automated approach requiring a strong participation of the user, which is highly
involved in the process of semi-manually discovering and/or composing services.

Finally, the proposals which belong to the second category (i.e., behaviour-based
approaches) intentionally focus on how to aggregate services as well as on how to
express service compositions. A common limitation of these approaches is that
services useful for the composition have to be manually selected by a service or-
chestrator. Indeed, semantics information is mandatory in order to automate the
process of Web service discovery. It is worth mentioning [Álvares et al. 2005], [Be-
natallah and Hamadi 2003] and [Kochut and Yi 2004], which model services and
their compositions as Petri nets, and [Berardi et al. 2005] which represents service
compositions as nondeterministic transition systems.

7. CONCLUDING REMARKS

We have presented a new algorithm — called SAM (for Service Aggregation Match-
making) — for the composition-oriented discovery of Web services. The version
of SAM presented in this paper substantially improves and extends the version
presented in the first report [Brogi et al. 2005]. On the one hand, the new ver-
sion employs hypergraphs (rather than graphs) to better capture the dependencies
among processes in the matched services. On the other hand, the new version copes
with arbitrary OWL-S service descriptions (while the first version only dealt with
OWL-S sequence and choice constructs).

As already mentioned in the Introduction, the main novel features of SAM are:

(1) to perform a fine-grained matching (at the level of atomic processes of services

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

32 · Antonio Brogi, Sara Corfini, Razvan PopescuO W L � S S e r v i c eR e q u e s t e r
M a t c hI O Q u e r y A P L s L o c a lR e g i s t r yG etD escri pti onsS A M

O W L � S S e r v i c eP u b l i s h e rP u b l i s h D e s c r i p t i o n

U D D IR e g i s t r yU D D IR e g i s t r y
S p i d e rS p i d e r U p d a t e R e g i s t r y U p d a t e R e g i s t r yG e t D e s c r i p t i o n s G e t D e s c r i p t i o n sG e t D e s c r i p t i o n s

P u b l i s h D e s c r i p t i o n

Fig. 14. SAM using a local registry. APL stands for Atomic Process List.

rather than at the level of entire services),

(2) to feature a flexible matching by returning partial matches and by suggesting
additional inputs (when some query output cannot be produced by the services
in the registry),

(3) to discover service compositions capable of satisfying a query, when no single
service can satisfy it. In such cases SAM also explicitly returns the sequence
of atomic process invocations that the client must perform in order to achieve
the desired result.

It is worth discussing some architectural issues here. The first issue mainly
concerns the service registry used by SAM, that is, what service registry SAM uses,
and how is it built and updated. We assume that OWL-S service descriptions will
be made available by service providers. Two possibilities for deploying SAM are:

(1) A first possibility is for SAM to use a (local) registry consisting of OWL-S
descriptions fetched from UDDI registries by means of spiders (or uploaded di-
rectly by service providers) as shown in Figure 14. In this scenario, the providers
firstly publish OWL-S service descriptions. The requester then queries SAM
which matches the request with the service descriptions stored in its (local)
registry. It is important to note that OWL-S descriptions consisting both of
service profile and service model are to be encoded in the registries.

(2) A second possibility for the deployment of SAM is to embed it in UDDI registries
similarly to the approach of Srinivasan et al. [Srinivasan et al. 2004]. Again,
a prerequisite of our approach is that SAM should have access to both the
service profile and service model information of the OWL-S descriptions. As for
[Srinivasan et al. 2004], UDDI registries should provide a special port through

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

Semantics-based Composition-oriented Discovery of Web Services · 33O W L � S S e r v i c eR e q u e s t e r
S A MI O Q u e r y A P L s

U D D IR e g i s t r yG etD escri pti ons
O W L � S S e r v i c eP u b l i s h e rP u b l i s h D e s c r i p t i o n

Fig. 15. SAM embedded in UDDI registries.

which SAM can be invoked in order to deal with semantic queries. Figure 15
depicts this scenario.

