
Department of Computer Science

Ph.D. in Computer Science

Ph.D. Thesis

A Formal Framework for Modelling and
Analysing Safety-Critical Human

Multitasking
Giovanna Broccia

Supervisor:
Prof. PaoloMilazzo
Università di Pisa

To my father, for his extraordinary curiosity
To my mother, for her incredible constancy

To myself, for having taken the best from both

Abstract

Nowadays people often interact with multiple devices or with a single device per-
forming multiple tasks. In such a multitasking context, the amount of cognitive
resources required from each task (cognitive load) influences the activity of the
attentional mechanisms of the user. In particular, focusing attention on a “main”
task (e.g. driving a car) may be impeded by a secondary “distractor” task (e.g. us-
ing a GPS navigator system) with a high cognitive load. Moreover, the cognitive
resource that is mostly involved in interactions with computers and other techno-
logical devices is the human working memory, which is a volatile memory with a
limited capacity used to store and process the information necessary for perform-
ing a task. The concurrent use of such a resourcemight causememory overloading
andmight get the users to forget useful information for the interaction with one of
the systems. When humanmultitasking involves safety-critical tasks, failure to de-
vote sufficient attention to some tasks (the safety-critical ones) could have serious
consequences.

To study these kinds of problem we define a formal model of safety-critical hu-
manmultitaskingwhich describes the cognitive processes involved inHCI and the
switching of attention among concurrent tasks. Themodel describes the attention
attractiveness of each task as a factor proportional to the task cognitive load, its
criticality and the time it was ignored during the interaction. Themodel builds on
classical results from applied psychology on selective attention andworkingmem-
ory.

We implement the model through a simulator, which allows us to get a quick
feedback about whether a human can safely perform multiple such tasks at the
same time, and as an executable formal framework in Real-Time Maude, which
enables us to analyse safety-critical human multitasking through simulation and
reachability analysis.

We validate the model against data collected from an experimental study with
real users involved in the interaction with two concurrent tasks.

We show how a number of prototypical multitasking problems can be analysed
inReal-TimeMaudeby studying: (i) the interactionwith aGPSnavigation system
while driving, (ii) a medical operator setting multiple infusion pumps simultane-
ously, and (iii) some typical scenarios involving human errors in air traffic control.

Contents

1 Introduction 6
1.1 Cognitive Flexibility . 7
1.2 Safety-Critical Human Multitasking 8
1.3 Thesis Contribution . 10
1.4 Outline of the thesis . 12
1.5 Publications . 14

2 Background 15
2.1 Cognitive Background . 15
2.2 Transition Systems . 24
2.3 Real-Time Maude . 27

3 State of the Art 32
3.1 Computational Models . 32
3.2 Formal Models . 39
3.3 Limitations of Existing Models 44

4 Formal Model of Safety-Critical Human Multitasking 47
4.1 Syntax . 48
4.2 Semantics . 58
4.3 Example . 72

4

5 Model Simulator 75
5.1 Simulator . 76

6 Model Validation 82
6.1 Experimental Study . 83
6.2 Simulation Experiments . 94
6.3 Results . 98

7 Real-Time Maude Framework 103
7.1 Classes . 106
7.2 Ranking Function . 109
7.3 Rewrite Rules . 110

8 Case Studies 120
8.1 Analysing Human Multitasking with Real-Time Maude 121
8.2 Using GPS while Driving . 124
8.3 Interacting with Multiple Infusion Pumps 129
8.4 Air Traffic Control Operator 135

9 Conclusion 145

References 160

1
Introduction

Nowadaysweoften interactwithmultipledevicesorwith a single device
performingmultiple tasks at the same time. Multitasking has become surprisingly
present in our life andwe are used to think that carrying outmore tasks simultane-
ously is equivalent to optimise time: keeping up several instant message conversa-
tions at once, answering an e-mail while listening to a talk at a conference, hanging
out with social network while watching television, “jumping” from a website to
another while completing homework assignments, just to give some examples.

However, despite what most of us could believe, the multitasking performance
takes a toll on productivity and psychologists who study the mental processes in-
volved inmultitasking have found that the humanmind andbrain are not designed
for doingmore than one task at a time [78, 90]. We cannot focus onmore than one
thing at a time, what we can do is switch from one task to another with extraordi-

6

CHAPTER 1. INTRODUCTION

nary speed, since all these tasks use the same part of the brain [55].

1.1 Cognitive Flexibility

What we usually call multitasking is actually what researchers call cognitive flex-
ibility , and it is the mental capability to switch between different activities in a
conscious or unconscious way. Cognitive flexibility requires that each task in a
quotidian sequence have an appropriate configuration of mental resources [80]:
each time we choose the tasks to be performed we exercise an intentional control
to select and devise a suitable task-set for our goals [49].

One of themain resource to be shared in suchmultitasking contexts is thework-
ing memory – a cognitive system responsible for the transient holding and process-
ing of pieces of information needed to perform a task – together with the human
selective attention – a selective activity whose purpose is to focus on one element of
the environmentwhile ignoring the others. According to theNorman and Shallice
theory [83], the main role of attention is in the controlling of action and such ac-
tions can be executed under two levels of cognitive control: during automatic con-
trol actions come in fast succession with no consciousness, namely with no need
of attention; in contrast, during deliberate control, actions are carried out under
the intentional control of the individual, who deliberately directs the attention to
them.

For instance, when we buy a new mobile phone and we “learn” to use it, we
need tomake a conscious effort and direct attention to each action we perform on
the new device: while learning how to use the new messaging application, when
learning to save a new phone number, and so on. In such case we act under delib-
erate control. When the learning process is completed, we act in a automatic way,
without overthinking the actions we want to perform; in such case we act under
automatic control.

Researchers identify twodifferent “modes” of executingmultiple tasks at a time,
denoted concurrent processing and sequential processing [93, 113]. The concurrent

From here onward we will continue to call it multitasking for the sake of simplicity

7

CHAPTER 1. INTRODUCTION

processing paradigm primarily focuses on dual tasking: two tasks are performed
“simultaneously” although at a degraded level (e.g., driving while conversing or
mind wandering). Under such paradigm, it is possible to perform two actions at
the same time since one of the two (or even both) is performed under automatic
control, thus the selective attention is not actually shared among the two tasks.

In contrast, the sequential processing mode is used when more than two tasks
have to be performed and one task is chosen at a time while other tasks idle. Se-
quential task performance is characterised, in turn, by different paradigms[117]:

• Interruption management: the user executes two tasks, referred as an ongo-
ing task and an interrupting task. Researchers focus on the time to switch
from one to another, the time to resume the ongoing task after an interrup-
tion, and the quality of both tasks [114].

• Supervisory sampling and control: the user interacts with a display or an in-
strumentpanel, where an instrumentmight servedifferent tasks. Researchers
focus on the user selection strategy between tasks [52, 66, 99, 100].

• Strategic task overloadmodel: tasks are characterisedby attractiveness factors
which drive the user attention. Researchers focus on the time spent on a
task rather than in other [115, 117].

• Voluntary task switching: the user is allowed to switch fromone task to other
whenever and however he/she wants [4, 64, 89, 94]. A dominant theory
based on such paradigm is the theory of threaded cognition [95, 96], where
task selection is determined by the availability of resourceswhich cannot be
shared among tasks.

1.2 Safety-CriticalHumanMultitasking

When in a multitasking scenario some of the tasks are safety-critical, then failures
to perform the tasks correctly and timely (e.g., due to cognitive overload or giving

8

CHAPTER 1. INTRODUCTION

too much attention to other tasks) could have dangerous consequences. There-
fore, we call safety-critical human multitasking a situation where a person interacts
with a safety-critical system while using other less critical devices. For instance,
pilots usually reprogram the flight management system while communicating via
radio and monitoring flights instruments [47]. Operators of critical medical de-
vices, such as infusion pumps, often have to retrieve patient-specific parameters by
accessing thehospital databaseon adifferent devicewhile setting the safety-critical
system. A driver often interacts with the GPS navigation system and/or the info-
tainment system while driving. Finally, astronauts must manage multiple (possi-
bly safety-critical) tasks: e.g., during docking, they need to control the speed via
RCS rockets while estimating the distance to the docket port, dealingwithweight-
lessness and possibly communicating in a foreign language.

Human multitasking could cause the memory to overload (too much informa-
tion to process/remember), which leads to forgetting/mistaking useful informa-
tion to complete critical tasks. For instance, [74] reports that during a routine
surgery, the ventilator which helps the patient to breathe was turned off to take
an X-ray without blurring the picture. However, the X-ray jammed, and the anes-
thesiologist who went to fix the X-ray forgot to turn on the ventilator, leading to
the patient’s death. Again, in [32], the cause of 139 deaths while using an infusion
pumpare analysed, and it is found that 67 are causedbyoperator distractionswhile
10 are caused by problems with the device itself. Similar examples can be found in
the context of aviation [6, 101] and car driving [46].

In addition to memory overload, human multitasking may also lead to cogni-
tive overloadwhen some tasks are too cognitively demanding, which could lead to
ignoring the critical tasks for too long or in a crucial moment while focusing atten-
tion on less critical tasks. For instance, while reprogramming the flight manage-
ment system, the pilot could miss something important on the flight instruments.
Or again, if the interface of the virtual clinical folder requires too much attention,
the medical operator could make some mistake while setting the infusion pump.
Finally, an infotainment system which attracts the driver’s attention during a road
curve could cause a car accident.

9

CHAPTER 1. INTRODUCTION

1.3 Thesis Contribution

In the context presented above, there is, therefore, a clear need to analyse not only
the functionality of single devices but also to analyse whether a human can safely
usemultiple devices/systems at the same time. Such study requires understanding
how the human cognitive processes work when users concurrently interact with
multiple systems, and how human attention is directed at the different tasks.

Moreover, we focus on whether some tasks properties could affect the address-
ing of attention to them. In particular, the cognitive load of a task (i.e., a mea-
sure of its complexity in terms of frequency and difficulty of the memory activ-
ities it requires to perform [13]) is a crucial parameter when deciding to which
task direct the human attention. Finally, how much a user could perceive a task as
safety-critical and how long he/she could ignore a task, are other crucial parame-
ters which could affect the execution of the tasks.

Formal Model

We propose a formal model of safety-critical human multitasking which is an ex-
tension of the cognitive framework proposed by Cerone for the analysis of inter-
active systems [29]. As in that work, our model includes the description of the
human working memory and of the other cognitive processes involved in the in-
teraction with a device. However, Cerone only considers the interaction with a
single device, while we focus on multitasking. Moreover, our model also captures
the limitations of theworkingmemory, enabling us to reason about hazards caused
by memory overload, and includes timing features, enabling us to reason about
hazards caused by cognitive overload. We selected the framework proposed by
Cerone as a starting point since, given the problem of studying multitasking, we
decided to extend an existing model which describes at least in part some of the
cognitive mechanisms involved in human-machine interaction (e.g., the memory
system and its action mechanism) and which provides a formal model that can be
subjected to a set of formal analyses, in order to systematically and automatically
check whether the model meets given properties.

10

CHAPTER 1. INTRODUCTION

The semantics of the safety-critical human multitasking model is defined as a
probabilistic transition system, whose transition relation is defined by a set of in-
ference rules. Each rule models a different cognitive processes involved in multi-
tasking.

The multitasking paradigm underlying our model is the voluntary task switch-
ing. In particular, in ourmodel each task is characterised by an attention attraction
factor computed as the product of the three main quantities: the cognitive load of
the task, its criticality level, and the time the task has been ignored. At each step of
the interaction each task has a probability to be executed – i.e., it will be the task
to which the user will direct his/her attention – proportional to such attention at-
traction factor.

Simulator and Model Validation

We implement a simplified version of the model as a Java simulator, that can be
used to have a quick feedback on whether users can safely completemultiple tasks
at the same time.

We use the simulator to validate themodel against data gathered from an exper-
imental study we conducted. Namely, a web application has been devised in col-
laboration with psychologists and used to administrate a test to real users. Users
were asked to interact with two tasks concurrently: a critical task and a “distractor”
task whit different levels of cognitive load.

The collection of the real users performance data, of the data of some of their
personal characteristics, and of the data on how they perceive the criticality and
the difficulty of tasks, enables us to identify 6 typologies of users. According to
each typology characteristics and to each different level of cognitive load we then
implement a different test with our simulator. The results of our simulations agree
with the data gathered from the experimental study.

11

CHAPTER 1. INTRODUCTION

Real-Time Maude Executable Framework

We implement the multitasking model in Real-Time Maude [84, 86], a rewriting
logic language and tool which extends Maude [33] to support the formal specifi-
cation and analysis of real-time systems.

The Real-Time framework enables us to analyse safety-critical human multi-
tasking through simulation, and reachability analysis. Moreover, we show that
Real-Time Maude can be used to study a number of prototypical multitasking
problems.

Case Studies

Finally, we illustrate our framework bymodelling and analysing three case studies:

1. the interaction of a user with a GPS navigation system while driving;

2. a medical operator setting multiple infusion pumps simultaneously;

3. some typical concurrent tasks of an air traffic control operator.

We apply model checking to show that:

• the cognitive load of the GPS navigation system could cause the driver to
keep the focus away from driving for too long or in a crucial moment;

• distractions and memory overload could cause an air traffic controller to
make critical mistakes

• a given multitasking strategy could cause the memory overload and lead
the medical operator to forget important information for the safety of the
patient

1.4 Outline of the thesis

The thesis is organised in 7 chapters, plus introduction and conclusion.

12

CHAPTER 1. INTRODUCTION

Chapter 2 provides some background concepts useful for understanding the
rest of the thesis. The chapter is divided into three main sections, one present-
ing the cognitive background, the others presenting some technical background.
In particular, in Section 2.1 it is described how the humanmemory works and it is
divided into separate types, and how human attention works in multitasking con-
texts. Moreover, it gives an overview of the psychological literature taken into
account by the thesis. Section 2.2 recalls some definitions of transition systems.
Section 2.3 presents some background concepts on Real-TimeMaude by showing
how the Maude modules are specified and how the formal analysis can be per-
formed with it.

Chapter 3 presents the state of the art in themodelling of human-machine inter-
action, with a particular emphasis onmodels which focus on the cognitive aspects
involved in the interaction. Someof themodels presented support only simulation
(Section 3.1), others provide a formal model which can be also subject to a range
of formal analysis (Section 3.2). Finally, in Section 3.3, we discuss the limitations
of the presented models.

Chapter 4 contains the main contribution of the thesis: the formal model of
human multitasking. In particular, we formally define the syntax of the model,
and its semantics given in terms of a purely probabilistic transition system.

Chapter 5 describes our Java simulator. Chapter 6 shows the model validation.
The chapter is divided into three main sections: in Section 6.1 we present the ex-
perimental study, in Section 6.2 we present the design of the simulation experi-
ments, finally in Section 6.3 we show the results obtained.

Chapter 7 presents the implementation of the model in Real-Time Maude, and
it shows how all the inference rules presented in Chapter 4 are implemented as
Real-Time Maude rules.

Chapter 8 shows the use of our model in three different application domains:
the interaction of a user with a GPS while driving, a medical operator setting mul-
tiple infusion pumps at the same time, and some typical concurrent tasks of an air
traffic control operator.

Finally, Chapter 9 presents the conclusion of the thesis and depicts possible fu-

13

CHAPTER 1. INTRODUCTION

ture works.

1.5 Publications

Part of the material presented in this thesis has appeared in some publications or
has been submitted for publication in:

• Giovanna Broccia. Model-based analysis of driver distraction by infotain-
ment systems in automotive domain. In Proceedings of the SIGCHI Sympo-
sium on Engineering Interactive Computing Systems (EICS 2017), pp. 133-
136. ACM (2017)

• Giovanna Broccia, Paolo Milazzo, Peter Csaba Ölveczky. An Algorithm for
Simulating Human Selective Attention. In Software Engineering and Formal
Methods (SEFM 2017) Collocated Workshops, LNCS, vol. 10729. Springer
(2017)

• Giovanna Broccia, Paolo Milazzo, Peter Csaba Ölveczky. An Executable
Formal Framework for Safety-Critical Human Multitasking. In NASA For-
mal Methods (NFM 2018), LNCS, vol. 10811. Springer (2018)

• Giovanna Broccia, Paolo Masci, Paolo Milazzo. Modeling and Analysis of
HumanMemoryLoad inMultitaskingScenarios. InProceedings of the SIGCHI
Symposium on Engineering Interactive Computing Systems (EICS 2018), pp.
9:1–9:7. ACM (2018)

• Giovanna Broccia, Paolo Milazzo, Peter Csaba Ölveczky. Formal Model-
ing and Analysis of Safety-Critical Human Multitasking. Under review in
Innovations in Systems and Software Engineering, a NASA Journal

14

2
Background

In this chapter, we present the necessary background to understand the rest of
the thesis. Section 2.1 introduces some basic concepts on cognitive psychology
and focuses on human memory and on human selective attention. Section 2.2
presents some background concept on (probabilistic) transition systems, in par-
ticular we recall the definitions of transition system, labelled transition system, and
probabilistic transition system. Section 2.3 presents some background concepts on
Real-Time Maude.

2.1 Cognitive Background

The reflection about the human mind and its processes grows since the times of
ancient Greeks: in 387 BC Plato suggests that the brain is the seat of the men-

15

CHAPTER 2. BACKGROUND

tal processes. Over years many debates arise regarding whether human beliefs are
solely experiential (empiricism) or are native (nativism). In the 20th century the
development of computer science lead to reflection about the parallelism between
human brain and computers. In 1959Chomsky’s critique of empiricism [30] initi-
ates what is now known as the “cognitive revolution”. With Neisser book [82] the
term cognitive psychology comes into common use.

Cognitive psychology is the study of higher mental processes such as attention,
language use, memory, perception, problem solving, creativity and thinking .

2.1.1 Memory System

Memory is the capability to encode, store and maintain and subsequently recall
information and past experiences in human brain. The encoding stage consists in
the translation of the environmental information in a meaningful entity; the stor-
ing and maintaining stage consists in the retention in time of stored information;
the recalling stage consists in the recovery from thememory of information earlier
encoded and stored. Memory might fail in each of these three stages.

Each of these three stages of memory are related to a different type of mem-
ory: sensory memory, short term memory and long term memory. Such model
as sequence of types/stages of memory is known as the multi-store model, after
Richard Atkinson and Richard Shiffrin described it in 1968 [5], and it is the most
popular model for studying memory.

The main principles of the Atkinson-Shiffrin theory stated that:

• When an environmental stimulus is detected by senses it is immediately
available in the sensory memory, which is actually composed of multiple
registers, one for each sense.

The sensory registers detect and hold information for using them in short-
term memory. Information are only transferred to the short-term memory

American Psychological Association. Glossary of psychological terms. [on line]. Available at:
http://apa.org/research/action/glossary.aspx?tab=3 (Retrieved 29-08-2018)

16

CHAPTER 2. BACKGROUND

when attention is addressed to it, otherwise they decay rapidly (in about sec-
onds) and they are forgotten.

• The short term memory (STM) stores all the sensory information to which
is given attention. Information stored in the short term memory decay in
approximately 20 seconds, it is nevertheless possible to maintain them in
STM if they are actively rehearsed through attention. Information in STM
do not have to be of the same type as their sensory input (e.g., written text
which enters in STM visually can be held as auditory information).

There is a limit to the amountof information that canbeheld inSTM,gener-
ally referred asmemory span. In [77], psychologist GeorgeMiller suggested
that STM has a memory span of seven items plus or minus two. Such items
can be organised in higher order cognitive representation, such as when a
person has to remember a telephone number and he/she gathers together
digits’ groups; this phenomenon is called chunking.

• The long term memory (LTM) is where all knowledge of a subject is stored.
Information enters in LTM from STM through the process of consolida-
tion, that is the processes of stabilising a memory item after the initial ac-
quisition, involving rehearsal andmeaningful association. Long-termmem-
ory is assumed to be almost limitless in its duration and capacity: generally
brain structures start to deteriorate and fail before any limit of learning is
reached. Over the years, several types of LTM have been recognised:

– DeclarativeMemory is thememory of events explicitly stored inmem-
ory which can be deliberately recalled.

– Procedural Memory is the memory of skills and competence (e.g. the
usage of objects or body’s movements) which once learned become
automatic.

– Prospective Memory is the memory of action to be performed in the
future.

17

CHAPTER 2. BACKGROUND

– RetrospectiveMemory is thememory of events experienced in the past.

Othermodels of humanmemory are present in literature; specifically, a number
of theorists consider thememory system as levels of processing [42, 98, 103, 107].
According to such theorists, the memory activity deals with the analysis of stim-
uli at a number of levels. The preliminary stages are concerned with the prelimi-
nary analysis of physical and sensory features (e.g. lines, angles, brightness, pitch,
loudness). The later levels are concerned with matching the input against stored
abstraction from past learning. The persistence of the memory traces is a func-
tion of the depth of the analysis: the deeper is the analysis the longer lasting and
stronger is the trace. According to such a theory, memory is viewed as a contin-
uum from the transient traces of the sensory analysis to the longer lasting traces of
the semantic-associative analysis.

We use themulti-storemodel [5] as a cognitive basis for our framework since it
is the most widely accepted approach for describing and studying memory [42].

Working Memory

The term working memory (WM) is often used to refer to STM although some
neuro-psychological studies show that the two forms of memory are distinct, in
particular since they arise from different neural subsystems within the prefrontal
cortex [45].

Several models have been proposed to explain how WM works, the most influ-
ential is the multi-component model proposed by Baddeley and Hitch in 1974 [9].
The theory proposes amodel composed of three components: the central executive
functioning as control center and two “slave systems”, the phonological loop and the
visuospatial sketchpad, responsible for the short term maintenance of information.

The central executive directs attention to relevant information and coordinates
cognitive processes when more than one task is simultaneously performed. The
phonological loop stores phonological information and the visuospatial sketch-
pad stores visual and spatial information. They both refresh continuously items to
prevent their decay.

18

CHAPTER 2. BACKGROUND

Therefore,WM refers to the cognitive system responsible for transient holding,
processing and manipulation of information. The main difference between STM
and WM is that STM is only involved in the short term storage of information,
while WM is a short term memory buffer that allows for processing and manipu-
lation of information [40, 45].

WMspan has proven to be highly predictive of performance in reading compre-
hension [43], the processing of ambiguous syntactic constructions [79], reason-
ing [11, 69] and complex learning [102].

Working Memory Span Tasks

Working memory span tasks (WMST) are tasks used to measure the performance
of the working memory. Such tasks are widely used in cognitive psychology [38]
sinceWMplays an important role in awide rangeof complex cognitive behaviours,
such as comprehension, reasoning, and problem solving [50], and it is an impor-
tant individual variable in general intellectual ability [36, 37, 51].

These tasks were designed from the perspective of Baddeley and Hitch theory
[9] to measure how much the WM would allow the organism to keep active and
accessible in memory task-relevant information while executing complex cogni-
tive tasks (i.e. tasks which requires complex processing activities). Therefore, to
measure the WM performance and not only the capacity of the short-term store.

WMSTwere created to require not only informationmaintenance, but also the
concurrent processing of additional information [28, 43, 108]. Such tasks involve
performing two sequential activities: one mnemonic activity which imposes the
memorisation and recall of a set of elements (such as digits or words); and one
secondary activity which imposes a processing operation (e.g. comprehending
sentences, verifying equations, or enumerating an array of shapes). Participants
are asked to see or hear a sequence of elements spaced by a processing operation.
At the end of each trial they have to recall the sequence correctly (which means
recall the correct elements and in the correct order), with increasingly longer se-
quences being tested in each trial (from two to five elements per trial).

19

CHAPTER 2. BACKGROUND

As regards the score, there are two sources of data: one from the processing
activity of the task and one from the mnemonic activity. However, a number of
evidence from studies on adults supports the common procedure of not consid-
ering the processing activities while calculating the WM score. First, the process-
ing precision is typically close to the ceiling since the task instructions accentuate
the accuracy in the processing activity in order to ensure that the subjects commit
to the secondary tasks. Second, the performance in the processing activity corre-
lates positively with the performance in the mnemonic activity: subjects who re-
call the most number of elements also are most accurate in the processing activity
[62, 109].

With the traditional scoringmethod, subjects are assigned aquasi-absolute span
score [43, 109]. The task continues until the subject’s accuracy falls belowa certain
threshold: the last item size recalled with a specific probability is the span score. A
problemwith this absolute scoringmethod is that the difficulty of an itemmay vary
and compromise the score reliability. For instance, longer sentences in a reading
span task could decrease the number of elements recalled [104–106]; similarly,
the display duration for each sentence, or the semantic similarity of the stimuli,
could have an influence on the mnemonic performance [39].

Another scoring method is to assign to responses to each element (to be re-
called) a number (e.g. 1 for the correct answers and 0 for the incorrect answers);
such a number varies according to the scoring method chosen. There exist four
different scoring procedures using this method:

• Unit scoring methods:

1. Partial-credit unit scoring (PCU) expresses themean proportion of el-
ements within an item that were recalled correctly

2. All-or-nothing unit scoring (ANU) expresses the proportion of items
for which all the elements were recalled correctly

• Load-weighted scoring methods:

20

CHAPTER 2. BACKGROUND

1. Partial-credit load scoring (PCL) represents the sum of correctly re-
called elements from all items, regardless of whether the items are
perfectly recalled or not

2. All-or-nothing load scoring (ANL) represents the sum of the correctly
recalled elements from the items inwhich all the elements are recalled
in correct serial order.

Load-weighted scoring is rarely used, since assigning a greater weight to harder
items is useless: all items within a task are supposed tomeasure the same underly-
ing ability, that is the memorisation of elements in the face of concurrent process-
ing. Therefore, unit scoring is preferred and, among them, empirical results favour
partial-credit unit scoring [38].

The PCU for each user is computed as follows:

PCU =

∑N
i=1

bi
ai

N
where N is the number of items, bi the number of elements correctly recalled, and
ai the number of elements to recall. In Table 2.1.1 it is presented an example of the
PCU score for a WM span task.

Cognitive Load and Visual Selective Attention

One important assumption in the multi-component theory is that information in
WMdecays over time, unless it is preventedby rehearsal. There are several theories
about the nature of such decay, the most elaborate is the “Time-Based Resource
Sharing Model” [13].

The theory builds on the following principles:

1. Items stored in WM are subject to processing and maintenance activities;

2. Processing andmaintenance activities bothuse the samecognitive resource,
that is attention: when there are small time intervals in which the processing

21

CHAPTER 2. BACKGROUND

item a b score
1 2 2 1
2 2 1
3 2 1
1 3 3 1
2 2 0.66
3 3 1
1 4 4 1
2 3 0.75
3 3 0.75
1 5 3 0.6
2 5 1
3 2 0.4

PCU 0.85
(10.16 / 12)

Table 2.1.1: Example of PCU computation for a WM span task.

activities do not require such resource, such time can be used for mainte-
nance activities, namely to refresh memory traces.

3. When attention is drawn away from maintenance activities, items in WM
suffer of a time-related decay;

4. Processing activities which require items’ retrieval from LTM have a detri-
mental effect on maintenance activities;

5. It is not possible to perform multiple items’ retrievals at the same time.

Barrouillet et al. define an indicator, called cognitive load (CL), for measuring
the temporal density of attentional demand for each task. Specifically, CL gives a
measure of the total amount of time during which maintenance of items in WM
is impeded, and thus it provides a measure of how much a task is cognitively de-
manding.

22

CHAPTER 2. BACKGROUND

Figure 2.1.1: WM Span Task.

When different activities are performed at a constant pace during a task, theCL
corresponds to the following:

CL =
∑

aini/T (2.1)

where ni corresponds to the number of activities of type i, ai is the difficulty of
these activities i and T is the total duration of the task.

In a simplified situation in which all the task’s activities are identical in nature,
the CL corresponds to the following:

CL = aN/T

where N correspond to the total number of activities of the task.
Figure 2.1.1 shows three WMST where participants are asked to maintain let-

ters in memory (white boxes) while reading aloud digits that are sequentially pre-
sented on the screen (grey boxes); each of themhave differentCL.Whendigits are
presented at a comfortable pace, participants can use the free time between two
digits to refresh the information about the letters (fig. 2.1.1 a); when the num-
ber of digits increases, the number of activities increases and the cognitive load
grows(fig. 2.1.1 b); this also happens when the total time to perform the task is
reduced (fig. 2.1.1 c).

As regards the human attention, it has a key role on keeping information on the
three types/stages of memory and it also used by themaintenance and processing
activities of the same task. Moreover, such resource has a main role also when

23

CHAPTER 2. BACKGROUND

users perform multiple tasks concurrently: several studies show how attentional
limitations could cause troubles while performing multitasking [71, 87, 111].

De Fockert et al. [44] describe the role of WM, CL and the attention mecha-
nism in the executionof concurrent tasks. According to their experimental studies,
when the CL of what they call “distractor” task increases, the performance with a
“main” task is impeded since an high CL leads to reduced differentiation between
high and low priority, and consequently fallacious addressing of attention.

