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1. Introduction

This book provides a structured and high-level description, together with a
mathematical and an experimental analysis, of Java and of the Java Virtual
Machine (JVM), including the standard compilation of Java programs to
JVM code and the security critical bytecode verifier component of the JVM.
The description is structured into modules (language layers and machine
components), and its abstract character implies that it is truly platform-
independent. It comes with a natural refinement to executable machines on
which code can be tested, exploiting in particular the potential of model-
based high-level testing. The analysis brings to light in what sense, and under
which conditions, legal Java programs can be guaranteed to be correctly
compiled, to successfully pass the bytecode verifier, and to be executed on
the JVM correctly, i.e., faithfully reflecting the Java semantics and without
violating any run-time checks. The method we develop for this purpose, using
Abstract State Machines which one may view as code written in an abstract
programming language, can be applied to other virtual machines and to other
programming languages as well.

The target readers are practitioners—programmers, implementors, stan-
dardizers, lecturers, students—who need for their work a complete, correct,
and at the same time transparent definition, and an executable model of the
language and of the virtual machine underlying its intended implementation.
As a consequence, in our models for the language and the machine, we first of
all try to directly and faithfully reflect, in a complete way, as far as possible
without becoming inconsistent, and in an unambiguous yet for the human
reader graspable way, the intuitions and design decisions which are expressed
in the reference manuals [18, 23] and underlie the current implementations of
the language and the machine. We clarify various ambiguities and inconsis-
tencies we discovered in the manuals and in the implementations, concerning
fundamental notions like legal Java program, legal bytecode, verifiable byte-
code, etc. Our analysis of the JVM bytecode verifier, which we relate to the
static analysis of the Java parser (rules of definite assignment and reachabil-
ity analysis), goes beyond the work of Stata and Abadi [34], Qian [27, 28],
Freund and Mitchell [16], and O’Callahan [20].
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In this introduction, we give an overview of the general goals of the book,
its contents, the structuring techniques we use for decomposing Java and the
JVM, and the literature we used.

For additional information on the book and updates made after its pub-
lication, see the Home Page of Jbook at http://www.inf.ethz.ch/~ jbook.

1.1 The goals of the book

Our main goal is not to write an introduction to programming in Java or
on the JVM, but to support the practitioner’s correct understanding of Java
programs and of what can be expected when these programs run on the vir-
tual machine. Therefore we provide a rigorous implementation-independent
(read: a mathematical) framework for the clarification of dark corners in the
manuals, for the specification and evaluation of variations or extensions of the
language and the virtual machine, and for the mathematical and the experi-
mental study and comparison of present and future Java implementations. We
build stepwise refined models for the language, the virtual machine, and the
compiler that are abstract, but nevertheless can in a natural way be turned
into executable models, which we also provide in this book, together with
the necessary run-time support. As a result, our specifications of Java and
the JVM are amenable to mathematical and computer-assisted verification
as well as to the experimental validation of practically important properties
of Java programs when executed on the JVM.

To formulate our models for Java and the JVM as consisting of compo-
nents which reflect different language and security features, we use Gurevich’s
Abstract State Machines(ASMs), a form of pseudo-code, working on abstract
data structures, which comes with a simple mathematical foundation [20].
The use of ASMs allowed us:

— To express the basic Java and JVM objects and operations directly, without
encoding, i.e., as abstract entities and actions, at the level of abstraction
in which they are best understood and analyzed by the human reader

— To uncover the modular structure which characterizes the Java language
and its implementation

At the same time, one can turn ASMs in various natural ways into exe-
cutable code, so that the models can be tested experimentally and validated.

With this book we also pursue a more general goal, which uses Java and
the JVM only as a practically relevant and non-trivial case study. Namely, we
want to illustrate that for the design and the experimental and mathemati-
cal analysis of a complex system, the ASM method is helpful for the working
software system engineer and indeed scales to real-life systems.! Therefore

! For a survey of numerous other applications of the method including industrial
ones, we refer the reader to [3, 4].



4 1. Introduction

we also include a chapter with a textbook introduction to ASMs. We provide
two versions, one written for the practitioner and the other one for the more
mathematically inclined reader. We hope that the framework developed in
this book shows how to make implementations of real-life complex systems
amenable to rigorous high-level analysis and checkable documentation—an
indispensable characteristic of every scientifically grounded engineering dis-
cipline worth its name.

