
Logic and Machines: Turing Tradition at the
Logic School of Münster

Egon Börger1 and Rainer Glaschick2

1 boerger@di.unipi.it
2 rainer@glaschick-pb.de

Abstract. We describe the influence Turing’s early work on the Entschei-
dungsproblem had in the Schule von Münster where it triggered the in-
vestigation of intimate links between logic and computation years before
they became a main research theme in the science of computing. We
report in particular on the work in the Turingraum where illustrative
physical models of some outstanding (in particular universal) Turing and
related machines were built some of which found their way into teaching
algorithmic thinking in primary and secondary schools. We also point out
how the investigation of various logical models of computation, initiated
in Münster in the middle of the 1960s, led in the 1990s in a natural way
to the practical but mathematically rigorous Abstract State Machines
Method for a well-documented stepwise development of executable code
by constructing logical models which successively introduce the necessary
details to implement an initial rigorous requirements model.

1 Introduction

The story of this paper starts with two events in 1936 which involved Alan
Turing and Heinrich Scholz.

Fig. 1. Heinrich Scholz and Alan Turing

A. In 1936 the Logic School of Münster (Schule von Münster [174, p.15],
see also [220]) became institutionally visible, namely when Heinrich Scholz,

working since 1928 as professor of Philosophy at the University of Münster with
a growing focus on mathematical logic and foundational issues, succeeded to
establish as an independent part of the Philosophisches Seminar a “Logistis-
che Abteilung” which eventually in 1950 became the Institut für mathematische
Logik und Grundlagenforschung (Institute of Mathematical Logic and Founda-
tional Research) at the mathematics department of the university.1

The group of 10 doctoral students who worked with Scholz between 1930 and
1953 in Münster distinguished itself by strong interdisciplinary interests and an
openness of mind towards applications of logic in various fields, attracted and
stimulated by the extraordinary wide range of interests and knowledge of its
founder. These properties have been honored by the two followers as head of the
school and director of the institute, namely Hans Hermes (1953-1966)2 and Di-
eter Rödding (1966-1984, see [32]), as well as by Scholz’ last student Gisbert
Hasenjaeger who worked with Scholz as student, assistant and Dozent from
1945 to 1962 when he moved from Münster to the University of Bonn to estab-
lish there yet another successful Department of Logic and Basic Research which
he directed until his retirement in 1984 (see [174, pp.261–262], [265] and https:

//rclab.de/hasenjaeger/publikationen_von_gisbert_hasenjaeger).

Fig. 2. Hans Hermes, Gisbert Hasenjaeger and Dieter Rödding

In this context also two later associates should be mentioned who contributed
to the work of the school in set theory, proof theory and recursion theory resp.
in model theory, namely Wilhelm Ackermann, who joined the group as hon-
orary professor from 1953 to his death in 1962,3 and Wolfram Schwabhäuser,
who submitted his doctoral thesis in 1960 in Berlin [269], under the supervi-

1 For the detailed historical development of the institute see [14].
2 Hermes moved in 1966 to the University of Freiburg where he founded (and directed

until his retirement in 1977) a new group of logic, sometimes referred to as the
Freiburger Logikschule, which too excelled by a wide spectrum of scientific interests
including applications of logic to computing. See [266].

3 In computer science Ackermann is known mainly due to the scheme he invented to
define recursive functions which ‘grow faster than any primitive recursive function’

2

https://rclab.de/hasenjaeger/publikationen_von_gisbert_hasenjaeger
https://rclab.de/hasenjaeger/publikationen_von_gisbert_hasenjaeger

sion of Scholz’ former student Karl Schröter, and his Habilitation in 1965 at
the University of Münster, worked in 1965/66 with Tarski at the University of
Berkeley, joined in 1966 Hasenjaeger’s logic group in Bonn and since 1973 until
his early death in 1985 worked as professor for theoretical computer science at
the University of Stuttgart.

Fig. 3. Wilhelm Ackermann and Wolfram Schwabhäuser

B. In 1936 Alan Turing wrote (and published in [17]) his epochal paper
where he

defined a class of idealized machines, nowadays called Turing machines (TMs)
which he argues to model computability, i.e. to capture every calculation,
performed by a human using pencil and paper, ‘which could naturally be
regarded as computable’ [17, p.230] (showing also that it is equivalent to
Church’s notion of effective calculability defined in [5]),
proved that however some simple machine properties (e.g. whether a given
machine once started will ever print some given symbol) cannot be computed
by any Turing machine,
derived from the preceding impossibility result a negative answer to Hilbert’s
question about the Entscheidungsproblem (decision problem of first order
logic), as did Church in [4] using his concept of effective calculability,
showed that there are so-called universal Turing machines, i.e. single (pro-
grammable) machines which can do (‘simulate’ in a precise mathematical
sense) the work of any other Turing machine.

C. The two events are intimately related [127]: Scholz and his school
promptly recognised the epochal significance of Turing’s solution to Hilbert’s
fundamental Entscheidungsproblem, which at the time was considered to be ‘the
main problem of mathematical logic’ [73, Ch.11,12]; they understood that there

and therefore are not primitive recursive [6]; see [150] for an account of his deep
contributions to logic.

3

is an intimate connection between abstract machines and logic languages to
describe the machine behaviour, between logical expressivity and computational
machine power.

In fact, Scholz presented Turing’s freshly published work in a seminar talk
at the just founded logic institute, a seminar that has been called the world’s
first seminar on computer science [9].4 Hans Hermes who at the time was a doc-
toral student at the institute5 published right away in 1937 a first paper [142]
where he builds upon Turing machines. When in 1947, after the war and after
the Habilitation in mathematics at the University of Bonn, Hermes returned as
Dozent to Münster he started regular lectures on the subject (since 1949) and in
1952 and 1954 wrote two other papers [144,145] where he adapted in a natural
way Turing’s definition of computation by a finiteness condition that better fits
computing decision problems (instead of numbers). This led him directly to the
halting problem. The definitions eventually went into his computability book of
1961 [147]. Together with Martin Davis’ computability book of 1958 [211] these
two early Turing machine based textbooks (which both went through various edi-
tions and had each a follower [186,212]) formed the mind of generations of logic
and computer science students concerning the basic concepts of computability
and undecidability.

1.1 Content of the paper

In this paper we illustrate how the early encounter between Turing and the
Logic School of Münster triggered there for half a century (until Rödding’s early
death in 1984) a thorough investigation of the relations between logic and (in
particular machine-based) concepts and methods of computation, years before
they became a major theme for the new science of computing.6

In Sect. 2 we report on the early Turing reception in Münster.
In Sect. 3 we report on the work where the School of Münster enriched the
classical recursion theory by machine-based classifications of recursive func-
tions and by investigating links between machine computations and logical

4 Note that ibidem (see also https://en.wikipedia.org/wiki/Heinrich_Scholz) it
is also reported that Scholz was the only scientist worldwide outside the inner Cam-
bridge circle who asked Turing for a reprint of his decision problem paper [17], by
the way later also of [16]. How much Turing appreciated this interest can be seen
from https://ivv5hpp.uni-muenster.de/u/cl/. The authors of [252] found let-
ters of 1952/3 where Scholz tried (without success) to arrange for Turing a visit to
Münster.

5 His doctoral dissertation on ”Eine Axiomatisierung der allgemeinen Mechanik” [143]
was submitted there in 1938.

6 In this paper we do not mention further the well-known research activities of mem-
bers of the school in traditional areas of logic, in particular set theory, model theory,
and proof theory. Nor do we mention further the numerous and intensive contacts
the members of the institute maintained with their colleagues in other logic centers
in Europe and the US.

4

https://en.wikipedia.org/wiki/Heinrich_Scholz
https://ivv5hpp.uni-muenster.de/u/cl/

and algorithmic decision problems, work which contributed to the emerging
machine-based complexity theory in theoretical computer science.
In Sect. 4 we report on Hasenjaeger’s and Rödding’s work to ‘materialize’
in hardware illustrative models of some outstanding computing machines,
built in what in the institute was called the Turingraum. We explain also the
effect this practical work had on the theoretical development of new models
of computation. In Sect. 9 we provide the underlying technical details.
In Sect. 5 we report on Rödding’s and his students’ work on modular decom-
positions of different kinds of automata which found various applications in
other disciplines, among them an outstanding and rather intuitive dynamic
way to teach fundamental mathematical and algorithmic concepts to stu-
dents of elementary and high schools (see Sect. 6).
In Sect. 7 we point to some alternative concepts of computation which
have been developed in the School of Münster since the 1960s. They were
about computing with non-numerical objects and structures, like terms,
trees, graphs (networks of automata), topological structures, etc. Since the
late 1980s this theme found a renewed interest in theoretical computer sci-
ence and eventually led to the discovery of Abstract State Machines (ASMs).
We shortly explain how this concept, in addition to its theoretical interest for
logic and complexity theory, led in the 1990s to the development (far away
from Münster) of the ASM Method which enhances the practice of rigorous
software design and analysis.
In Sect. 8 we summarize the institutional impact the Logic School of Münster
(together with the School of Freiburg) had on the advancement of mathemat-
ical logic, in particular in Germany, by contributing to and taking inspiration
from the practice and the theory of computing.
In an appendix (Sect. 10) we show the genealogy of the School of Münster.