Although there remains vigorousdebate abouthowbest to characterise the items
decay, the Barrouillet et al. [13] theory remains one of themost cited and themost
successful in terms of explaining experimental data [8, 35, 41, 63]. Precisely, such
theory is validated through several experiments on both adults and children [12–
15, 44], while theDe Fockert et al. [44] theory is validated through neuroimaging,
a technique which enables to analyse and study the activity of different brain areas
and some specific brain functions.

2.2 Transition Systems

A transition system is a mathematical model describing the potential behaviour of
systems. Essentially, it is used to describe dynamic processes with configurations
representing states and transitions saying how to go from state to state.

Definition2.1(Transition system). A transition system (TS) is apair (S,→)where:

• S is the set of states ranged over by s, s0, s1, . . .;

• →⊆ S × S is the transition relation.

We write si → sj when (si, sj) ∈→.

The nature of the states of a TS depends on what the system describes. For in-
stance, if a TS is used to describe a chess match, its states will represent all the
possible positions of all chess pieces in the chessboard. The transition relation, in-
stead, represents the stepswhich can be performedby the system to go froma state
to another: s0 → s1 means that the system can go from state s0 to state s1 in one

24

CHAPTER 2. BACKGROUND

step. In the above chess example, one step corresponds to the chess move of one
of the players.

A state s is reachable from a state s0 (denoted as s0 ⇒ s) if either s0 = s or there
exists s1, . . . , sn−1 ∈ S such that s0 → s1 → . . . → sn → s. Namely, s is reachable
from s0 if a system in state s0 can perform a finite (and possibly empty) sequence
of transitions after which the system state is s.

A labelled transition system [65] is a TS where transitions are enriched with
labels.

Definition 2.2 (Labelled transition system). A labelled transition system (LTS) is
a tuple (S, L,→)where:

• S is the set of states (or configurations) ranged over by s, s0, s1, . . .;

• L is a set of labels ranged over by l, l0, l1, . . .;

• →⊆ S × L × S is the labeled transition relation.

We write s0
l→ s1 when (s0, l, s1) ∈→.

In a LTS the label can represent different things depending on what the system
describes. Typical uses of labels include representing expected input, conditions
that must be satisfied to trigger the transition, or actions performed during the
transition.

Often the set L contains a special label denoting an hidden action τ. We denote
s0 ⇒ sn a finite (and possibly empty) sequence of τ-labeled transitions from s0
to sn, i.e. s0 ⇒ sn if either s0 = sn or or there exists s1, . . . , sn−1 ∈ S such that
s0

τ→ s1
τ→ . . .

τ→ sn
τ→ s. Moreover, we denote s0

l
=⇒ sn a finite (and possibly

empty) sequence of transitions from s0 to s3 such that there exists s1, s2 ∈ S such

that s0 ⇒ s1
l→ s2 ⇒ s3. Finally, we denote l

=⇒ the relations corresponding
either to⇒ if l = τ, or to l

=⇒ if l ̸= τ.
A probabilistic transition system [70] is a TS where transitions are enriched

with probabilities.

25

CHAPTER 2. BACKGROUND

Definition 2.3 (Probabilistic transition system). A probabilistic transition system
(PTS) is a tuple (S,A,Can, μ)where:

• S is the set of states;

• A is a set of (observable) actions which states may perform;

• Can is an A-indexed family of sets of states, with Cana indicating the set of
states that can perform the action a;

• μ is a family of probability distributions, μp,a : S → [0, 1]∀a ∈ A, p ∈
Cana, indicating the possible next states (and their probabilities) after p has
performed a.

Whenever p ∈ Cana, we have
∑

p′ μp,a(p
′) = 1, since μp,a is a probability

distribution.

The term μp,a(p
′) = μmeans that p can perform a andwith probability μ becomes

the state p′ afterwards. Thus, p′ is a possible next state after a has been performed
on p just in case μp,a(p

′) > 0.
A purely probabilistic transition system is a PTS where there is no notion of

actions and transitions are associated only to a probability distribution.

Definition2.4 (Purely probabilistic transition system). A purely probabilistic tran-
sition system (PPTS) is a tuple (S,→)where:

• S is a finite set of states ranged over by s, s0, s1, . . .;

• →⊆ S × [0, 1]× S is the transition relation.

We write s0
p→ s1 when (s0, p, s1) ∈→, which means that the state s0 makes

a transition to the state s1 with a probability p. Let π(s0, s1) denotes the sum of
the probabilities of all the transitions from s0 to s1 in →. We impose the restric-
tion

∑
s′∈S π(s, s′) = 1 which means that all probabilities outgoing from a state

must sum to 1. Essentially, a PPTS corresponds to a discrete time markov chain
(DTMC).

26

CHAPTER 2. BACKGROUND

A PPTS whose states are terms built over some signature can be specified by
means of a set of inference rules. An inference rule for the specification of a PPTS
(a transition rule) is a logical rule having the form

t1
π1→ t′1 . . . tn

πn→ t′n
t π→ t′

where ti
πi→ t′i for 1 ≤ i ≤ n, are the premises and t π→ t′ is the conclusion. A

transition rule states that whenever the premises are transitions of the PPTS, then
also the conclusion is a transition of the PPTS. Side conditions can be associated
to a transition rule with the effect of imposing that the conclusion of the rule is
a transition of the PPTS whenever both the premises and the side conditions are
satisfied. A transition rule without premises is called an axiom, and a (non empty
and possibly infinite) PPTS can be specified by providing a set of transition rules
with at least one axiom.

2.3 Real-TimeMaude

Real-TimeMaude [84, 86] is a rewriting-logic-based formal specification language
and simulation andmodel checking toolwhich extendsMaude [33] to support the
formal specification and analysis of real-time systems.

The specification formalism is based on real-time rewrite theories [85], which in
turn is an extension of rewriting logic [21, 75], and it is especially used tomodel dis-
tributed real-time systems in a object-oriented style. Real-Time Maude specifica-
tions are executable and the tool provides a range of formal analysis method such
as timed rewriting for simulation, timed reachability analysis, untimed or time-
bounded linear temporal logic (LTL)model checking, and timed computational tree
logic (TCTL)model checking. The tool is available athttp://www.ifi.uio.no/
RealTimeMaude.

27

http://www.ifi.uio.no/RealTimeMaude
http://www.ifi.uio.no/RealTimeMaude

CHAPTER 2. BACKGROUND

2.3.1 Rewriting Logic Specification

A Maude module specifies a rewrite theory [21, 75] of the form (Σ, E ∪ A,R),
where:

• (Σ, E ∪ A) is a membership equational logic (MEL) [76] theory specifying
the system’s state space as an algeabric data type, where:

– Σ is an algebraic signature, namely a declarationof sorts, subsorts, and
function symbols.

– E is a set of (possibly conditional) equations.

– A is a set of equational axioms such as associativity, commutativity,
and identity.

• R is a set of labeled conditional rewrite rules, specifying the system’s local
transitions, each of which has the form:

l : q −→ r if
∧

i

pi = qi ∧
∧

j

wj : sj ∧
∧
m

tm −→ t′m,

where l is a label, and q, r are Σ-terms of the same kind. Such rule specifies
a one-step transition from a substitution instance of q to the corresponding
substitution instance of r, if the condition holds.

Sorts and subsort relations are declared by the keywords sort and subsort.
The system is a term of sort System. A function declaration has the form op f :
s1 . . . sn -> s [atts] and it declares a function fwith n arguments of sorts s1, . . ., sn
respectively, which returns an element of sort s. Operators can have user-definable
syntax, using underbars ‘_’ marking the argument positions. Some function could
have equational attributes atts which could declare, for instance, the function to
be associative (assoc), commutative (comm), or/and to have an identity element.
The frozen attribute defines arguments that cannot be rewritten by rules. An op-
erator can also be a constructor (ctor) definying the data elements of a sort.

28

CHAPTER 2. BACKGROUND

Equations are introduced with keywords eq or ceq for conditional equations.
They have the form eq t = t′ and ceq t = t′ if cond . The terms t and t′ could
contain variables, declared with the keywords var or vars , or introduced on-the-
fly with the form var : sort. An equation f(t1, . . . , tn) = t with the owise (i.e.
otherwise) attribute can be applied to a term f(. . .) only if no other equation with
left-hand side f(u1, . . . , un) can be applied.

Rewrite rules have the form: rl [l] : u => v or crl [l] : u => v if cond.
Finally, a comment is preceded by ‘***’ or ‘---’ and lasts till the end of the line.

Object-Oriented Specification in Real-Time Maude

AReal-TimeMaude timedmodule specifies a real-time rewrite theoryR = (Σ, E∪
A,R) [85], where:

• (Σ, E ∪ A) contains an equational subtheory (ΣTIME, ETIME) ⊆ (Σ, E ∪
A), satisfying theTIME axioms that specifies sort Time as the time domain,
which can be discrete or dense.

Real-Time Maude provides some predefined modules for time domains:
e.g., NAT-TIME-DOMAIN-WITH-INF defines the time domain to beN, con-
tains the subsort declaration Nat < Time, and the supersort TimeInf ex-
tends the sort Timewith an “infinity” value INF.

• The rules in R are decomposed in:

– “normal” rewrite rules specifying the system local transitions

– tick rewrite rules specifying thepassingof time in the system, specified
as:
rl [l] : { t } => { t′ } in time τ

crl [l] : { t } => { t′ } in time τ if cond
where τ is a term denoting the duration of the rule, t and t′ are terms
of sort System, and {_} is an operator encapsulating the global state,
so that the formof the tick rules ensures that time advances uniformly

29

CHAPTER 2. BACKGROUND

in all parts of the system. Namely, the tick rule says that it takes time
τ to go from state {t} to state {t′} (if cond is satisfied). The form of
the tick rules ensures that the time pass uniformly in all parts of the
system.

As alreadymentioned,Real-TimeMaude is particularly suitable to formallymodel
real-time systems in a object-oriented style. The state of an object-oriented specifi-
cation is a termof sortConfiguration, which is amultiset of objects and a subsort
of System.

A class declaration class C | att1 : s1, …, attn : sn declares a class C with
attributes att1 to attn of sorts s1 to sn. An object of class C is represented as a
term <O : C | att1 : val1, …, attn : valn > of sort Object, where O of sort Oid,
is the object’s identifier and val1 to valn are the current values of the attributes att1
to attn.

By convention, in a rewrite rule, attributes whose values do not change and do
not affect the next state of other attributes, need not be mentioned. Similarly, at-
tributes whose values influence the next state of other attributes, but are them-
selves unchanged can be omitted from right-hand sides of rules.

2.3.2 Formal Analysis

We summarise below some of the Real-Time Maude analysis commands.
The timed rewrite command

(tfrew t in time <= r .)
simulates one of the many possible system behaviours from the initial state t by
rewriting it up to a certain duration less than or equal to the time value r. The time
bound can also have the form with no time limit .
The search command

(utsearch [n] t =>* pattern such that cond .)
uses a breadth-first strategy to search for (at most n) states that are reachable from
the initial state t, match the searchpattern, and satisfy cond. Thenumberof states to
search ([n]) and the condition to be satisfied (such that cond) can be omitted.

30

CHAPTER 2. BACKGROUND

If the arrow is =>! , then the command searches for final states which are states
that cannot be further rewritten.
The search command

(tsearch [n] t =>* pattern such that cond in time <= r .)
is similar but with a time bound r.
The command

(find latest t =>* pattern such that cond in time <= r .)
explores all behaviours from the initial state t to find the longest time needed to
reach the desired state for the first time in a behaviour.

Finally, Real-Time Maude specifications can also be subjected to unbounded
and time-bounded LTL model checking which analyses whether each behaviour
satisfies a linear temporal logic formula from an initial state, and to a TCTLmodel
checking to analyse timed temporal logic properties [72, 73].

31

3
State of the Art

In this chapter, we discuss the state of the art inmodelling the cognitive aspects
involved inhuman-machine interactionwith complex systems. Someof thesemod-
els are based on amathematical specification and implementation which supports
only simulation (Sect. 3.1); others make use of formal methods and provide an
executable model which can be also subject to a range of formal analyses (Sect.
3.2). We will discuss the main limitations of the presented models in Section 3.3.

3.1 ComputationalModels

3.1.1 ACT-R architecture

The Adaptive Control of Thought—Rational (ACT-R) architecture is an executable
rule-based framework for modelling cognitive processes [3]. Figure 3.1.1 illus-

32

CHAPTER 3. STATE OF THE ART

Figure 3.1.1: ACT-R architecture.

trates the basic architecture of ACT-R 6.0. It consists of a set of modules handling
different aspects of cognitive activities; each module is connected with a buffer,
which can be seen as a temporary storage unit which allows the information to
“flow” through modules. Figure 3.1.1 contains just some of the modules in the
system: a goal module for keeping track of current goal (for each subtask a goal is
set); a declarative module, representing the declarative memory, storing factual in-
formation (i.e. all explicit knowledge about the world expressible in words); an
imaginal module, representing essentially the working memory, storing temporary
information; a visual module for identifying objects in the visual field; amotormod-
ule for controlling movement.

All modules are coordinated by a central production system, where production
rules are stored. The production system gathers all the information from buffers
and it decides the next step of action to perform. Production rules are if-then func-
tions:

33

CHAPTER 3. STATE OF THE ART

IF
goal buffer: goal X
declarative buffer: information Y
visual buffer: information Z

THEN
motor buffer: action A

means that if there is a goal X in the goal buffer, an information Y in the declar-
ative buffer and an information Z in the visual buffer, then the action A will be
performed.

Sometimes there are different production rules having the same conditions and
thus different rules might apply. However, only one production rule can be se-
lected. To solve such situation each production rule has a utility value: the rule
with the highest value is selected. The utility of a rule i is defined as:

Ui = PiG − Ci (3.1)

where Pi is an estimate of the probability that if rule i is chosen the current goal
will be achieved, G is the value of the current goal, and Ci is an estimate of the
cost to achieve the goal. Both Pi andCi are learned from experience with that rule:
production rules that are successful will increase their utility, whereas rules that
are more often unsuccessful will have their utility decay over time.

The ACT-R architecture has been used to model and study complex real-world
tasks. In particular, in [92] it has been applied to study the effects of distraction
by in-car interfaces while driving. The approach focuses on two computational be-
havioural models, one for the primary task (i.e. driving) and another for the sec-
ondary task (i.e. using a dialling interface for in-car cellular phones). The resulting
integrated model executes both tasks and generates predictions about the result-
ing behaviour. Four different dialling interfaces have been modelled: full-manual,
where user should type the entire number and then press the button “send”; speed-
manual, where user should type a number associated with the desired contact and
then press the button “send”; full-voice, where user should say aloud the desired

34

CHAPTER 3. STATE OF THE ART

contact’s full number; speed-voice, where user should say aloud the desired con-
tact’s name. All four interfaces require the user to activate them by pressing the
button “power”. The integratedmodel shows that bothmanual interfaces have sig-
nificant effects on steering performance, while the voice interfaces have not signif-
icant effects.

The ACT-R version used in [92] did not provide automatic mechanisms for in-
terleaving multiple tasks. Thus, the way used by Salvucci to model such interleav-
ingmechanismwas by having a driving system that, at somepoint in the execution,
generates a new subgoal for dialling the cell phone and it stores it in the driving
goal module. After each control, that is after each production rule is executed, the
driving model chooses with a probability of 0.5 (set arbitrarily) whether to cede
control to the phone dialling subgoal or to the driving subgoal.

A more recent version of ACT-R incorporates modifications in order to model
more realistic internally-driven multitasking, i.e. complex tasks in which people
themselves decide when to switch between tasks. In [68], Kushleyeva et al. fo-
cus on the problem of when to switch away from the current goal in the buffer.
As already mentioned, ACT-R architecture provides a mechanism of conflict res-
olution when more than one production rule might apply, and according to such
mechanism, the rule that maximizes the utility value is chosen. The G parameter
in the utility function 3.1 is expressed as the amount of time the model is willing
to spend on that given goal. The modification proposed in [68] is to set the initial
value of G at goal creation and to decrease such value linearly with the passage of
time: as the time passes and G decreases, the system will go from favouring rules
with high probability P, to favouring rules with low cost C.

Moreover, a new production rule for giving up control is introduced for each
goal in the model; such rule has low values of parameters P and C, which ensures
that it will be activated almost at the end of (or near) the time period the model
intended to spend on accomplishing the goal. In other words, such modifications
balance task’s execution by favouring the least recently executed task.

Concluding, ACT-R architecture is a rule-based framework used to simulate
cognitive processes involved in human-machine interaction, with whom is pos-

35

CHAPTER 3. STATE OF THE ART

sible to simulate the interaction with multiple interfaces through a multitasking
mechanism based on the time a task has not been executed.

As already mentioned, this system supports only simulation, thus it is not pos-
sible to exhaustively and automatically check whether the model reaches a given
specification. Moreover, the way a task is chosen among the other is based essen-
tially on execution time, however, there are other task’s characteristicswhich could
affect such decision, such as how much the task is safety-critical or how much it is
memory demanding.

3.1.2 SEEV model

The research on visual attention in supervisory control has identified four factors
which determinewhere the eye is looking at any given time during a task involving
the scanning of a display: salience, effort, expectancy and value [116].

Saliencemeasureshowmuchanarea of interest (AOI)–aphysical locationwhere
information regarding specific task can be found – attracts attention: how much a
signal stands out from the rest of the workspace (background or other AOIs) due
to its size, colour or contrast. Effort measures the cost of moving attention from an
AOI to another. Expectancy measures how much the user expects chenges in the
workspace. Value measures the importance of the information related to a task.

These four factorshavebeencombined in anadditive scanningmodel: theSalience
Effort Expectancy Value (SEEV)model, which predict visual scanning behaviour in
adisplay-basedworkspace [110]. Themodel predicts thedistributionof attention:
both when the user gives attention to a specific AOI and when he neglects it.

SEEVmodel is specifically designed to describe sequential visual scanning of an
instrument panel where each instrument may serve different tasks: the multitask-
ing strategy underlying such model is the supervisory sampling and control (see
Chapter 1).

However, it is not possible to analyse voluntary task switching, that is the inter-
action where the user himself decides when to switch from a task to another.

36

CHAPTER 3. STATE OF THE ART

3.1.3 STOM model

StrategicTaskOverloadManagement (STOM)model [112, 117] is amulti-attribute
decisionmodel for task switching in overloadedmultitasking conditions. Accord-
ing to such model, when multiple tasks have to be executed, the task that might
be selected can be predicted through a rank based on four critical attributes. Such
attributes are: the priority which refers to the relative importance of a task (e.g. a
safety-critical task has a higher priority than a non critical task); the difficultywhich
is associated with the mental workload of the task; the interest of a task (e.g. a cell
phone conversation can be more interesting than monitoring the roadway for un-
expected hazards); the salience of a task, which is defined as the ability of a new
task to attract attention (e.g. an auditory task has a higher salience than a visual
task).

Each of such attributes has a polarity, governing the task attractiveness. In par-
ticular, salience, importance, and priority have a positive polarity, whereas diffi-
culty has a negative polarity. Therefore the rank is calculated as :

S + P + I − D

However, the salience factor applies only to a new task, since it characterises its
arrival. The rankof anongoing task is calculated as the sumof priority, importance,
difficulty and a fifth factor: the time on task, which is not an original member of
STOM.

With STOMmodel it is possible to analyse multitasking interactions where the
user decides which task to execute according to its rank. However, the user mem-
ory is not explicitly modelled and neither its action mechanisms, useful to anal-
ysemultitasking problems such asmemory overload, prospectivememory failures
(i.e. the user forgets to perform a planned action) and retrospective memory fail-
ures (i.e. the user forgets that he performed an action).

37

CHAPTER 3. STATE OF THE ART

3.1.4 Task modelling

Taskmodelling is a technique used to build a model which describes precisely the
relationship among various tasks; such relationship might be both temporal and
semantic.

In some cases, the task model of an existing system is created in order to better
understand its underlying design and analyse its potential limitations. In other
cases, designers create the taskmodel of newapplications to indicate howactivities
should be performed in order to obtain a new, usable system.

One of the most used notations for task modelling is Concur Task Tree (CTT)
[88]. CTT has been used as a basis for the development of model-based analysis
tools for user tasks. In [10] for instance, it is presented an integration framework
which uses task models and system models to analyse the co-execution of tasks,
and which estimates user workload as the total number of cognitive tasks.

Task models describe goals and activities that should be performed by users to
reach such goals. However, their main focus is to assess the compatibility of task
specifications with a user interface design, not to explicitly model users’ character-
istics.

3.1.5 GOMS

The GOMS models [25] – actually a family of models – describe the cognitive
components of users in order to evaluate human-computer interaction in terms
of task duration. A GOMS model is composed of four elements: goals, operators,
methods and selection rules.

Goals are what the user has to accomplish and they are often divided into sub-
goals. Operators are perceptual, cognitive or motor actions whose execution is
necessary to change the user’s mental state or the task environment. Methods are
procedures to accomplish a goal. Selection rules handle the choice of a method
when more than one are available to accomplish a goal.

There are several variants of the GOMS models:

• Keystroke-Level Model (KLM) is the simplest version presented by Card,

38

CHAPTER 3. STATE OF THE ART

Moran and Newell [27]: the analyst lists the sequence of operators and
then totals the execution times to estimate the execution time of a task. The
KLM model includes six operators (e.g. K to press a key button, P to point
on a display with a mouse, M to mentally prepare to act, and so on). Each
of these operators has an estimated execution time.

• Card,Moran, andNewell GOMS (CMN-GOMS) [25, 26]Card et al. do not
describe these models with an explicit “how to” guide but they illustrated
nine models at different levels of detail.

• Natural GOMS Language (NGOMSL) is a structured natural-language no-
tation for representing GOMS models and a procedure for constructing
them. The model is in a program form and provides a prediction of op-
erators sequence, execution time and time to learn the methods.

• Cognitive-Perceptual-MotorGOMS (CPM-GOMS)doesnot assume thatop-
erators are performed serially; rather perceptual, cognitive andmotor oper-
ators can be performed in parallel as the task demands. Thus, CPM-GOMS
canmodelmultitasking behaviour andmakes use of a schedule chart to rep-
resent operators and the dependencies between them.

GOMS models are used to determine times for both cognitive processing and
motor movements. Even if time features of tasks are modelled, these are not used
to analyse whether a task is ignored for a time period or not. Moreover, GOMS
does not take into account users’ differences: it is only applied to skilled users.

3.2 FormalModels

3.2.1 A cognitive framework for theanalysis of interactive systems

As mentioned in Chapter 1, the framework we propose is a significant modifica-
tion of the framework proposed by Cerone in [29]. Cerone attempts to unify two
different directions in the analysis of interactive systems – the behaviour of both

39

CHAPTER 3. STATE OF THE ART

users and skilled operators – by providing a formal framework to model and anal-
yse the interaction between the human component (user or operator) and a de-
vice. The framework is specified in Maude and makes use of a set of rules which
rewrite both the interface state and the human component state until the goal of
the interaction is not reached.

As regards thehumancomponents, states are representedbyuser/operator short-
termmemory,modelled as a setof information, and transitions aremodelled through
basic tasks. The information that can be stored in STM are the reference to the ac-
tions that lead to the achievement of the goal ormaintain a correct system state, the
reference to a future action to be performed, and/or the user/operator cognitive
plan. Tasks can be decomposed in a hierarchy of tasks until reaching basic tasks,
which are modelled as a quadruple:

infoi ↑ perch =⇒ acth ↓ infoj (3.2)

where the perception perch activates the retrieval of information infoi from STM,
the execution of acth and the storage of infoj in STM.

As regards the interfaces, states are modelled in terms of perceptions produced
in humans by an action on the interface. Such perceptions/interface states may
induce different degrees of urgency in reacting that is modelled by a timeout.

A set of rules specify the dynamic behaviour of the entire system:

1. Interacting: models a step in the interaction with a device. It is triggered by
a perception and may add information to STM.

2. Closure: models the achievement of the goal.

3. Danger: models a situationwhere the user/operator perceives as dangerous
(the normal response to a danger is to abandon a task).

4. Timeout: models an autonomous action of the interface with no involve-
ment of the human component and it is triggered by the expiration of the
timeout.

40

CHAPTER 3. STATE OF THE ART

5. Cognitive: models a cognitiveprocessof thehuman,which changeshismen-
tal plan, with no involvement of the interface.

6. Decision: models a decision step in the interaction.

Concluding, Cerone models a set of cognitive processes and the use of short-
termmemory tomodel the interaction between a human component (user or op-
erator) and a device, in order to detect possible human errors using model check-
ing. However, he only considers the interaction with a single device and he does
not focus on human multitasking. Moreover, in [29] STM is modelled as a set of
informationwithout limitations, thus is not possible to reason about errors related
tomemory overload. Finally, in Cerone’s framework, timing features are not taken
into account.

3.2.2 Work Model that Compute (WMC)

Taskload is a measure of the number of tasks a user is expected to perform at a
given time and it has been shown to be a good indicator of user mental workload
in the avionics domain. Houser et al. [58] present a formal model for reasoning
about excessive taskload and concurrency issues that can lead to errors in human-
machine interaction with complex systems.

The model is specified through a Work Model that Compute (WMC), a simu-
lation framework consisting of a work model that describes how a given domain
works and an engine that simulates the work model. Each work model is com-
posedof three elements: agents, actions, and resources. Resources are a collection of
elements of the environment which can be manipulated by agents; actions which
manipulate resources, are linked to a specific agent. The work model specifies the
frequency and priority of actions, the duration of the resources and which agents
are involved. A scenario is the enginewhich pulls all these elements in a simulation
and generates a simulation trace. The work model, the scenario and the simula-
tion trace are then translated into a formal model representing the simulation over
a given period of time; this translation generates also a set of specifications to be
analysedwith themodel checker in order to find interesting taskload conditions in

41

CHAPTER 3. STATE OF THE ART

themodel. The simulator uses a scheduler which decides which action to perform
next relying on scheduling rules defined by the authors, based on actions priority
and duration.

Themodel permits not only to simulatemultitasking interaction but also to for-
mally verify some properties with model checking. However, the way the sched-
uler decideswhich actionhas to be performedby agents is basedonparameters de-
finedby the authors, without a cognitivelyplausible scheduling algorithmbasedon
psychological literature. Moreover, even though the resources described in [58]
can be seen as memory information, they do not explicitly model the memory ac-
tion mechanism and then they cannot explicitly study memory issues.

Remaining in the field of avionics, in [53] WMC are used to simulate the in-
teraction of a pilot with a flight management system and such interaction is then
analysed with SAL model checker to study automation surprises (i.e. the automa-
tion behaviour of the aircraft which deviates from what pilots expect). In order to
detect them, a mental model of pilots is modelled to find situations where such
models differ from the actual state of the aircraft. The same potential problem
(i.e. automation surprise) in flight guidance system is studied in [61], where is
used the PVS theorem prover and the NuSMV model checker. However, these
twoworks do not analysemultitasking situation and do not focus on the cognitive
aspects of human behaviour: although in [53] mental models of pilots are mod-
elled, suchmodels aremore subjective and differ from the cognitivemodels based
on psychological literature, which attempt to describe the cognitive behaviour of
all users/operator.

3.2.3 Other Models

In [23, 24, 56] the IVY workbench is used to analyse interactive systems. The
IVY workbench [22] is a model-based tool which supports the modal action logic
(MAL) language [48] for modelling the system. Moreover, the tool supports the
specification of properties of the device’s behaviour, and their verification through
model checking. When verification fails, the counterexamples produced by the

42

CHAPTER 3. STATE OF THE ART

verification process act as scenarios for the analyses of the errors.
However, themodels presented in [23, 24, 56] do not explicitlymodelWMand

they do not deal with multitasking.
Rukšėnas et al. [91] present a formal framework for predicting bounds for task-

completion times and detecting user-error related design issues, which is based
on a model of cognitively plausible behaviour. The generic model of cognitively
plausible user behaviour (GUM) is a specification of a set of assumptions about
the way users interact which nevertheless, do not completely specifies cognitive
behaviours of all users: real users can act outside this model, about which the
framework says nothing. Such assumptions are divided into twomain groups: be-
havioural assumptions, which focuses on the role of users’ knowledge in directing
their behaviour, and salience assumption, which deals with the salience of cues in
choosing actions. In [56, 91] four different notions of salience have been identi-
fied:

• Specificity defines the ”just in time“ trigger of an activity provided by an in-
formation resource.

• Cognitive salience defines the assumed user knowledge of a task in terms of
action to be performed next; the information does not deal with the imple-
mentation of the device.

• Procedural salience derives from training in the use of a particular device’s
programming sequences.

• Sensory salience is triggered by some visual or auditory cues to remind to the
user the next action to perform.

Also in this case, such framework can be not only simulated but also subjected
to a set of formal analyses. However, GUM is guidedmainly by assumptions about
the salience of user cues. Moreover, also in this work, they do not explicitly model
WM and its action mechanism.