The three main themes of the book, namely, definition, mathematical
verification, and experimental validation of Java and the JVM, fulfill three
different concerns and can be dealt with separately. The definition has to
provide a natural understanding of Java programs and of their execution on
the JVM, which can be justified as representing a faithful “ground model” of
the intentions of the reference manuals, although our models disambiguate
and complete them and make them coherent, where necessary. The verifi-
cation has to clarify and to prove under which assumptions, and in which
sense, the relevant design properties can be guaranteed, e.g., in this case,
the type safety of syntactically well-formed Java programs, the correctness of
their compilation, the soundness and completeness of the bytecode verifier,
etc. The wvalidation of (a refinement of the ground model to) an executable
model serves to provide experimental tests of the models for programs. How-
ever, as should become clear through this book, using the ASM framework,
these three concerns, namely, abstract specification, its verification, and its
validation, can be combined as intimately and coherently connected parts of
a rigorous yet practical approach to carrying out a real-life design and im-
plementation project, providing objectively checkable definitions, claims, and
justifications. It is a crucial feature of the method that, although abstract, it
is run-time oriented. This is indispensable if one wants to come up with for-
mulating precise and reliably implementable conditions on what “auditing”
secure systems [21] may mean.

It is also crucial for the practicality of the approach that by exploiting
the abstraction and refinement capabilities of ASMs, one can layer complex
systems, like Java and the JVM, into several natural strata, each responsible
for different aspects of system execution and of its safety, so that in the
models one can study their functionality, both in isolation and when they are
interacting (see the explanations below).

1.2 The contents of the book

Using an ASM-based modularization technique explained in the next section,
we define a structured sequence of mathematical models for the statics and
the dynamics of the programming language Java (Part I) and for the Java
Virtual Machine, covering the compilation of Java programs to JVM code
(Part II) and the JVM bytecode verifier (Part III). The definitions clarify
some dark corners in the official descriptions in [18, 23]:
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— Bytecode verification is not possible the way the manuals suggest (Fig. 16.8.
Fig. 16.9, Remark 8.3.1, Remark 16.5.1, bug no. 4381996 in [11])

— A valid Java program rejected by the verifier (Fig. 16.7, bug no. 4268120
in [11])

— Verifier must use sets of, instead of single, reference types (Sect. 16.1.2,
Fig. 16.10)

— Inconsistent treatment of recursive subroutines (Fig. 16.6)

— Verifier has problems with array element types (Example C.7.1)

— Inconsistent method resolution (Example 5.1.4, bug no. 4279316 in [14])

— Compilation of boolean expressions due to the incompatibility of the reach-
ability notions for Java and for JVM code (Example 16.5.4)

— Unfortunate entanglement of embedded subroutines and object initializa-
tion (Fig. 16.19, Fig. 16.20)

— Initialization problems [10]

We formulate and prove some of the basic correctness and safety properties,
which are claimed for Java and the JVM as a safe and secure, platform-
independent, programming environment for the internet. The safety of Java
programs does not rely upon the operating system. The implementation com-
piles Java programs to bytecode which is loaded and verified by the JVM and
then executed by the JVM interpreter, letting the JVM control the access to
all resources. To the traditional correctness problems for the interpretation
and the compilation of programs,? this strategy adds some new correctness
problems, namely, for the following JVM components (see Fig. 1.4):

— The loading mechanism which dynamically loads classes; the binary rep-
resentation of a class is retrieved and installed within the JVM—relying
upon some appropriate name space definition to be used by the security
manager—and then prepared for execution by the JVM interpreter

— The bytecode verifier, which checks certain code properties at link-time,
e.g. conditions on types and on stack bounds which one wants to be satisfied
at run-time

— The access right checker, i.e., a security manager which controls the access
to the file system, to network addresses, to critical windowing operations,
etc.

As is well known (see [21]), many Java implementation errors have been
found in the complex interplay between the JVM class loader, the bytecode
verifier, and the run-time system.