2 Early Turing Reception in Münster

The presentation of Turing’s paper [17] to the logic seminar in Münster triggered
three early publications that used Turing machines (in 1937, 1952 and 1954),
written by Hermes who in 1937 was doctoral student of Scholz. In each of these
papers which were addressed to a general educated public Hermes used Turing’s
definitions but adapted them to the theme each paper proposed to explain. The
main modification with respect to Turing’s original paper concerned the concept
of computation or run of a Turing machine. Hermes tailored it by a finiteness
condition (together with requiring runs to start with some input and to terminate
with some output) that fits the definition of decision procedures, replacing the
computations of the more complex circle-free machines Turing had tailored for
computing infinite 0-1-sequences that represent real numbers in binary decimal
notation.7 The finiteness condition led Hermes in a natural way to the halting
problem which is of lower arithmetical complexity than Turing’s circle-freeness

7 Turing notably used binary fractional numbers in a time when the rest of the world
thought decimal, except two years later Zuse and four years later Atanasoff [20].

5

problem. The definitions went into the lectures Hermes delivered on the subject
regularly since 1949 (see the early lecture notes [146] published in 1955 and the
computability book [147]) and became part of common usage.

2.1 Turing Machines to Compute ‘Definite’ Predicates

In [142] Hermes saw a possibility to contribute to a rational discussion concern-
ing the foundational question whether in mathematics only ‘definite’ predicates
should be allowed, as claimed at the time by intuitionists and constructivists in
opposition to the ‘classical’ understanding of mathematics. A predicate P (over
the natural numbers or over words of any given alphabet) was considered to be
definite if one can indicate a general procedure to decide for each argument x in
a finite number of steps whether P is true for x or not.

Hermes used Turing machines to replace the intuitive understanding of ‘a
general decision procedure’ by a precise mathematical concept. Therefore he
proposed to define P as definite if (our wording) there is a Turing machine M
such that for every argument x ,

1. M started with input x
2. eventually yields a result, namely yes/no if and only if P(x) is true/false.

This became the standard definition of what nowadays we call a decidable
predicate P or also a predicate whose decision problem is algorithmically solvable
(see for example [211, p.69, Def.2.1]). The two features 1. and 2. had to be
integrated into the conceptual framework Turing tailored to compute numbers
[17].

Ad 1. To start a computation not with the empty tape—as Turing requires for
computing a number—but to ‘supply the machine with a tape on the beginning
of which is written some input’ is used by Turing in two places (without naming
it by a definition): for the construction of a universal machine [17, p.241] and for
proving the unsolvability of the Entscheidungsproblem [17, p.259]. Hermes uses
this input mechanism without changing the 0-1-representation of the input on
the tape.

Ad 2. To yield a result necessitates some way to determine when the compu-
tation reaches a point where it is ready to provide a definite output (read: the
answer whether P holds for the input x or not). Turing refers to such a feature
(without defining it) where in an indirect proof he speaks about computations
of the hypothetical machine D that decides circle-freeness and considers “when
it has reached its verdict” [17, p.247] for the given input. Hermes makes this
explicit by introducing a special symbol, say H , such that M , once started,

after a finite number of steps will print the symbol H ,
up to this step has printed a 0-1-sequence that is interpreted to yield the
result of the computation,
from this moment on will never print any more any digit 0 or 1.

Note that the third condition—which guarantees that the “verdict” concern-
ing the input question has been pronounced and will not change any more—
turns such machines into circular (maybe not even halting) machines, exactly

6

those Turing was not interested in. We see here that the PhD student Hermes
paid some attention to not change anything in Turing’s definitions (neither of
TM-programs nor of their computations) but to only adapt the interpretation
of specific TM-runs to make them fit for ‘deciding a property in finitely many
steps’, instead of computing an infinite 0-1-sequence. In Sect. 2.2 we will see
that 15 years later, at the age of 40, Hermes replaces this veiled way to trick
a Turing machine to serve as a decision procedure by a more streamlined and
explicit definition of decidability of predicates and analogously computability of
functions.

2.2 Entscheidungsmaschinen and Halting Problems

In his second Turing machine paper [144] Hermes simplified the stipulations
made in [142] and made them more explicit, adding a termination convention to
obtain a conceptually simple concept of what he called Entscheidungsmaschine
(decision procedure): input/output Turing machines which, started with some
input, terminate their computation after a finite number of steps and provide as
result a yes/no answer to the input related question.

Technically this is achieved by adding to Turing machine programs at least
one dedicated termination instruction (q , a, b,move, halt) whose execution in
state q when reading a leads the machine to the successor state halt in which the
machine will stop (read: has in its program no quintuple (halt ,) to execute).
Then one gets the definition of an Entscheidungsmaschine E we all became
used to and explained already above, i.e. E decides P if and only if for every x
the machine if started with input x halts after a finite number of steps and its
computation result is 1 (e.g. in its current working field) if and only if P(x) is
true, otherwise the result is 0.

The historically interesting fact one can observe here is that with such a
simple halting convention (of a kind everywhere used today) Hermes proves in
half a page, using a standard diagonalization argument, the undecidability of
various forms of what nowadays is called the halting problem, thus considerably
simplifying Turing’s proof of the undecidability of the circularity property [17,
pp.246–247]. The same year also Kleene [249, p.382] has proved the undecidabil-
ity of a halting problem.

2.3 Universality of Programmable Computers

In his third Turing machine paper [145] Hermes sets out to show why pro-
grammable computers, as already available in 1954, are universal in the sense
that one can construct a programmable computer such that for every computing
machine its computational power is included in the computational power of that
computer. This mathematical endeavor requires a mathematical definition of
a) ‘computing machines’ and of b) the ‘computational power’ of programmable
computers and computing machines.

7

To turn b) into a mathematical concept Hermes views (computations of)
computing machines as computing functions over natural numbers (p.42)8 so
that their computational power can be defined by the class of number theo-
retic functions they can compute. For a) Hermes assumes Turing’s thesis that
every computable function is a Turing computable function, relying upon the
accumulated evidence available already in 1954 that the numerous attempts to
mathematically define computability in various ways eventually all led to Turing
computable functions. Therefore to construct a universal programmable com-
puter it suffices to construct an idealized computer which can be appropriately
programmed to simulate every given Turing machine M ; the idealization refers
to the assumption that the computer has infinite memory (to store the program
code for M and to simulate the computation of M for any input).

This is what Hermes does in [145], introducing a certain number of normal-
izations of Turing machines and their computations to simplify the construction
of the computer which, if appropriately programmed, for any given Turing ma-
chine M simulates the work of M . Some of these normalizations and variations
thereof went into [147] and are common usage nowadays.

Fig. 4. The three Computability and Logic books by Hermes

1. The first simplification concerns the programs: instead of quintuples Hermes
considers flowcharts of 5 basic component-TMs whose connection structure

8 The underlying mathematical abstraction is that computing machines can handle
arbitrarily large natural numbers, thus requiring that the memory is infinite. In [17,
p.231] this appears in the form that a Turing machine “may also change the square
which is being scanned, but only by shifting it one place to right or left”, assuming
that to the right and to the left of any square the mathematically idealized machine
always finds another square. If one prefers to see memory as potentially infinite,
there must be an operation that allows one to import any time new memory elements
(enough pencil and paper for “a man in the process of computing”[17, 231]) from
somewhere.

8

can easily be encoded by corresponding links (gotos) between subprograms
of the computer program, one for each basic component machine. Obviously
it is assumed that there is enough memory (unbounded register content) to
store the given flowchart. For the connection in the flowchart visualization
each component has exactly one entry, the Test component has two exits
yes/no, all the other components have at most one exit:

R-ight machine,
L-eft machine,
M-ark machine (prints ∗ in the working field),
N-ull machine (prints blank in the working field),
T-est machine (whether working field is marked or not)

2. Simplification of the tape: tape with a left end and infinite to the right, only
two symbols ∗, blank .

3. The following normalizations concern the concept of computation.

Initialization: exactly one component is distinguished as the currently-
to-be-executed one. The initial tape is n̄ (n a natural number) with the
working position on the rightmost marked field; n̄ is the tape beginning
with blank ∗ . . . ∗ (n occurrences of ∗) with completely blank rest of the
right-infinite tape.
Stop criterion: after having executed a component without exit, the ma-
chine halts. The final tape is ȳ where y = f (n) and f is the computed
function. Only total functions are considered.