43

CHAPTER 3. STATE OF THE ART

Finally, Combéfis et al. [34] present a formal framework used to estimate the ef-
fort needed to perform a task, in terms of workload. The framework generates au-
tomatically mental models from the specification of user interfaces, which include
information about the sequence of actions and the knowledge the user needs to
know to be able to interact successfully with the system. However, the main tar-
get of this work is the development of user manuals rather than the evaluation of
human multitasking.

3.3 Limitations of ExistingModels

Multitasking

Some of the frameworks presented do notmodel and analyse humanmultitasking
but they focus on errors which might arise in the interaction between a user and a
single computer interface. Moreover, some of them do not analyse the voluntary
task switchingmultitasking paradigm,whichdefines a spontaneous choice of users
to switch from one task to another.

Formal Analysis

Many of the presented frameworks do not provide a formalmodel that can be sub-
jected to a set of formal analyses to exhaustively and automatically check whether
the model meets given properties.

Time Features

Another important limitation present in different works is that time features are
not explicitly modelled. When time is modelled, it is done to define actions exe-
cution duration and it is not used to analyse time issues such as a task ignored for
too long or a task ignored in a given moment of time, which are some of the main
time issues in human multitasking.

44

CHAPTER 3. STATE OF THE ART

Memory Model

Many of the frameworks presented do not explicitly model memory. Some of
them, model a set of resources/information, which can be seen as the environ-
mental information which users use to interact with systems, but none of them
describes thememory actionmechanism and its capacity limit. Therefore, it is not
possible to use them to analyse some memory issues such as memory overload,
prospectivememory failure, and retrospectivememory failure, which according to
literature are some of the main problems in humanmultitasking. Moreover, many
of the models presented do not rest their works on parameters deduced from the
psychological literature, but they make an assumption about tasks’ characteristics
which might induce their choice in multitasking interaction.

In this context, we propose a formal framework formodelling and analyse human-
machinemultitasking interaction, where each task is characterised by different pa-
rameters: its criticality, its cognitive load and the time it has been ignored. Ev-
ery task is then characterised by an attention attractiveness factor computed as the
product of its parameters. The factor value permits to simulate the voluntary task
switching multitasking paradigm: the user chooses spontaneously which task to
execute among the others, according to such value.

The framework is specified in Real-Time Maude which permits not only to for-
mally specify and simulate human multitasking but also to formal analyse it with
reachability analysis.

A set of timing features permit to analyse time problems. For instance, the pa-
rameter storing the time a task has not been executed permits to analyse whether
a task has been ignored for too long. Or again, with Real-Time Maude commands
it is possible to check whether a given action is performed at a precise time or not.

Our model includes the description of the human working memory and its ac-
tionmechanism, which permits us to analyse, for instance, whether amultitasking
strategies might overload the memory or whether, in the middle of the interac-
tion, the user forgets to perform a planned action or whether, while interacting, he
forgets an action he already executed.

45

CHAPTER 3. STATE OF THE ART

Finally, the cognitive processes described in our framework are deduced from
psychological literature and observations of experimental data on working mem-
ory and visual selective attention. Therefore, such cognitive processes have a psy-
chological basis and it is not deduced from our assumptions. This makes it possi-
ble to give a cognitively plausible explanation of some human multitasking issues,
such as why secondary tasks could be distracting: due to their high criticality or
because they require a heavy mental load.

46

4
FormalModel of Safety-Critical Human

Multitasking

This chapter presents our formal model of safety-critical human multitasking.
Specifically, we present amathematicalmodel of human selective attention used to
study situations where users concurrently interact with multiple devices and they
have to voluntary choose which task to execute next.

The model is an extension and modification of the cognitive framework pro-
posed by Cerone for the analysis of interactive systems [29]. As in that work, we
describe the cognitive processes involved in HCI and the human working mem-
ory. However we focus on multitasking and not on the analysis of the interaction
with single device as in [29]. Moreover, ourmodel also describes the limitations of
the workingmemory, enabling us to reason aboutmemory overload, and includes

47

CHAPTER 4. FORMAL MODEL OF SAFETY-CRITICAL HUMAN
MULTITASKING

timing features, enabling us to reason about hazards caused by distractions.
Wewill present the syntax of themodel in Section 4.1, and its semantics in Sec-

tion 4.2. Finally, in Section 4.3 we will illustrate the syntax and the semantics of
our model with a simple example.

4.1 Syntax

A safety-critical human multitasking model is a set of interfaces, representing the
interfaces of the devices/systems with which a user interacts. Each interface is as-
sociated with one or more tasks, representing the tasks the user performs on that
interface. A task is essentially a sequence of actions that the user performs on that
interface to reach some goal. In order to do this, he/she has to remember and re-
trieve information from his/her working memory.

At each step of the interaction the user has to choose which task he/she wants
to perform on one of the interfaces, namely to which task he/she wants to address
his/her attention. In such a context, some of the tasks’ properties could affect the
addressing of the user’s attention. In particular, how much a user perceives a task
as critical, howmuch the task is cognitively demanding, as well as the time the user
ignored the task.

Wewill give top-down definitions by presenting first themost general concepts
and then themore specific ones. Moreover, we will use some standard notation of
the formal languages to actually define sets.

Definition 4.1 (Model). A Safety-Critical Human Multitasking model Is is a set of
Interfaces

Is = {Ii, . . . , In}

4.1.1 Interface

We now define the interfaces, which incorporate the set of tasks that the user will
perform on it, and the description of the device behaviour.

48

CHAPTER 4. FORMAL MODEL OF SAFETY-CRITICAL HUMAN
MULTITASKING

As regards the states of the interface, we follow a user-centric approach and we
model them as perceptions, namely as what the user perceives of them. For in-
stance, if a user is interacting with an ATM and the device is ready to accept the
card, a plausible interface state is cardReady since the user perceives that the device
is ready to receive his/her card (e.g. by looking at the device’s screen).

Some perceptions/states might be subject to a timeout, which captures the fact
that they do not last forever. For instance, the ATM interface might allow typing
the PIN code only for a short period of time, after that the perception/state is no
more available. The state PINReady for time 10 denotes that the state PINReady
lasts for 10 seconds.

Definition 4.2 (InterfaceStates). Given a set of perceptions P, we define the set
InterfaceStates as:

InterfaceStates ::= p | p for time t

for every p ∈ P, and t ∈ R≥0.

Definition 4.3 (Interface). An interface I is defined as a tuple:

I =
⟨
A, P, Inf, InitialState,Transitions,Tasks

⟩
where:

• A is the set of symbols representing the actions that the user can perform on
the device;

• P is the set of symbols representing the possible users’ perceptions about the
interface states;

• Inf is the set of symbols representing the information that theuser canmem-
orise during the interaction with a device;

• InitialState ∈ InterfaceStates is the initial state of the interface representing
the initial user perception possibly associated with a timeout;

49

CHAPTER 4. FORMAL MODEL OF SAFETY-CRITICAL HUMAN
MULTITASKING

• Transitions is a set of transitions built onP andA, representing thebehaviour
of the interfaces, namely how the interface state changes when the user per-
forms an action;

• Tasks is the set of tasks the user wants to perform on the interface.

Interface Transitions

A transition models the passage from a state of the interface to another after the
user performs an action. For instance, in the ATM example, the interface state
passes from cardReady toPINReady for time 10, as soon as the user performs the
action insertCard.

Definition 4.4 (Transition). Given a set of actions A, a set of perceptions P, and
the set of interface states InterfaceStates, we define a Transition as a tuple ⟨p, a, q⟩
where p ∈ P, q ∈ InterfaceStates, and a ∈ A. We represent a transition as:

p a−→ q

Task

We define the interface attribute Tasks as a set since users can perform multiple
tasks on a single device. Actually, what we call task is what is commonly known as
a scenario in the context of software engineering: it describes one of the possible
sequence of interactions which a user could performwith an interface in a defined
time-frame.

As previously mentioned, a task is a sequence of actions the user performs on
a device, in order to reach a desired goal, during a certain period of time. In a
non-multitasking situation – i.e. when the user performs a single task – the actions
composing the task are performed sequentially without any interruption. How-
ever, in a multitasking interaction, the user needs to choose which task to perform
at each time,whichmeans thatwhile he/she is performing a task, all the other tasks
are ignored.

50

CHAPTER 4. FORMAL MODEL OF SAFETY-CRITICAL HUMAN
MULTITASKING

Wemodel a task as a sequence of subtasks. For instance, the task ofwithdrawing
money at an ATM consists of a sequence of five subtasks:

1. Insert the card in the ATM;

2. type the PIN code;

3. type the desired amount of money;

4. retrieve the card;

5. collect the money.

Each subtask will be actually further decomposed into a sequence of simpler
“basic” tasks.

Moreover, each task is characterised by a measure of how much the user per-
ceives it to be safety-critical, a factor which influences howmuch a task attracts the
user’s attention.

Definition 4.5 (Task). Given a set of perceptions P, a set of actionsA, and a set of
information Inf, a task T is a tuple ⟨Subtasks, c, g⟩where:

• Subtasks is a sequence of subtasks, with emptyTask representing an empty
sequence;

• c ∈ R>0 models the criticality level of the task;

• g ∈ Amodels the final action corresponding to the achievement of the task
goal.

Thus, each task specifies the sequence of subtasks ofwhich is composed, ameasure
of howmuch the user perceives it as critical, and an action, which is the goal action.

Subtask . Each subtask composing the task is a (possibly empty) sequence of basic
tasks: e.g., the subtask type the PIN code in the ATM example shown above con-
sists of typing a certain number of digits and then pressing a button to confirm the
operation.

51

CHAPTER 4. FORMAL MODEL OF SAFETY-CRITICAL HUMAN
MULTITASKING

Definition 4.6 (Subtask). Given a set of perceptions P, a set of actions A, and a
set of information Inf, a subtask is a sequence of basic tasks denoted as:

Subtask ::= (BasicTask)∗BasicTask|emptyTask

BasicTask. A basic task is a single step in the task that cannot be further decom-
posed: e.g., in the ATM example, typing the digit 4 is a plausible basic task of the
subtask typing the PIN code.

Between two basic tasks, it is possible to have some time, which could corre-
spond to the time necessary to switch from one basic task to the next, but also to
the time required by the device to process the received input and to enable the ex-
ecution of the next basic task. For instance, in the ATM example, after executing
the last basic task of subtask number two (i.e. type the PIN code), the ATMmight
need some time to check if the inserted PIN code is correct and to enable the next
subtask (i.e. type the desired amount of money). We call such time between two
basic tasks delay, which represents the time before the basic task is enabled and
can be executed (therefore when the delay of the first basic task of a task is not yet
elapsed, we consider the task like it is pausing), and we model it as a positive real
number. Moreover, we characterise each basic task with two additional parame-
ters, i.e. the duration and the difficulty, which we model as positive real number.

Definition 4.7 (BasicTask). Given a set of actions A, a set of perceptions P, and
a set of information Inf,we define a basic task as a tuple ⟨j, p, a, k, t, d, δ⟩ that we
represent as:

j | p =⇒ a | k duration t difficulty d delay δ

where:

• j, k ∈ Inf

• p ∈ P

• a ∈ A ∪ {noAction}

52

CHAPTER 4. FORMAL MODEL OF SAFETY-CRITICAL HUMAN
MULTITASKING

• δ ∈ R≥0

• d, t ∈ R>0

Thebasic task indicates that when the interface is on state p and the user has inside
his/her working memory the information j, he/she can perform the action a and
replace the information jwith the information k in his/her workingmemory; such
a basic task has duration t and difficulty d and it is enabled – and thus it can be
executed – if and only if the delay δ is elapsed.

We consider two kinds of basic tasks (both described in Definition 4.7): a user
action to be performed on the interface, and a cognitive basic task carried out by the
user with no involvement of the interface. In the first case, the basic task specifies
the action to perform on the interface and the information to update in the mem-
ory; for instance, the basic task of collecting back the card from the ATM has the
form :

cardInside | cardReturning =⇒ getCard | noInfo

and means that when the user perceives that the ATM is giving back the card and
he/she has in his/herWMthe information that the card is inside theATM, he/she
can take the card and remove the information about it from his/her WM.

In the second case, the basic task only specifies that the item to update in the
memory must be the mental plan of the user, and the action to perform must be
equal to noAction (since there is no involvement of the interface). For instance,
when the user perceives, by looking at the ATM screen, that the time to insert the
PIN code is over, he/she inserts in his/her working memory a cognition repre-
senting the new plan: re-start the interaction with the ATM; such basic cognitive
task has the form:

noInfo | PINexpired =⇒ noAction | restart

For the sake of semplicity, we omit in these examples the parametersduration, difficulty, and
delay.

53

CHAPTER 4. FORMAL MODEL OF SAFETY-CRITICAL HUMAN
MULTITASKING

Figure 4.1.1: Three different tasks with basic tasks denoted as grey boxes.

Cognitive Load

Each task is characterised by a measure of how much it is cognitively demanding,
namely the cognitive load.

In [13], the time between two basic tasks is not explicitly taken into account,
since the definition of the CL of a task assumes that the single activities are per-
formed at a constant pace (see Eq. 2.1). According to such a definition, the CL of
the three tasks depicted in Figure 4.1.1 would be the same. However, if the three
tasks in Figure 4.1.1were potential “distractors” of another “main” task, theywould
interferewith themain task differently over time (assuming that difficulties of each
basic activity are equal): the first task (Fig. 4.1.1 a) would attract the attention of
the user constantly over time, the second task (Fig. 4.1.1 b) would attract the at-
tention mostly at the very beginning, and the third task (Fig. 4.1.1 c) mostly after
some time.

Therefore, we redefine the formula for estimating CL and we compute it on a
subtask basis: the CL of a task changes every time a new subtask begins and re-
mains the same throughout its execution.

Notation 4.1. Before presenting the definition we introduce some notations:

• STT,j denotes the j-th subtask of the task T

• difficultyST,k denotes the difficulty of the k-th basic task of the subtask ST;

• durationST,k denotes the duration of the k-th basic task of the subtask ST;

54

CHAPTER 4. FORMAL MODEL OF SAFETY-CRITICAL HUMAN
MULTITASKING

• delayST,k denotes the delay of the k-th basic task of the subtask ST;

Definition 4.8 (Cognitive Load). Given a task T, we compute the cognitive load
ofT as the divisionof thedifficulty factor of the task –namely ameasure of temporal
density of difficulty of the first subtask ofT– (defined inEquation 4.2), by the total
duration of the first subtask of T (defined in Equation 4.3):

CogLoadT =
DFSTT,0

TDSTT,0

(4.1)

where:

• DFSTT,0 denotes the difficulty factor of the task T, computed as:

DFSTT,0 =
N−1∑
k=0

durationST,k × difficultyST,k (4.2)

• TDSTT,0 denotes the total duration of the first subtask of the task T, com-
puted as:

TDSTT,0 =
N−1∑
k=0

durationST,k + delayST,k (4.3)

where N is the number of basic tasks composing the first subtask of the task T
(STT,0).

Attention Attraction Factor

For each taskT in each interface I ∈ Is an attention attraction factor αT is computed,
which measures the likelihood of the task T to attract the user’s attention.

Definition 4.9 (α-factor). Let T = ⟨ST, c, g⟩ be a task, we compute the α-factor
as:

αT = CogLoadT × c × (waitTimeT + 1) (4.4)

55

CHAPTER 4. FORMAL MODEL OF SAFETY-CRITICAL HUMAN
MULTITASKING

where waitTimeT denotes the time the task T has not been executed, information
whichwill be computed dynamically during the task execution (defined in Section
4.2).

The attention attraction factor reflects the psychological literature presented in the
background and the observation that the nature of the task usually has an influence
on the user’s attention.

As regards the cognitive load, we already mentioned the studies about the cor-
relation between human attention and CL in Chapter 2.

As regards the criticality, we base on the assumption that such parameter is an
intuitive attribute for task attention attraction: users tend to focusmore frequently
on more critical tasks than on less critical ones [57, 97]. Moreover, criticality is
usually associated to the priority parameter of the STOMmodel (see Sect. 3.1.3),
and studies on tasks’ interruption suggest that tasks evaluated as primarymight be
disruptive since they attract more attention [59].

As regards the time, the nature of its role in the attention attraction factor is
complex. On the one hand, there are good evidences that the longer users stay
on a task, the more they are likely to leave them for performing other tasks due to
resource depletion or for using different resources [67]. On the other hand, some
taskswith high cognitive load, show the opposite effect: users tend to staymore on
thembecause switch awaywould comport to restart such tasks from the beginning
[54]. In our case, we don’t consider how long a specific task has been executed,
but we consider how long all other tasks in the multitasking scenario have been
executed, and we assign to such time a positive polarity, in the sense that the more
a task has been ignored, the more it attracts attention.

4.1.2 Working Memory

The working memory contains all information useful for the interaction with the
interfaces. An element in working memory could be a basic information, a cogni-
tion or a goal.

A basic information is a cognitive item acquired through a procedural step in

56

CHAPTER 4. FORMAL MODEL OF SAFETY-CRITICAL HUMAN
MULTITASKING

the current task. For instance, when the user inserts his/her card inside the ATM,
he/she puts inside his/her working memory the basic information cardInside.

A cognition is a mental plan resulting from the process of acquiring knowledge
and understanding. For instance, when the user, looking at the ATM screen, un-
derstands that the device is out of order, he/she puts inside his working memory
the cognition ATMoutOfOrder, which means that he/she has to change his/her
mental plan (without interactingwith thedevice) andfindanotherdevice to achieve
the goal of withdrawing money.

A goal is the aim of the interaction with the interface, which is to perform some
final action (i.e., in the ATM example withdrawMoney).

Definition 4.10 (Information set). Given a set of actions A, we define the set of
information Inf as:

Inf = BI ∪ COG ∪ G

where:

• BI is a set of basic information;

• COG is a set of cognition;

• G is a set of goals where g ∈ G is defined as:

g ::= goal(a)

where a ∈ A is the action that leads to the achievement of the goal.

We assume BI, COG, and G pairwise disjoint.

Definition 4.11 (WorkingMemory). WorkingmemoryWM is defined as a tuple⟨
Memory, size

⟩
where:

• size models the capacity of the working memory;

57

CHAPTER 4. FORMAL MODEL OF SAFETY-CRITICAL HUMAN
MULTITASKING

• Memory is a map assigning to each interface the set of information associ-
ated with that interface:

{Ii 7→ memi; . . . ; In 7→ memn}

where memi ⊆ Inf is the set of information associated with the interface Ii
and

∑n
i=0 |memi| ≤ size

4.2 Semantics

Wedefine the semanticsof the safety-critical humanmultitaskingmodel as aPPTS,
where PPTS stands for purely probabilistic transition system. The transition rela-
tion is defined in an inductive way by a set of inference rules. Such rules model
the different cognitive behaviours involved in themultitasking interaction and de-
termine how attention is directed to the different interfaces and how this would
change the state of the PPTS.

4.2.1 Configuration

Beforepresenting the configurationof thePPTSmore indetail, we introduce some
notation useful for the reading and comprehension of the configuration itself and
the set of inference rules, we will present below.

Notation 4.2. Given an interface I =
⟨
A, P, Inf, InitialState,Transitions,Tasks

⟩
,

and given a task T = ⟨Subtasks, c, g⟩

• Transitions(I) = Transitions, denotes the set of transitions of the interface
I;

• gT = g, denotes the goal action of the task T.

Moreover, we assume we can index the tasks of the interface I with a natural num-
ber, so that (I, i) denotes the i-th task of the interface I.

58

CHAPTER 4. FORMAL MODEL OF SAFETY-CRITICAL HUMAN
MULTITASKING

In what follows, we define a notation of configuration that will be used as the state
of the PPTS.

Definition4.12(Configuration). Givena safety-critical humanmultitaskingmodel
Is = {I1, . . . , In}where Ii =

⟨
A, P, Inf, InitialState,Transitions,Tasks

⟩
, and a set

InterfaceStates on P, the state of the PPTS is given by a Configuration C defined as
follows:

C =
⟨
tasks,CL,CS,WM,TS,GC

⟩
where:

• tasks : Is × N → Tasks is a mapping which, given an interface Ii and a
natural number k, gives the k-th task of Ii;

• CL : Is×N → R>0 is a mapping which, given an interface Ii and a natural
number k, gives the cognitive load of the k-th task of Ii;

• CS : Is → InterfaceStates is a mapping which, given an interface Ii, gives its
current state;

• WM is a Working Memory as defined in 4.11;

• TS : Is × N → R≥0 is a mapping which, given an interface Ii and a natural
number k, gives the last time the k-th task of Ii has been executed;

• GC : R≥0 is a global clock, used to keep track of the execution time.

Inside each configurationC of the PPTSwe have all the elements that possibly will
be modified by the PPTS transitions. In particular, the cognitive load of each task
is used to compute their attention attraction factor and is properly recomputed
whenever a new subtask begins; as well as the current state of the interface which
could change if a user performs an action on that interface. Again, while executing
a basic task an information is deleted from WM and one is added inside it. And
obviously, the last time a task has been executed changes every time a user selects
one of the tasks of the model, as well as the global clock.

Now we present the initial state of the PTS, obtained by the model Is.

59

CHAPTER 4. FORMAL MODEL OF SAFETY-CRITICAL HUMAN
MULTITASKING

Definition 4.13 (Initial configuration). Given a safety-critical human multitask-
ingmodel Is = {I1, . . . , In}where Ii =

⟨
A, P, Inf, initialStatei,Transitionsi, {Ti

1, . . .Ti
m}

⟩
,

the initial configuration is

initConf =
⟨
tasks,CL,CS,WM,TS,GC

⟩
such that, ∀i ∈ [1, n] ,∀k ∈ [1,m]:

• tasks(Ii, k) = Ti
k

• CL(Ii, k) = CogLoadTi
k

• CS(Ii) = initialStatei

• WM(Ii) = {goal(gTi
1
), . . . , goal(gTi

m
)}

• TS(Ii, k) = 0

• GC = 0

In the initial configuration, each task of each interface of the model Is can be ob-
tained by the mapping tasks, as well as the cognitive load of each task in Is. As re-
gards the current state of each interface, two possibilities are considered: it can be
a timed state associated with a timeout or an untimed state. The workingmemory
WM is initialised by adding all the task goals inside it, for each task of each interface
in Is. Finally the last time each task in Is has been executed, and the global clock,
are set to 0.

Auxiliary Functions

We define a set of auxiliary functions which will be used in the inference rules de-
fined in Subsection 4.2.2.

Notation 4.3. Given WM = ⟨Memory, size⟩ defined on Is

• WM(I) = Memory(I) denotes the set of information associated with the
interface I;

60

CHAPTER 4. FORMAL MODEL OF SAFETY-CRITICAL HUMAN
MULTITASKING

• size(I) = size denotes the capacity of Memory(I)

Occupied. Given the Working Memory WM, the function occupied(WM) gives
the number of items in Memory:

occupied(WM) =
∑
I∈Is

|WM(I)|

Minus. Given mem ⊆ Inf and i ∈ mem ∪ {noInfo}

mem − i =

mem \ {i}, if i ̸= noInfo

mem, if i = noInfo

Plus. Given mem ⊆ Inf and i ∈ Inf

mem + i =

mem ∪ {i}, if i ̸= noInfo

mem, if i = noInfo

WaitTime. Given I =
⟨
A, P, Inf, InitialState,Transition, {T1, . . . ,Tm}

⟩
, if the

argument of the function waitTime is the i-th task of an interface I, the function
gives the time it has not been executed, namely what we call wait time:

waitTime(I, i) = GC − TS(I, i)

If its argument is an interface I, the function gives the minimum wait time among
all tasks of I:

waitTime(I) = mini∈[1,m](waitTime(I, i))

Enabled . Given a task tasks(I, i) such that
tasks(I, i) = ⟨j|p =⇒ l|k duration t difficulty d delay δ BTw :: STs, c, g⟩

61

CHAPTER 4. FORMAL MODEL OF SAFETY-CRITICAL HUMAN
MULTITASKING

the predicate enabled(I, i) is true if the i-th task of I is enabled, namely if inWM(I)
is present its goal, if the delay of its first basic task is elapsed, and if the current state
of the I has a timeout not yet expired.

enabled(I, i) =

true, if

(CS(I) = p for time t ∧ t > waitTime(I))

∨CS(I) = p ∧

goal(g) ∈ WM(I) ∧ GC − TS(I, i) ≥ δ

false, o.w.
(4.5)

If the task tasks(I, i) = ⟨emptyTask, c, g⟩, the function enabled(I, i) is false.

AllIdling . Given a model Is = {I1, . . . , In}, where the interface Ik is defined
as

⟨
A, P, Inf, InitialState,Transition, {T1, . . . ,Tm}

⟩
, and where Ty = ⟨ST1 ::

STs, c, g⟩, the predicate allIdling(Is) is true if in Is the delays of all the first basic
tasks of each task of each interface, are higher than 0, false otherwise.

allIdling(Is) =

true, if ∀ I ∈ Is,∀ k ∈ [1,m] GC − TS(Ik) ≥ delay0,ST1y

false, o.w.
(4.6)

MinDelay . Given a model Is = {I1, . . . , In}, where the interface Ik is defined
as

⟨
A, P, Inf, InitialState,Transition, {T1, . . . ,Tm}

⟩
, and where Ty = ⟨ST1 ::

STs, c, g⟩, the function minDelay(Is) gives the minimum time needed to reach a
configuration where at least one of the tasks is not pausing.

minDelay(Is) = min(
∑
I∈Is

(
∑

k∈[1,m]

delay0,ST1y
+ TS(Ik, y))) (4.7)

62

CHAPTER 4. FORMAL MODEL OF SAFETY-CRITICAL HUMAN
MULTITASKING

4.2.2 Definition of the PPTS

Definition 4.14 (Semantics). Given a model Is, the semantics is the purely prob-
abilistic transition system ⟨C, p−→⟩where

p−→: C × [0, 1]× C is the least proba-
bilistic transition relation defined by the inference rules defined in what follows.

Interacting Rule

The interacting rule models the execution of what in Section 4.1 we defined a
user action, namely an action performed on the device to which the user directed
his/her attention.

I ∈ Is enabled(I, i)

CS(I) = p ∨ CS(I) = p for time t p l→ q ∈ Transitions(I)

tasks(I, i) = ⟨BT0BT1 . . .BTn :: STs, c, g⟩

BT0 = j | p =⇒ l | k duration t′ difficulty d delay δ

j ∈ WM(I) l ̸= g l ̸= noAction

WM′ = WM [I 7→ WM(I)− j + k]

occupied(WM′) ≤ size(WM)⟨
tasks,CL,CS,WM,TS,GC

⟩ ΦI,i−→⟨
tasks [(I, i) 7→ ⟨BT1 . . .BTn :: STs, c, g⟩] ,CL,

CS [I 7→ q] ,WM′,TS [(I, i) 7→ GC + t′] ,GC + t′
⟩

Interacting1

The Interacting1 rule models the execution and removal from C of the first basic
task (BT0) of the task (I, i) of the interface I, if it is not the last basic task of the
current subtask. Such task is selected among the others in C with a probabilityΦI,i

(presented below). The rule is applied if and only if the following conditions are
satisfied:

• the interface I must be an interface of the model Is (I ∈ Is);

63

CHAPTER 4. FORMAL MODEL OF SAFETY-CRITICAL HUMAN
MULTITASKING

• the basic task to be executed must synchronise with one of the interface
transitions: namely the perception and the action to perform of both tran-
sition and basic task must be the same (p l→ q and j | p =⇒ l | k . . .);

• also, the current state of the interface I must have the same perception of
the basic task and the transition (p ∨ p for time t);

• the action to perform (l)must be different from noAction and from the goal
action g;

• the information to be retrieved from the working memory to perform the
basic task (j) must be in the memory associated with the interface I;

• thenumberof items in the rewrotememory (occupied(WM′))– i.e. after the
executionof the rule –must not exceed the capacity of theworkingmemory
(size(WM)) so that the addition of a new information (k) would not lead
to the memory overload.

If all these conditions are satisfied then:

• the basic task executed is removed from the configuration
(tasks [(I, i) 7→ ⟨BT1 . . .BTn :: STs, c, g⟩]);

• the current state of the interface I is updated (CS [I 7→ q]);

• the information j is replaced in memory by the information k
(WM [I 7→ WM(I)− j + k]);

• the time the interface I has been executed for the last time is updated
(TS [(I, i) 7→ GC + t′]);

• the global clock is updated with the duration of the basic task executed
(GC + t′).

If the basic task executed is the last one of the current subtask, a new cognitive load
value must be computed, it is then applied the rule Interacting2, presented in what
follows.