We show under what assumptions Java programs can be proved to be
type safe (Theorem 8.4.1), and successfully verified (Theorem 16.5.2 and
Theorem 17.1.2) and correctly executed when correctly compiled to JVM
code (Theorem 14.1.1). The most difficult part of this endeavor is the rigorous

2 See [5, 6] where ASMs have been used to prove the correctness of the compilation
of PROLOG programs to WAM code and of imperative (OCCAM) programs
with non-determinism and parallelism to Transputer code.
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Fig. 1.1 Dependency Graph
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definition and verification of the bytecode verifier, which is a core part of the
JVM. We define a novel bytecode verifier for which we can prove soundness
(Theorem 17.1.1) and completeness (Theorem 17.1.2). We also prove that
successfully verified bytecode is guaranteed to execute without violating any
run-time checks (Theorem 16.4.1). We also prove the soundness of Java’s
thread synchronization (Theorem 7.3.1). Figure 1.1 shows how the theorems
and the three parts of this book fit together. We hope that the proofs will
provide useful insight into the design of the implementation of Java on the
JVM. They may guide possible machine verifications of the reasoning which
supports them, the way the WAM correctness proof for the compilation of
Prolog programs, which has been formulated in terms of ASMs in [6], has
been machine verified in [31].

Last but not least we provide experimental support for our analysis,
namely, by the validation of the models in their AsmGofer executable form.
Since the executable AsmGofer specifications are mechanically transformed
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Fig. 1.2 Language oriented decomposition of Java/JVM
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into the M TEX code for the numerous models which appear in the text, the
correspondence between these specifications is no longer disrupted by any
manual translation. AsmGofer (see Appendix A) is an ASM programming
system developed by Joachim Schmid, on the suggestion and with the initial
help of Wolfram Schulte, extending TkGofer to execute ASMs which come
with Haskell definable external functions. It provides a step-by-step execution
of ASMs, in particular of Java/JVM programs on our Java/JVM machines,
with GUIs to support debugging. The appendix which accompanies the book
contains an introduction to the three graphical AsmGofer user interfaces: for
Java, for the compiler from Java to bytecode, and for the JVM. The Java
GUI offers debugger features and can be used to observe the behavior of
Java programs during their execution. As a result, the reader can run exper-
iments by executing Java programs on our Java machine, compiling them to
bytecode and executing that bytecode on our JVM machine. For example,
it can be checked that our Bytecode Verifier rejects the program found by
Saraswat [30].

The CD contains the entire text of the book, numerous examples and
exercises which support using the book for teaching, the sources of the exe-
cutable models, and the source code for AsmGofer together with installation
instructions (and also precompiled binaries of AsmGofer for several popular
operating systems like Linux and Windows). The examples and exercises in
the book which are provided by the CD are marked with ~» CD. The exe-
cutable models also contain the treatment of strings which are needed to run
interesting examples.
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Fig. 1.3 Multiple thread Java machine execJavaThread
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1.3 Decomposing Java and the JVM

We decompose Java and the JVM into language layers and security modules,
thus splitting the overall definition and verification problem into a series of
tractable subproblems. This is technically supported by the abstraction and
refinement capabilities of ASMs. As a result we succeed

— To reveal the structure of the language and the virtual machine

— To control the size of the models and of the definition of the compilation
scheme, which relates them

— To keep the effort of writing and understanding the proofs and the exe-
cutable models, manageable

The first layering principle reflects the structure of the Java language and
of the set of JVM instructions. In Part I and Part IT we factor the sets of
Java and of JVM instructions into five sublanguages, by isolating language
features which represent milestones in the evolution of modern programming
languages and of the techniques for their compilation, namely imperative (se-
quential control), procedural (module), object-oriented, exception handling,
and concurrency features. We illustrate this in Fig. 1.2. A related structur-
ing principle, which helps us to keep the size of the models small, consists
in grouping similar instructions into one abstract instruction each, coming
with appropriate parameters. This goes without leaving out any relevant
language feature, given that the specializations can be regained by mere pa-
rameter expansion, a refinement step whose correctness is easily controllable
instruction-wise. See Appendix C.8 for a correspondence table between our
abstract JVM instructions and the real bytecode instructions.