.
With these normalizations of TMs it is easy to encode an M -configuration

into the memory of a programmable computer as follows:

place the sum of all 2k for all marked fields k into a register, say reg(tape),
place the number of the current working field into a register, say workPos.

Thus it only remains to construct for each basic component machine c a program
pgm(c) the computer will execute to simulate the behaviour of c, using a small
number of memory locations.

Remark. Historically two facts are worth to be noticed:

Hermes uses (in 1954) a number register for the encoding of the tape. The
needed idealization with respect to physical computers is that such a register
can hold arbitrarily large numbers.9

It is only a small step from the flowcharts of 5 basic TM-components

R,L,M ,N ,T

to Rödding’s structured programming Turing machines, called Turing oper-
ators [78]. The goto-structure of the flowchart is replaced by an algebraic

9 Assuming that adding 1 to a register content n yields a register content n + 1
corresponds to Turing’s assumption that each move to the right or to the left of a
current tape square finds yet another tape square.

9

program structure that is defined using concatenation and iteration; oth-
erwise stated the test component T is normalized to appear only at the
beginning and end of an interated subprogram M so that it has the form

(M)∗

denoting to iterate M until the symbol ∗ appears in the working field. The
same for (M)blank . These operators (and even more their register operator
relatives, see Sect. 3.2) simplify a lot the construction of Turing or register
machines to compute recursive functions [78,81,30].

3 From Recursion Theory to Complexity Theory

In Münster, the path from recursion theory to complexity theory has been opened
by two lines of research which have been pursued already before theoretical
computer science became an academic discipline:

description of machine computations by logical formulae relating computa-
tion power of the machines (measured in terms of the structure and com-
putational strength of elementary machine operations and of computation
time and/or space) and logical expressivity of the formulae (Sect. 3.1),
machine-based characterization of hierarchies of recursive functions relat-
ing computational means to mathematical expressivity (definability schemes
classified mainly in terms of the nesting of forms of recursion in traditional
equational definitions of functions) (Sect. 3.2).

3.1 Machine-Characterization of Logical Decision Problems

The study of logical and algorithmic decision problems was part of the logic cur-
riculum and a major thread of logic research in Münster. The subject was treated
in regular courses (see the lecture notes [146,79,80,87])10, diploma (master) and
doctoral theses [176,177,86], articles [110,175,154,151,152,237,188,190,48,72] and
monographies [7,44]. We refer here to just a few characteristic examples, for a
complete Annotated Bibliography concerning the classical Entscheidungsproblem
see [44].

Two lines of research characterized the traditional approach to the Entschei-
dungsproblem: develop algorithms for decidable cases [7] and reduce the general

10 The institute had the tradition, initiated by Scholz (see [153, p.45]), to make lecture
notes available for many courses. See for example [120,8]. The first author knows from
the time when he was responsible for the library of the institute that this library
contains many historically valuable lecture notes and also reprints of papers from
famous logicians. The lecture notes often contained new research results that were
not published elsewhere. For example, in [80] an elegant and simple proof for the
sharp Kahr reduction class was developed, based upon a geometrical representation
of computations of register machines with two registers in the Gaussian quadrant.
This proof is used in [44, Ch.3.1]. Other examples are mentioned below. The lecture
notes tradition has been maintained by Hasenjaeger also in Bonn, see for example
[122].

10

problem to the decision problem of smaller and smaller classes of formulae (re-
duction classes) [181]. Following Büchi [172], stronger and stronger reduction
classes were obtained by refining Turing’s method to formalize the computations
of machines (but also of other algorithmic systems or games) of a given class
by logic formulae of a given class such that the machine behaviour of interest is
equivalent to the decision (usually the satisfiability) problem of the correspond-
ing logical formula. Since the 1980s, initiated in [157,115], this method is applied
also to determine lower bounds for the complexity of decidable cases.

Establishing such relations between machine-computation-power and logical
expressivity then became a major theme of automata and complexity theory
in theoretical computer science. To mention just one outstanding example of a
complexity variation of Turing’s result: the NP-completeness of the satisfiability
problem of propositional logic formulae in conjunctive normal form proved in
[250] is a polynomial-time-restricted version of the Σ1-completeness of the de-
cision problem of predicate logic proved by [17] and in fact can be shown (see
[33, Sect.2.3.1]) to be an instance of a general parameterized scheme (which has
been developed in [29,28]) for logical implementations of machine programs.

The scheme relates algorithmic systems and their logical descriptions in such
a way that numerous recursion and complexity theoretical properties are eas-
ily carried over from combinatorial to logical decision problems [27,26]. This
includes the theoretically especially interesting case of Prolog programs where
for one object—a Horn formula—different interpretations and their complexity
properties are related, namely the computational properties of its program inter-
pretation (e.g. Turing universality) and the logical properties of its purely logical
interpretation (e.g. Σ1-completeness of decision problems) [48,34]. The scheme
can also be instantiated (see [44, Sect.2.2.2] for details) to prove Fagin’s charac-
terization of NP as a class of generalized first-order spectra [228], a result which
marks the origin of Descriptive Complexity Theory where systematically logic
languages are designed to capture computationally-defined complexity classes
[219], a branch of finite model theory to which the Logic School of Freiburg
contributed considerably [84] (see the lecturers from the Coloquio sobre Logica
Simbolica at the Centro de Calculo de la Universidad Complutense in Madrid
(19.02. – 21.02.1975) in Fig. 5 with Hermes and his former students and col-
leagues in Freiburg Dieter Ebbinghaus (Münster 1967) and Jörg Flum (Freiburg
1969)).

The very notion of spectra—for any given formula the set of the cardinal-
ities of its finite models—and the question how to characterize them (called
Spektralproblem and formulated in [159]) have been discovered by Hasenjaeger,
Markwald and Scholz when they saw Trachtenbrot’s undecidability result for fi-
nite satisfiability [260]. In 1971, applying Büchi’s machine description technique
from [172] to register machines (as done in Rödding’s 1968 lecture [79]) and us-
ing the Rödding hierarchy DSPACE (fn) of functions—defined in [77] in terms of
n-fold exponential time-bounded deterministic register machine computations,
starting with the Grzegorczyk class E2 and contained in and exhausting the

11

Fig. 5. J. Prida, H. Hermes, J. Flum, D. Ebbinghaus, E. Börger, unknown
(Madrid 1975, names listed from right to left)

Grzegorczyk class E3
11—Rödding and Schwichtenberg [238] provided an elegant

n-th order logical description of n-fold exponential time-bounded register ma-
chine computations with the result that n-th-order spectra form a strict subele-
mentary hierarchy and exhaust the class of Kalmár-elementary sets. The result
strengthened the early discovery, established using different (model-theoretic and
number-theoretic) means by Asser [117] (as student of Schröter a scientific grand
child of Scholz) and Mostowski [15], that first-order spectra reside between the
classes E2 and E3 of the Grzegorczyk hierarchy of primitive recursive functions.
The result rediscovered most of Bennett’s unpublished thesis [171] which was
based on a sophisticated analysis of the complexity of schemes to define number
theoretic functions and relations and not on the computational complexity of
machine programs that compute such functions.

Independently, in [180] a similar (but technically more involved) formalization
of bounded computations of non-deterministic Turing machines by ‘spectrum-
automata’ is developed which yields a characterization of first-order spectra
by sets which are exponential-time acceptable by non-deterministic Turing ma-
chines, result proved independently also in [227]. Christen, using a sophisticated
refinement of Rödding’s computation time classification of subelementary func-
tions [77] for register machines working over words, instead of numbers, has
completed the Rödding-Schwichtenberg result in his doctoral thesis [64] to the
final characterization of n-th order spectra as the class of NTIME (fn)-sets of
positive integers, where NTIME (f) is the class of sets which are accepted by a

11 For the Grzegorczyk hierarchy see [30, Ch.C].

12

non-deterministic Turing machine in time f (c|x |) (for some constant c and in-
put length |x |) and the n-fold exponential functions fn are defined by f1(x) = 2x

and fn+1(x) = 2fn(x). Note that also the critical part of this characterization
can be proved by a simple instantiation of the computation description scheme
developed in [29] (see [44, pp.52–53] for the technical details).

Another line of research on the spectral representation of predicates appears
in a series of papers by Deutsch (see the list in the Annotated Bibliography in
[44]) where he uses normal forms of recursively enumerable sets he had developed
in his doctoral thesis [213] to sharpen numerous reduction classes by restricting
the interpretation of the unique occuring binary predicate symbol to an ε-like
relation over transitive sets.

Numerous interesting questions about spectra of (fragments of) first-order or
higher-order logics are still today without answer. For a survey of the extensive
later developments of the Spektralproblem in theoretical computer science and
logic see the detailed and very informative survey [11].