64

CHAPTER 4. FORMAL MODEL OF SAFETY-CRITICAL HUMAN
MULTITASKING

I ∈ Is enabled(I, i)

CS(I) = p ∨ p for time t p l→ q ∈ Transitions(I)

tasks(I, i) = ⟨BT0 :: STs, c, g⟩

BT0 = j | p =⇒ l | k duration t′ difficulty d delay δ

l ̸= g l ̸= noAction j ∈ WM(I)

WM′ = WM [I 7→ WM(I)− j + k]

occupied(WM′) ≤ size(WM)⟨
tasks,CL,CS,WM,TS,GC

⟩ ΦI,i−→⟨
tasks [(I, i) 7→ ⟨STs, c, g⟩] ,CL

[
(I, i) 7→ CogLoad⟨STs,c,g⟩

]
,

CS [I 7→ q] ,WM′,TS [(I, i) 7→ GC + t′] ,GC + t′
⟩

Interacting2

The rule has the same conditions as the Interacting1, except for the task selected,
whosefirst basic task is the last one theof the current subtask (tasks(I, i) = ⟨BT0 ::

STs, c, g⟩).
Since the cognitive load of the task is computed each time a new subtask be-

gins (and it remains the same throughout its execution), after the execution of the
basic tasks and its removing from the configuration it is necessary to compute a
new value for the task cognitive load (CL

[
(I, i) 7→ CogLoad⟨STs,c,g⟩

]
), using the

function CogLoadT defined in 4.1.

Selection Probability

As previously mentioned, each task is characterised by a measure of how much it
attracts the user attention, namely the α-factor, defined in Equation 4.4.

We instantiate such definition to the current configuration, considering also
when the task is enabled or not (see function 4.5). We thus define αI,i as follows:

αI,i = CL(I, i)× c × (GC − TS(I, i)) (4.8)

We then compute for each task in the configuration, a probability to be selected

65

CHAPTER 4. FORMAL MODEL OF SAFETY-CRITICAL HUMAN
MULTITASKING

proportional to its α, called the probabilityΦ and defined as follows.

Definition 4.15 (Φ probability). Given a model Is = {I1, . . . , In} where Ik =⟨
A, P, Inf, InitialStatei,Transitionsi, {Ti

1, . . . ,Ti
m}

⟩
, the probabilityΦI,i is defined

as:

ΦI,i =
αI,i∑

Ik∈Is(
∑

j∈[1,m] αIk,j)
(4.9)

Since there are as many transition as enabled tasks, all probabilities sum to 1.

Cognitive

The cognitive rule models the execution of what in Section 4.1 we defined a cogni-
tive basic task, namely a change of themental plan of the user, without any involve-
ment with the interface.

I ∈ Is enabled(I, i)

tasks(I, i) = ⟨BT0BT1 . . .BTn :: STs, c, g⟩

BT0 = j | p =⇒ l | k duration t′ difficulty d delay δ

l = noAction j ∈ WM(I) k ∈ COG

WM′ = WM [I 7→ WM(I)− j + k]

occupied(WM′) ≤ size(WM)⟨
tasks,CL,CS,WM,TS,GC

⟩ ΦI,i−→⟨
tasks [(I, i) 7→ ⟨BT1 . . .BTn :: STs, c, g⟩] ,CL,

CS,WM′,TS [(I, i) 7→ GC + t′] ,GC + t′
⟩

Cognitive1

The ruleCognitive1 is applied if the cognitive basic task executed is not the last one
of the current subtask. The rule models the execution and removal from C of the
cognitive basic task BT0, selected with probabilityΦI,i. Some of the conditions to
be satisfied for the application of the rule are equal to those for the rule Interacting1:
the updated memory must not overlead the capacity of the working memory, the
information j must be present in the memory associated wiht the interface I, the

66

CHAPTER 4. FORMAL MODEL OF SAFETY-CRITICAL HUMAN
MULTITASKING

interface Imust be an interface of the model Is, and the task selected (I, i)must be
enabled. Nevertheless, other conditions must be satisfied, such as:

• the action to perform must be equal to noAction, since the rule models a
change of the user memory without any involvement in the interface;

• the information to be added in memory must be a cognition (k ∈ COG).

If all the conditions are satisfied, here too, the basic task executed is removed
fromthe configuration, the information j is replaced inmemory fromthe cognition
k and the time the task has been executed for the last time, is updated, as well as
the global clock. However, no change is done in the current state, since the user
does not perform any action on the interface.

Here again, if the basic task executed is the last one of the current subtask, it is
applied the rule Cognitive2, which updates the new value of the cognitive load of
the task (I, i)with the function CogLoadT. It is defined as follows.

I ∈ Is enabled(I, i)

tasks(I, i) = ⟨BT0 :: STs, c, g⟩

BT0 = j | p =⇒ l | k duration t′ difficulty d delay δ

l = noAction j ∈ WM(I) k ∈ COG

WM′ = WM [I 7→ WM(I)− j + k]

occupied(WM′) ≤ size(WM)⟨
tasks,CL,CS,WM,TS,GC

⟩ ΦI,i−→⟨
tasks [(I, i) 7→ ⟨STs, c, g⟩] ,CL

[
(I, i) 7→ CogLoad⟨STs,c,g⟩

]
,

CS,WM′,TS [(I, i) 7→ GC + t′] ,GC + t′
⟩

Cognitive2

Closure

The rule closure models the achievement of the goal for the selected task, namely
the execution of the goal action g inside the task.

67

CHAPTER 4. FORMAL MODEL OF SAFETY-CRITICAL HUMAN
MULTITASKING

I ∈ Is enabled(I, i)

CS(I) = p ∨ CS(i) = p for time t p l→ q ∈ Transitions(I)

tasks(I, i) = ⟨BT0 . . .BTn :: STs, c, g⟩

BT0 = j | p =⇒ l | k duration t′ difficulty d delay δ

j ∈ WM(I) l ̸= noAction l = g

WM′ = WM [I 7→ WM(I)− j + k − goal(g)]

occupied(WM′) ≤ size(WM)⟨
tasks,CL,CS,WM,TS,GC

⟩ ΦI,i−→⟨
tasks [(I, i) 7→ ⟨emptyTask, c, g⟩] ,CL,

CS [I 7→ q] ,WM′,TS [(I, i) 7→ GC + t′] ,GC + t′
⟩

Closure

The rule models the execution of the basic task BT0 of the enabled task (I, i), se-
lected with probabilityΦI,i. Here again, some conditions are equal to those for the
rule Interacting1: the memory must not overload after the execution of the basic
task, the information j must be present in the memory associated with I, the basic
task executed and one of the transitions of I must synchronise, as well as the cur-
rent state of I must have the same perception as the one of the basic task and the
transition. However, in such a case, the action to perform must be the action that
will lead to the achievement of the goal g.

After the execution, the task (I, i) is removed from the configuration (therefore
the subtask sequence becomes empty); the current state of I is updated, as well as
the time the task has been executed for the last time and the global clock. Finally, in
thememory associatedwith I the information k replaces the information j, and the
goal of the task just executed (goal(g)) is removed from the memory associated
with I.

Forgetting

When the execution of the basic task exceeds the capacity of the memory, an item
must be forgotten (i.e. deleted from WM) to make room to the new information.

68

CHAPTER 4. FORMAL MODEL OF SAFETY-CRITICAL HUMAN
MULTITASKING

Since maintaining information in WM requires the user’s attention, and the in-
terface with the highest wait time is the one to which the user has not given at-
tention for the longest time, one of the information related to the interface cho-
sen with a probability Ψ proportional to its wait time, is randomly forgotten. The
probabilityΨ will be presented below.

Thememory could overload for the execution of both user action basic task and
cognitive basic task: we will present two similar rules (ForgetInteracting and For-
getCognitive) to model respectively these two situations. Both rules are specified
in two versions: one version for the case where the basic task executed is the last
one of the current subtask, the second version otherwise. We will present all of
them in what follows.

I, I′ ∈ Is enabled(I, i)

CS(I) = p ∨ CS(I) = p for time t

p l→ q ∈ Transitions(I)

tasks(I, i) = ⟨BT0BT1 . . .BTn :: STs, c, g⟩

BT0 = j | p =⇒ l | k duration t′ difficulty d delay δ

l ̸= g l ̸= noAction

z ∈ WM(I′) j = noInfo k ̸= noInfo

WM′ = WM [I 7→ WM(I)− j + k, I′ 7→ WM(I′)− z]

occupied(WM) = size(WM)⟨
tasks,CL,CS,WM,TS,GC

⟩ ΦI,iΨI′−→⟨
tasks [(I, i) 7→ ⟨BT1 . . .BTn :: STs, c, g⟩] ,CL,

CS [I 7→ q] ,WM′,TS [(I, i) 7→ GC + t′] ,GC + t′
⟩

ForgetInteracting1

69

CHAPTER 4. FORMAL MODEL OF SAFETY-CRITICAL HUMAN
MULTITASKING

I, I′ ∈ Is enabled(I, i)

CS(I) = p ∨ CS(I) = p for time t

p l→ q ∈ Transitions(I)

tasks(I, i) = ⟨BT0 :: STs, c, g⟩

BT0 = j | p =⇒ l | k duration t′ difficulty d delay δ

l ̸= g l ̸= noAction

z ∈ WM(I′) j = noInfo k ̸= noInfo

WM′ = WM [I 7→ WM(I)− j + k, I′ 7→ WM(I′)− z]

occupied(WM) = size(WM)⟨
tasks,CL,CS,WM,TS,GC

⟩ ΦI,iΨI′−→⟨
tasks [(I, i) 7→ ⟨STs, c, g⟩] ,CL

[
(I, i) 7→ CogLoad⟨STs,c,g⟩

]
,

CS [I 7→ q] ,WM′,TS [(I, i) 7→ GC + t′] ,GC + t′
⟩

ForgetInteracting2

I, I′ ∈ Is enabled(I, i)

tasks(I, i) = ⟨BT0BT1 . . .BTn :: STs, c, g⟩

BT0 = j | p =⇒ l | k duration t′ difficulty d delay δ

l = noAction z ∈ WM(I′)

j = noInfo k ̸= noInfo k ∈ COG

WM′ = WM [I 7→ WM(I)− j + k, I′ 7→ WM(I′)− z]

occupied(WM) = size(WM)⟨
tasks,CL,CS,WM,TS,GC

⟩ ΦI,iΨI′−→⟨
tasks [(I, i) 7→ ⟨BT1 . . .BTn :: STs, c, g⟩] ,CL,

CS,WM′,TS [(I, i) 7→ GC + t′] ,GC + t′
⟩

ForgetCognitive1

70

CHAPTER 4. FORMAL MODEL OF SAFETY-CRITICAL HUMAN
MULTITASKING

I, I′ ∈ Is enabled(I, i)

tasks(I, i) = ⟨BT0BT1 . . .BTn :: STs, c, g⟩

BT0 = j | p =⇒ l | k duration t′ difficulty d delay δ

l = noAction z ∈ WM(I′)

j = noInfo k ̸= noInfo k ∈ COG

WM′ = WM [I 7→ WM(I)− j + k, I′ 7→ WM(I′)− z]

occupied(WM) = size(WM)⟨
tasks,CL,CS,WM,TS,GC

⟩ ΦI,iΨI′−→⟨
tasks [(I, i) 7→ ⟨STs, c, g⟩] ,CL

[
(I, i) 7→ CogLoad⟨STs,c,g⟩

]
,

CS,WM′,TS [(I, i) 7→ GC + t′] ,GC + t′
⟩

ForgetCognitive2

As the specificationof the rules shows, theprobability to go fromaconfiguration to
the other is themultiplication of the probabilityΦT that the taskTwill be selected
and executed, for probability ΨI that the interface I will be selected to delete a
random information from its memory.

Deletion Probability

As previously mentioned, in the forgetting rules one information related to the
interface chosen with a probability proportional to its maximumwait time, is ran-
domly forgotten. We call such probabilityΨ and we defined it as follows.

Definition 4.16 (Ψ probability). Given a model Is = {I1, . . . , In} where Ik =⟨
A, P, Inf, InitialState,Transitions, {T1, . . . ,Tmk}

⟩
, the probability ΨI is defined

as:

ΨI =
waitTime(I)∑

I∈Is waitTime(Ik)
· 1
|WM(I)|

(4.10)

Essentially, for each interface in the the model Is, the probability Ψ is propor-
tional to theirmaximumwait time,moreover it is taken into account also the num-

71

CHAPTER 4. FORMAL MODEL OF SAFETY-CRITICAL HUMAN
MULTITASKING

ber of elements in the set of information associated with each interface, consider-
ing that one of that information will be randomly forgotten.

Since there are as many transitions as the number of elements in WM and the
number of interfaces in Is, then all probabilities sum to 1.

All idling

Finally, if all the delays of each first basic task of each task in the configuration C
are higher than 0 (i.e. all tasks are pausing), then the time passes until some task is
no more pausing.

I ∈ Is enabled(I, i) allIdling(Is)⟨
tasks,CL,CS,WM,TS,GC

⟩ 1−→⟨
tasks,CL,CS,WM,TS,GC + minDelay(Is)

⟩
AllIdling

The rule is applied if at least one of the interface in Is is enabled, and if all the in-
terfaces in Is are pausing. In such case, just the global clock is updated with the
earliest time when the delay of some basic task reaches 0.

4.3 Example

In order to better explain the syntax and the semantics of our model let us show a
simple example of the concurrent interaction with 3 tasks.

Given a safety-critical humanmultitaskingmodel Is = {I1, I2} the interfaces I1
and I2 are defined as follows (according to Definition 4.3):

I1 =
⟨
{g1, g2}, {p, p′, q, q′}, {info1}, p, {p

a→ p′, q a→ q′}, {T11 ,T12}
⟩

I2 =
⟨
{c, g3}, {k, k′}, {}, k, {k

c→ k′}, {T21}
⟩

Where the tasks T11 , T12 , and T21 are defined as follows (according to Definition
4.5):

72

CHAPTER 4. FORMAL MODEL OF SAFETY-CRITICAL HUMAN
MULTITASKING

T11 = ⟨info1 | p ⇒ g1 | noInfo duration 3 difficulty 5 delay 0, 0.5, g1⟩,

T12 = ⟨noInfo | q ⇒ g2 | noInfo duration 2 difficulty 9 delay 12, 0.3, g2⟩

T21 = ⟨noInfo | k ⇒ g3 | noInfo duration 6 difficulty 4 delay 0, 12, g3⟩

As the specification shows, the 3 tasks T11 , T12 , and T21 consist of a single basic
task, whose action is the goal action (g1, g2, and g3). As regards the characteristics
of each task:

• TaskT11 has a cognitive load equal toCL(I1, 1) = 5·3
5 = 5 (computedwith

Equation 4.1), and a criticality of 0.5.

• Task T12 has a cognitive load equal to CL(I1, 2) = 9·2
9+12 = 1.2857, a crit-

icality of 0.5, and a delay of 12 which means that will be enabled after 12
time units.

• TaskT21 has a cognitive load equal toCL(I2, 1) = 4·6
6 = 4, and a criticality

of 12.

In Figure 4.3.1 is shown how part of the transition system would evolve from the
initial configuration ic defined in Definition 4.13. In figure are shown just the
global clock and the tasks which have not been executed yet. The other informa-
tion about the configuration, included the working memory, are omitted for the
sake of simplicity.

At the beginning, the tasks enabled are T11 and T21 . Their α-factor is:

• α11 = 5× 0.5

• α21 = 4× 12

Computed as the product of cognitive load and criticality according to Equation
4.1.1 (note that in the computation of the α-factor, their wait time is not taken into
account since it is equal to 0).

The task T11 is then chosen with probability 0.0495, and the task T21 is chosen
with probaility 0.9505.

73

CHAPTER 4. FORMAL MODEL OF SAFETY-CRITICAL HUMAN
MULTITASKING

Figure 4.3.1: Part of the transition system.

Once such choice is done, at the next step it is executed the enabled task that
has not been previously executed. Once both are executed, and thus when the
global clock is equal to 9, in the configuration is present just the task T12 , which
has nevertheless a delay not yet elapsed. Therefore, both configurations idle until
the global clock is equal to 12 and the task T12 is executed.

74

5
Model Simulator

Weimplementa slightly simplifiedversionof the formalmodelpresented inChap-
ter 4 as a simulator, in order to simulate the human selective attention and the
functioning of the working memory in the case of users involved in multiple tasks
requiring different cognitive effort, some of which may be safety-critical [18].

Simulations allow us to get a quick feedback about whether a user can safely
perform multiple tasks or whether one of the tasks can deflect the user’ attention
from another, possibly critical, task. We found that the proposed simulation algo-
rithm simulates human selective attention in accordance with the description of
its functioning in the psychological literature.

This chapter presents the safety-critical human multitasking simulator.

75

CHAPTER 5. MODEL SIMULATOR

5.1 Simulator

The simulator is implemented in Java. The full specification is available at http:
//www.di.unipi.it/msvbio/software/AttentionSim.html

We implement a simplified version of human multitasking where users are al-
lowed to perform a single task on each interface, we then decide not to model the
interfaces.

We implement a Java class for each element of humanmultitasking presented in
Chapter 4 (except for the interface objects). According to this, we have:

• a BasicTask class, where each BasicTask object has five parameters:

– two parameters information1 and information2 of type String

– a parameter duration of type Integer

– a parameter difficulty of type Double

– a parameter delay of type Integer

denoting respectively the information to retrieve from theworkingmemory
and the information to replace in theworkingmemoryduring the execution
of the basic task, and the duration, difficulty and delay of the basic task. We
do notmodel a parameter regarding the actions to perform on the interface
since we do not model interfaces.

• a Subtask class, where each Subtask object is implemented as vector of
BasicTask objects. The cognitiveLoad() function computes the cogni-
tive load of a subtask according to the equation 4.1

• a Task class, where each Task object has five parameters:

– a parameter taskId of type Integer

– a parameter stSequencewhichmodels the sequence of the subtasks
of the task as a vector of Subtask objects

76

http://www.di.unipi.it/msvbio/software/AttentionSim.html
http://www.di.unipi.it/msvbio/software/AttentionSim.html

CHAPTER 5. MODEL SIMULATOR

– aparametercriticalityof typeDoubledenoting the criticality level
of a task

– a parametertimeStampof type Integer denoting the last time the task
has been executed.

– a parameter status of type String, which we add at the model for
analysis purposes andwhich has value "ongoing" if everything in the
interaction is going well, value "completed" when the task is com-
pleted, and value "interrupted"when something in the interaction
goes wrong and the task is interrupted

In the Task class are defined a set of auxiliary functions:

– update() which removes the first element of the vector of subtasks
if it is empty, and updates the cognitive load of the current subtask

– alpha() which returns the attention attraction factor α of each task
that is computed according to equation 4.1.1.

– hd()which returns the first basic task of the task

– tl()which removes the first basic task of the task (the first element of
the vector of BasicTaskobjects of thefirst vector of Subtaskobjects
of the task)

– completed() returns true if the task is completed and false otherwise

• a WorkingMemory class, where a WorkingMemory object has two parame-
ters:

– a parameter capacity of type integer denoting what in Chapter 4 we
called size

– a parameter memory implemented as a hash tablewhichmaps integers
(representing the identifier of each task) to a vector of strings (repre-
senting the set of information necessary for the completion of that
task), denoting what in Chapter 4 we called Memory

77

CHAPTER 5. MODEL SIMULATOR

• a Configuration class, which models the state of the simulation. An in-
stance object of such class contains

– a vector of Task objects

– a WorkingMemory object

– variable globalClock of type Integer

Moreover, in the class Configuration are defined a set of auxiliary func-
tions:

– enabled() which returns a vector of Task objects whose first basic
taskmust not have a delay higher than zero. Moreover, each taskmust
have a goal inside the memory associated with it, it must be not com-
pleted, and its status must be "ongoing"

– waitingTasks()which returns a vector of Task objects whose first
basic task has a delay higher than zero. Also in this case, each task
must have a goal inside the memory associated with it, it must be not
completed, and its status must be "ongoing"

– completed() which returns true if all tasks in the configuration are
completed

– removeInformation(String information, int taskId)which
removes the information from thememorymapped to the taskId,
when the information is not noInfo

– addInformation(String information, int taskId)whichadds
the information to the memory mapped to the taskId , when the
information is not noInfo . If the memory would overload with the
addition of the information, it first calls the function overload()
presented below

– overload()which removes a random information from thememory
associated with a task chosen with a probability proportional to the

78

CHAPTER 5. MODEL SIMULATOR

time it has not been executed (namely the globalClock minus its
timeStamp

• a Simulator class: where the algorithm for simulating selective attention
is specified. We define it in Algorithm 1.

Thealgorithmperforms amain loop that essentially executes one basic task in each
iteration. The basic task to be executed is the first basic task of one of the enabled
tasks. For each such candidate basic task, its attention attraction factor αi is com-
puted and it then has a probability of being chosen that is proportional to αi. Once
a basic task has been chosen:

• the global clock is updated with the duration of the basic task executed;

• the timestamp of the chosen task is updated;

• the second information of the basic task executed replaces its first informa-
tion in the memory associated with the task chosen;

• the basic task executed is removed from the configuration;

• if the basic task executed was the last one of the current subtask, such sub-
task is removed from the configuration and the cognitive load of the task is
updated;

• if the task chosen is completed, its status becomes completed .

If the algorithm reaches a configuration where no task is enabled, the main loop
performs an iteration where only the global clock is updated with the minimum
valueneeded to reacha configurationwhere at least one task is notpausing (namely,
theminimumamong all sumsof the timestampof each task and the delay of its first
basic task).

In order to show that the proposed simulation algorithm simulates selective at-
tention in accordance with relevant literature, let us first consider a variant of the

79

CHAPTER 5. MODEL SIMULATOR

Algorithm 1Algorithm for simulating selective attention on a configuration c
1: while not c.completed() do
2: if c.enabled() ̸= ∅ then
3: for all Task∈ c.enabled() do
4: Task.alpha()
5: end for
6: choose Taski ∈ c.enabled()with probability αi

c.enabled().size∑
k=0

αk

7: c.globalClock := c.globalClock + Taski.hd().duration
8: Taski.timeStamp := c.globalClock
9: c.removeInformation(Ti.hd().information1,i)

10: c.addInformation(Ti.hd().information2,i)
11: Taski.tl()
12:
13: if Taski.stSequence[0].isEmpty() then
14: Taski.update()
15: end if
16:
17: if Taski.completed() then
18: Taski.status := "completed"
19: end if
20: else if c.waitingTasks() ̸= ∅ then
21: c.globalClock := min{Taskk.timeStamp + Taskk.hd().delay |

Taskk ∈ c }
22: end if
23: end while

algorithm that does not take the task wait time (namely the time the task has not
been executed) into account when computing the α factor.

Let us consider two concurrent tasks with the same criticality level and each
consisting of k identical basic tasks: we refer to the duration and difficulty param-
eters of each basic task of the first task (T1) as t1 and d1; and to the duration and
difficulty parameters of each basic task of the second task (T2) as t2 and d2.

In order to complete both tasks, the simulation algorithm performs exactly 2k
steps (where a step represents the execution of a single basic task). Since the two
tasks have the same criticality level, the probability of completing task T1 at step

80

CHAPTER 5. MODEL SIMULATOR

n, with k ≤ n ≤ 2k, is

P(T1, n) =
(

t1d1
t1d1 + t2d2

)k (t2d2
t1d1 + t2d2

)(n−k)(n − 1
n − k

)
.

The expected number of steps necessary to complete task T1 can therefore be
given as E[T1] =

∑2k
n=k P(T1, n)n, that corresponds to

E[T1] =

(
t1d1

t1d1 + t2d2

)k 2k∑
n=k

(
t2d2

t1d1 + t2d2

)(n−k) (n − 1
n − k

)
n .

The formula shows that the expected number of steps for the completion ofT1 in-
creases with the difficulty and duration of the basic tasks ofT2, namely, it increases
when the CL of T2 increases. Hence, the algorithm simulates the switching of at-
tention in agreement with what described in [13] and [44]. However, since the
task wait time is not taken into account, this variant of the algorithm could lead to
unrealistic starvation cases (e.g., the algorithm could repeatedly skip a task with
very low criticality level and CL).

Let us now discuss what changes when the task wait time is taken into account.
Formula E[T1] becomes more complex since the repeated probabilistic events are
no longer independent. However, the structure of the formula remains the same,
with a result that is still increasingwith the difficulty andduration of the basic tasks
of T2 (in agreement with [13] and [44]). In addition to this, the wait time tends
to favour at each step the task that has not been chosen in the previous step. As a
consequence, the regular alternation of T1 and T2 is promoted with, as a result, a
reduced variance in the distribution of the number of steps necessary to complete
T1. Hence, the use of wait time reduces the probability of unnatural starvation
among the tasks.

81

6
Model Validation

Wevalidate the human selective attention algorithmproposed against data gath-
ered from an experimental study performedwith real users involved in the interac-
tion with two concurrent tasks: one representing a “main” critical task, the other
representing a “distractor” task with different levels of cognitive load.

As presented in Chapter 4, we compute for each task an α-factor representing
the likelihood the task will attract the user’s attention. At each step of the interac-
tion the user chooses the task to be executed with a probability proportional to its
α. The α-factor of a task (see Equation 4.4) is described as the product of three pa-
rameters: the cognitive load of the current subtask, the criticality level of the task,
and the time elapsed since the last time the task has been executed.

Although the proposed mechanism simulating the switching of attention be-
tween tasks is consistentwith psychological literature and results fromexperimen-

82

CHAPTER 6. MODEL VALIDATION

tal psychological studies, we conducted an experimental study with real users in-
volved in a multitasking interaction on a web application with a “main” critical
task and a secondary “distractor” task. Essentially, the main question we want to
answer is:

Does the computation of the α-factor “mirror” the tasks prioritisation which real users
perform in a safety-critical multitasking context?

The experiment and the analysis of the experimental data, together with a proper
developmentof simulations, basedon suchdata, allowus tofine-tune theproposed
model and to validate it.

We will present the experimental study in Section 6.1, the design of the simula-
tion experiments in Section 6.2 and the results we obtained in Section 6.3.

6.1 Experimental Study

Thedevelopment of theweb application for the experimental study is part of a col-
laborationwith the psychologists Prof. CarmenBerrocalMontiel andDr. Cristina
Belviso of theUniversity of Pisa, which lead to the definition of a set of appropriate
tasks for the validation of the proposed algorithm. We defined two separated tests:
one for evaluating theWMperformances of the participants, and one called shared
attention test where users were asked to interact with two tasks concurrently.

6.1.1 Working Memory Span Tasks

Before the shared attention test, we administrate to the participants two different
working memory span tasks, in order to identify different inclinations to multi-
tasking, so thatwe can underline common characteristics and differences to realise
more precise simulation tests.

We administrate two different WM span tasks: the reading span task (RST)
[43], and the operation span task (OST) [108] . In both, a sequence of numbers

Available at http://pages.di.unipi.it/milazzo/AppSpans/

83

http://pages.di.unipi.it/milazzo/AppSpans/

CHAPTER 6. MODEL VALIDATION

of variable length (from2 to 5 numbers) is presented in the screen; each number is
spaced by a sentence (RST) or an equation (OST) to evaluate. When all numbers
are presented to the users, they have to recall the numbers in the exact order they
were presented. We administrate 3 test repetitions for each sequence length: in
total 12 repetitions for bothRSTandOST.As regards the procedure formeasuring
the WM capacity, we use the partial-credit unit scoring (PCU).

6.1.2 Shared attention test

As regards the shared attention test , we defined two tasks, (i) a main and critical
one, and (ii) a secondary distracting task (with different levels of cognitive load):

i. As shown in Figure 6.1.1, in the main task users visualise on the screen a
chainof 9 rings and ablackpelletwhich randomlymoves left and right along
the chain. Every time the task starts the black pellet is on the green ring and
moves randomly every second.

Users are asked to avoid that the black pellet reaches one of the red rings
at the two ends of the chain, by pushing two buttons on the screen which
move the pellet in the two directions: if they do not succeed, the task fails.

ii. In the secondary distracting task (shown in Figure 6.1.2), users visualise on
the screen a sequence of boxes and a keyboard. At cyclic intervals, a letter
appears inside a box; letters appear one by one until all boxes are full.

Users have to find and push on the keyboard the letter corresponding to the
one inside the box indicated by the arrow, until all the letters are inserted in
the same order they were presented. Every time they have to insert a new
letter (i.e. the previous letter has been successfully inserted and thenext one
has appeared) the keyboard changes.

Such activity has a total duration expressed through a timeout, visualised
by a decreasing number and a black bar whose length decreases. Once such

Available at http://pages.di.unipi.it/milazzo/AppSpans2/

84

http://pages.di.unipi.it/milazzo/AppSpans2/

CHAPTER 6. MODEL VALIDATION

Figure 6.1.1: Main critical task.

Figure 6.1.2: Secondary distracting task.

timeout expires the task is concluded: if the user did not succeed in insert-
ing all the letters, the task is considered failed, otherwise the task succeeds.

The tasks are presented on two separate tabs of the same window: users can see
only one of the two tabs at a time, and they can switch from one to another by
pushing the space bar. So, the user has to perform the two tasks concurrently by
interleaving them. Both tasks have to be completed successfully.