It is worth noting that in (1) and (2) the discovery takes place on the server-side.
The actual composition process is performed on the client-side by employing the
atomic process list discovered by SAM.

To conclude, we hereafter present some remarks and comments regarding some of
the current issues on ontologies and ontological languages for service descriptions (in
general). One general open issue is the adoption of a “de facto” service description
language as standard. Service signature and behaviour are tackled on the one hand
by the industry which sustains WSDL and respectively BEPL-like (i.e., syntactic)
proposals, while on the other hand academic research is more oriented towards
ontology-based (i.e., semantic) languages such as WSDL + OWL (e.g., OWL-S
Service Profile) or WSDL-S and OWL-S (Service Model) respectively. Currently,
WSDL and BPEL-like services are far more spread than semantic ones, yet this
is not an indication that such languages are more appropriate for describing Web
services. The “popularity” of a proposal does not depend exclusively on its scientific
quality as its success on the market also relies on the “forces” pushing it.

A criticism often made to ontologies is that it is not reasonable to imagine every-
body using a single ontology for all purposes everywhere. This calls for the need of
crossing/relating ontologies whenever we have services described by means of dif-
ferent ontologies. One could however imagine the emergence of “de facto” standard
ontologies as well as suitable ontology crossing algorithms – if ontologies will be the
way chosen.

Some other concerns on the applicability of ontologies may be summarised as
follows:

– how hard is it for the common client to write OWL-S queries?

– how easy is it to under/over/mis- specify a query?

– will the availability of supporting tools be enough to support the penetration of
this technology?

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

34 · Antonio Brogi, Sara Corfini, Razvan Popescu

Although such issues are far from trivial, we argue that ontologies are a fundamental
ingredient of a successful service discovery framework and, should standardised on-
tologies appear, tools easing the job of the client (e.g., that assist the client to specify
queries, that cope with ontology crossing, a.s.o.) will be developed. For example,
a under-specified query looking for a service selling flight tickets – Q = {inputs:
destination; outputs: flightTicket} – might be assisted as follows: “Did you
mean: Q = {inputs: destination, travelPeriod; outputs: flightTicket}?”.
Such hints might be based on query history (record tracking) and service ranking.

Our plans for future work include assessing SAM by experimenting it on a large
number of queries and service advertisements. While we have tested our Java
implementation of SAM on several examples, an obstacle to running massive ex-
periments is the lack of available OWL-S descriptions of services (only a few are
publicly available on the W3C Web site). A promising approach to ease the gen-
eration of OWL-S descriptions of services may be to publicly deploy (to UDDI
registries) supporting tools that facilitate such descriptions, as done for instance
by Kawamura et al. [Kawamura et al. 2004] to promote the generation of DAML-S
service profiles. Another direction for future work is to extend the matching fea-
tured by SAM in order to deal with multiplicity of data (e.g., client may request
more than one output having the same data type) as well as with other attributes
of services (including non-functional ones) and the use of different ontologies. As
for efficiency, we intend to develop a functional analysis module to be pugged-in
“before” SAM to restrict the set of candidate services to be considered for a given
query. Our long-term goal is to develop a well-founded methodology to support the
discovery, aggregation, and —when necessary— adaptation [Bracciali et al. 2005]
of services.

ACKNOWLEDGMENTS

This work has been partially supported by the SMEPP project (EU-FP6-IST
0333563).

REFERENCES

Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M.-T., Sheth, A.,
and Verma, K. 2005. Web Service Semantics – WSDL-S technical note (version 1.0).
http://lsdis.cs.uga.edu/library/download/WSDL-S-V1.pdf.

Álvares, P., Bañares, J., and Ezpelata, J. 2005. Approaching Web Service Coordination and
Composition by Means of Petri Nets. The Case of the Nets-within-Nets Paradigm. In ICSOC
2005, LNCS 3826, B. Benatallah, F. Casati, and P. Traverso, Eds. Springer-Verlag, 185–197.