3.2 Machine-Characterization of Recursive Functions

The second major thread of research in Münster which influenced later devel-
opments in complexity theory was the machine-based characterization of hi-
erarchies of recursive functions, relating mathematical definability schemes (see
[230,194]) to computation time and/or resource consumption needed to compute
functions by restricted Turing-like machines, in particular (structured) register
machines (which Rödding discovered in 1959/60 before they appeared in the
two—for the study of decision problems most influential—papers [215,251], see
Sect. 4 and [125,234,231]).

Fig. 6. László Kalmár and Dieter Rödding (Lecture in Münster, 1970)

Rödding’s doctoral thesis [75] on Kalmár’s class of elementary functions trig-
gered much further work on this theme in Münster, in particular [83,232,77],
the doctoral dissertations [161,158,94,139] and [162,163]. See also [82, Ch.V.5].

13

Putting together the work done in Münster (which includes Heinermann’s inves-
tigation of recursion classes in his doctoral dissertation [264]) with [12,243,10,19]
yields equivalent characterizations of the Grzegorczyk hierarchy of classes of
primitive recursive functions by measuring the nesting of bounded recursion, the
nesting of recursion, the growth bound by branches of the Ackermann function
[6], the nesting of loops and the computation time bound of register machines
to compute the functions (see the Grzegorczyk-hierarchy theorem in [82, Ch.V3]
and [30, C.II.1]).

A side remark: computer scientists may be interested in the observation that
the use of structured register machines (called register operators, with an anal-
ogous definition of Turing operators, see [78,234],[81, Ch.I.4] and their use in
[30]) also allowed to sharpen the famous Böhm-Jacopini characterization of com-
putable functions (see [62]) which has played a role for the development of the
concept of structured programming.12

The two books shown in Fig. 7 document with proofs, further references and
detailed historical comments the way computing machine concepts led from re-
cursion theory to complexity theory and from the study of highly unsolvable de-
cision problems to the study of the exact complexity of their decidable subcases,
development to which the Logic School of Münster contributed considerably, as
has been outlined in this section.

Fig. 7. Logic and Machines: From Decision Problems to Complexity

12 For a generalization of the Boehm-Jacopini characterization from Turing machines
to Abstract State Machines see [53, Proposition 5].

14

4 Turingraum

Copeland remarks in [71, p.54] that

the mathematical representation of a Turing machine must not be con-
fused with the thing that is represented – namely, an idealized physical
machine

and concludes his chapter in the book by stating that

What Turing described in 1936 was not an abstract mathematical notion,
but a solid three dimensional machine containing (as he said) wheels,
levers, and paper tape...

Turing was continuously engaged in practical projects (see Hodges [13]):

in 1939, designed and built a mechanical machine to calculate roots of Rie-
mann’s zeta function (p.155),
in 1944, invented and built a speech scrambler from valves (p.273),
in 1945, designed the soft- and hardware for the Pilot ACE (p.333),
in 1949, contributed a hardware random number generator for the Manch-
ester Ferranti machine (p.402).

Fig. 8. Entrance to Turingraum in Münster (around 1962).

In the same spirit—combining theoretical work with the desire to build tan-
gible theoretically well-founded machines—Hasenjaeger, soon joined by his doc-
toral student Rödding, pursued the goal to materialize (as Hasenjaeger wrote in

15

[125, p.182]) the theoretical concept of a universal Turing machine by some real
physical machines one could also use to demonstrate the concept in lectures on
the subject.13 In the late 1950s Hasenjaeger and Rödding, supported by Her-
mes,14 transfered these activities from Hasenjaeger’s home to a dedicated room
in the logic institute that was named Turingraum (Fig.8).15 Here running phys-
ical models of small though computationally universal machines were built with
simplest means until Rödding’s early death in 1984; the same year Hasenjaeger
retired but continued his materialization work at home.16

This materialization endeavor was triggered by a talk Friedrich Bauer gave in
the middle of the 1950s at the logic institute in Münster where he presented his
electro-mechanical model Stanislaus to evaluate algebraic terms in parenthesis-
free notation. Upon Hermes’ suggestion Hasenjaeger constructed for use in the
institute a specimen of that machine, for details see Sect. 9.1.

This work soon led to the idea to build a physically running small universal
Turing machine. As Hasenjaeger points out in [125] the “bottleneck was the
materialization ... of a TURING tape” that was rewriteable.17 The starting idea
was to exploit the following ideas by Moore and Wang, of which Hasenjaeger
only mentioned the first two ones:

the reduction of the number of states in Moore’s universal machine obtained
by introducing a separate program tape plus an additional auxiliary tape
(3-tape machine with only 15 states and 2 symbols [217]),
Wang’s observation [165] that erasing (overwriting) is not necessary; read
and write-on-blank operations suffice (together with the move operations to
the right/left) for a universal machine.
Wang’s proposal to use instructions instead of encoded state tables, which—
at least in hindsight—was another step towards small and quick state ma-
chines.

13 In [123, Part 1] Hasenjaeger speaks about physical ‘models whose behaviour can be
followed in “human” dimensions’.

14 Already in his 1952 paper Hermes invites the technically interested reader to think
about “how one can realize a Turing machine in practice”[144, footnote 5, p.185].

15 The enlarged part below the room number shows that Turing’s name was used as
room name. The Turingraum together with a Fregeraum (reserved for the work on
the Frege edition [156,116]) and two rooms for guest researchers formed a Depen-
dance of the logic institute [268], given the lack of space in the castle which hosted
the mathematical institutes until the end of the 1960s; at that time the Turingraum
moved together with the Institute for Mathematical Logic to the new math building
in the Einsteinstrasse.

16 After Rödding’s death the Turingraum has been disbanded by the new direction
of the institute, the material was abandoned without further notice in a lumber
room. To save it from greater damage it was quickly brought to Walburga Rödding
(see [268]) who preserved it over the time, until in 2011, she and Hasenjaeger’s
family donated all physical artefacts from Hasenjaeger’s legacy to the Heinz Nixdorf
MuseumsForum in Paderborn (http://www.hnf.de/).

17 Nota bene that Turing’s paper suggests to use two tapes (even and odd fields) and
to distinguish between erase and overwrite operations.

16

http://www.hnf.de/

Out of the many artefacts that survived, the second author has been able
to reconstruct Hasenjaeger’s Mini-Wang machine, a Universal Turing Machine
with only 4 states, 2 symbols and 3 tapes: a read-only program tape, a non-
erasable working tape and a counter tape that is used to implement instruction
skips. For the technical and historical details of this and related Turingraum
machines see Sect. 9. Here we notice only that the effort to build universal but
operationally surprisingly simple and running physical machines by no means
lacked its scientific output:

The remarkably small and physically executable Mini-Wang turned out to
be efficiently universal among the dozens of conceptual universal Turing ma-
chines in the literature (see [218]). With hindsight one can also say that the
investigation of computationally universal and with respect to a variety of
parameters ‘small’ machines made the role explicit that different data, opera-
tions and architectural features (besides input/output mechanisms and stop
criteria) play for the realization of the notion of computation:18 number of
symbols, states, tapes, the data type of and operations on tape contents (e.g.
counters, stacks, read-only tapes, tapes with multiple parallel reads, cyclic
shift registers), other topological structures than tapes (see in particular the
work of Ottmann, Priese and Kleine Büning on universal machines we discuss
in Sect. 5), etc. Hasenjaeger’s abstract definition of register components of a
net of machines in [119] looks like a presentiment of some particular classes
of Abstract State Machines we discuss in Sect. 7.
Rödding was led by the Q-tapes (counter tape) used in the Wang machines
to the invention of register machines before their appearance in [215] and
[251].

In fact, from the very beginning Rödding (who had enrolled at the university
of Münster in 1956) got involved in Hasenjaeger’s work and the creation of the
Turingraum as working place for the construction of illustrative running machine
models. When Rödding saw the use of a counter tape in the Wang machine he
had the idea that counters alone could suffice to compute every partial recursive
function.19 He worked this out and presented the result to Hermes’ Logic Seminar
in Münster (see [125, p.184]), namely the definition of register machines (later

18 This is related to Kleene’s normal form theorem [248] that there are primitiv re-
cursive functions in, out , step, stop such that every partial recursive function f has
the iterative form f (x) = out ◦ (step)stop ◦ in(k , x) for some k , where (step)stop de-
notes the iteration of the step function until the stop criterion becomes true (see the
proof in [30, p.41]). Bruno Buchberger characterized the four component functions
whose composition out ◦ (step)stop ◦ in defines a Gödel numbering (of the n-ary par-
tial recursive functions for some n). These characterizations (see [30, Sect.BIII3] for
proofs and references) show that one can design universal machines whose iterative
component functions are of any a priori given (whether low or high) complexity,
independently of each other.