As alreadymentioned, the secondary task is instantiated with different levels of
CL (see Equation 4.1). In order to do this, three different parameters of the sec-
ondary task are differentiated: the number of letters to insert (letters) , the length
of the keyboard (keys), namely the number of keys composing the keyboard, and
the total duration of the task (duration).

To vary the CL of a task we need to manipulate the total duration of the task
and what in Chapter 4 we called difficulty factor (i.e. a measure of the temporal
density of difficulty of the task). As regards the total duration, we define three
possible durations of 18, 22, and 26 seconds. As regards the difficulty factor, we

85

CHAPTER 6. MODEL VALIDATION

letters 2 letters
keys Single Double

duration 18 22 26 18 22 26

letters 4 letters
keys Single Double

duration 18 22 26 18 22 26

letters 8 letters
keys Single Double

duration 18 22 26 18 22 26

Table 6.1.1: Values of parameters letters, keys, and duration.

variate:

• the parameter letters by defining three kinds of task where users have to in-
sert 2 letters, 4 letters, and 8 letters respectively;

• the parameter keys by defining a kind of task where users should search for
the right letter in a single keyboard (i.e. the number of keys composing the
keyboard is equal to the number of letters to be inserted), and a kind of task
where they have to search for the letter in a double keyboard (i.e. the number
of keys is twice as many letters to be inserted). Every time a new letter has
to be inserted the keyboard changes.

In total we have 18 different levels of CL for the secondary task (see Table 6.1.1),
and the web application administrates 3 test repetitions for each level (presented
randomly): in total users have toperform54 test repetitions. All these values (both
for the tasks’ parameters and for the number of items to perform) have been the
results of the collaboration with the team of psychologists, with which we defined
the values in order that the test would be significant and valid.

It is worth to note that the criticality of the main task and the difficulty of each
single action for all levels of CL of the secondary task are parameters that can
change from user to user, for the way they perceive it to be.

86

CHAPTER 6. MODEL VALIDATION

6.1.3 Participants

The definition of the experimental study has been submitted to the ethical com-
mittee of the University of Pisa, which authorised the administration of the test.
To take part in the experimental study, participants were asked to sign an informed
consent form and a consent for the processing of personal data.

We performed two test sessions taking care that the environment, the provided
equipment, and the test timetable were the same in both sessions. Were excluded
from the study persons suffering from cognitive functions disorders or consum-
ing drugs with an effect on such functions. Participation has been voluntary and
without any incentive; participants were free to abandon the test at any time.

In total, 26 participants took part in the experimental studymother-tongue Ital-
ian, of both sexes (60%men, 40%women), aged between 18 and 40 years old, with
a normal visual acuity (or correct by lenses).

6.1.4 Data Collection

WMSpanTasks. Theweb application is able to collect users answers for bothWM
span tasks for each item, and it is thus able to compute the PCU for the OST task
and for the RST task. From such data, we can compute the total PCU score for
each participant, calculated as the mean of the scores of both tasks.

Total PCU values go from aminimumof 0.35 to amaximumof 0.97 (see Table
6.1.2).

Shared Attention Test. For the shared attention test, the web application is able to
track:

• the length of the keyboard, the number of letters to insert and the time to
complete the task;

• the time a letter appears on the screen;

• the time a user pushes a letter on the keyboard;

87

CHAPTER 6. MODEL VALIDATION

id OSTPCU RSTPCU TOTALPCU
I session

1 0.88 0.97 0.925
2 0.795 0.78 0.7875
3 0.79 0.8 0.795
4 0.93 0.87 0.9
5 0.93 0.92 0.925
6 0.87 0.72 0.795
7 0.84 0.87 0.855
8 0.77 0.73 0.75
9 0.93 0.9 0.915
10 0.79 0.79 0.79

II session
11 0.80 0.71 0.7525
12 0.649 0.8 0.7245
13 0.2 0.5 0.35
14 0.92 0.93 0.925
15 0.8 0.75 0.775
16 0.89 0.86 0.875
17 0.9 0.9 0.9
18 0.88 0.93 0.905
19 0.67 0.755 0.7125
20 0.98 0.81 0.895
21 0.85 0.96 0.905
22 0.84 0.85 0.845
23 0.75 0.75 0.75
24 0.83 0.84 0.835
25 0.97 0.97 0.97
26 0.825 0.91 0.8675

Table 6.1.2: PCU scores of the 26 participants.

88

CHAPTER 6. MODEL VALIDATION

• each time a user fails in pushing the correct letter on the keyboard;

• each time a user succeeds in pushing the correct letter on the keyboard;

• each time a user passes from a task to the other;

• each time the black pellet reaches a red ring;

• each time a user fails in inserting the correct sequence of letters in time.

In order to identify a correlation between the users’ PCU and their multitasking
performance – which would be consistent with the relevant psychological liter-
ature –, we divide PCU values into 3 intervals and we divide participants into 3
different groups:

1. lowPCU: user total PCU≤ 0.80;

2. mediumPCU: 0.80 < user total PCU≥ 0.90;

3. highPCU: user total PCU> 0.90;

We compute for all users whose PCU is in a given interval, the mean of the errors
for the main task (T1) and for the secondary task (T2). As shown in Figure 6.1.3,
the number of errors for both tasks decreases as the users’ PCU increases.

Moreover, we then can compute for all users, whose PCU is in a given interval,
the average time to find the right letter on the keyboard and push it for each level
of cognitive load.

As shown in Table 6.1.3 the higher the PCU, the faster the participants find and
push the correct letter.

89

CHAPTER 6. MODEL VALIDATION

Figure 6.1.3: Average errors for the main task (T1) and the secondary task
(T2).

90

CHAPTER 6. MODEL VALIDATION

2L
2K

18
S

2L
2K

22
S

2L
2K

26
S

2L
4K

18
S

2L
4K

22
S

2L
4K

26
S

lo
wP

CU
1,
29

3
1,
18

3
1,
29

6
1,
39

4
1,
47

3
1,
33

2
m
ed
iu
m
PC

U
1,
09

4
1,
35

6
1,
14

1
1,
25

8
1,
28

1
1,
24

8
hi
gh
PC

U
1,
09

6
1,
01

4
1,
01

6
1,
17

7
1,
19

8
1,
14

9

4L
4K

18
S

4L
4K

22
S

4L
4K

26
S

4L
8K

18
S

4L
8K

22
S

4L
8K

26
S

lo
wP

CU
1,
53

1
1,
56

1,
49

4
1,
82

7
1,
88

2
1,
82

m
ed
iu
m
PC

U
1,
41

1,
37

5
1,
61

2
1,
77

1,
74

7
1,
61

6
hi
gh
PC

U
1,
28

3
1,
19

9
1,
11

8
1,
56

1,
47

4
1,
37

9

8L
8K

18
S

8L
8K

22
S

8L
8K

26
S

8L
16
K
18
S

8L
16
K
22
S

8L
16
K
26
S

lo
wP

CU
1,
46

4
1,
52

9
1,
62

2
1,
84

4
1,
99

9
1,
94

9
m
ed
iu
m
PC

U
1,
32

8
1,
39

7
1,
53

8
1,
69

6
1,
55

6
1,
74

4
hi
gh
PC

U
1,
23

1
1,
33

9
1,
30

3
1,
51

3
1,
63

2
1,
57

2

Ta
bl

e
6.

1.
3:

Av
er

ag
e

du
ra

tio
n

fo
re

ac
h

PC
U

gr
ou

p
an

d
ea

ch
lev

el
of

co
gn

iti
ve

lo
ad

.

91

CHAPTER 6. MODEL VALIDATION

2L 2K 2L 4K 4L 4K 4L 8K 8L 8K 8L 16K
lowPCU 1,257 1,4 1,528 1,843 1,538 1,931
mediumPCU 1,197 1,262 1,466 1,711 1,421 1,665
highPCU 1,042 1,175 1,2 1,471 1,291 1,572

Table 6.1.4: Average duration for each PCU group and each combination of
numbers of letters and number of keys in the keyboard.

Observing the data we notice that there are no significant differences on the
average duration for tasks with different total duration, namely it does not matter
how long is the task, but howmany letters the user has to find on a single or double
keyboard. We then compute the average duration for each combination of number
of letter to insert and number of keys on the keyboard (see Table 6.1.4).

Fromdata collectedby thewebapplication, we can alsodeducehow longusers stay
on a task respect to the other, and according to such times, we can understand how
much each participant perceives as critical the main task respect to the secondary
task. However, by observing the data, we notice that about the 20% of the time
a user is on the secondary task, the next letter has not yet appeared, namely such
time represents the time the user goes backwards and forwards from themain task
to the secondary task to check if the letter has appeared.

We call criticality the percentage of time a user stays on the main task respect to
the secondary task. In order to check if the less a user perceives the main task as
critical (i.e. the criticality is lower), the more he/she fails in such task, we divide
the criticality values (which go from 48% to 66%) into 2 groups: the first groups
values until 57%, the secondgroups values higher than58%. We then compute the
average number of errors for each of these groups, and we find that the more the
main task is perceived as critical, the less the users fail in it: 3,36 errors on average
for the low criticality group and 1,8 errors on average for high criticality group. In
Figure6.1.4 are shown thenumberof errors of eachparticipant (denotedwith a red
cross) when varying the criticality. We then identify 2 more subgroups, according
to how users perceive the criticality of the main task: we call them lowCriticality

92

CHAPTER 6. MODEL VALIDATION

Figure 6.1.4: Number of errors of each participants when varying the calcu-
lated criticality (time spent on the main task).

and highCriticality.
Therefore, we consider 6 different typologies of users – by considering the 3

PCU groups and the 2 criticality subgroups – and we then identify 6 different
groups:

1. lowPCU – lowCriticality

2. lowPCU – highCriticality

3. mediumPCU – lowCriticality

4. mediumPCU – highCriticality

5. highPCU – lowCriticality

6. highPCU – highCriticality

93

CHAPTER 6. MODEL VALIDATION

6.2 Simulation Experiments

For each group devised above, and for each level of cognitive load of the secondary
task, we implement a different simulation experiment.

Main Task

As regards the main critical task (i.e. the one where users are asked to avoid that
the black pellet reaches one of the two red rings), we implement it as a sequence
of basic tasks, whose duration is set to 1 and difficulty is set to 0.1. We implement
the same task for each PCU group, and two variants of the task for each criticality
subgroup: forhighCriticalitywe set the criticality of the task to40, for lowCriticality
we set it to 4.

Secondary Task

As explained in Section 6.1.2, in the secondary task, a letter appears inside the
white boxes at a specific time: the total duration of the task is divided by the num-
ber of letters to insert, and such measure gives us the interval of time between the
appearance of a letter and the next one. Therefore, the secondary task could be
defined as follows (according to Definition 4.5):

⟨noinfo | letter1 ⇒ findL1 | noInfo duration t difficulty d delay δ1
...

noinfo | lettern ⇒ findLn | noInfo duration t difficulty d delay δn, c, g⟩

where:

• n is the number of letters to insert, and thus the number of basic tasks com-
posing the secondary task;

• ti is the duration of the action findLi, set as the average duration for a given
combination of number of letters and keys, according to the duration pre-
sented in Table 6.1.4;

94

CHAPTER 6. MODEL VALIDATION

• di is the difficulty of the action findLi, which we set to 6;

• δi denotes the timewhich has to elapse so that the letter appears, namely the
interval of time between the appearance of two letters minus the duration
ti.

Actually, the appearance of a letter in the secondary task is independent of the pre-
vious letter, whichmeans that each letter in a sequence appears as soon as the given
time interval has passed, whether the previous letter has been correctly inserted or
not. Instead, the task presented above, implies that the delay δi of each basic task
(namely of each letter) starts elapsing as soon as the basic task becomes the first
one of the current subtask, which means that by modelling the secondary task in
that way, the appearance of a letter would be related to the correct insertion of the
previous letter.

We thus decide to model a different task for each letter to be inserted in the
secondary task, namely to divide the unique task presented above into n different
tasks:

⟨noinfo | letter1 ⇒ findL1 | info2 duration t difficulty d delay δ1, c1, g1⟩
...

⟨infon | lettern ⇒ findLn | noInfo duration t difficulty d delay δn, cn, gn⟩

In this way, each delay of each task represents the time which has to elapse from
the beginning of the simulation of the interaction with the secondary task in order
that the letter appears.

Each task composing the secondary task shares a memory. In this way it is pos-
sible to ensure that all tasks are executed in the right order: each task has to put
inside the memory the information to be retrieved by the next task to be executed
so that a task cannot be carried out until the previous task has not been accom-
plished (i.e. letters have to be inserted in the correct order).

Moreover, each task composing the secondary task must have the same cogni-
tive load, which has to be equal to the cognitive load of the unique task presented

95

CHAPTER 6. MODEL VALIDATION

above. Therefore, the difficulty of each task composing the secondary task is com-
puted according to the following equation:

dNEW =
CLOLD · (tNEW + δNEW)

tNEW
(6.1)

where:

• CLOLD is the cognitive load of the “old” unique task presented above (com-
puted with Equation 4.1);

• tNEW is the durationof the “new” (single) tasks, which equals to theduration
of the unique task (set according to the average duration for each combina-
tion of the number of letters and keys);

• δNEW is the delay of the “new” (single) tasks, set according to the timewhich
has to elapse from the beginning of the simulation in order that each letter
appears.

Therefore, we implement the secondary task as a sequence of separate tasks, whose
length is equal to the number of letters to be inserted. Each task is composed of a
single basic task, whose duration is the average duration for a given combination of
number of letters and keys, according to the duration presented inTable 6.1.4. The
difficulty of the secondary tasks is computed with Equation 6.1; their criticality is
set to 0.1.

For instance, a secondary task where the user (with high PCU) has to insert 4
letters with a single keyboard in 18 seconds would be defined through the follow-
ing unique task:

⟨noinfo | letter1 ⇒ findL1 | noInfo duration 1.2 difficulty 6 delay 0
⟨noinfo | letter2 ⇒ findL2 | noInfo duration 1.2 difficulty 6 delay 3.3
⟨noinfo | letter3 ⇒ findL3 | noInfo duration 1.2 difficulty 6 delay 3.3
⟨noinfo | letter4 ⇒ findL4 | noInfo duration 1.2 difficulty 6 delay 3.3

0.1, goal⟩

96

CHAPTER 6. MODEL VALIDATION

where:

• the duration 1.2 is set according to the table 6.1.4 for the tasks with 4 letters
and 4 keys for high PCU users;

• the delay of the second, third and fourth basic tasks is computed as the in-
terval of time between the appearance of two letters (18/4 = 4.5), minus
the duration of each action (1.2).

The cognitive load of such a unique task is equal to 1.96 (see Equation 4.1).
The translation of the task depicted above would be done with the following 4

tasks:

⟨noinfo | letter1 ⇒ findL1 | task2
duration 1.2 difficulty 1.96 delay 0, 0.1, goal1⟩

⟨task2 | letter2 ⇒ findL2 | task3
duration 1.2 difficulty 9.31 delay 4.5, 0.1, goal2⟩

⟨task3 | letter3 ⇒ findL3 | task4
duration 1.2 difficulty 16.66 delay 9, 0.1, goal3⟩

⟨task4 | letter4 ⇒ findL4 | noInfo
duration 1.2 difficulty 24.01 delay 13.5, 0.1, goal4⟩

where the difficulty of each task is computed with Equation 6.1

Simulation Settings

In total, we implement 108 different tests for each combination of PCU levels (3),
levels of cognitive load (18), and level of criticality (2). For each of these combi-
nations, we perform 1000 simulations and we compute the average value for the
time to complete the simulated secondary task and the maximum time the simu-
lated main task is ignored.

It is worth to note that the simulated tests are approximation of the real users
performance. For instance, by modelling the secondary task as a single basic task
where the user finds and push the right letter in the keyboard, we cannot simulate

97

CHAPTER 6. MODEL VALIDATION

the case where a user goes backward and forward from the main task to the sec-
ondary task, to check if the next letter appeared. However, we extract such time
from the time passed on the secondary task, and we add it to the time passed on
the main task.

6.3 Results

A simulation consists in the execution of both simulated tasks concurrently and
we perform 1000 simulations for each of the 6 groups presented above. Namely
during a simulation are executed 18 different tests (one for each level of CL of the
secondary task), where the main task has a given criticality according to which of
the 2 criticality subgroups we are simulating, and the secondary task has precise
durations and difficulties according to which of the 3 PCU groups we are simulat-
ing. We perform each simulation in order to check if the “simulated users” behave
as the real users. In particular, we observe:

1. If the time passed on the main task with respect to the time passed on the
secondary task is equal to that observed in the data;

2. If the number of errors in themain task follows the same distribution of the
one observed in the data;

3. If the number of errors in the secondary task follows the same distribution
of the one observed in the data.

The time passed on the main task respect to the time passed on the secondary
task is what we called criticality in Section 6.1.4.

As regard the main task, we know that it fails as soon as the black pellet reaches
one of the red rings, andwe know that theminimumnumber of steps for the pellet
to reach a red ring (starting from the green one) is 4 steps; the longer such a task
is ignored, the higher is the probability to fail. We thus consider the maximum
wait time of the main task – namely the time it has been ignored – as a measure

98

CHAPTER 6. MODEL VALIDATION

of the probability to fail it: the higher is the maximum wait time, the higher is the
probability.

On the other hand, for the secondary task we consider the time its last task has
been executed and finished and we compare such time with the total duration of
the task: the higher is such value, the higher is the probability that the secondary
task has failed.

Regarding the number of errors observed from data, it is worth to note that it
is particularly low and it can be subject to statistical noise. Therefore, we concen-
trate on the criticality and as regards the errors (for both the main task and the
secondary task) we analyse if the simulated trend is similar to the real trend.

Criticality

As regards the criticality, we consider the final time of the secondary task as the
final time of the entire test (namely the time to perform both tasks), we subtract
to such time the duration of each task composing the secondary task (namely the
time to perform the secondary task), and we finally compute the percentage of
time the simulated test has passed on the main task. We compute the average of
such measures for the entire simulation, for each of the six groups.

As shown in Figure 6.3.1 the time simulated users pass on the main task is very
close to the time real users pass on themain task: errors go from−0.2% to+3.3%

Tasks Fails

As regards the errors on the main task, we compute the average of the maximum
wait time for the main task of the entire simulation, for each of the six groups, and
we compare such measures with the average number of errors for each of the six
group.

As shown in Figure 6.3.2 the probability to fail the main task decreases as the
level of PCU increases, as well as the number of errors (see Figure 6.3.3) which

99

CHAPTER 6. MODEL VALIDATION

Figure 6.3.1: Time on task T1 for simulated and real users.

Figure 6.3.2: Average wait time when varying PCU.

100

CHAPTER 6. MODEL VALIDATION

Figure 6.3.3: Average number of errors for T1.

decreases as the users’ PCU increases.
The probability to fail themain task decreases as well as the criticality increases,

and such trend is observed also in the data. Finally, as shown in Figure 6.3.4 and in
Figure 6.3.5, the probability of fail and the average number of errors decrease for
each of the six groups as the PCU decreases and the criticality passes from low to
high.

Regarding the errors on the secondary task, we subtract the final duration of the
secondary simulated task to the total duration of the task and we compute the av-
erage of such measures for the entire simulation, for each of the six groups.

Also in this case, we notice a decrease of the probability of errors in the sec-
ondary taskwhen thePCU level increases, and a growth in the probability of errors
when the criticality increases. We observe the same trend in the data.

101

CHAPTER 6. MODEL VALIDATION

Figure 6.3.4: Average wait time for simulated tasks for each group.

Figure 6.3.5: Average number of errors for T1 for each group.

102

7
Real-TimeMaude Framework

Thischapter presentsourReal-TimeMaude implementationof the formalmodel
presented in Chapter 4 [20]. The full executable specification is available at http:
//www.di.unipi.it/msvbio/software/HumanMultitasking.html.

As previously mentioned in Chapter 2, Real-Time Maude is a rewriting-logic
based language and simulation and model checking tool. The specification lan-
guage is a high level language whose expressiveness enables us to easily define
structured objects such as interfaces, tasks and working memory.

Moreover, the specification formalism is especially used to model and analyse
distributed real-time systems, since the tool provides a range of timed formal anal-
ysis methods (such as timed rewriting for simulation, timed reachability analysis,
timebounded linear temporal logicmodel checking, and timedcomputational tree
logicmodel checking), which are particularly suitable for our purposes. Indeed, in

103

http://www.di.unipi.it/msvbio/software/HumanMultitasking.html
http://www.di.unipi.it/msvbio/software/HumanMultitasking.html

CHAPTER 7. REAL-TIME MAUDE FRAMEWORK

our analysis, we focus on different timing aspects and issues of safety-critical hu-
manmultitasking, e.g. for how long a user could ignore a safety-critical task, or if it
is possible that a user ignores a critical task in a crucial moment, or again how long
does a user take to finish a critical task.

Furthermore, performinganalysiswithReal-TimeMaude seems reasonable since
in such safety-critical human multitasking context the states’ space is tractable.
Considering that the set of the states is proportional to the number of parallel tasks
and their duration, and the number of tasks that a real user can perform concur-
rently is limited.

Unfortunately, Real-TimeMaude is not a probabilistic language. We could have
used the probabilistic specification language PMaude and a model checking tool
such as PVeStA [2]. However, such tools would require to manage the time as-
pects and analyses by hand. We then leave this extension as part of the future
work and we make a deterministic approximation of the probabilistic aspects of
the model.

Wemodel safety-critical humanmultitasking in an object-oriented style, where
the configuration consists of a number of Interface objects, representing the
interfaces of the devices with which the user interacts, a Task object inside each
Interface object, defining the task that the user wants to perform on that inter-
face, and a WorkingMemory object, representing the user’s working memory. We
present the Maude specification of such classes in Sect. 7.1.

We formalise the choice of tasks to be executed through two functions (rank
and bestRank), which we present in Sect. 7.2.

Finally, we model the dynamic behaviour of the system as a set of rewrite rules,
which are presented in Sect. 7.3.

Some aspects of the formal model presented in Chapter 4 have been modelled
differently in Real-Time Maude:

• We model interfaces on which users can perform a single task at a time,
therefore each Interface object can only have one Task object inside it.

• InChapter 4wemodel the selection of the task to be executed next with the

104

CHAPTER 7. REAL-TIME MAUDE FRAMEWORK

probabilityΦ, proportional to the factor α of each task (that is a measure of
how much the task attracts the user attention). Since Real-Time Maude is
not a probabilistic language, we model such a selection in a deterministic
way: each interface is characterised by a rank (which is actually equal to
the α factor), and the task/interface selection is performed by the function
bestRank , which deterministically selects the interface with highest rank
in the configuration.

• When the working memory overloads, in the formal model it is deleted an
information from the memory associated with an interface chosen with a
probability proportional to its wait time. Since Real-Time Maude is not
a probabilistic language, we model such a choice in a deterministic way.
Given that maintaining information in working memory requires the user
attention, and the user attention is on the current task, one information re-
lated to other interfaces is nondeterministically forgotten first. If there is no
information in thememories of the other interfaces, an information related
to the current interface is forgotten.

• Since herewemodel a singleTaskobject inside eachInterfaceobject, the
memory associated with each interface is not shared among different tasks.
For such a reason, every time a task goal is achieved, thememory associated
with the interface onwhich such a task is executed is emptied, given that the
interaction with that interface is completed.

• Each task in Real-Time Maude has a parameter status (not present in the
formal model presented in Chapter 4), added for analysis purposes.

• Weadd the ruletimeout tomodel thepossible expirationof the timeout as-
sociatedwith an interface state. In such a case, the task is simply abandoned
thus the task status becomes abandoned.

105

CHAPTER 7. REAL-TIME MAUDE FRAMEWORK

7.1 Classes

We first model a set of sorts that must be defined by the modeller when using the
framework.

fmod PARAMETER-SORTS is
sorts Action Cognition BasicInfo Perception InterfaceId .

endfm

--- ACTIONS
fmod ACTION is including PARAMETER-SORTS .

sort DefAction . --- actions plus "noAction"
subsort Action < DefAction .
op noAction : -> DefAction [ctor] .

endfm

Interface

We model the interfaces as transition systems, where the states are given by what
users perceive them to be, and they might be subject to a timeout, capturing the
fact that they can expire.

We represent interface’s states as a terms of the sort InterfaceStatepresented
in what follows.

sorts InterfaceState Perception ExpPerception .
subsort Perception < ExpPerception < InterfaceState .
op _for time_ : Perception TimeInf ->

InterfaceState [right id: INF] .
op expired : Perception -> ExpPerception .

Perception and expired perceptions are subsorts of interface states. The term p for
time t denotes that the user will perceive p for time t, after which the perception
becomes expired(p).

As regards the interface transitions, wemodel themas a ‘;’-separated set of single
interface transitions.

sorts InterfaceTransition InterfaceTransitions .
subsort InterfaceTransition < InterfaceTransitions .

106

CHAPTER 7. REAL-TIME MAUDE FRAMEWORK

--- single transition:
op _--_-->_ : Perception DefAction InterfaceState ->

InterfaceTransition .

--- sets of transitions:
op noTransition : -> InterfaceTransitions .
op _;_ : InterfaceTransitions InterfaceTransitions ->

InterfaceTransitions [assoc comm id: noTransition] .

An interface is represented as an object instance of following class.

class Interface | task : Object,
transitions : InterfaceTransitions ,
previousAction : DefAction,
currentState : InterfaceState .

where the attribute transitions denotes the transitions of the interface; task
denotes the task object representing the task that the user will perform on the in-
terface; previousAction is the previous action performed on the interface (use-
ful for analysis purposes); and currentState is the current state of the interface.

Task

Unlike the formal model presented in Chapter 4, in the Real-Time Maude frame-
work, each interface can only have one task object inside it. We model a task as a
‘::’-separated sequence of subtasks, where each subtask is modeled as a sequence
of basic tasks.

sorts BasicTask Subtask Task .
subsort BasicTask < Subtask < Task .

--- BasicTasks:
op _|_==>_|_duration_difficulty_delay_ :

Information Perception DefAction Information
Time PosRat Time -> BasicTask .

--- Subtask is a list of BasicTasks:
op nil : -> Subtask .
op __ : Subtask Subtask -> Subtask [assoc id: nil] .

--- Task is a list of subTasks:
op emptyTask : -> Task .

107

CHAPTER 7. REAL-TIME MAUDE FRAMEWORK

op _::_ : Task Task -> Task [assoc id: emptyTask] .

A task is represented as an object instance of the following class.

class Task | subtasks : Task,
waitTime : Time,
status : TaskStatus,
cognitiveLoad : Rat,
criticalityLevel : PosRat .

where the subtasks attribute denotes the remaining sequence of subtasks to be
performed; the attribute waitTime denotes how long the task has not been exe-
cuted; the attribute cognitiveLoad is the cognitive load of the current subtask;
criticalityLevel is the task’s criticality; and, finally, the attribute status de-
notes the “status” of the task, which can be notStarted, ongoing, abandoned, or
completed.

It is worth to note that here we memorise for each task in the configuration, a
value for the time it has not been executed; while, in the formal model we memo-
rise the last time a task has been executed (namely its timestamp) in the map TS
andwe compute the same information dynamically asGC−TS(I, i) (i.e. the value
of the global clock minus the timestamp of the i-th task of the interface I).

Working Memory

As in the formal model (Sect. 4.1.2), we model the working memory as a map
assigning to each interface a set of information useful to interact with it. Wemodel
it as an object instance of the class presented in what follows.

class WorkingMemory | memory : Memory,
capacity : NzNat .

Elements in memory could be an basic information, a cognition or a goal: each of
them are subsort of the sort Information.

sorts BasicInfo Cognition Goal Information .
subsorts Cognition Goal BasicInfo < Information .

op goal : Action -> Goal .

108

CHAPTER 7. REAL-TIME MAUDE FRAMEWORK

As regards the data type Memory,we define it as follows.

sort InfoSet .
subsort Information < InfoSet .

op noInfo : -> Information .
op __ : InfoSet InfoSet -> InfoSet [assoc comm id: noInfo] .

sort Memory .
op noMemory : -> Memory .
op _|->_ : InterfaceId InfoSet -> Memory .
op _;_ : Memory Memory -> Memory [assoc comm id: noMemory] .

7.2 Ranking Function

Asmentioned in Chapter 4 (Sect. 4.1.1), each task is characterised by an attention
attraction factor α, whichmeasures the likelihood that the taskwill attract theuser’s
attention. We then compute a probabilityΦ for each task, denoting the probability
that such task will be executed (see Equation 4.9).

Since Real-Time Maude is not a probabilistic language, we simplify the choice
of the next task to be executed andwemodel it in a deterministic way, by using two
functions : rank and bestRank.

Essentially, we assign to each interface a rank factor, computed exactly as the α-
factor (see Equation 4.4). The task associated with the interface with the highest
rank in the configuration is the one that will be executed.