This decomposition can be made in such a way that in the resulting
sequence of machines, namely Javaz, Javac, Javap, Javag, Javar and JVMz,
JVMe, JVMp, JVMg, JVM s, each ASM is a purely incremental—similar to
what logicians call a conservative—extension of its predecessor, because each
of them provides the semantics of the underlying language instruction by
instruction. The general compilation scheme compile can then be defined
between the corresponding submachines by a simple recursion.
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Fig. 1.4 Security oriented decomposition of the JVM
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Functionally we follow a well known pattern and separate the treatment
of parsing, elaboration, and execution of Java programs. We describe how
our Java machines, which represent abstract interpreters for arbitrary pro-
grams in the corresponding sublanguage, are supposed to receive these input
programs in the form of abstract syntax trees resulting from parsing. For
each Java submachine we describe separately, in Part I, the static and the
dynamic part of the program semantics. We formulate the relevant static
constraints of being well-formed and well-typed, which are checked during
the program elaboration phase and result in corresponding annotations in
the abstract syntax tree. In the main text of the book we restrict the analysis
of the static constraints to what is necessary for a correct understanding of
the language and for the proofs in this book. The remaining details appear
in the executable version of the Java model. We formalize the dynamical
program behavior by ASM transition rules, describing how the program run-
time state changes through evaluating expressions and executing statements.
This model allows us to rigorously define what it means for Java to be type
safe, and to prove that well-formed and well-typed Java programs are in-
deed type safe (Theorem 8.4.1). This includes defining rules which achieve
the definite assignment of variables, and to prove the soundness of such as-
signments. The resulting one-thread model ezecJava can be used to build a
multiple-thread executable ASM ezecJavaThread which reflects the intention
of [18, 23], namely to leave the specification of the particular implementation
of the scheduling strategy open, by using a choice that is a not further spec-
ified function (Fig. 1.3)3. For this model we can prove a correctness theorem
for thread synchronization (Theorem 7.3.1).

3 The flowchart notation we use in this introduction has the expected precise
meaning, see Chapter 2, so that these diagrams provide a rigorous definition,
namely of so called control state ASMs.
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Fig. 1.5 Decomposing trustfulVMs into execVMs and switchVMs
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For JVM programs, we separate the modeling of the security relevant load-
ing (Chapter 18) and linking (i.e., preparation and verification, see Part III)
from each other and from the execution (Part IT), as illustrated in Fig. 1.4.

In Part IT we describe the trustful execution of bytecode which is assumed
to be successfully loaded and linked (i.e., prepared and verified to satisfy the
required link-time constraints). The resulting sequence of stepwise refined
trustful VMs, namely trustful VM, trustful VMo, trustful VMo, trustful VMg,
and trustful VMy, yields a succinct definition of the functionality of JVM
execution in terms of language layered submachines exec VM and switch VM
(Fig. 1.5). The machine execVM describes the effect of each single JVM in-
struction on the current frame, whereas switch VM is responsible for frame
stack manipulations upon method call and return, class initialization and ex-
ception capture. The machines do nothing when no instruction remains to be
executed. As stated above, this piecemeal description of single Java/JVM in-
structions yields a simple recursive definition of a general compilation scheme
for Java programs to JVM code, which allows us to incrementally prove it to
be correct (see Chapter 14). This includes a correctness proof for the han-
dling of Java exceptions in the JVM, a feature which considerably complicates
the bytecode verification, in the presence of embedded subroutines, class and
object initialization and concurrently working threads.

In Chapter 17 we insert this trustfully executing machine into a diligent
JVM which, after loading the bytecode, which is stored in class files, and
before executing it using the trustfully executing component trustful VM,
prepares and verifies the code for all methods in that class file, using a sub-
machine verify VM which checks, one after the other, each method body to
satisfy the required type and stack bound constraints (Fig. 1.6).

The machine verify VM is language layered, like trustful VM, since it is
built from a language layered submachine propagate VM, a language layered
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Fig. 1.6 Decomposing diligent JVMs into trustfulVMs and verify VMs

A trustfulVM

no
some meth still
to be verified

set next meth up for verification e

. v

verifyVM built from submachines propagate, succ, check

curr meth still
to be verified

predicate check and a language layered function succ. The verifier machine
chooses an instruction among those which are still to be verified, checks
whether it satisfies the required constraints and either reports failure or
propagates the result of the checked conditions to the successor instructions
(Fig. 1.7).

The submachine propagate VM, together with the function succ in the
verifying submachine verify VM, defines a link-time simulation (type version)
of the trustful VM of Part II, although the checking functionality can be
better defined in terms of a run-time checking machine, see Chapter 15. The
defensive VM we describe there, which is inspired by the work of Cohen [13],
defines what to check for each JVM instruction at run-time, before its trust-
ful execution. We formulate the constraints about types, resource bounds,
references to heap objects, etc., which are required to be satisfied when the
given instruction is executed (Fig. 1.8).