19 During the demonstration of some Turingraum machines at the Drei-Generationen-
Kolloquium in Münster (see[46]) Hasenjaeger told the first author that he had asked
Rödding whether one can represent sequences of natural numbers on 0-1-tapes of a
universal Turing machine cheaply, in such a way that only an a priori fixed number

17

published in [78,234] with new results on structured programming normal forms)
and the proof that every n-ary partial recursive function can be computed by
a register machine with n + 2 registers and with prime number encoding even
with only 2 registers, well before these results appeared in the famous papers
[215,251].

The register machine concept turned out to be rather useful (see [169] for
its role to pave the way for the Abstract State Machines concept, see Sect. 7).
Rödding himself and his students made heavy use of them for an analysis of the
computational power of numerous combinatorial systems, of the complexity of
decision problems, of recursive functions, etc., as described in Sect. 3,5,6. Hasen-
jaeger used the elegant register machine proof by Jones and Matijasevich [179]
for the theorem on exponential diophantine representation of enumerable sets
in connection with his universal Turing machines to obtain a simple exponential
diophantine predicate that is universal for the recursively enumerable sets [124].

So not surprisingly also register machines were a Turingraum theme, together
with other components of Rödding’s automata networks described in Sect. 5. See
also Hasenjaeger’s ‘materialization’ of (a general scheme of) register machines
using SIMULOG instead of an electro-mechanical model [123]. See in particular
the register machine materializations performed at the university of Osnabrück
(see [99,63]) where these models have been applied with success for teaching
algorithmic thinking at primary and secondary schools (see Sect. 6).

5 Networks of Machines

In the late 1960s until his early death Rödding together with a group of stu-
dents analysed construction principles for (finite as well as infinite) automata
and developed a theory for the modular decomposition of sequential automata
by networks over a few simple basic automata [255,223,256,224,187,259,192].
Rödding’s register operators (see [78,234]) appear here as nets with a particu-
lar graphical structure that visualizes the structured programming control. The
theory made its way into the two textbooks [30,184] shown in Fig. 9.

Applications were found not only in computation theory [242,189,166,246,105]
and logic [236,257,183]—where the inclusion of register components among the
basic automata permitted to represent functionals of finite type, resulting in
novel characterizations of the partial recursive functions (for the type 0 case), of
the combinators K and S, of recursors, etc.— but also in theoretical biology [201],
economics and systems theory [239,240,202,241,204,178], fault-tolerant switching
theory [209,200,59] and Didactics of Mathematics (see Sect. 6).

Defining analogous nets of Asynchronous Parallel Automata (APA nets) [60]
led to interesting results about concurrency [206,208,207]. The Turing spirit is
particularly present in the applications of the theory of automata networks to the

of 1’s appear on the tape. The answer was yes by representing n as distance of a
unique occurrence of 1 to the left end of the infinite-to-the-right tape 0n1000 . . ., i.e.
a register where move-to-the-right means +1 and move-to-the-left −1.

18

Fig. 9. Two Books with a Chapter on Rödding’s Automata Nets

construction of small alternative models of universal (Turing complete) computa-
tional systems, e.g. asynchronous cellular spaces [199], multi-dimensional Turing
machines [254,193],[184, Sect.14.7] and 2-dimensional Thue systems [203], see
also [205] and the comparative analysis in [267].

Further references appear in the survey [235], in the cited papers and in the
two textbooks of the years 1985 [30, Sect.CIV3-4] and 2000 [184, Sect.14.6-7].

6 Computational Networks in Didactics of Computing

Rödding’s work with register operators and networks of automata has triggered
two particularly interesting didactical applications that have been elaborated
by Elmar Cohors-Fresenborg and his group at the university of Osnabrück for
teaching computational concepts in primary and secondary schools.

Introduction of n-ary functions by register machines. The first of
these two applications is based upon the discovery presented in [95] that the
register machine model of computation can be used with success to introduce in
school the mathematical concept of multi-variable functions. Based upon various
teaching experiments this idea has been elaborated first for teaching to high-
school students (see [97], a book that according to Wikipedia and [262, p.40] has
influenced the construction of the Know-how computer https://en.wikipedia.
org/wiki/WDR_paper_computer, see also [101,124]); further experiments showed
that the method can be adapted for secondary [103] (age 12–13) and even late
primary [102] (age 10) school level.

From the very beginning of this work various specimens of a dedicated reg-
ister machine model have been built to visually illustrate the computations so
that the students can play with the machines. One copy of the first of these
register machines [63] was purchased in 1976 for the Turingraum. It has been
used in lectures by Rödding and by Ottmann (in Karlsruhe [68]). The physics

19

https://en.wikipedia.org/wiki/WDR_paper_computer
https://en.wikipedia.org/wiki/WDR_paper_computer

laboratory of the University of Osnabrück developed later versions on the ba-
sis of microprocessors offering an output mechanism to an external TV screen;
these machines have been used with success in numerous schools in Germany
and are part of the mathematical didactics study program at the University
of Cologne (see https://mathedidaktik.uni-koeln.de/mitarbeiterinnen/

prof-dr-inge-schwank/forschungs-und-lehrprojekte). Since 1982 also a
simulation on PCs is available (see https://mathedidaktik.uni-koeln.de/

mitarbeiterinnen/prof-dr-inge-schwank/forschungs-und-lehrprojekte/

registermaschine/english-englisch).

Fig. 10. The 9 Automata Construction Kit Bricks

Automata construction kit for elementary schools. In 1973 Elmar
Cohors-Fresenborg started to exploit Rödding’s networks of automata for didac-
tical purposes (see [96]). The basic idea was to enable kids by a construction
kit—consisting of bricks which are placed on a baseboard—to realize the com-
putations of an automaton as walks through a net of basic components some
of which perform a control action and others an operation on some data. For a
simple to visualize but computationally universal concept of data, data opera-
tions and control, number register components (counters) came in handy with
only two elementary operations +1, -1. Only two counters are needed; to re-
alize their underlying Finite State Machine control they can be connected to
an automata net of only two types of basic control components—flip-flop and
switch—plus trivial support components like straight lines, curves, junctions,
etc. (see [97]). The resulting Automata Mazes20 construction kit (see Fig. 10,11)
and its later software versions (see https://mathedidaktik.uni-koeln.de/

mitarbeiterinnen/prof-dr-inge-schwank/forschungs-und-lehrprojekte/

20 In German called Dynamische Labyrinthe, literally translated Dynamic
Labyrinths, available via https://www.bildungsserver.de/onlineressource.

html?onlineressourcen_id=10147.

20

https://mathedidaktik.uni-koeln.de/mitarbeiterinnen/prof-dr-inge-schwank/forschungs-und-lehrprojekte
https://mathedidaktik.uni-koeln.de/mitarbeiterinnen/prof-dr-inge-schwank/forschungs-und-lehrprojekte
https://mathedidaktik.uni-koeln.de/mitarbeiterinnen/prof-dr-inge-schwank/forschungs-und-lehrprojekte/registermaschine/english-englisch
https://mathedidaktik.uni-koeln.de/mitarbeiterinnen/prof-dr-inge-schwank/forschungs-und-lehrprojekte/registermaschine/english-englisch
https://mathedidaktik.uni-koeln.de/mitarbeiterinnen/prof-dr-inge-schwank/forschungs-und-lehrprojekte/registermaschine/english-englisch
https://mathedidaktik.uni-koeln.de/mitarbeiterinnen/prof-dr-inge-schwank/forschungs-und-lehrprojekte/automatentheorie-dynamische-labyrinthe
https://mathedidaktik.uni-koeln.de/mitarbeiterinnen/prof-dr-inge-schwank/forschungs-und-lehrprojekte/automatentheorie-dynamische-labyrinthe
https://mathedidaktik.uni-koeln.de/mitarbeiterinnen/prof-dr-inge-schwank/forschungs-und-lehrprojekte/automatentheorie-dynamische-labyrinthe
https://mathedidaktik.uni-koeln.de/mitarbeiterinnen/prof-dr-inge-schwank/forschungs-und-lehrprojekte/automatentheorie-dynamische-labyrinthe
https://www.bildungsserver.de/onlineressource.html?onlineressourcen_id=10147
https://mathedidaktik.uni-koeln.de/mitarbeiterinnen/prof-dr-inge-schwank/forschungs-und-lehrprojekte/automatentheorie-dynamische-labyrinthe
https://www.bildungsserver.de/onlineressource.html?onlineressourcen_id=10147
https://mathedidaktik.uni-koeln.de/mitarbeiterinnen/prof-dr-inge-schwank/forschungs-und-lehrprojekte/automatentheorie-dynamische-labyrinthe

automatentheorie-dynamische-labyrinthe) were applied with great success
in elementary schools to teach algorithmic thinking in terms of counters plus
typical railway net control! The offered teaching material that supports also self-
study [100] has been translated to various languages including English, Chinese,
and Dutch. It helps kids to realize algorithms as the result of non-verbal, action-
oriented, motor thinking, an important form of mathematical reasoning pointed
out already by van der Waerden in [263]. The didactical exploitation of Rödding’s
automata nets is applied with success also for very early training of partic-
ularly talented kids (see [247] and https://mathedidaktik.uni-koeln.de/

fileadmin/home/ischwank/dynlab/maschinenintelligenz_mathematisieren_

dynlab.pdf).