The function rank is defined in Listing 7.1.

var I : InterfaceId . var TASK : Oid .
vars INF1 INF2 : Information . var P1 : Perception .
var DACT : DefAction . var NZT : NzTime .
vars PR PR2 : PosRat . vars T T2 : Time .
var BTL : Subtask . var OTHER-SUB-TASKS : Task .
var CL : Rat . var ACT : Action .
var INFO-SET : InfoSet . var MEMORY : Memory .

op rank : NEConfiguration Memory -> PosRat .
eq rank(< I : Interface | task :

< TASK : Task | subtasks : ((INF1 | P1 ==> DACT | INF2
duration NZT difficulty PR delay T2)

109

CHAPTER 7. REAL-TIME MAUDE FRAMEWORK

BTL) :: OTHER-SUB-TASKS,
waitTime : T,
cognitiveLoad : CL,
criticalityLevel : PR2 > >,

(I |-> goal(ACT) INF-SET) ; MEMORY) =
if T2 == 0

then PR2 * CL * (T + 1)
else 0 fi .

eq rank(< I : Interface | >, MEMORY) = 0 [owise] .

Listing 7.1: Rank function.

It specifies that when the task is not pausing (line 17 in Listing 7.1), and it has a
goal in memory associated with it (line 16), the rank is computed as the product
of the criticality level PR2 of the task, the cognitive load CL of the current subtask,
and the waiting time T of the task (line 18). Otherwise, the rank is equal to 0, and
the task is not executed (lines 19-20).

A function bestRank is used to calculate the task with the highest rank. The
function uses the max function defined in Maude (line 7 in Listing 7.2).

var OBJECT : Object .
var MEMORY : Memory .
var NEC2 : NEConfiguration .

op bestRank : NEConfiguration Memory -> PosRat .
eq bestRank(OBJECT, MEMORY) = rank(OBJECT, MEMORY) .
eq bestRank(OBJECT NEC2, MEMORY) =

max(rank(OBJECT, MEMORY), bestRank(NEC2, MEMORY)) .

Listing 7.2: bestRank function.

7.3 Rewrite Rules

This section presents a set of rewriting rules, representing the semantics of the for-
mal model (Sect. 4.2).

110

CHAPTER 7. REAL-TIME MAUDE FRAMEWORK

Interacting

As already mentioned, the interacting rewrite rule models a user action per-
formed on the interface. We present the Real-Time Maude specification of such a
rule in Listing 7.3.

crl [interacting] :
{OTHER-INTERFACES
< I : Interface | task :

< TASK : Task | subtasks : ((INF1 | P1 ==> DACT | INF2
duration NZT difficulty PR delay 0)

OTHER-BASIC-TASKS) :: OTHER-SUB-TASKS,
waitTime : T1,
cognitiveLoad : CL,
criticalityLevel : PR2,
status : TS >,

transitions : (P1 -- DACT --> (P2 for time TI2)) ;
TRANSES,

currentState : (P1 for time TI),
previousAction : DACT2 >

< WM : WorkingMemory | memory : MEMORY ; (I |-> INF1 goal(ACT)
INFO-SET),

capacity : CAP >}
=>

{idle(OTHER-INTERFACES, NZT)
< I : Interface | task :

< TASK : Task | subtasks :
(if OTHER-BASIC-TASKS =/= nil

then (OTHER-BASIC-TASKS :: OTHER-SUB-TASKS)
else OTHER-SUB-TASKS fi),

waitTime : 0,
status : (if TS == notStarted

then ongoing
else TS fi),

cognitiveLoad : (if OTHER-BASIC-TASKS =/= nil
then CL

else cogLoad(first(OTHER-SUB-TASKS)) fi) >,
currentState : (P2 for time TI2),
previousAction : DACT >

< WM : WorkingMemory | memory : MEMORY ; (I |-> INF2 goal(ACT) INFO
-SET) >}

in time NZT
if (DACT =/= ACT) /\ (DACT =/= noAction)
/\ card(MEMORY ; (I |-> INF2 goal(ACT) INFO-SET)) <= CAP
/\ rank(< I : Interface | >, (MEMORY ; (I |-> INF1 goal(ACT) INFO-

SET))) == bestRank((< I : Interface | >) OTHER-INTERFACES, (

111

CHAPTER 7. REAL-TIME MAUDE FRAMEWORK

MEMORY ; (I |-> INF1 goal(ACT) INFO-SET))) .

Listing 7.3: Interacting rule.

As the specification shows the rule models the execution of a basic task of the in-
terface with the highest rank (line 35 in Listing 7.3), if the action to be performed
is not the goal action and it is different from noAction (line 33), if the application
of the rule does not cause a memory overload (line 34), and if the first basic task
and one of the interface transitions synchronise (line 4, 10). When the user per-
ceives that the interface is on state P1 (line 4) and he has the information INF1 in
memory (line 13), then he can perform the action DACT (line 4). After that:

• the basic task executed is removed from the configuration (lines 18, 21);

• the waitTime of the task is set to 0 since it has been just executed (line 22);

• if the task had not started yet, its status changes from ”notStarted” to ”on-
going” (lines 23, 25);

• the cognitiveLoad is properly recomputed if the basic task just executed
was the last one of a subtask (lines 26, 28);

• the currentState of the interface and its previousAction are updated
(lines 29 - 30);

• the information INF1 is replaced by the information INF2 in the memory
associated with the selected interface (line 31).

The duration of the rule is specified by the duration of the basic task executed,
NZT (line 32). During that time, all other interfaces in configuration idle (line 16).
The Real-Time Maude specification of the function idle is presented in Listing
7.4.

op idle : Configuration Time -> Configuration .
eq idle(none, T) = none .
eq idle(< I : Interface | task :

< TASK : Task | subtasks : ((INF1 | P1 ==> DACT | INF2
duration NZT difficulty PR delay T2)

112

CHAPTER 7. REAL-TIME MAUDE FRAMEWORK

OTHER-BASIC-TASKS) :: OTHER-SUB-TASKS,
waitTime : T3 >,
currentState : IS > REST, T)

= < I : Interface | task :
< TASK : Task | subtasks : ((INF1 | P1 ==> DACT | INF2

duration NZT difficulty PR delay (T2 monus T))
OTHER-BASIC-TASKS) :: OTHER-SUB-TASKS,

waitTime : T3 + (T monus T2) >,
currentState : idle(IS, T) > idle(REST, T) .

--- finished tasks: waitTime stays 0 in this case
eq idle(< I : Interface | task : < TASK : Task | subtasks : emptyTask

, waitTime : T3 >, currentState : IS > REST, T)
= < I : Interface | task : < TASK : Task | waitTime : 0 >,

currentState : idle(IS, T) > idle(REST, T) .

--- InterfaceState expiration time
op idle : InterfaceState TimeInf -> InterfaceState .
eq idle(P1 for time TI, T) = if T < TI then P1 for time (TI monus T)

else expired(P1) fi .
eq idle(expired(P1), T) = expired(P1) .

Listing 7.4: Idle function.

1. The delay of the first basic task of all other interfaces decreases according
to the time elapsed (line 9 in Listing 7.4);

2. The waitTime of all other interfaces increases with the time elapsed (line
11) unless the task is not finished, in such case, it is set to 0 (lines 15 - 16);

3. Theremaining timeuntil the states expiration in all other interfacesdecreases
according to the time elapsed (lines 20 - 21).

Cognitive

The cognitive rewrite rule models a cognitive basic task.

crl [cognitive] :
{OTHER-INTERFACES
< I : Interface | task : < TASK : Task | subtasks : ((INF1 | P1
==> DACT | COG2 duration NZT difficulty PR delay 0) OTHER-BASIC-
TASKS) :: OTHER-SUB-TASKS,

113

CHAPTER 7. REAL-TIME MAUDE FRAMEWORK

waitTime : T1,
cognitiveLoad : CL,
criticalityLevel : PR2,
status : TS > >

< WM : WorkingMemory | memory : MEMORY ; (I |-> INFO-SET INF1 goal
(ACT)),

capacity : CAP >}
=>

{idle(OTHER-INTERFACES, NZT)
< I : Interface | task : < TASK : Task | subtasks :

(if OTHER-BASIC-TASKS =/= nil
then OTHER-BASIC-TASKS :: OTHER-SUB-TASKS

else OTHER-SUB-TASKS fi),
waitTime : 0,

status : (if TS == notStarted
then ongoing

else TS fi),
cognitiveLoad : (if OTHER-BASIC-TASKS =/= nil

then CL
else cogLoad(first(OTHER-SUB-TASKS)) fi) >>

< WM : WorkingMemory | memory : MEMORY ; (I |-> INFO-SET COG2 goal
(ACT)) >}

in time NZT
if (DACT =/= ACT) /\ DACT == noAction
/\ card(MEMORY ; (I |-> INFO-SET COG2 goal(ACT))) <= CAP
/\ rank(< I : Interface | >, (MEMORY ; (I |-> INF1 goal(ACT) INFO-

SET))) == bestRank((< I : Interface | >) OTHER-INTERFACES, (
MEMORY ; (I |-> INF1 goal(ACT) INFO-SET))) .

Listing 7.5: Cognitive rule.

Here again, the rule models the execution of a basic task with the interface with
the highest rank (line 24 in Listing 7.5), if the action to be performed is not the
goal action and it is equal to noAction (line 22), and if the application of the rule
does not cause amemory overload (line 23). However, in this case the rulemodels
a human cognition with no involvement of the interface, where the user replaces
the information INF1with the cognition COG2 (line 20). Also in this case, the ba-
sic task just executed is removed from the configuration (line 12), the waitTime
is set to 0, and the status and the cognitiveLoad of the task change as in the
interacting rule (lines 13 - 19). The duration of the rule is specified by the du-
ration of the basic task, NZT (line 21), during which all other interfaces idle (line

114

CHAPTER 7. REAL-TIME MAUDE FRAMEWORK

10).

Closure

The closure rule models the achievement of the goal by the user.

crl [closure] :
{OTHER-INTERFACES
< I : Interface | task : < TASK : Task | subtasks : ((INF1 | P1 ==>

ACT | INF2 duration NZT difficulty PR delay 0) OTHER-BASIC-TASKS
) :: OTHER-SUB-TASKS,

waitTime : T1,
cognitiveLoad : CL,
criticalityLevel : PR2,
status : TS >,

transitions : (P1 -- DACT --> (P2 for time
TI2)) ; TRANSES,

currentState : (P1 for time TI),
previousAction : DACT2 >

< WM : WorkingMemory | memory : MEMORY ; (I |-> INFO-SET INF1 goal
(ACT)) >}

=>
{idle(OTHER-INTERFACES, NZT)
< I : Interface | task : < TASK : Task | subtasks : (if OTHER-
BASIC-TASKS =/= nil then (OTHER-BASIC-TASKS :: OTHER-SUB-TASKS)
else OTHER-SUB-TASKS fi),

waitTime : 0,
cognitiveLoad : CL,
status : completed >,

currentState : (P2 for time TI2),
previousAction : ACT >

< WM : WorkingMemory | memory : MEMORY ; (I |-> INFO-SET INF2) >}
in time NZT

if rank(< I : Interface | >, (MEMORY ; (I |-> INFO-SET INF1 goal(ACT)
))) == bestRank((< I : Interface | >) OTHER-INTERFACES, (MEMORY ;
(I |-> INFO-SET INF1 goal(ACT)))) .

Listing 7.6: Closure rule.

Therule is quite similar to the previous ones, but in this case, the action to perform
must be the goal action and we do not care about the memory overload since after
performing the action no information useful for the interaction will be added in
memory (since the interaction is completed). After the execution of the goal ac-

115

CHAPTER 7. REAL-TIME MAUDE FRAMEWORK

tion the goal is removed from memory (line 20 in Listing 7.6) and the status is
updated to completed(line 17).

Forgetting

When the execution of the basic task exceeds the capacity of theworkingmemory,
an item must be forgotten, to make room to the new information.

In the forgetting rule presented in Section 4.2.2, it is deleted an information from
thememory associatedwith an interface chosenwith a probability proportional to
its wait time, in Real-Time Maude we simplify this mechanism given that it is not
a probabilistic language. Sincemaintaining information inWM requires the user’s
attention and the user attention is on the current task, one information related to
the other interfaces is nondeterministically forgotten first. However, if there are no
information related to the other interfaces, an information related to the current
interface is forgotten.

We thus model two kinds of rule for the case where the WM overloads while
executing a user action, and two kinds of rule for the casewhere theWMoverloads
while executing a cognitive basic task. Essentially we have 4 different situations to
model:

1. The memory overloads for the addition of a basic information

(a) one information related to other interfaces is forgotten

(b) one information related to the current interface is forgotten

2. The memory overload for the addition of a cognition

(a) one information related to other interfaces is forgotten

(b) one information related to the current interface is forgotten

The rules which model the situation depicted in item 1 above and the situation
depicted in item 2 above are quite similar (except for the type of information that
leads to the working memory overload and for the type of basic task that will be

116

CHAPTER 7. REAL-TIME MAUDE FRAMEWORK

performed). We will show just two of these rules: the ones modelling the situa-
tions depicted in item 1 (a) and item 1 (b).

The following Listing shows how we model the case when an information re-
lated to other interfaces is forgotten .

crl [interactingForgetSomethingOtherInterface] :
{ . . . < I : Interface | task : < TASK : Task | . . . > . . . >
< WM : WorkingMemory | memory : MEMORY ;

(I |-> INF1 goal(ACT) INFO-SET) ;
(I2 |-> INF3 INFO-SET2),
capacity : CAP >}

=>
{ . . . < I : Interface | task : < TASK : Task | . . . > . . . >
< WM : WorkingMemory | memory : MEMORY ;

(I |-> INF2 goal(ACT) INFO-SET) ;
(I2 |-> INFO-SET2) >}

in time NZT
if (DACT =/= ACT)
/\ card((I2 |-> INF3 INFO-SET2)) =/= 0
/\ card(MEMORY ; (I |-> INF2 goal(ACT) INFO-SET) ; (I2 |-> INF3 INFO-

SET2)) > CAP
/\ card(MEMORY ; (I |-> INF2 goal(ACT) INFO-SET) ; (I2 |-> INFO-SET2)

) <= CAP
/\ rank(< I : Interface | >, (MEMORY ; (I |-> INF1 goal(ACT) INFO-

SET) ; (I2 |-> INF3 INFO-SET2))) == bestRank((< I : Interface |
>) OTHER-INTERFACES, (MEMORY ; (I |-> INF1 goal(ACT) INFO-SET) ;
(I2 |-> INF3 INFO-SET2))) .

Listing 7.7: Rule for forgetting information related to other interfaces.

Since the Memory is associative and commutative, any memory item INF3 related
to any interface I2 different from I could be forgotten (lines 5, 11 in Listing 7.7).
As the specification shows, the rule is applied if the cardinality of the memory re-
lated to any other interface I2 in the configuration is different from 0, i.e. there are
information related to other interfaces (line 14); if the execution of the basic task
would exceed thememory capacity (line 15); and if the removal of an information
would solve the memory overload (line 16).

On the other hand, the following Listing shows how we model the case where
there are no information related to other interfaces in the configuration (line 12

some parts of the rule are replaced by ‘. . .’

117

CHAPTER 7. REAL-TIME MAUDE FRAMEWORK

of Listing 7.8), in this case an information is forgotten from the current interface
(line 9).

crl [interactingForgetSomethingCurrentInterface] :
{ . . . < I : Interface | task : < TASK : Task | . . . > . . . >
< WM : WorkingMemory | memory : MEMORY ;

(I |-> INF1 goal(ACT) INF3 INFO-SET),
capacity : CAP >}

=>
{ . . . < I : Interface | task : < TASK : Task | . . . > . . . >
< WM : WorkingMemory | memory : MEMORY ;

(I |-> INF2 goal(ACT) INFO-SET) >}
in time NZT

if (DACT =/= ACT)
/\ card(MEMORY) == 0
/\ card((I |-> INF2 goal(ACT) INF3 INFO-SET)) > CAP
/\ rank(< I : Interface | >, (MEMORY ; (I |-> INF1 goal(ACT) INF3

INFO-SET))) == bestRank((< I : Interface | >) OTHER-INTERFACES, (
MEMORY ; (I |-> INF1 goal(ACT) INF3 INFO-SET))) .

Listing 7.8: Rule for forgetting information related to the current
interface.

All idling

If all tasks in configuration are pausing (i.e. the first basic tasks of each task have a
delay higher than 0), the time advances until almost one of the delays reaches 0.
The following Listing shows how we model such situation.

crl [tickAllIdling] :
{ALL-INTERFACES
< WM : WorkingMemory | memory : MEMORY ; (I |-> goal(ACT) INFO-SET)

>}
=>

{idle(ALL-INTERFACES, MIN-DELAY)
< WM : WorkingMemory | >}
in time MIN-DELAY

if MIN-DELAY := minDelay(ALL-INTERFACES) .

Listing 7.9: Rule for idling all interfaces.

118

CHAPTER 7. REAL-TIME MAUDE FRAMEWORK

The function minDelay (line 8 of Listing 7.9, line 6 of Listing 7.10) returns the
lowest delay in the configuration, using the min function defined inMaude (line 8
in Listing 7.10).

--- OPERATOR delay
op delay : Object -> TimeInf .
eq delay(< I : Interface | task : < TASK : Task | subtasks : (((INF1

| P1 ==> DACT | INF2 duration NZT difficulty PR delay T4) OTHER-
BASIC-TASKS)) :: OTHER-SUB-TASKS > >) = T4 .

--- OPERATOR minDelay
op minDelay : NEConfiguration -> TimeInf .
eq minDelay(OBJECT) = delay(OBJECT) .
eq minDelay(NEC1 NEC2) = min(minDelay(NEC1), minDelay(NEC2)) .

Listing 7.10: Function minDelay.

Timeout

Finally, our last rule models the expiration of the timeout which sometimes is as-
sociated to the interfaceState .

rl [timeout] :
{REST
< I : Interface | task : < TASK : Task | >,

currentState : expired(P1) >}
=>
{REST
< I : Interface | task : < TASK : Task | status : abandoned > >} .

Listing 7.11: Timeout rule.

The rule concerns only the interface with no involvement in the user’sWM: when
the currentState of the current interface I is expired, the status of the task
becomes abandoned(line 8 in Listing 7.11).

119

8
Case Studies

This chapter illustrates the application of our Real-Time Maude modelling and
analysis framework to three case studies to formally verify different safety-critical
multitasking situations: a person interacting with a GPS navigation device while
driving (Section 8.2), a medical operator setting multiple infusion pumps at the
same time (Section 8.3), and an operator of an air traffic control system (Section
8.4). These three case studies show different kinds of errors which might arise in
a safety-critical multitasking interaction, and they show that our approach can be
applied in different contexts. However, it is worth to note that we do not use real
data to define the parameters values, but values that are plausible in such a context
used to demonstrate that some situation can be reproduced.

Before presenting such case studies, we explain in Section 8.1 how to use Real-
Time Maude to analyse safety-critical human multitasking.

120

CHAPTER 8. CASE STUDIES

8.1 AnalysingHumanMultitaskingwith Real-TimeMaude

This section shows how Real-Time Maude can be used to analyse whether a user
or an operator is able to interact successfully with a set of devices for performing
multiple tasks. The properties analysed are of course highly dependent on the ini-
tial assumptions about the system that is being examined. In the thesis, we focus
on the following potential problems that could arise in multitasking situations:

1. A critical task might be ignored for too long since the user’s attention is ad-
dressed to other tasks;

2. One of the tasks, or a critical action, might be ignored in a crucial moment
since the user’s attention is addressed to other tasks/actions;

3. The concurrent use of the user’s WM might cause a memory overload and
consequentlymight lead theuser to forget someuseful information for com-
pleting successfully the interaction.

It is worth to remark that although at every step the task to be executed is deter-
ministically chosen according with its rank, a model might still exhibit nondeter-
minism since:

• If two or more transitions of an Interface object are defined for the cur-
rent state and action (possibly leading to different next states) one of them
is chosen nondeterministically (see interacting rule in Sect. 7.3);

• At a certain step, more than one interface might have the same best rank,
in which case the task to be given attention is selected nondeterministically
among those best-ranked tasks (see interacting rule in Sect. 7.3);

• When memory overloads, the memory item that is forgotten is selected
nondeterministically (see forgetting rule in Sect. 7.3);

Therefore, we need to analyse whether the desired properties hold for a set of
interfaces/tasks, by checking all possible behaviours that might nondeterministi-

121

CHAPTER 8. CASE STUDIES

cally take place from the initial state. To do so, we use Real-Time Maude reacha-
bility analysis and analyse whether it is possible to reach a (possibly final) state in
which a desired property is violated.

8.1.1 Initial State

The initial state should have the following form:

{initializeCognLoad(
< wm : WorkingMemory | memory :

interface1 |-> goal(act1) otherItems1 ;
... ;
interfacen |-> goal(actn) otherItemsn,

capacity : capacity >
< interface1 : Interface | task :

< task1 : Task | subtasks : (b111 ... b111) :: ... :: (b1m1 ... b1mj
),

waitTime : 0, cognitiveLoad : 0,
criticalityLevel : cl1, status : notStarted >

transitions : trans1,
previousAction : noAction,
currentState : perc1 >

...
< interfacen : Interface | task :

< taskn : Task | subtasks : ..., waitTime : 0,
cognitiveLoad : 0, criticalityLevel : cln,
status : notStarted >

transitions : transn,
previousAction : noAction,
currentState : percn >)}

Listing 8.1: Initial state.

where interfacek is the name of the k-th interface in the configuration; taskk is the
task to be performedwith/on interfacek; bkij

is the j-th basic task of the i-th subtask
of taskk; clk is the criticality level of taskk; transk are the transitions of interfacek;
actionk is the goal action to be achieved with interfacek; otherItemsk are other items
initially present in the memory for interfacek; perck is the initial state of interfacek;
and capacity is the number of items that can be stored in working memory. The
cognitiveLoad attributes of all interfaces in the configuration are initialised by
the function initializeCognLoad , which computes the cognitive load of the
first subtask of each task.

122

CHAPTER 8. CASE STUDIES

8.1.2 Model Checking the Properties

The first key property to analyse is:

Is it possible that an enabled task t is ignored continuously for at least time Δ?

This property can be analysed in Real-Time Maude by checking whether it is pos-
sible to reach a “bad” state where the waitTime attribute of task t is at least Δ:

(utsearch [1] initialState =>*
{REST:Configuration
< I:InterfaceId : Interface | task :

< t : Task | waitTime : T:Time, A:AttributeSet > >}
such that T:Time >= Δ .

where the variable REST:Configuration matches the other objects in the state
and the variable A:AttributeSet captures the other attributes in inner objects.

The second key property is:

What is the longest time needed to perform a certain action a?

This can be analysed using Real-Time Maude’s find latest command, by find-
ing the longest time needed to reach a state where previousAction is a:

(find latest initialState =>*
{REST:Configuration
< I:InterfaceId : Interface | previousAction : a >}
with no time limit .)

We can also use the find latest command to find out if a task t is guaranteed
to finish before time Δ:

(find latest initialState =>*
{REST:Configuration
< I:InterfaceId : Interface | task :

< t : Task | status : completed, A:AttributeSet > >}
with no time limit .)

123

CHAPTER 8. CASE STUDIES

Another key property to analyse is:

Is it possible that the memory overload leads a task t to not be completed?

We can analyse it by searching for a “bad” final state where the status of the task t
is not completed:

(utsearch [1] initialState =>!
{REST:Configuration
< I:InterfaceId : Interface | task :
< t : Task | status : TS:TaskStatus, A:AttributeSet > >}

such that TS:TaskStatus =/= completed .)

If we want to analyse whether it is guaranteed that all tasks can be completed, we
just replace t in this command with a variable T:Oid.

If a safety-critical task cannot be completed, or completed in time, we can check
whether this is due to the task itself, or the presence of concurrent “distractor”
tasks, by analysing an initial state without the distractor tasks.

8.2 UsingGPSwhile Driving

Our first case study models a user who interacts with a GPS navigation system
while driving [16, 20]. The case study suggests that the interaction with the GPS
system could be too much demanding from a cognitive point of view, therefore
the GPS interface could be modified in order to have a less demanding task or a
mechanism which, under certain conditions (busy urban context, high speed of
the car), does not permit to the user to interact with the interface.

Afterpresenting theReal-TimeMaude specificationof the case study,wepresent
its analysis in Subsection 8.2.1.

Wemodel two interfaces: the car and theGPS.The task of driving is formalised
by the Task object presented in Listing 8.2.

124

CHAPTER 8. CASE STUDIES

< driving : Task | subtasks :
((noInfo | carOff ==> insertKey | keyInserted duration 1 difficulty

3/10 delay 0)
(noInfo | carOn ==> turnKey | noInfo duration 1 difficulty 2/10

delay 0)
(noInfo | carReady ==> startDrive | noInfo duration 1 difficulty

2/10 delay 2)) ::
((noInfo | straightRoad ==> straight | noInfo duration 1 difficulty

1/10 delay 3)
(noInfo | straightRoad2 ==> straight | noInfo duration 1 difficulty

1/10 delay 3)
(noInfo | curveLeft ==> turnLeft | noInfo duration 1 difficulty

4/10 delay 3)
(noInfo | curveRight ==> turnRight | noInfo duration 1 difficulty

2/10 delay 3)
(noInfo | straightRoad3 ==> straight | noInfo duration 1 difficulty

1/10 delay 3)
(noInfo | straightRoad4 ==> straight | noInfo duration 1 difficulty

1/10 delay 3)) ::
((noInfo | destination ==> stopCar | noInfo duration 2 difficulty

2/10 delay 2)
(keyInserted | carStopped ==> pickKey | noInfo duration 2

difficulty 1/10 delay 0)),
waitTime : 0, status : notStarted,
criticalityLevel : 6/10, cognitiveLoad : 0 >

Listing 8.2: Driving task.

The driving task consists of the three subtasks:

1. Start driving (lines 2 - 4 in Listing 8.2) consisting of the basic tasks of in-
serting the car key, turning on the ignition, and start driving;

2. Drive to destination (lines 5 - 10) described as a short trip during which
the driver wants to perform a basic driving action at most every three time
units;

3. Park and leave the car (line 11 - 12) consisting in stopping the car and re-
moving the key when the driver is arrived at the destination.

The interface of the car is formalised by the Interfaceobject presented in Listing
8.3.

125

CHAPTER 8. CASE STUDIES

< car : Interface | transitions :
(carOff -- insertKey --> carOn) ;
(carReady -- startDrive --> straightRoad) ;
(carOn -- turnKey --> carReady) ;
(straightRoad -- straight --> straightRoad2) ;
(straightRoad2 -- straight --> curveLeft) ;
(curveLeft -- turnLeft --> curveRight)\,;
(curveRight -- turnRight --> straightRoad3) ;
(straightRoad3 -- straight --> straightRoad4) ;
(straightRoad4 -- straight --> destination) ;
(destination -- stopCar --> carStopped) ;
(carStopped -- pickKey --> carOff),

task : ... ,
previousAction : noAction,
currentState : carOff >

Listing 8.3: Car interface.

For theGPS navigator, we assume that to enter the destination the user has to type
at least partially the address. The navigator then suggests a list of possible destina-
tions, among which the user has to select the right one. Therefore, the GPS task
consists of three subtasks: (i) start and choose city; (ii) type the initial k letters of
the desired destination; and (iii) choose the right destination among the options
given by the GPS.

If the user types the entire address of the destination, the navigator returns a
short list of possible matches; if he/she types fewer characters, the navigator re-
turns a longer list, making it harder for the user to find the right destination. We
consider two alternatives: (1) the driver types 13 characters and then searches for
the destination in a short list; and (2) the driver types just four characters and then
searches for the destination in a longer list. The GPS task for case (1) is modelled
by the Task object presented in Listing 8.4.

< findDestination : Task | subtasks :
((noInfo | gpsReady ==> typeSearchMode | noInfo duration 1

difficulty 1/10 delay 0)) ::
((noInfo | chooseCity ==> selectCity | noInfo duration 2 difficulty

5/10 delay 2)) ::
((noInfo | typing1 ==> typeSomething | noInfo duration 1 difficulty

3/10 delay 3)

126

CHAPTER 8. CASE STUDIES

(noInfo | typing2 ==> typeSomething | noInfo duration 1 difficulty
3/10 delay 0)

...
(noInfo | typing13 ==> pushSearchBtn | noInfo duration 1 difficulty

3/10 delay 0)) ::
((noInfo | searching ==> chooseAddress | noInfo duration 2

difficulty 2/10 delay 0)),
waitTime : 0, status : notStarted,
criticalityLevel : 3/10, cognitiveLoad : 0 >

Listing 8.4: GPS task.