The reason for introducing this machine is to obtain a well motivated and
clear definition of the bytecode verification functionality, a task which is best
accomplished locally, in terms of run-time checks of the safe executability of
single instructions. However, we formulate these run-time checking conditions
referring to the types of values, instead of the values themselves, so that we
can easily lift them to link-time checkable bytecode type assignments (see
Chapter 16). When lifting the run-time constraints, we make sure that if a
given bytecode has a type assignment, this implies that the code runs on the
defensive VM without violating any run-time checks, as we can indeed prove
in Theorem 16.4.1. The notion of bytecode type assignment also allows us to
prove the completeness of the compilation scheme defined in Part II. Com-
pleteness here means that bytecode which is compiled from a well-formed and
well-typed Java program (in a way which respects our compilation scheme),
can be typed successfully, in the sense that it does have type assignments
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Fig. 1.7 Decomposing verify VMs into propagateVMs, checks, succs

choose pc for verification

propagateVVM(succ,pc) report failure

record pc as verified

succ, [succ O succ,, [succe and propagate, O propagateg

(Theorem 16.5.2). To support the inductive proof for this theorem we refine
our compiler to a certifying code generator, which issues instructions together
with the type information needed for the bytecode verification.

The details of the machines outlined above are explained in this book
and are summarized in appendices B and C. Putting together the proper-
ties of the language layered submachines and of the security components of
Java and of the JVM, one obtains a precise yet graspable statement, and an
understandable (and therefore checkable) proof of the following property of
Java and the JVM.

Main Theorem. Under explicitly stated conditions, any well-formed
and well-typed Java program, when correctly compiled, passes the
verifier and is executed on the JVM. It executes without violating
any run-time checks, and is correct with respect to the expected
behavior as defined by the Java machine.

For the executable versions of our machines, the formats for inputting and
compiling Java programs are chosen in such a way that the ASMs for the
JVM and the compiler can be combined in various ways with current im-
plementations of Java compilers and of the JVM (see Appendix A and in
particular Fig. A.1 for the details).

1.4 Sources and literature

This book is largely self-contained and presupposes only basic knowledge
in object-oriented programming and about the implementation of high-level
programming languages. It uses ASMs, which have a simple mathematical
foundation justifying their intuitive understanding as “pseudo-code over ab-
stract data”, so that the reader can understand them correctly and success-
fully without having to go through any preliminary reading. We therefore



1.4 Sources and literature 13

Fig. 1.8 Decomposing defensiveVMs into trustfulVMs and checks
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invite the reader to consult the formal definition of ASMs in Chapter 2 only
should the necessity be felt.

The Java/JVM models in this book are completely revised—streamlined,
extended and in some points corrected—versions of the models which ap-
peared in [9, 11]. The original models were based upon the first edition of the
Java and JVM specifications [18, 23], and also the models in this book still
largely reflect our interpretation of the original scheme. In particular we do
not treat nested and inner classes which appear in the second edition of the
Java specification, which was published when the work on this book was fin-
ished. It should be noted however that the revision of [23], which appeared in
1999 in the appendix of the second edition of the JVM specification, clarifies
most of the ambiguities, errors and omissions that were reported in [10].

The proofs of the theorems were developed for this book by Robert Stérk
and Egon Borger, starting from the proof idea formulated for the compiler
correctness theorem in [3], from its elaboration in [33] and from the proof for
the correctness of exception handling in [12]. The novel subroutine call stack
free bytecode verifier was developed by Robert Stark and Joachim Schmid.
Robert Stéark constructed the proof for Theorem 16.5.2 that this verifier ac-
cepts every legal Java program which is compiled respecting our compilation
scheme. The AsmGofer executable versions of the models were developed for
this book by Joachim Schmid and contributed considerably towards getting
the models correct.

We can point the reader to a recent survey [21] of the rich literature on
modeling and analyzing safety aspects of Java and the JVM. Therefore we
limit ourselves to citing in this book only a few sources which had a direct
impact on our own work. As stated above, the complex scheme to implement
Java security through the JVM interpreter requires a class loader, a security
manager and a bytecode verifier. For a detailed analysis of the class loading
mechanism, which is underspecified in [18] and therefore only sketched in
this book, we refer the reader to [29, 35] where also further references on this
still widely open subject can be found. We hope that somebody will use and
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extend our models for a complete analysis of the critical security features of
Java, since the framework allows to precisely state and study the necessary
system safety and security properties; the extensive literature devoted to this
theme is reviewed in [21].

Draft chapters of the book have been used by Robert Stérk in his summer
term 2000 course at ETH Ziirich, and by Egon Borger in his Specification
Methods course in Pisa in the fall of 2000.
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