Andrews, T., et al. 2003. Business Process Execution Language for Web Services (version 1.1).
http://www-106.ibm.com/developerworks/library/ws-bpel.

Aversano, L., Canfora, G., and Ciampi, A. 2004. An algorithm for web service discovery
through their composition. In IEEE International Conference on Web Services (ICWS’04),
L. Zhang, Ed. IEEE Computer Society, 332–341.

Bansal, S. 2002. Matchmaking of Web Services Based on the DAML-S Service Model, Master
Thesis. University of South Carolina.

Bansal, S. and Vidal, J. 2003. Matchmaking of Web Services Based on the DAML-S Ser-
vice Model. In Second International Joint Conference on Autonomous Agents (AAMAS’03),
T. Sandholm and M. Yokoo, Eds. ACM Press, 926–927.

Battle, S., et al. 2005. Semantic Web Service Ontology (SWSO), W3C Member Submission,
9 September 2005. http://www.w3.org/Submission/SWSF-SWSO/.

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

Semantics-based Composition-oriented Discovery of Web Services · 35

Benatallah, B., Hacid, M.-S., Rey, C., and Toumani, F. 2003. Request Rewriting-Based Web

Service Discovery. In The Semantic Web - ISWC 2003, LNCS 2870, G. Goos, J. Hartmanis,
and J. van Leeuwen, Eds. Springer-Verlag, 242–257.

Benatallah, B. and Hamadi, R. 2003. A Petri Net-based Model for Web Service Composition.
In Proceedings of the 14th Australasian Database Conference (ADC 2003). 191–200.

Berardi, D., Calvanese, D., Giacomo, G. D., and Mecella, M. 2005. Composition of Services
with Nondeterministic Observable Behaviour. In ICSOC 2005, LNCS 3826, B. Benatallah,
F. Casati, and P. Traverso, Eds. Springer-Verlag, 520–526.

Berners-Lee, T., Hendler, J., and Lassila, O. 2001. The Semantic Web. In Scientific Amer-
ican.

Bracciali, A., Brogi, A., and Canal, C. 2005. A formal approach to component adaptation.
Journal of Systems and Software 3, 45–54.

Brogi, A., Corfini, S., and Popescu, R. 2005. Composition-oriented Service Discovery. In
Software Composition, LNCS 3628, T. Gschwind, U. Aßmann, and O. Nierstrasz, Eds. Springer-
Verlag, 15–30.

de Alfaro, L. and Henzinger, T. 2001. Interface automata. In Proceedings of the Ninth Annual
Symposium on Foundations of Software Engineering (FSE). ACM Press, 109–102.

Gallo, G., Longo, G., Nguyen, S., and Pallottino, S. 1993. Directed hypergraphs and ap-

plications. Discrete Applied Mathematics 42, 2, 177–201.

Hashemian, S. and Mavaddat, F. 2005. A Graph-Based Approach to Web Services Composition.
In The 2005 Symposium on Applications and the Internet (SAINT’05), I. C. Society, Ed. CS
Press, 183–189.

J. de Bruijn et al. 2005. Web Service Modeling Ontology (WSMO), W3C Member Submission,
3 June 2005. http://www.w3.org/Submission/WSMO/.

Kavantzas, N., Burdett, D., and Ritzinger, G. 2004. Web Service Choreography Description
Language Version 1.0, W3C Working Draft, 27 April 2004. http://www.w3.org/TR/2004/WD-
ws-cdl-10-20040427/.

Kawamura, T., Blasio, J. D., Hasegawa, T., Paolucci, M., and Sycara, K. 2004. Public
Deployment of Semantic Service Matchmaking with UDDI Business Registry. In Third Inter-
national Semantic Web Conference (ISWC’04), LNCS 3298, S. McIlraith and D. Plexousakis,
Eds. Springer-Verlag, 752–766.

Kifer, M., Lara, R., Polleres, A., Zhao, C., Keller, U., Lausen, H., and Fensel, D. 2004.
A Logical Framework for Web Service Discovery. In ISWC 2004 Workshop on Semantic Web
Services: Preparing to Meet the World of Business Applications. Vol. 119. CEUR Workshop
Proceedings, Hiroshima, Japan.