Fig. 11. flip-flop and switch bricks (in left position)

Functional versus predicative thinking. The two papers [98,69] report
on extensive experiments with pupils who were observed during the construction
of register machine programs or automata mazes. The result of these experiments
led Inge Schwank to the conjecture that there are two forms of mental problem
representation [245]: a functional one that is focussed on process runs, i.e. on the
dynamic succession of process steps and their effect, and a predicative one where
the attention is focussed on structural process elements and their relations. This
difference has been experimentally confirmed by an analysis of brain currents and
eye movements of test persons who were observed during a problem solving ac-
tivity [216,104]; in [67] it is reported that these differences match the differences
one can observe in how pupils approach algebraic or geometrical phenomena.
In [70] Cohors-Fresenborg reports the rather interesting discovery of a similar
difference in the mental representation managers have of business processes (see
also [106,107]). It would be interesting to know whether Schwank’s observation
can be experimentally confirmed to also explain the two different system specifi-
cation approaches advocated energetically by two camps of theoretical computer
scientists, namely the declarative and the operational approach.

21

https://mathedidaktik.uni-koeln.de/mitarbeiterinnen/prof-dr-inge-schwank/forschungs-und-lehrprojekte/automatentheorie-dynamische-labyrinthe
https://mathedidaktik.uni-koeln.de/mitarbeiterinnen/prof-dr-inge-schwank/forschungs-und-lehrprojekte/automatentheorie-dynamische-labyrinthe
 https://mathedidaktik.uni-koeln.de/fileadmin/home/ischwank/dynlab/maschinenintelligenz_mathematisieren_dynlab.pdf
 https://mathedidaktik.uni-koeln.de/fileadmin/home/ischwank/dynlab/maschinenintelligenz_mathematisieren_dynlab.pdf
 https://mathedidaktik.uni-koeln.de/fileadmin/home/ischwank/dynlab/maschinenintelligenz_mathematisieren_dynlab.pdf

7 Computation on Structures Leading to ASMs

Since the middle of the 1960s various studies in Münster investigated computa-
tional concepts for objects which differ from numbers or words, using appropriate
basic operations which work on those objects directly, without encoding. Early
examples are the definition and characterization of primitive-recursive functions
over hereditarily finite sets [76,233] and over sets of terms [111,112].21 In the
doctoral dissertation [94] register machines which operate on binary trees us-
ing a few natural basic operations are introduced to define and investigate the
complexity of subelementary resp. elementary classes of functions over binary
trees. The lecture notes [82] contain a chapter on generalizations of computable
functions including a proposal for an axiomatic recursion theory along the lines
of [109].

Later also Rödding’s theory of networks of automata described in Sect. 5 led
in a natural way to alternative computation models of topologically arranged au-
tomata or substitution systems [203,254,258,187,193] and asynchronous cellular
spaces [199].

During those years two other logicians proposed to study computations over
arbitrary relational (also called Tarski) structures [108,141]. Only much later
were register machines used which operate on real (instead of natural) numbers,
on rings, fields [197] or on finite relations over a fixed universe [65, Sect.4].22 The
query computability concept resulting from the last cited work played a major
role in database theory. See [169] for a detailed historical analysis.

In 1982 the question appears whether one can replace Turing machines by a
computation model over structures that captures the complexity class PTIME
[66]. Three years later this question is extended in [134] to whether a compu-
tation model over structures can be defined which captures every sequential
computational device, thus generalizing Turing’s Thesis. The real breakthrough
came with the idea,23 nota bene conceived by a logician in an attempt to solve an
epistemological question, to define a) a small number of elementary operations
one can apply in any structure and b) a few composition (read: program con-
struction) schemes to create composite sets of those operations, such that they
suffice to define (‘simulate’) for every given algorithm its behaviour directly in
terms of runs of an appropriate composition of those operations in the algo-
rithm’s ‘natural’ Tarski structures. This has been achieved in [135] by a simple
mathematical definition of an arguably comprehensive algorithmic language. It
lifts Finite State Machines (FSMs) and Turing Machines (TMs), which work
over words, to Abstract State Machines (ASMs) which work directly over

21 Note that in 1965 Hermes defined a logic of terms [149]. Much later the decision
problem of this (and the pure ε-logic) has been in investigated in Freiburg [185], see
[44, Ch.5.3].

22 The query language definition in [65] is given in terms of variables yi (which can be
viewed as registers, each containing a finite relation) and a few appropriate basic
operations which can be viewed as operating on register contents.

23 With hindsight one is tempted to say ‘simple idea’, but as often happens with sci-
entific discoveries the simple thoughts are the more difficult ones to find.

22

structures of whatever type (read: signature), using as basic action only guarded
term (NOT only variable!) assignments if condition then f (t1, . . . , tn) := t and
as composition scheme bounded synchronous parallelism.24

This operational definition of machines with arbitrarily abstract ‘actions’
broke with the at that time still main-stream declarative thinking in logic and
theoretical computer science, but to the first author who had studied Tarski’s
Wahrheitsbegriff paper [21]—reading material for the introductory predicate
logic course in Münster—and has been formed in the machine-based tradition
in Münster, it quickly became clear that this definition enables to mathemati-
cally support abstraction the way it is needed and used in the practice
of computing by engineers of software-intensive systems. In fact, ASMs permit
to rigorously define algorithmic systems as computational models at whatever
desired level of abstraction and to mathematically relate runs of an abstract
and a refined machine (read: a machine that implements abstractions by more
details) for a verification or test of the correctness of this ‘implementation step’.
These—by their abstract nature virtual—machines are not axiomatized by log-
ical formulae but are computational models which drive the stepwise execution
of the guarded-action-rules that capture the intended dynamic system behavior
(‘an evolution of states’).

Fig. 12. Three Books on the ASM Method

The idea to use ASMs for a fully documented modular design, analysis and
implementation of software-intensive systems by

starting with appropriate rigorous but abstract requirements models (called
ground model ASMs [36]) one can inspect like pseudo- (but semantically well-

24 Other constructs, like forall, choose,Call, let, and other composition schemes, like
asynchronous parallelism, can be easily integrated where useful. The work with ASMs
revealed that the language can easily be tailored to the needs of domain specific
applications. Note that the terms f (t1, . . . , tn) in guarded assignments are a general
form of ‘array variables’ where the indeces are not just numbers, but arbitrary terms
with possibly updatable values.

23

defined) code for its appropriateness with respect to the usually informally
presented original requirements, and
adding the implementation details by stepwise ASM refinements one can
submit to test suits and to mathematical analysis for a correctness check
[37]25

triggered the development of the ASM method [54,253,50] (see Fig. 12),
which is well-founded by its roots in logic and contributes effectively to the prac-
tice of computing, notably providing a system description and documentation
technique of the kind Harel and Pnueli asked for in 1985 [137, p.480]:

A natural, comprehensive, and understandable description of the be-
havioural aspects of a system is a must in all stages of the systems
development cycle, and, for that matter, after it is completed too.

During the decade 1988-1998 the ASM community worked to make the ASM
method fit for serious practical applications in a variety of computer science
fields. A commented ASM bibliography for this period [47] counted 128 scientific
contributions, which five years later became more than four hundred (see the
commented bibliography in [88,54]); for references and the developments since
then see https://www.abz-conf.org/methods/asm.

The comprehensiveness of the concept of ASMs is nowadays supported
also theoretically, namely by numerous forms of Turing-like theses one can prove
from natural axioms for appropriate classes of ASMs, characterizing for example
sequential algorithms [136] (including a proof of Turing’s Thesis for computable
functions over the natural numbers) and their extensions to synchronous paral-
lel algorithms [22,23,113], concurrent algorithms [51], recursive algorithms [52],
reflective algorithms [182], etc. This work suggests the development of a realistic
(theoretically well-founded and in the practice of software engineering helpful)
complexity theory which is based not any more on Turing-like machines but on
machines working directly over structures, avoiding extraneous encodings, see
the very interesting recent survey paper [244].

In this respect it is interesting to note that half a century ago, in [275, p.6], the
engineer Zuse critically remarked that much of research in theoretical computer
science at the time disregards the badly needed dialogue between theoreticians
and practitioners and that a logical algorithmic language is needed which helps
the practitioner, in other words which is useful to reliably design, construct and
analyze implementations. This is what the ASM method achieves, exploiting
the machine-based pseudo-code-like yet abstract and semantically well-founded
language of ASMs to design and analyse dynamic system behaviour.