Case (2) is modelled similarly, but with only four typing actions before pushing
the search button. In that case, the last basic task (choosing destination from a
larger list) has duration 5 and difficulty 6

10 .
The GPS interface in case (1) is defined by the Interface object presented in

Listing 8.5:

< gps : Interface | transitions :
(gpsReady -- typeSearchMode --> chooseCity) ;
(chooseCity -- selectCity --> typing1) ;
(typing1 -- typeSomething --> typing2) ;
(typing2 -- typeSomething --> typing3) ;

...
(typing13 -- pushSearchBtn --> searching) ;
(searching -- chooseAddress --> gpsReady),

task : ... , previousAction : noAction,
currentState : gpsReady >

Listing 8.5: GPS interface.

The initial state of the working memory is presented in Listing 8.6.

< wm : WorkingMemory | capacity : 5, memory :
(car |-> goal(pickKey)) ;
(gps |-> goal(chooseAddress)) >

Listing 8.6: Initial state of the working memory.

8.2.1 Analysis

Weuse the techniques inSection8.1 to analyseourmodels. Wefirst analysewhether
an enabled driving task can be ignored for more than six seconds:

127

CHAPTER 8. CASE STUDIES

Maude> (utsearch [1] {initState} =>*
{< car : Interface | task :
< driving : Task | waitTime : T:Time, A:AttributeSet > >

REST:Configuration}
such that T:Time > 6 .)

Real-Time Maude finds no such bad state when the driver types 13 characters:

No solution

However, when the driver only types four characters, the command returns a bad
state:

Solution 1
T:Time --> 7
...

The driver types the last two characters and finds the destination in the long list
without turning his/her attention to driving in-between.

Sometimes even a brief distraction can be dangerous. For instance, when the
road turns, a delay of seven time units in making the turn could be dangerous. We
check the longest time needed for the driver to complete the turnLeft action:

Maude> (find latest {initState} =>*
{< car : Interface | previousAction : turnLeft >
REST:Configuration }

with no time limit .)

Real-Time Maude shows that the left turn action is completed at time 24:

Result:
{< car : Interface | currentState : curveRight,

previousAction : turnLeft,
task : < driving : Task | cognitiveLoad : 1/24,

criticalityLevel : 3/5, status : ongoing,
subtasks :…, waitTime : 0 >,

transitions :… >
< gps : Interface | currentState : gpsReady,

128

CHAPTER 8. CASE STUDIES

previousAction : chooseAddress,
task : < findDestination : Task | cognitiveLoad : 3/5,

criticalityLevel : 3/10, status : completed,
subtasks : emptyTask, waitTime : 0 >,

transitions : … >
< wm : WorkingMemory | capacity : 5,

memory : car |-> keyInserted goal(pickKey) ;
gps |-> noInfo >}

in time 24

However, the same analysis with an initial state without the GPS interface object
and task shows that an undistracted driver finishes the left turn at time 17:

Result: { ... } in time 17

8.3 InteractingwithMultiple Infusion Pumps

This section illustrates the application of the framework to a case study based on
an experiment described in [7], where users were asked to interact with twomed-
ical devices [19]. The aim of the experiment was to study multitasking strategies
adopted by clinicians, to assess whether particular strategies could induce omis-
sion errors, e.g. forgetting to perform a procedural step required to complete the
task.

In [56], Harrison et al. model and analyse the same case study. The results they
provide by the analysis of the case study are similar to our results, however their
analysis explains omission errors in terms of salience of information, resulting in
redesign solutions related to the visibility of specific user interface elements. Our
framework, on the other hand, provides a different view on the problem, showing
that certain omission errors could be interpreted in terms of CL – in these cases,
redesign solutions that simply enhance visibility of certain user interface elements
might not be sufficient to prevent the problem.

After a brief introduction to the case study, we give its Real-TimeMaude specifi-
cation in Subsection 8.3.1, we present the case study’s analysis in Subsection 8.3.2,

129

CHAPTER 8. CASE STUDIES

Figure 8.3.1: Example scenario with two infusion pumps.

and we finally present the model and the analysis of a redesign solution in Subsec-
tion 8.3.3.

The original experiment involved the use of two simulated infusion pumps (see
Figure 8.3.1). Infusion pumps are medical devices routinely used in hospitals to
inject fluids (e.g., drugs or nutrients) in the bloodstream of a patient in precise
amount and at controlled rates. The devices under consideration provide a front
panel with a display and a number of buttons used by clinicians to configure, op-
erate, and monitor the pump. To set up an infusion pump, clinicians are usually
required to perform five main steps:

• Step 1. Read infusion parameters, typically volume to be infused (vtbi) and
infusion duration or infusion rate, from a prescription chart;

• Step 2. Enter the infusion parameters using the data entry system provided
by the pump;

• Step 3. Connect the pump to the patient using a “giving set” (a transparent
plastic tube with a needle at one end, and a bag with fluid at the other end);

• Step 4. Open the roller clamp to allow the fluid to circulate;

• Step 5. Start the infusion.

130

CHAPTER 8. CASE STUDIES

Time Prescription Chart Pump 1 Pump 2

1 read vtbi1
2 read vtbi2
3 enter vtbi1
4 enter vtbi2
5 read time1
6 enter time1
7 open clamp1
8 read time2
9 enter time2

10 open clamp2
11 start infusion1
12 start infusion2

Table 8.3.1: A possible multitasking strategy for setting up two infusion
pumps.

Intensive care patients may be connected to more than one infusion pump at
the same time. When multiple infusion pumps need to be configured, clinicians
may choose to interleave the steps necessary for setting up the two pumps. This is
usually done to optimise cognitive resources (e.g., memory load), or time (e.g., to
perform operations on one pump while waiting that the other pump complete an
operation) [7].

Different multitasking strategies may produce different memory loads. An ex-
ample multitasking strategy for setting up the two pumps is shown in Table 8.3.1.
The question we consider is “What is the memory load necessary to complete a given
task successfully using a particular multitasking strategy?” An answer to this question
could help manufacturers design devices that are simpler to use. It could also be
used by hospitals, to develop better training material for clinicians. Academic re-
searcherswould also gain benefits, e.g., to test cognitive hypotheses before running
an experimental study.

131

CHAPTER 8. CASE STUDIES

8.3.1 Modelling of multitasking strategies

The model includes interfaces representing each pump. The concurrent tasks re-
late to the procedure for setting vtbi and time values for the two pumps. To set the
values, clinicians must read andmemorise the values provided by the prescription
chart, and then use the pumps’ data entry system to enter the values.

The specification of the task for setting up Pump 1 is shown in Listing 8.7 (the
task for setting up Pump 2 is specified the same way).

< settingPump1 : Task | subtasks :
((noInfo | prescriptionFormVtbiP1 ==> noAction|vtbi300 duration 1

difficulty 2/10 delay 0)
(vtbi300 | setVTBIP1 ==> type300 | noInfo duration 1 difficulty 2/10

delay 0)) ::
((noInfo | prescriptionFormTimeP1 ==> noAction|time3 duration 1

difficulty 2/10 delay 0)
(time3 | setTimeP1 ==> type3 | noInfo duration 1 difficulty 2/10
delay 0)) ::

((clampOpeningP1 | clampP1 ==> openClampP1|noInfo duration 1
difficulty 2/10 delay 0)) ::

((noInfo | infusionReadyP1 ==> startInfusionP1|noInfo duration 1
difficulty 2/10 delay 0)),

status : notStarted, cognitiveLoad : 0,
criticalityLevel : 6/10, waitTime : 0 >

Listing 8.7: Specification of the task for Pump1.

The task for setting Pump 1 consists of six basic tasks, grouped into four subtasks:

1. Read and memorise the vtbi value for pump 1 from the prescription chart
(line 1 in Listing 8.7);

2. Enter vtbi in pump 1 (line 2);

3. Read andmemorise the infusion duration for pump1 from the prescription
chart (line 3);

4. Enter infusion duration in pump 1 (line 4);

5. Open clamp 1 (line 5);

132

CHAPTER 8. CASE STUDIES

6. Start infusion (line 6).

The basic task at line 2 in Listing 8.7models a cognitive basic task: the operator
reads from the prescription chart the vtbi value for the pump 1, he/she finds out
that the value to be inserted is 300 and inserts into his/her working memory the
cognition vtbi300.

8.3.2 Analysis

To perform the analysis, two initial states are required which contain hypotheses
about the memory load necessary to complete the task. An example initial state is
in Listing 8.8, where x is the capacity of the WM (line 4).

< wm : WorkingMemory | memory :
(pump1 |-> goal(startInfusionP1) clampOpeningP1);
(pump2 |-> goal(startInfusionP2) clampOpeningP2),

capacity : x >

Listing 8.8: Example initial state of WM.

Lines 2 and 3 represent the hypotheses about the initial content of the WM. Two
goals are specified (i.e., starting the infusion), and two memory items to remem-
ber to open the roller clamps before starting the infusion (clampOpeningP1 and
clampOpeningP2).

Real Time Maude is then used to check whether a given WM capacity is suf-
ficient to achieve the goal. This helps to obtain a quantitative evaluation of the
complexity of the task (in terms of memory load) and to identify situations where
the multitasking strategy could exceed the WM capacity of the operator.

The following search command in Real Time Maude checks whether there is
any such situation where the user forgets a piece of information that is relevant to
the tasks and is therefore unable to complete the tasks successfully:

Maude> (utsearch [1] {initState1} =>!
{< I:InterfaceId : Interface | task :

< T:Oid : Task | status : TS:TaskStatus,
A:AttributeSet > > REST:Configuration}

such that TS:TaskStatus =/= completed .)

133

CHAPTER 8. CASE STUDIES

For the consideredcase study, themodel checkerfinds interleaving strategieswhere
the user is not able to complete the tasks when the capacity of the WM is set to 5.
One such example is in Table 8.3.1: with WM capacity set to 5, the user can per-
formcorrectly the concurrent tasks up to enter time 2 (i.e., an omission error occurs
for action open clamp 2). If theWMcapacity is set to 6, on the other hand, the anal-
ysis indicates that the user is always able to reach the goal successfully, using any
multitasking strategy.

The results of our analysis are in line with the experimental results obtained
in [7], and provide an explanation to the omission error in terms of CL.

8.3.3 Modelling and Analysing a Redesigned Interface

To check whether a design solution could be adopted to reducememory load, the
pump design was modified using the Next-Action Cueing technique [31]. A set
of cues is presented in the user interface of the system at appropriate moments, to
remind theoperatorwhat action shouldbeperformednext. For example,when the
clamp needs to be opened, the operator does not need to retrieve this information
from WM if there is a visual cue on the pump screen that indicates what needs to
be done (e.g., a simplemessage “OPENCLAMP” on the display of the pump). By
using this approach the operator is not required to remember all information from
the beginning of the interaction, as information can be gathered just by looking at
the cues on the front panel of the injector device.

This design solution was added to the model, by introducing a cognitive basic
task in the subtask for setting up an infusion pump: perceiving the cue will trigger
the activation and execution of a certain action. Such redesigned task is presented
in Listing 8.9.

((noInfo | prescriptionFormVtbiP1 ==> noAction|vtbi300 duration 1
difficulty 2/10 delay 0)

(vtbi300 | setVTBIP1 ==> type300 | noInfo duration 1 difficulty 2/10
delay 0)) ::

((noInfo | prescriptionFormTimeP1 ==> noAction|time3 duration 1
difficulty 2/10 delay 0)

(time3 | setTimeP1 ==> type3|noInfo duration 1 difficulty 2/10 delay
0)) ::

134

CHAPTER 8. CASE STUDIES

((noInfo | clampP1 ==> noAction|clampOpeningP1 duration 1 difficulty
2/10 delay 0)

(clampOpeningP1 | clampP1 ==> openClampP1|noInfo duration 1 difficulty
2/10 delay 0)) ::

((noInfo | infusionReadyP1 ==> startInfusionP1|noInfo duration 1
difficulty 2/10 delay 0))

Listing 8.9: Modified task for setting up Pump1.

The basic task at line 5 in Listing 8.9 models the cognitive basic task mentioned
above: the operator, by looking at the pump interface, notices a signal and un-
derstands that he/she has to open the clamp. He/she then inserts into his/her
working memory the cognition clampOpeningP1, which he/she uses in the next
basic task to perform the action openClampP1with the pump1 interface.

Analysis of this new version of the task indicates that the user is always able to
complete the tasks with aWM capacity of 5 for all possible interleaving strategies.

8.4 Air Traffic ControlOperator

ThisSection illustrates the applicationofour framework to the studyof anair traffic
control (ATC) operator [17]. We present the Real-Time Maude specification in
Subsection 8.4.1, and the analysis of different ATC scenarios in Subsections 8.4.2
and 8.4.3.

ATCoperators arepersonnel responsible formonitoring andcontrolling air traf-
fic. They usually work in ATC centres and control towers on the ground, by mon-
itoring the position, speed, altitude, and route of aircraft in their assigned sector,
visually and by radar. In addition, they also deal with radio communication with
pilots to give them instructions and to receive useful information about the flights,
which they report on flight progress strips (FPSs or strips). Such FPS are paper
strips used to record basic information for each aircraft, such as callsign, aircraft
type, destination, altitude, planned route, flight level (FL), etc. Controllers update
stripsdynamically as they control the associated aircraft through their sectors. One
of themain tasks of ACToperators is to avoid flight collisions, i.e. to avoid that the
distance between aircraft goes below a minimum prescribed distance. When this

135

CHAPTER 8. CASE STUDIES

happens, they say that the aircraft violates separation. Air traffic controllers can also
transfer an aircraft to the next sector controller when they are too busy, or assign
one of their tasks to an assistant.

Despite the availability of advanced radar and technological support, strips and
other aids, ATC operators heavily rely on working memory, by encoding, stor-
ing and retrieving information recently perceived about aircraft and the environ-
ment, such as pilot requests, information about the flights, weather reports, and so
on [101].

8.4.1 Modeling ATC tasks

We focus on the following three tasks that controllers have to carry out concur-
rently:

1. Monitoring a radar sector to: (i) keep the distance between aircraft under
control and avoid possible collisions; (ii)move an aircraft to the next sector
controller when they are too busy; and (iii) visually perceive new informa-
tion about flights.

2. Managing pilots’ calls to update information about flights on strips.

3. Checking that an assistant carries out assigned tasks.

For the first of these tasks, we model a different monitoring task and conse-
quently, a different radar interface, for each critical zone of the radar sector to be
monitored. The monitoring task is essentially a set of three different subtasks; we
show each subtask of this task separately:

i Controlling parts of the screen, possibly adding information about flights
to the memory.

< monitoring : Task | subtasks :
((noInfo | Screen1 ==> lookAtScreen1 | noInfo duration 4

difficulty 4/10 delay 0)
(noInfo | Screen2 ==> lookAtScreen2 | updFL duration 4

difficulty 4/10 delay 0)

136

CHAPTER 8. CASE STUDIES

(noInfo | Screen3 ==> lookAtScreen3 | noInfo duration 4
difficulty 4/10 delay 0)) ::

. . .

Listing 8.10: First subtask of the monitoring task.

This subtask consists of three basic tasks of looking at different parts of the
screen. The second basic task (Line 3 in Listing 8.10) models that, while
looking at a section of the screen, the ATC operator notices that one of the
aircraft has changed its flight level, and the operator adds this basic infor-
mation (updFL) to his/her memory.

ii. Monitoring a possible collision.

. . . ::
((noInfo | Screen3 ==> noAction | possibleClsn1 duration 3

difficulty 4/10 delay 0)
(possibleClsn1 | Collision1 ==> monitorClsn1 | noInfo duration 4

difficulty 5/10 delay 0)) ::
. . .

Listing 8.11: Second subtask of the monitoring task.

This subtask consists of two basic tasks. The first (line 2 in Listing 8.11) is
a cognitive basic task which models that the ATC operator, while looking
at the screen, understands that a collision could happen. He/she then adds
the cognition possibleClsn1 to his/her memory. She therefore changes
his/her mental plan by recovering such a cognition from his/her working
memory and monitors the possible collision in the second basic task (line
3).

iii. Moving an aircraft to the next sector controller, activated by a cognition
about the presence of too many aircraft on the screen.

. . . ::
((noInfo | Screen4 ==> lookAtScreen4 | noInfo duration 4

difficulty 4/10 delay 0)
(noInfo | Screen4 ==> noAction | movingAircraft duration 3

difficulty 4/10 delay 0)

137

CHAPTER 8. CASE STUDIES

(movingAircraft | Screen5 ==> move | noInfo duration 4
difficulty 5/10 delay 0)),

waitTime : 0,
status : notStarted,
criticalityLevel : 8/10,
cognitiveLoad : 0 >

Listing 8.12: Third subtask of the monitoring task.

This subtask consists of three basic tasks. The first one (line 2 in Listing
8.12) is explained above. The second one (line 3) is a cognitive basic task
which models the ATC operator realising that there are too many aircraft
in his/her sector, and he/she then adds the cognition movingAircraft to
his/her working memory. In the third basic task (line 4), he/she retrieves
this cognition from his/her working memory and moves an aircraft to the
next sector controller.

Theendof the code above shows the remaining attributes of theTaskobject
monitoring.

The criticality level of the monitoring tasks could vary, depending on the number
of aircraft present in the sector or their type: some of them could require little
active control, such as overflights, “lows and slows,” and aircraft on the pilots’ own
navigation or on a radar route [101].

Theradar interface associated to suchmonitoring task is definedby theInterface
object presented in Listing 8.13.

< radar : Interface |
transitions :

(Screen1 -- lookAtScreen1 --> Screen2) ;
(Screen2 -- lookAtScreen2 --> Screen3) ;
(Screen3 -- lookAtScreen3 --> Collision1) ;
(Collision1 -- monitorClsn1 --> Screen4) ;
(Screen4 -- lookAtScreen4 --> Screen5) ;
(Screen5 -- move --> stop),

task : < monitoring : Task | ... >,
previousAction : noAction,
currentState : Screen1 >

Listing 8.13: Radar interface.

138

CHAPTER 8. CASE STUDIES

For the second task above, we model a radio communication task, and conse-
quently a radio interface, for each communication with a different pilot. It con-
sists of a sequence of subtasksmodelling the pilot’s calls and the updating of strips
with the information received, and is formalised by the Task object presented in
Listing 8.14.

< radioCommunication : Task | subtasks :
((noInfo | call1 ==> communicating1 | updatingAltitude duration 3

difficulty 4/10 delay 7)) ::
((updatingAltitude | strip1 ==> updating1 | noInfo duration 2

difficulty 3/10 delay 0)) ::
((noInfo | call2 ==> communicating2 | updatingRoute duration 3

difficulty 4/10 delay 5)) ::
((updatingRoute | strip2 ==> updating2 | noInfo duration 2 difficulty

3/10 delay 0)) ::
((noInfo | call3 ==> communicating3 | updatingFL duration 3 difficulty

4/10 delay 2)) ::
((updatingFL | strip3 ==> updating3 | noInfo duration 2 difficulty

3/10 delay 0))
waitTime : 0, criticalityLevel : 4/10,
cognitiveLoad : 0, status : notStarted >

Listing 8.14: Radio communication task.

For example, first subtask (line 2 in Listing 8.14) models a call from a pilot, who
tells the ATC operator about an update of the altitude (updatingAltitude),
and the followingadditionof this information to theATCoperator’sworkingmem-
ory. The operator then uses this information in the second subtask (line 3) where
he/she retrieves the information from memory and updates the altitude on the
flight’s strip.

The criticality level of the radio communication task could vary according to the
type of aircraft the controller is receiving information from. The radio interface
associated to such a communication task is formalised by the object presented in
Listing 8.15.

< radio : Interface |
transitions :

(call1 -- communicating1 --> strip1) ;
(strip1 -- updating1 --> call2) ;
(call2 -- communicating2 --> strip2) ;

139

CHAPTER 8. CASE STUDIES

(strip2 -- updating2 --> call3) ;
(call3 -- communicating3 --> strip3) ;
(strip3 -- updating3 --> stop),

task : < radioCommunication : Task | ... >,
previousAction : noAction,
currentState : call1 >

Listing 8.15: Radio interface.

Finally, the third task, checking that an assistant carries out an assignment, is for-
malised by the object presented in Listing 8.16.

< checkingAssignedTask : Task | subtasks :
((noInfo | assistantReady ==> checkingTask | noInfo duration 3
difficulty 3/10 delay 0)),
waitTime : 0,
status : notStarted,
criticalityLevel : 3/10,
cognitiveLoad : 0 >

Listing 8.16: Task of checking that an assistent carries out an
assignment.

We model the assistant as an interface with which the controller has to interact:
he/she is formalised by the Interface object presented in Listing 8.17

< assistant : Interface |
transitions :

(assistantReady -- checkingTask --> stop),
task : < checkingAssignedTask : Task | ... >,
previousAction : noAction,
currentState : assistantReady >

Listing 8.17: Assistent interface.

8.4.2 Analysing Urgency

As in the car/GPS example, some of the tasks are not only characterised by high
criticality but also by urgency. If two aircraft violate separation, the controller has
to monitor the identified conflict situation as soon as he/she perceives it. The fact
that many such tasks may have to be performed at the same time could lead to

140

CHAPTER 8. CASE STUDIES

a dangerous situation where some urgent actions are not performed when they
should.

To analyse urgency, wemodel a situationwhere an air traffic controllermonitors
his/her radar sector while communicating with a pilot via radio. During the mon-
itoring activity, the ATC operator finds three possible collisions (we model three
subtasks with actions monitorClsn1, monitorClsn2, and monitorClsn3);
however, the radio communication task might prevent him/her from monitoring
such collisions at a specific time.

Wecheck the longest timeneeded for the controller to complete allmonitorClsnX
actions:

Maude> (find latest {initState1} =>*
{< radar : Interface | previousAction : monitorClsn >
REST:Configuration }

with no time limit .)

The result of this analysis shows that the monitorClsn1 action is completed at
time15, themonitorClsn2 action is completedat time42, and themonitorClsn3
action is completed at time 57. However, the same analysis with an initial state
with just the radar interface object and task shows that when the ACT operator
is not distracted, he/she finishes the monitorClsn2 action at time 50 – 8 time
units later than in the the multitasking scenario – and the monitorClsn3 action
completes at time 72, i.e. 15 time units later than in the multitasking scenario.

8.4.3 Analysing Memory Failures due to Multitasking

Analysis of interviews with air traffic controllers in [101] indicate thatmemory er-
rors are associated with working memory overload and distraction. We focus on
threekindsof errorspresented in the report bymodelling, simulating, andanalysing
them, and we try to give a plausible explanation of these errors in term of cogni-
tive causes: prospective memory failure, retrospective memory failure, and forgetting
temporary information.

141

CHAPTER 8. CASE STUDIES

Prospective Memory Failure

Prospective memory is the form of memory involved in remembering to perform
a planned action. Sixteen errors presented in [101] involve prospective memory
failure.

To analyse prospective memory failures, we model a situation where the con-
troller monitors three different zones in her radar sector while communicating
with twodifferent pilots and checking that an assistant carries out an assigned task.
The checking assignment task has a delay of 20 time units, since controller plans
to perform this task in the future.

The initial state of the working memory is presented in Listing 8.18.

< wm : WorkingMemory | capacity\,: 7,
memory : (radar1 |-> goal(lookAtScreen3)) ;

(radar2 |-> goal(lookAtScreen12)) ;
(radar3 |-> goal(lookAtScreen7)) ;
(radio1 |-> goal(updating1)) ;
(radio2 |-> goal(updating2)) ;
(assistant |-> goal(checkingTask)) >

Listing 8.18: Initial state of the working memory.

We check if all tasks are guaranteed to be completed:

Maude > (utsearch [1] initState1 =>!
{< I:InterfaceId : Interface | task :

< T:Oid : Task | status : TS:TaskStatus,
A:AttributeSet > >

REST:Configuration }
such that TS:TaskStatus =/= completed .)

andwe find a bad state: the goal associated to the assistant interface is deleted from
memory and the controller cannot complete the checking assignment task.

Retrospective Memory Failure

Retrospective memory is the memory of people, words, or events encountered or
experienced in the past. Three of the errors presented in [101] involve retrospec-
tive memory failure: controllers lose track of task progress since they forget the

142

CHAPTER 8. CASE STUDIES

action previously performed. Task interruptions have disruptive effects on task
performance, although several studies show that they have different consequences
when performed at different moments [1, 60].

To analyse retrospective memory failures, we model a situation where the air
traffic controller monitors the radar and decides to move an aircraft to the next
controller’s sector when he/she perceives that she is too busy. At the same time,
he/she has to answer three different calls frompilots and annotate the information
received by them on strips.

We show that interrupting the monitoring task at different moments can have
different consequences. Wemodel two initial states,initState1 andinitState2.
In the first one the controller receives three calls after a delay of 7, 8 and 9 time
units, respectively; in the secondone the controller receives three calls after a delay
of 8, 9 and 10 time units, respectively. The difficulties of the radio communication
tasks have been set in order to have the same cognitive load for each task.

We check whether or not all tasks are guaranteed to complete for both initial
states. Our analysis found an undesired state for initState1, and no such state
for initState2. In the first case the main task is interrupted after the operator
decides to transfer the aircraft: the addition of new information from calls lead to
memory overload which resulted in forgetting this decision. In the second case
the monitoring task is not interrupted after the controller’s decision to move the
aircraft.

Forgetting Temporary Information

Many of the errors reported in [101] concern forgetting temporary information.
Some of these errors involve forgetting about the presence of aircraft that require
little active control. To analyse such errors, wemodel a situationwhere the air traf-
fic controller monitors different zones of the radar screen at the same time. Some
of these zones have highly critical situations to monitor, while one of them have
aircraft that require low control and thus have lower criticality. We show that the
controller can forget the less critical sector because he/she is distracted by other

143

CHAPTER 8. CASE STUDIES

sectors, and too much information is added to his/her memory.
We model five interfaces representing the different zones of the screen. Each

zone has a different cognitive load and a different criticality level, depending on
the number of flights and the type of aircraft flying there.

We analyse whether all tasks are guaranteed to be completed. The usual com-
mand shows that the task associated with the zone with low criticality, represent-
ing a zone with flights which require little control, does not complete because that
task’s goal is deleted from the working memory. We check if the task associated
with that zone is at least started with commands:

Maude> (find latest {initState1} =>*
{< zone2 : Interface | previousAction : lookAtScreen4 >
REST:Configuration }

with no time limit .)

and

Maude> (find latest {initState1} =>*
{< radar : Interface | previousAction : lookAtScreen12 >
REST:Configuration }

with no time limit .)

The first command shows that the first action of the task is performed at time 33,
while the second command shows that the last action of the task is never per-
formed.

144

9
Conclusion

In this thesis we have developed a new model of safety-critical human multi-
tasking which describes the cognitive processes involved in HCI, and the human
workingmemory accordingwith results from applied psychology on human selec-
tive attention and on working memory.

The model consists of a set of interfaces representing the interfaces of the de-
vices with which the user interacts performing tasks, which are described as se-
quences of subtasks (which in turn are sequences of basic tasks) representing sin-
gle scenarios. Tasks are characterised by a measure of how much they are cogni-
tively demanding, and since we focus on safety-critical multitasking, they also in-
clude a measure of how much they are critical. Since we consider structured task
where each basic task can idle waiting to be enabled, we define a new function to
compute the cognitive loadof each task, basedonpsychological literature; the cog-

145

CHAPTER 9. CONCLUSION

nitive load of each task changes every time a new subtask begins and remains the
same throughout its execution.

The semantics of themodel is defined as a purely probabilistic transition system
(PPTS), whose configuration includes a set of tasks, a map assigning to each task
its cognitive load, amap storing the current state of the interfaces, amap storing the
last time each task was executed, a global clock, and a working memory modelled
as amap assigning to each interface the information useful for the interaction with
it. The transition relation is defined in an inductive way by a set of inference rules,
each of which models the different cognitive behaviour involved in multitasking
interaction and determine how attention is directed to the different tasks and how
this would change the state of the PPTS. The switching of attention from a task to
another has beenmodelled through a new algorithm based on the tasks’ cognitive
load, their criticality and the time they were ignored.

We implemented themodel as a simulator which enables us to get a quick feed-
backaboutwhether ahumancan safelyperformmultiple tasks concurrently. More-
over, although the selective attention algorithm is consistent with the relevant psy-
chological literature, we validate our algorithm against data collected from an ex-
perimental study with real users involved concurrently in one critical task and one
“distractor” task with different levels of cognitive load. We validate the capability
of the algorithm to produce relevant results, given adequate parameters. It should
be clear that concrete models will have to be fine tuned with the help of domain
and human factors experts as their validity is dependent on the values used.

Moreover, we implemented themodel as an executable framework inReal-Time
Maude, which enables us to model, simulate and analyse safety-critical human
multitasking through reachability analysis. We showed how the Real-TimeMaude
framework is able to analyse different problems in safety-critical humanmultitask-
ing such as errors caused by user distractions, cognitive overload and memory
overload. We finally illustrated our framework with three case studies from dif-
ferent application domains: a user interacting with aGPS navigation systemwhile
driving, a medical operator setting multiple infusion pumps simultaneously, and
an air traffic control (ATC) operator dealing with some typical ATC scenarios in-

146

CHAPTER 9. CONCLUSION

volving memory errors.
Our modelling and analysis approach is intended for developers of interactive

critical systems to identify plausible human multitasking strategies that are likely
to be adopted by users when using multiple interactive systems at the same time
and to estimate the memory load necessary to complete concurrent tasks. It can
also be used to identify plausible problems in the interaction with the systems due
to cognitive overload. This type of analysis is especially useful at the early stages
of system design, to better understand the effort necessary to operate the system
when an implementation or a prototype of the system is unavailable. The analy-
sis can also be used retrospectively, to analyse already implemented systems and
complement results from user studies.