Kochut, K. J. and Yi, X. 2004. Specification and Analysis of Service Oriented Distributed
Systems using Coloured Petri Nets: Models, Algorithms and Tools. In University of Georgia,
Computer Science department - technical report.

Kritikos, K. 2005. Extending OWL for QoS-based Web Service Description and Discovery. In
IBM Research Report. Proceedings of the IBM PhD Symposium at ICSOC 2005, A. Hanemann,
Ed. 73–78.

Li, L. and Horrocks, I. 2004. A software framework for matchmaking based on semantic web
technology. Int. J. of Electronic Commerce 8, 4, 39–60.

METEOR-S Team. 2004. METEOR-S: Semantic Web Services and Processes. http://lsdis.

cs.uga.edu/projects/meteor-s/.

Mokhtar, S. B., Georgantas, N., and Issarny, V. 2005. Ad Hoc Composition of User Tasks
in Pervasive Computing Environment. In Software Composition, LNCS 3628, T. Gschwind,
U. Aßmann, and O. Nierstrasz, Eds. Springer-Verlag.

Navas-Delgado, I., Sanz, I., Aldana-Montes, J. F., and Berlanga, R. 2005. Automatic Gen-
eration of Semantic Fields for Resource Discovery in the Semantic Web. In 16th International
Conference on Database and Expert Systems Applications (DEXA 2005). LNCS 3588.

OWL-S Coalition. 2004. OWL-S 1.1 release. http://www.daml.org/services/owl-s/1.1/.

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

36 · Antonio Brogi, Sara Corfini, Razvan Popescu

Paolucci, M., Kawamura, T., Payne, T., and Sycara, K. 2002. Semantic Matchmaking of

Web Services Capabilities. In First International Semantic Web Conference on The Semantic
Web, LNCS 2342, I. Horrocks and J. Hendler, Eds. Springer-Verlag, 333–347.

Papazoglou, M. and Georgakopoulos, D. 2003. Service-oriented computing. Communications
of the ACM 46, 10, 25–28.

Rajasekaran, P., Miller, J. A., Verma, K., and Sheth, A. P. 2005. Enhancing Web Services
Description and Discovery to Facilitate Composition. In Semantic Web Services and Web
Process Composition, LNCS 3387, J. Cardoso and A. Sheth, Eds. Springer-Verlag, 55–68.

Sivashanmugam, K., Miller, J. A., Sheth, A. P., and Verma, K. 2004. Framework for Semantic
Web Process Composition. International Journal of Electronic Commerce (IJEC), Special
Issue on Semantic Web Services and Their Role in Enterprise Application Integration and
E-Commerce 9, 2 (Winter), 71–106.

Srinivasan, N., Paolucci, M., and Sycara, K. P. 2004. An Efficient Algorithm for OWL-S
Based Semantic Search in UDDI. In SWSWPC. 96–110.

UDDI. 2000. The UDDI Technical White Paper. http://www.uddi.org/.

van der Aalst, W. M. P. and ter Hofstede, A. H. M. 2005. Yawl: yet another workflow
language. Information Systems 30, 4, 245–275.

W3C. 2001a. Simple Object Access Protocol (SOAP) 1.2, W3C working draft, 17 December 2001.
http://www.w3.org/TR/2001/WD-soap12-part0-20011217/.

W3C. 2001b. Web Service Description Language (WSDL) 1.1. World Wide Web Consortium,
http://www.w3.org/TR/wsdl.

Yang, J. 2003. Web service componentization. Communications of the ACM 46, 10, 35–40.

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

Semantics-based Composition-oriented Discovery of Web Services · 37

A. APPENDIX

Hereafter we partially present the OWL-S code of the Electronics Store service,
depicted in Figure 2. For each composite process which is part of the service, the
process model describes its structure as well as its inputs and outputs. Since the
complete process model is quite verbose, we only present the OWL-S code of the
root composite process of the Electronics Store service.