8 Institutional Impact of the School of Münster

The Logic School of Münster had a strong impact not only on the scientific
progress of mathematical logic as described above, but also on the institutional

25 The concept of ASM refinement is not declarative but supports the direct description
of system dynamics at different levels of abstraction. See [54] for details.

24

https://www.abz-conf.org/methods/asm

development of the discipline at German universities, especially in computer
science departments where many positions became available for researchers in
computational logic. We mention a few examples of influential science manage-
ment activities of members of the group (besides those mentioned already in the
chapters above).

Hermes acted as co-founder of the Archiv für Mathematische Logik und
Grundlagen der Mathematik (1950) (later renamed to Archive for Mathemat-
ical Logic), as founding member of the Deutsche Vereinigung für mathematis-
che Logik und für Grundlagenforschung der exakten Wissenschaften (DVMLG)
(1962) and for many years has been co-editor of the Journal of Symbolic Logic.
Together with Kurt Schütte from Munich he created and organized for many
years the influential Hermes-Schütte-Tagung for mathematical logic in Oberwol-
fach. Schröter, who from 1936 to 1948 worked as student [195], assistant[196] and
Dozent in Münster, established in 1950 the Institute for Mathematical Logic at
the (now called Humboldt-) University of Berlin and in 1955 founded together
with Asser the Zeitschrift für Mathematische Logik und Grundlagen der Math-
ematik (in 1991 renamed to Mathematical Logic Quarterly), acting as its
editor until 1977.

Fig. 13. Hilbert/Ackermann and Scholz/Hasenjaeger Books

Members of the group wrote influential books and textbooks, some of
them translated to other languages, on the main areas of logic. To mention a
few: edition of the Frege Nachlass [156,116] (work that had been started by
Scholz and his student Bachmann in the middle of the 1930s, has been de-
stroyed by the fire of the university library during the bombardment of Münster
on March 25, 1945, and has been taken up again by Hermes in the 1960s), text-
books or book chapters on logic [73,155,160,121,148,30,191,85] and computability
[147,186,97,30,184], monographies on various subjects, e.g. term logic [149], the

25

Entscheidungsproblem [7],[44]26 (see also the first systematic textbook treatment
of the Entscheidungsproblem in [73, Ch.12] which covers the results known at
that time), metamathematics of geometry [270], proof theory [164].

Fig. 14. Influential books by Ackermann and Schwabhäuser

Some numbers reveal the impact the computational focus of logic propagated
by the Schule von Münster had on the institutional growth of the discipline in
computer science departments of German universities. According to the Mathe-
matics Genealogy Project [221] (see the list in the appendix)

the school’s first generation consists of 10 doctoral students,

26 The first author has often been asked why it took [44] 25 years to appear. In 1972, on
an invitation by the series editor Gert Müller, he had started to work on a volume in
Springer’s Lecture Notes in Mathematics with the material of his 1972/73 lectures
in Münster on the Classical Decision Problem [87]. He stopped the project when
in 1973 a doubt was expressed about a possible conflict with a book announced
by Burton Dreben (Harvard); that book [74] came out in 1979 together with its
companion book [198]. A critical analysis, performed with Yuri Gurevich during his
visits to Münster and Dortmund (1978, 1983, 1985), of the complex machinery of
Herbrand expansions used throughout in [74,198] and of the missing investigation
of the algorithmic complexity of decidable cases eventually led to a new proposal
of a comprehensive complexity account of the classical decision problem which was
accepted by Gert Müller for Springer’s Perspectives in Mathematical Logic, edited
by the Ω-group. After various tergiversations by Gurevich to find another author,
eventually Börger wrote Part I (on undecidable classes), updated the annotated
bibliography he had compiled in the 1970s and attracted Erich Grädel to join the
project. Grädel’s work on the complexity of decidable subclasses of logical theories in
his doctoral dissertation [129,130,131] and his postdoc research in Pisa (Spring 1988
– Fall 1989) [132,133] made him the ideal person to complete the book by writing
Part II (on decidable classes and their algorithmic complexity), except the Shelah
class which has been written by Gurevich. The appendix (on tiling problems) has
been written by C. Allauzen and B. Durand.

26

its second generation consists of 81 doctoral students at the universities of
Kiel, Berlin, Münster and Bonn (Bachmann 26, Schröter 16, Hermes 28,
Hasenjaeger 11)
D. Rödding, Scholz’ second successor as director of the institute, supervised
15 doctoral students from 1966 until his early death in 1984.27

Alltogether in three generations Scholz has the extraordinary number of 1,625 de-
scendants (Schröter 260, Bachmann 314, Hermes 392, Hasenjaeger 371, Rödding
246, Schwabhäuser 42).

Logic and Machines [46] (and more generally Logic and Computation Theory
[31]) reflect the new horizon of scientific challenges the School of Münster dis-
covered for the interaction of mathematical logic and computer science, in the
spirit of the mathematician Turing and interestingly also of the engineer Zuse
who submitted a manuscript [274] for a doctoral dissertation to Scholz.28 Logic
and Machines is the title of the Proceedings [46] of an international sym-
posium which was organized in May 1983 in Münster—Hasenjaeger named it
the Drei-Generationen-Tagung—to let reseachers come together who are inter-
ested in the cross-pollination between Logic and Computer Science. During this
symposium Hasenjaeger and Rödding showed and explained to the participants
some of their Turingraum machines.

Fig. 15. Books that Marked the Path to CSL

27 See the list in [32] which corrects the one of the Mathematics Genealogy Project. It
includes [170,199,178,59], see also https://www.uni-muenster.de/FB10/historie/

anhangD.pdf. It mentions also five of Rödding’s Diplom (Master) students who later
have written a PhD thesis at other universities.

28 Scholz wrote a positive evaluation, but due to the war and post-war conditions the
PhD procedure did not reach its natural end. See [140, p.2]. Scholz showed great
interest in Zuse’s work; when Hans Lohmeyer, a former student of Scholz, worked
with Zuse in Berlin he brought Scholz there for a visit (see [275, p.62]).

27

https://www.uni-muenster.de/FB10/historie/anhangD.pdf
https://www.uni-muenster.de/FB10/historie/anhangD.pdf

This was at a time when those who in Germany tried to bring logic and com-
puting together experienced a strong resistence from a group of short-sighted
professors of mathematical logic who did not understand the potential that com-
puting held in store for their discipline.

The success of this symposium (with over 50 participants from 9 European
countries and the US) gave the first author the idea to institutionalize such a fo-
rum by forming an annual Computer Science Logic conference series. After
Rödding’s unexpected death he attracted Hans Kleine Büning (one of Rödding’s
doctoral students) and Michael Richter (one of Hermes’ early doctoral students
in Freiburg) to join the endeavour. This was a year before the ACM/IEEE Sym-
posium on Logic in Computer Science (LiCS, https://lics.siglog.org/) was
launched in 1986. However, due to the adverse personal interest of somebody—
who in 1985 after Rödding’s death cut off the Turing tradition at the institute29

(but obviously could not stop the strong development of computational logic in
the scientific world) and triggered the first author’s move to the University of
Pisa—the conference series could not start in 1986 and not at the logic institute
in Münster, but only a year later at the Institut für angewandte Informatik und
Formale Beschreibungsverfahren in Karlsruhe.

The first seven years are documented in [40,41,42,43,39,38,56]. In 1992, dur-
ing a Dagstuhl seminar [55] which has been attended by logicians and com-
puter scientists from 14 countries the first author proposed to transform the
CSL conference series into the annual gathering of a European Association
for Computer Science Logic (EACSL), see [35] and for the complete list of
CSL conferences and Proceedings https://dblp.uni-trier.de/db/conf/csl/
index.html. Notably, when the EACSL upon Makowsky’s proposal created an
annual award for an outstanding dissertation in the area of logic in computer
science, this distinction was named after Ackermann to stand for logic and com-
putation. We quote from [18, p.VIII]:

Together with ... LiCS, CSL counts as one of the most prestigious con-
ferences in theoretical computer science focusing on the connections be-
tween logic and computing.

In this connection it is also interesting to remark that in the year 2000, a
special conference subseries has been created that is devoted to “the foun-
dational interconnections between Logic and Computational Complexity” (see
https://www.cs.swansea.ac.uk/lcc/).