Given a specific case study to analyse, whose real data and results are held, with
our analysis approach the analyst can create a model using the real values held for
some of the parameters of the model (i.e. duration and delay), and some valid
values for the not measurable parameters (i.e. difficulty and criticality). Then, the
analyst has tofine-tune thenon-measurable parameters by running the simulations
until the results agree with the held case study results. Once all values are held,
he/she can use the Real-Time Maude framework to perform analyses.

It is worth to note that the analysis needs to be done knowing the system the de-
veloperswant to check, in order to identify the criticalities observedby the analysis
and in order to distinguish real criticalities from not-problematic ones.

The proposed framework could be further developed in different directions.
Since Real-Time Maude is not a probabilistic rewriting logic language, some as-
pects of the framework (e.g. the selective attention algorithm) are essentially de-
terministic.

Even if such simplification exists, it is worth to note that the set of possible
behaviours analysed by the model checker is a subset of all the possible correct
behaviours: the Real-Time Maude framework considers just the more likely one,
which is, nevertheless, one of the correct behaviours of the system.

However, the framework could be extended to a probabilistic setting, according
to the formal model proposed. Such probabilistic real-time models could then be

147

CHAPTER 9. CONCLUSION

subjected to statistical model checking analysis using tools such as PVeStA [2].
From data collected from the experimental study (presented in Chapter 6), we

observed that when users interact with a timed task (i.e. a task with a strict dead-
line), usually they tend to stay more on the task when such a deadline is close.
Therefore, we could modify the computation of the α factor, taking into account
such aspect. For instance, the criticality parameter could be defined as a function
of the time left for the expiration of the task deadline.

Moreover, we could add to ourmodel the definition of other cognitive systems:
for instance, by adding the long term memory we would be able to model tasks
where information are not volatile but have to be retrieved from the long term
memory of the user. Moreover, in [81] is presented an hybrid automata model
of the dopamine system; the dopamine is a neurotransmitter responsible for the
human perception of the satisfaction, which strongly stimulates the attention, the
memory and the learning. We could integrate in our framework the model de-
veloped in [81] in order to simulate and analyse the satisfaction of the user in a
multitasking interaction.

We could also extend some existing model (e.g. the ACT-R model) with our
multitasking model. Finally, we could compare our model with related models of
human multitasking on selected case studies, and apply it to other safety-critical
multitasking applications.

148

References

[1] Piotr D Adamczyk and Brian P Bailey. If not now, when?: the effects of
interruption at different moments within task execution. In Proceedings of
the SIGCHI conference on Human factors in computing systems, pages 271–
278. ACM, 2004.

[2] Musab AlTurki and José Meseguer. Pvesta: A parallel statistical model
checking and quantitative analysis tool. In International Conference on Al-
gebra and Coalgebra in Computer Science, pages 386–392. Springer, 2011.

[3] JohnRAnderson, Daniel Bothell,Michael DByrne, ScottDouglass, Chris-
tianLebiere, andYulinQin. An integrated theory of themind. Psychological
review, 111(4):1036, 2004.

[4] CatherineMArrington andGordonD Logan. The cost of a voluntary task
switch. Psychological science, 15(9):610–615, 2004.

[5] RichardCAtkinson andRichardMShiffrin. Humanmemory: A proposed
system and its control processes1. In Psychology of learning and motivation,
volume 2, pages 89–195. Elsevier, 1968.

[6] Dangerous distraction. Safety Investigation Report B2004/0324. Australian
Transport Safety Bureau, 2005.

[7] Jonathan Back, Anna Cox, and Duncan Brumby. Choosing to interleave:
Human error and information access cost. In SIGCHI Conference on Hu-
man Factors in Computing Systems, CHI’12, pages 1651–1654. ACM, 2012.
ISBN 978-1-4503-1015-4. doi: 10.1145/2207676.2208289. URL http:
//doi.acm.org/10.1145/2207676.2208289.

[8] Alan Baddeley. Working memory. Current biology, 20(4):R136–R140,
2010.

149

http://doi.acm.org/10.1145/2207676.2208289
http://doi.acm.org/10.1145/2207676.2208289

REFERENCES

[9] Alan D Baddeley and Graham Hitch. Working memory. In Psychology of
learning and motivation, volume 8, pages 47–89. Elsevier, 1974.

[10] Eric Barboni, Jean-François Ladry, David Navarre, Philippe Palanque, and
Marco Winckler. Beyond modelling: an integrated environment sup-
porting co-execution of tasks and systems models. In Proceedings of the
2nd ACM SIGCHI symposium on Engineering interactive computing systems,
pages 165–174. ACM, 2010.

[11] Pierre Barrouillet. Transitive inferences from set-inclusion relations and
working memory. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 22(6):1408, 1996.

[12] Pierre Barrouillet and Valérie Camos. Developmental increase in working
memory span: Resource sharing or temporal decay? Journal of Memory
and Language, 45(1):1–20, 2001.

[13] Pierre Barrouillet, Sophie Bernardin, and Valérie Camos. Time constraints
and resource sharing in adults’ working memory spans. Journal of Experi-
mental Psychology: General, 133(1):83, 2004.

[14] Pierre Barrouillet, Sophie Bernardin, Sophie Portrat, Evie Vergauwe, and
Valérie Camos. Time and cognitive load inworkingmemory. Journal of Ex-
perimental Psychology: Learning, Memory, and Cognition, 33(3):570, 2007.

[15] Pierre Barrouillet, Nathalie Gavens, Evie Vergauwe, Vinciane Gaillard,
and Valérie Camos. Working memory span development: a time-based
resource-sharing model account. Developmental psychology, 45(2):477,
2009.

[16] Giovanna Broccia. Model-based analysis of driver distraction by infotain-
ment systems in automotive domain. In Proceedings of the ACM SIGCHI
Symposium on Engineering Interactive Computing Systems, pages 133–136.
ACM, 2017.

[17] Giovanna Broccia, PaoloMilazzo, and Peter CsabaÖlveczky. Formalmod-
eling and analysis of safety-critical human multitasking. Under review.

[18] Giovanna Broccia, PaoloMilazzo, and Peter CsabaÖlveczky. An algorithm
for simulating human selective attention. In International Conference on
Software Engineering and Formal Methods, pages 48–55. Springer, 2017.

150

REFERENCES

[19] Giovanna Broccia, PaoloMasci, and PaoloMilazzo. Modeling and analysis
of humanmemory load inmultitasking scenarios: Late-breaking results. In
Proceedings of the ACM SIGCHI Symposium on Engineering Interactive Com-
puting Systems, page 9. ACM, 2018.

[20] Giovanna Broccia, Paolo Milazzo, and Peter Csaba Ölveczky. An exe-
cutable formal framework for safety-critical humanmultitasking. InNASA
Formal Methods Symposium, pages 54–69. Springer, 2018.

[21] Roberto Bruni and José Meseguer. Semantic foundations for generalized
rewrite theories. Theoretical Computer Science, 360(1-3):386–414, 2006.

[22] J Creissac Campos andMichael DHarrison. Systematic analysis of control
panel interfaces using formal tools. In International Workshop on Design,
Specification, and Verification of Interactive Systems, pages 72–85. Springer,
2008.

[23] JoséCCampos andMichaelDHarrison. Interaction engineering using the
ivy tool. In Proceedings of the 1st ACM SIGCHI symposium on Engineering
interactive computing systems, pages 35–44. ACM, 2009.

[24] José Creissac Campos, Manuel Sousa, Miriam C Bergue Alves, and
Michael D Harrison. Formal verification of a space system’s user interface
with the ivy workbench. IEEETrans. Human-Machine Systems, 46(2):303–
316, 2016.

[25] SK Card, TP Moran, and A Newell. The psychology of human-computer
interaction. hillsdale, new jersey: Lawerence erlbaum associates, 1983.

[26] StuartKCard,ThomasPMoran, andAllenNewell. Computer text-editing:
An information-processing analysis of a routine cognitive skill. Cognitive
psychology, 12(1):32–74, 1980.

[27] Stuart K Card, Thomas P Moran, and Allen Newell. The keystroke-level
model for user performance timewith interactive systems. Communications
of the ACM, 23(7):396–410, 1980.

[28] Robbie Case, DMidian Kurland, and Jill Goldberg. Operational efficiency
and the growth of short-term memory span. Journal of experimental child
psychology, 33(3):386–404, 1982.

151

REFERENCES

[29] Antonio Cerone. A cognitive framework based on rewriting logic for the
analysis of interactive systems. In International Conference on Software En-
gineering and Formal Methods, pages 287–303. Springer, 2016.

[30] Noam Chomsky. A review of bf skinner’s verbal behavior. Readings in phi-
losophy of psychology, 1:48–63, 1980.

[31] Phillip H. Chung and Michael D. Byrne. Cue effectiveness in mitigating
postcompletion errors in a routine procedural task. Int. J. Hum.-Comput.
Stud., 66(4):217–232, April 2008. ISSN 1071-5819. doi: 10.1016/j.ijhcs.
2007.09.001. URL http://dx.doi.org/10.1016/j.ijhcs.2007.
09.001.

[32] T Clark et al. Impact of clinical alarms on patient safety. Technical report,
ACCE Healthcare Technology Foundation, 2006.

[33] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso
Martí-Oliet, José Meseguer, and Carolyn Talcott. All about maude-a high-
performance logical framework: how to specify, program and verify systems in
rewriting logic. Springer-Verlag, 2007.

[34] Sébastien Combéfis, Dimitra Giannakopoulou, Charles Pecheur, and
Michael Feary. A formal framework for design and analysis of human-
machine interaction. In Systems, Man, and Cybernetics (SMC), 2011 IEEE
International Conference on, pages 1801–1808. IEEE, 2011.

[35] Andrew Conway, Chris Jarrold, and Michael Kane. Variation in working
memory. Oxford University Press, 2008.

[36] Andrew RA Conway, Nelson Cowan, Michael F Bunting, David J Therri-
ault, and Scott RB Minkoff. A latent variable analysis of working memory
capacity, short-term memory capacity, processing speed, and general fluid
intelligence. Intelligence, 30(2):163–183, 2002.

[37] Andrew RA Conway, Michael J Kane, and Randall W Engle. Working
memory capacity and its relation to general intelligence. Trends in cogni-
tive sciences, 7(12):547–552, 2003.

[38] Andrew RA Conway, Michael J Kane, Michael F Bunting, D Zach Ham-
brick, OliverWilhelm, andRandallWEngle. Workingmemory span tasks:
A methodological review and user’s guide. Psychonomic bulletin & review,
12(5):769–786, 2005.

152

http://dx.doi.org/10.1016/j.ijhcs.2007.09.001
http://dx.doi.org/10.1016/j.ijhcs.2007.09.001

REFERENCES

[39] David E Copeland and Gabriel A Radvansky. Phonological similarity in
working memory. Memory & Cognition, 29(5):774–776, 2001.

[40] Nelson Cowan. What are the differences between long-term, short-term,
and working memory? Progress in brain research, 169:323–338, 2008.

[41] NelsonCowan, EmilyMElliott, J ScottSaults, CandiceCMorey, SamMat-
tox, Anna Hismjatullina, and Andrew RA Conway. On the capacity of at-
tention: Its estimation and its role in working memory and cognitive apti-
tudes. Cognitive psychology, 51(1):42–100, 2005.

[42] Fergus IM Craik and Robert S Lockhart. Levels of processing: A frame-
work formemory research. Journal of verbal learning and verbal behavior, 11
(6):671–684, 1972.

[43] Meredyth Daneman and Patricia A Carpenter. Individual differences in
workingmemory and reading. Journal of verbal learning and verbal behavior,
19(4):450–466, 1980.

[44] JanWDe Fockert, Geraint Rees, Christopher D Frith, andNilli Lavie. The
role of working memory in visual selective attention. Science, 291(5509):
1803–1806, 2001.

[45] AdeleDiamond. Executive functions. Annual review of psychology, 64:135–
168, 2013.

[46] Thomas A Dingus, Feng Guo, Suzie Lee, Jonathan F Antin, Miguel Perez,
Mindy Buchanan-King, and Jonathan Hankey. Driver crash risk factors
and prevalence evaluation using naturalistic driving data. Proceedings of the
National Academy of Sciences, 113(10):2636–2641, 2016.

[47] RKDismukes and Jessica Nowinski. Prospectivememory, concurrent task
management, and pilot error. In Attention: From Theory to Practice. Oxford
Univ. Press, 2007.

[48] David J Duke, Philip J Barnard, Jon May, and David A Duce. Systematic
development of the human interface. In Software Engineering Conference,
1995. Proceedings., 1995 Asia Pacific, pages 313–321. IEEE, 1995.

[49] John Duncan. Goal weighting and the choice of behaviour in a complex
world. Ergonomics, 33(10-11):1265–1279, 1990.

153

REFERENCES

[50] Randall W Engle. Working memory capacity as executive attention. Cur-
rent directions in psychological science, 11(1):19–23, 2002.

[51] Randall W Engle, StephenWTuholski, James E Laughlin, and AndrewRA
Conway. Working memory, short-term memory, and general fluid intelli-
gence: a latent-variable approach. Journal of experimental psychology: Gen-
eral, 128(3):309, 1999.

[52] Michael Freed. Reactive prioritization. In Proceedings of the 2nd NASA
international workshop on planning and scheduling in space, 2000.

[53] Gabriel Gelman, Karen M Feigh, and John Rushby. Example of a comple-
mentary use of model checking and human performance simulation. IEEE
Transactions on Human-Machine Systems, 44(5):576–590, 2014.

[54] Robert S Gutzwiller, Christopher D Wickens, and Benjamin A Clegg. The
role of time on task in multi-task management. Journal of Applied Research
in Memory and Cognition, 5(2):176–184, 2016.

[55] John Hamilton. Think you’re multitasking? think again. Morning Edition,
2008.

[56] Michael D Harrison, José C Campos, Rimvydas Rukšėnas, and Paul Cur-
zon. Modelling information resources and their salience in medical device
design. In Proceedings of the 8th ACM SIGCHI Symposium on Engineering
Interactive Computing Systems, pages 194–203. ACM, 2016.

[57] JohnRHelleberg andChristopherDWickens. Effects of data-linkmodality
and display redundancy on pilot performance: An attentional perspective.
The International Journal of Aviation Psychology, 13(3):189–210, 2003.

[58] Adam Houser, Lanssie Mingyue Ma, Karen M Feigh, and Matthew L
Bolton. Using formal methods to reason about taskload and resource con-
flicts in simulated air traffic scenarios. Innovations in Systems and Software
Engineering, 14(1):1–14, 2018.

[59] Cristina Iani and Christopher D Wickens. Factors affecting task manage-
ment in aviation. Human factors, 49(1):16–24, 2007.

[60] Shamsi T Iqbal andBrian PBailey. Investigating the effectiveness ofmental
workload as a predictor of opportunemoments for interruption. InCHI’05
extended abstracts on Human factors in computing systems. ACM, 2005.

154

REFERENCES

[61] Anjali Joshi, StevenPMiller, andMatsPEHeimdahl. Modeconfusion anal-
ysis of a flight guidance system using formal methods. In Digital Avionics
Systems Conference, 2003. DASC’03. The 22nd, volume 1, pages 2–D. IEEE,
2003.

[62] Michael J Kane, David ZHambrick, StephenWTuholski, OliverWilhelm,
Tabitha W Payne, and Randall W Engle. The generality of working mem-
ory capacity: a latent-variable approach to verbal and visuospatial memory
span and reasoning. Journal of Experimental Psychology: General, 133(2):
189, 2004.

[63] Michael J Kane, Andrew RA Conway, Timothy K Miura, and Gregory JH
Colflesh. Workingmemory, attention control, and the n-back task: a ques-
tion of construct validity. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 33(3):615, 2007.

[64] Ioanna Katidioti andNiels ATaatgen. Choice inmultitasking: How delays
in the primary task turn a rational into an irrational multitasker. Human
factors, 56(4):728–736, 2014.

[65] RobertMKeller. Formal verification of parallel programs. Communications
of the ACM, 19(7):371–384, 1976.

[66] Roberta L Klatzky. When to inspect? recurrent inspection decisions in a
simulated risky environment. Journal of Experimental Psychology: Applied,
6(3):222, 2000.

[67] Robert Kurzban, Angela Duckworth, Joseph W Kable, and Justus Myers.
An opportunity cost model of subjective effort and task performance. Be-
havioral and Brain Sciences, 36(6):661–679, 2013.

[68] Yelena Kushleyeva, Dario D Salvucci, and Frank J Lee. Deciding when to
switch tasks in time-critical multitasking. Cognitive Systems Research, 6(1):
41–49, 2005.

[69] Patrick C Kyllonen and Raymond E Christal. Reasoning ability is (little
more than)working-memory capacity?! Intelligence, 14(4):389–433, 1990.

[70] Kim G Larsen and Arne Skou. Bisimulation through probabilistic testing.
Information and computation, 94(1):1–28, 1991.

155

REFERENCES

[71] Nilli Lavie, Aleksandra Hirst, Jan W De Fockert, and Essi Viding. Load
theory of selective attention and cognitive control. Journal of Experimental
Psychology: General, 133(3):339, 2004.

[72] Daniela Lepri, Erika Ábrahám, and Peter Csaba Ölveczky. A timed ctl
model checker for real-time maude. In International Conference on Algebra
and Coalgebra in Computer Science, pages 334–339. Springer, 2013.

[73] Daniela Lepri, Erika Ábrahám, andPeterCsabaÖlveczky. Sound and com-
plete timed ctl model checking of timed kripke structures and real-time
rewrite theories. Science of Computer Programming, 99:128–192, 2015.

[74] Ann S Lofsky. Turn your alarms on. APSF Newsletter: The Official Journal
of the Anesthesia Patient Safety Foundation, 19(4):43, 2005.

[75] José Meseguer. Conditional rewriting logic as a unified model of concur-
rency. Theoretical computer science, 96(1):73–155, 1992.

[76] José Meseguer. Membership algebra as a logical framework for equational
specification. In International Workshop on Algebraic Development Tech-
niques, pages 18–61. Springer, 1997.

[77] George A Miller. The magical number seven, plus or minus two: Some
limits on our capacity for processing information. Psychological review, 63
(2):81, 1956.

[78] Victor Mittelstädt and Jeff Miller. Separating limits on preparation versus
online processing in multitasking paradigms: Evidence for resource mod-
els. Journal of Experimental Psychology: Human Perception and Performance,
43(1):89, 2017.

[79] AkiraMiyake,Marcel Adam Just, and Patricia ACarpenter. Workingmem-
ory constraints on the resolution of lexical ambiguity: Maintaining multi-
ple interpretations in neutral contexts. Journal of memory and language, 33
(2):175, 1994.

[80] Stephen Monsell. Task switching. Trends in cognitive sciences, 7(3):134–
140, 2003.

[81] LuciaNasti andPaoloMilazzo. Ahybrid automatamodel of social network-
ing addiction. Journal of Logical andAlgebraicMethods in Programming, 100:
215–229, 2018.

156

REFERENCES

[82] Ulric Neisser. Cognitive psychology: Classic edition. Englewood Cliffs, NJ:
Prentice Hall., 1967.

[83] Donald A Norman and Tim Shallice. Attention to action. In Consciousness
and self-regulation, pages 1–18. Springer, 1986.

[84] Peter Csaba Ölveczky. Real-time maude and its applications. In Inter-
national Workshop on Rewriting Logic and its Applications, pages 42–79.
Springer, 2014.

[85] Peter Csaba Ölveczky and José Meseguer. Specification of real-time and
hybrid systems in rewriting logic. Theoretical Computer Science, 285(2):
359–405, 2002.

[86] Peter Csaba Ölveczky and José Meseguer. Semantics and pragmatics of
real-timemaude. Higher-order and symbolic computation, 20(1-2):161–196,
2007.

[87] Harold Pashler. Dual-task interference in simple tasks: data and theory.
Psychological bulletin, 116(2):220, 1994.

[88] Fabio Paternò, Cristiano Mancini, and Silvia Meniconi. Concurtasktrees:
A diagrammatic notation for specifying task models. In Human-Computer
Interaction INTERACT’97, pages 362–369. Springer, 1997.

[89] Stephen J Payne, Geoffrey B Duggan, and Hansjörg Neth. Discretionary
task interleaving: heuristics for time allocation in cognitive foraging. Jour-
nal of Experimental Psychology: General, 136(3):370, 2007.

[90] Thomas S Redick, Zach Shipstead, Matthew E Meier, Janelle J Montroy,
Kenny L Hicks, Nash Unsworth, Michael J Kane, D Zachary Hambrick,
and Randall W Engle. Cognitive predictors of a common multitasking
ability: Contributions from working memory, attention control, and fluid
intelligence. Journal of Experimental Psychology: General, 145(11):1473,
2016.

[91] Rimvydas Rukšėnas, Paul Curzon, Ann Blandford, and Jonathan Back.
Combining human error verification and timing analysis: a case study on
an infusion pump. Formal Aspects of Computing, 26(5):1033–1076, 2014.

157

REFERENCES

[92] DarioDSalvucci. Predicting the effects of in-car interface use ondriver per-
formance: An integrated model approach. International Journal of Human-
Computer Studies, 55(1):85–107, 2001.

[93] Dario D Salvucci. Multitasking. In The Oxford handbook of cognitive engi-
neering. 2013.

[94] Dario D Salvucci and Peter Bogunovich. Multitasking and monotasking:
the effects of mental workload on deferred task interruptions. In Proceed-
ings of the SIGCHI conference on human factors in computing systems, pages
85–88. ACM, 2010.

[95] Dario D Salvucci and Niels A Taatgen. Threaded cognition: An integrated
theory of concurrent multitasking. Psychological review, 115(1):101, 2008.

[96] Dario D Salvucci and Niels A Taatgen. Toward a unified view of cognitive
control. Topics in cognitive science, 3(2):227–230, 2011.

[97] Paul C Schutte and Anna C Trujillo. Flight crew task management in non-
normal situations. In Proceedings of the human factors and ergonomics society
annual meeting, volume 40, pages 244–248. SAGE Publications Sage CA:
Los Angeles, CA, 1996.

[98] Oliver G Selfridge and Ulric Neisser. Pattern recognition by machine. Sci-
entific American, 203(2):60–69, 1960.

[99] Thomas B Sheridan. On how often the supervisor should sample. IEEE
Transactions on systems science and cybernetics, 6(2):140–145, 1970.

[100] Thomas B Sheridan, AF Kramer, DA Wiegmann, and A Kirlik. Attention
and its allocation: Fragments of a model. Attention: From theory to practice,
pages 16–26, 2007.

[101] Steven T Shorrock. Errors of memory in air traffic control. Safety Science,
43(8):571–588, 2005.

[102] Valerie J Shute. Who is likely to acquire programming skills? Journal of
educational Computing research, 7(1):1–24, 1991.

[103] NSSutherland. Outlines of a theoryof visual pattern recognition in animals
and man. Proc. R. Soc. Lond. B, 171(1024):297–317, 1968.

158

REFERENCES

[104] JN Towse and GJ Hitch. Is there a relationship between task demand and
storage space in tests of working memory capacity? The Quarterly Journal
of Experimental Psychology Section A, 48(1):108–124, 1995.

[105] JohnNTowse,GrahamJHitch, andUnaHutton. A reevaluationofworking
memory capacity in children. Journal of memory and language, 39(2):195–
217, 1998.

[106] JohnNTowse, Graham JHitch, andUnaHutton. On the nature of the rela-
tionshipbetweenprocessing activity and item retention in children. Journal
of Experimental Child Psychology, 82(2):156–184, 2002.

[107] Anne Treisman. Monitoring and storage of irrelevant messages in selective
attention. Journal of Memory and Language, 3(6):449, 1964.

[108] Marilyn L Turner and Randall W Engle. Is working memory capacity task
dependent? Journal of memory and language, 28(2):127–154, 1989.

[109] Gloria S Waters and David Caplan. The measurement of verbal working
memory capacity and its relation to reading comprehension. TheQuarterly
Journal of Experimental Psychology Section A, 49(1):51–79, 1996.

[110] CD Wickens. Noticing events in the visual workplace: The seev and nseev
models. Handbook of applied perception, 2014.

[111] Christopher D Wickens. Processing resources and attention. Multiple-task
performance, 1991:3–34, 1991.

[112] Christopher D Wickens and Robert S Gutzwiller. The status of the strate-
gic task overload model (stom) for predicting multi-task management. In
Proceedings of the Human Factors and Ergonomics Society Annual Meeting,
volume 61, pages 757–761. SAGEPublications SageCA: LosAngeles, CA,
2017.

[113] Christopher D Wickens and Jason S McCarley. Applied attention theory.
2008.

[114] Christopher D Wickens, Amy Santamaria, and Angelia Sebok. A compu-
tational model of task overload management and task switching. In Pro-
ceedings of the Human Factors and Ergonomics Society Annual Meeting, vol-
ume 57, pages 763–767. SAGE Publications Sage CA: Los Angeles, CA,
2013.

159

REFERENCES

[115] Christopher D Wickens, Robert S Gutzwiller, and Amy Santamaria. Dis-
crete task switching in overload: A meta-analyses and a model. Interna-
tional Journal of Human-Computer Studies, 79:79–84, 2015.

[116] Christopher D Wickens, Juliana Goh, John Helleberg, William J Horrey,
and Donald A Talleur. Attentional models of multitask pilot performance
using advanced display technology. InHumanError in Aviation, pages 155–
175. Routledge, 2017.

[117] Christopher Dow Wickens, Robert S Gutzwiller, Alex Vieane, Benjamin A
Clegg, Angelia Sebok, and Jess Janes. Time sharing between robotics and
process control: Validating a model of attention switching. Human factors,
58(2):322–343, 2016.

160

Acknowledgement
These years of PhD have been strenuous, demanding, gratifying, and satisfying.
During such time I had the privilege to work with Paolo Milazzo, who taught me
to do research and to love this work. Thank you for being such a great mentor, this
thesis would be poorer without your support, your help and your suggestions.

I’d like to thank Antonio Cerone, for inspiring such thesis and for his precious
suggestions. A great part of this work is fruit of the collaboration with Peter Csaba
Ölveczky from the University of Oslo; thank you for your hospitality in the freez-
ing Oslo and to have taught me how to use Maude. During my visit at the Univer-
sity of Braga I had the opportunity to work with Paolo Masci; thank you for the
interest shown for my work, your suggestions and your incredibly hospitality. The
visit at INRIA Saclay (Paris) let me knewCatuscia Palamidessi and Valentina Cas-
tiglioni, which have been truly kind and helpful. During my visit at the University
of Edinburgh I had the pleasure to meet Vashti Galpin; thank you for your help
and suggestions. I wouldn’t have unable to complete this thesis without the work
and the help ofCarmenBerrocalMontiel, Cristina Belviso andLucaVitrini; thank
you all.

I’d like to thank Roberto Bruni and Fabio Paternò, the thesis committee mem-
bers, and José Creissac Campos and Michael Harrison, the referees of this thesis,
for their helpful comments and suggestions, the PhD coordinator Paolo Ferragina,
and the Prof. Pierpaolo Degano, whose reproofs made this work possible.

My life herewouldn’t had be the samewithout the support, help and laughter of
my academic family: among others Rita “Donno” Pucci, Lucia (my little academic
sister), Marco Ponza (to remind me every day I have tattoos), Marco Cornolti (I
will never forgive you to have preferredGoogle to us), Tiziano andDaniele, Veron-
ica, Ottavio, Andrea Marino, Andrea Michienzi, the “Brogi’s boys”. Thank you all!

Thank to my family for their continuous support, and to the family I chose for
their unconditional love. Finally, thank to BC to be always by my side.

	Introduction
	Cognitive Flexibility
	Safety-Critical Human Multitasking
	Thesis Contribution
	Outline of the thesis
	Publications

	Background
	Cognitive Background
	Transition Systems
	Real-Time Maude

	State of the Art
	Computational Models
	Formal Models
	Limitations of Existing Models

	Formal Model of Safety-Critical Human Multitasking
	Syntax
	Semantics
	Example

	Model Simulator
	Simulator

	Model Validation
	Experimental Study
	Simulation Experiments
	Results

	Real-Time Maude Framework
	Classes
	Ranking Function
	Rewrite Rules

	Case Studies
	Analysing Human Multitasking with Real-Time Maude
	Using GPS while Driving
	Interacting with Multiple Infusion Pumps
	Air Traffic Control Operator

	Conclusion
	References