<process:CompositeProcess rdf:ID="Electronics Store">

<process:hasInput>
<process:Input rdf:ID="country">

<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

An Ontology URI#country
</process:parameterType>

</process:Input>
</process:hasInput>

... other inputs and outputs ...

<process:composedOf>
<process:Sequence>

<process:components>
<process:ControlConstructList>

<objList:first>

<process:Perform rdf:ID="Country ChoicePerform">
<process:process rdf:resource="#Country Choice"/>

<process:hasDataFrom><process:InputBinding>
<process:toParam rdf:resource="#Country Choice country"/>
<process:valueSource><process:ValueOf>

<process:theVar rdf:resource="#country"/>
<process:fromProcess rdf:resource="&process;#TheParentPerform"/>

</process:ValueOf></process:valueSource>
</process:InputBinding></process:hasDataFrom>

</process:Perform>
</objList:first>
<objList:rest>

<process:ControlConstructList>
<objList:first>

<process:Perform rdf:ID="LoginPerform">
<process:process rdf:resource="#Login"/>
<process:hasDataFrom><process:InputBinding>

<process:toParam rdf:resource="#Login username"/>
<process:valueSource><process:ValueOf>

<process:theVar rdf:resource="#username"/>
<process:fromProcess rdf:resource="&process;#TheParentPerform"/>

</process:ValueOf></process:valueSource>
</process:InputBinding></process:hasDataFrom>

... other inputs ...

</process:Perform>
</objList:first>
<objList:rest>

<process:ControlConstructList>
<objList:first>

<process:Perform rdf:ID="Product ChoicePerform">
<process:process rdf:resource="#Product Choice"/>

<process:hasDataFrom><process:InputBinding>
<process:toParam rdf:resource="#Product Choice camera Make"/>
<process:valueSource><process:ValueOf>

<process:theVar rdf:resource="#camera Make"/>
<process:fromProcess rdf:resource="&process;#TheParentPerform"/>

</process:ValueOf></process:valueSource>
</process:InputBinding></process:hasDataFrom>

... other inputs ...

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

38 · Antonio Brogi, Sara Corfini, Razvan Popescu

</process:Perform>

</objList:first>
<objList:rest rdf:resource="&objList;#nil"/>

</process:ControlConstructList>
</objList:rest>

</process:ControlConstructList>
</objList:rest>

</process:ControlConstructList>

</process:components>
</process:Sequence>

</process:composedOf>

<process:hasResult>

<process:Result>
<process:inCondition rdf:resource="&expr;#AlwaysTrue"/>

<process:withOutput>
<process:OutputBinding>

<process:toParam rdf:resource="#Electronics Store available Service"/>
<process:valueSource>

<process:ValueOf>

<process:theVar rdf:resource="#Country Choice available Service"/>
<process:fromProcess rdf:resource="#Country ChoicePerform"/>

</process:ValueOf>
</process:valueSource>

</process:OutputBinding>
</process:withOutput>

</process:Result>

</process:hasResult>

... other results ...

</process:CompositeProcess>

The description of an atomic process is very simple because it only consists of
a list of the inputs and the outputs of the process. We present next the OWL-
S code for describing the country choice atomic process, which takes as input
a country and returns the service availability in that country. We would like to
underline that all the concepts used in an OWL-S description (e.g., country or
available service) have to be previously declared in one or more type ontologies
shared by the services in the registry.

<process:AtomicProcess rdf:ID="Country Choice">

<process:hasInput>

<process:Input rdf:ID="country">
<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

An Ontology URI#country

</process:parameterType>
</process:Input>

</process:hasInput>

<process:hasOutput>

<process:Output rdf:ID="available Service">
<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

An Ontology URI#available Service
</process:parameterType>

</process:Output>
</process:hasOutput>

</process:AtomicProcess>

ACM Transactions on Internet Technology, Vol. V, No. N, July 2007.