Also the development of the ASM method has been supported by a se-
ries of International ASM Workshops, co-founded in 1994 and until 2007
steered by the first author together with Yuri Gurevich. From the very beginning,
many of these meetings were held as part of larger computer science conferences
to easen the integration of the ASM method into current system engineering
environments—ASM 1994 as part of the IFIP World Congress in Hamburg [222],
ASM 1998 as part of the GI-Jahrestagung in Magdeburg [261], ASM 1999 as part
of the Formal Methods Europe conference FME’99 in Toulouse, ASM 2001 as

29 See the documentation in [25].

28

https://lics.siglog.org/
https://dblp.uni-trier.de/db/conf/csl/index.html
https://dblp.uni-trier.de/db/conf/csl/index.html
https://www.cs.swansea.ac.uk/lcc/

Fig. 16. Books that Marked the Start of ABZ Conferences

part of Eurocast’01 in Las Palmas [229,45]. Some more Proceedings have been
published in [273,1,91,89,271,93,90,92].

During a Dagstuhl Seminar on rigorous methods for software construction
and analysis [167] it became clear that state-based methods like ASMs, Z (Zer-
melo), B (Bourbaki) and others, all of which are based upon logic and set theory,
have a lot of commonalities but also differences which should be clarified to en-
able practitioners to combine such approaches where this can help to develop
and analyse reliable software for complex software-intensive systems. This led
the first author to propose to Jean-Raymond Abrial, the creator of both the Z
and the B (and Event-B) method and the leader of the community [2,3], to merge
the ASM Workshops with the regular meetings of the Z and B user groups into
a forum where common methods and ideas are investigated to reach a fruitful
integration. This led to the establishment of the the biennual international ABZ-
Conference series (https://www.abz-conf.org/) which has been launched
in 2008 in London [49] and since then continues to be held regularly in Europe
and Canada [49,214,173,272,24,61,210,226,225].

9 Analysis of Turingraum Artefacts

As already explained in Chap.4, Hasenjaeger had created several artefacts to
show the materialization of theoretical concepts, and many of these still exist
in various conditions by the effort of his family and W. Rödding. They are now

29

https://www.abz-conf.org/

located in the Heinz Nixdorf MuseumsForum (HNF) in Paderborn, due to the
initiative of its founding director Norbert Ryska. Whithout his engagement, in
particular the Mini-Wang would still be unknown. Only the latter one has been
analysed quite thoroughly and found to be still working; it is a universal Turing
machine with (only) four states and three binary tapes, only one of them could
be modified in a write-only-once manner. The other machines will be described
here roughly; some of them might justify more deeper analysis. Also, for some
artefacts their use is still unknown.

Documentation on these machines is often not existant; a few hints are in
some of Hasenjaeger’s publications. Several relevant texts appear in his paper
legacy [118], but normally they are undated and difficult to match with the
artefacts in the HNF.

The follwing comments on (some of) the artefacts now owned by the HNF
are in hopefully historical order.

9.1 Kasimir

In his article [125] Hasenjaeger wrote that in 1956 F.L. Bauer from Munich
reported in the Logistisches Seminar in Münster about an electromechanical
model to evaluate parenthesis-free logical expressions, see [114]). His machine is
in the Deutsches Museum in Munich, but currently not displayed.

Hans Hermes asked Hasenjaeger if he would like to build a similar machine
([125, p.182]):

H. Hermes suggested that I should make a specimen of STANISLAUS
for our institute, and F.L. BAUER sent me a blueprint of his version.

Bauer replied with the above mentioned blueprint and more information about
his solution:

Es sei:
R die Anzahl von verschiedenen Variablen,
S die Anzahl von verschiedenen logischen Operation einschlielich der
Negation und der Identität, die Sie mit einem Formelrechner behandeln
wollen.
M die höchste Anzahl der in einer Formel vorkommenden Variablen und
Operationszeichen.
Dann benötigen Sie:
2 M Relais mit je einem Ruhe und Arbeitskontakt (für die Logik).
2 M Tastenstreifen mit je R+S Feldern, je Taste etwa 5 Ruhe und Ar-
beitskontakte;
Einen doppelten Satz von je M Relais, deren Kontaktbestückung von 1
bis M/2 linear anwächst und ebenfalls linear abfällt (Für die Wegeschal-
tung)

This means, that the number of relays is quadratic with the number of terms.
Hasenjaeger characterizes his machine KASIMIR in the above paper:

30

Its main features were:
(a) a three position switch for each place of the formula,
(b) a pair of relays to be activated by (a) for the shifts,
(c) a 10 position switch for each place of the formula, determining
(c1) the actual binary connective (ther are just 10 non-trivial ones) in
connective-position of (a)
(c2) the subscript of the variable in variable-position of (a)
(d) two relays for each place of the formula for the actual connective
(e) but no realisation of a unary functor.
Being different from STANISLAUS our model needed a different name;
I think KASIMIR was taken after K. AJDUKIEWICZ [1935].

Nothing had been published about KASIMIR, although it looks like the number
of relays was only linear with the number of terms. It has not yet been studied
if this is possible at all; so a complete reverse engineering of the machine might
be valuable.

Fig. 17. Kasimir central part

Of the machine, two specimens of the first version survived (See Fig.17):

one apparently complete machine (provided 2011 by W. Rödding)
one badly preserved frame (found 2012 in Hasenjaeger’s home in Plettenberg)

31

In Hasenjaeger’s paper legacy [118, number 084] some notes may be found,
at least for a later version (1977) with a different technology. A deeper analysis
of the first version has been done by the second author.30

9.2 The “Alte Wang”

When Hasenjaeger learned about Moore’s and Wang’s proposals for practical
Turing machines (see Chap.4), he started the work on his first Turing machine
materialization.

This initiated the creation of a machine that could be programmed by short
cables with 2.6mm plugs used in toy trains. It was originally called the Wang,
and later Alte Wang (old Wang), see Fig.18.

Fig. 18. Alte Wang

Used were discarded relays31 that were sold for their material price to edu-
cational institutions by the German post office, see Fig.19, which had a major
office (Oberpostdirektion, OPD) in Münster.

30 https://rclab.de/hasenjaeger/kasimir
31 Flachrelais 28, i.e. flat relay, produced from 1928 on for the German post office

32

Fig. 19. OPD reply

As tapes, Hasenjaeger used 35mm perforated paper film used for contact
prints.32 Like ordinary 35mm film, it was perforated on both sides, so it could
be split longitudinally, which Hasenjaeger did probably himself. 33 Hasenjaeger
used paper film, as it was easier to punch than transparent celloloid film (used
e.g. in Zuse’s Z3), as the second authors experience in running the machine
showed.

The tape drives were made in the workshop of the physics department in a
quite professional way, see Fig.20.

In the middle is the slot through which the film guided, and at its bottom is
the gear wheel that uses the perforation to move the tape many times without
slack. On the left side is the stepper mechanism, that can move the tape left or
right. On the right side is the sense and punch mechanmism. The punch is the
outer tube, operated by the magnet with the heavy block on its armature.34 To
determine if there is a punched hole, a sense pin is moveable within the punch
tube. It is normally kept away to allow free move of the tape. Activating the
lower magnet, the sense pin is released and its position thereafter sensed by the
leaf spring contact left to the magnet.

Hasenjaeger did not mention in [125] a very important feature of Wang’s
solution: Instead of encoding of a state table with an elaborate state machine
to scan each line of the encoded table for a match, and then follow the actions,
instructions are used like in stored progam computers, where the machine lan-
guage is not a state table. Just the universal machine itself uses a state table, as
in modern computers the microprogram that interpretes the instructions from

32 At that time, often a (black-and-white) film was given to a drugstore to develop and
produce 1:1 contact copies on this paper film, which did cost only a fraction of an
enlarged copy of each picture.

33 using a tool which is no longer known
34 The obvious purpose is to provide enough mass to punch, even if such magnets have

a much larger force short before closing anyhow.

33

Fig. 20. Tape Drive Alte Wang

memory is close to a state table. This allowed a very compact program encoding
(see example for the later Mini-Wang on page 39), otherwise such a machine
would run too slow for even the smallest example.

Using the Alte Wang, Rödding had the insight that a single mark on an
otherwise entirely blank tape could be used to store a number without modifying
the tape at all, by just advancing the tape the given number of steps. Effectively,
a number could be added and subtracted, but the total only read destructively.
As Hasenjaeger wrote ([125, p.184]):

But I think the fact that one counter . . . suffices . . . did suggest to D.
Rödding to consider the possiblility of computing any recursive function
by using only a bounded number of counting registers.

No consolidated documentation of this machine was found in Hasenjaeger’s
paper legacy [118], only several undated notes that could belong to the Alte
Wang.

9.3 The Mini-Wang

The Old Wang was quite flexible, but bulky. This might have been Hasenjaeger’s
motivation to build another, smaller machine, with a fixed behaviour and as few
states as possible in the state machine. He called this machine the Mini-Wang,
see Fig.21.

34

4-State Control

Tape R
Tape PTape Q

Fig. 21. Mini-Wang

It is a universal machine with a central fixed state machine and three tapes,
labelled P, Q and R:

Tape P, containing program instructions
Tape Q, a pure counter tape
Tape R, the result tape (also for initial values)

Tape P is the program tape for the (encoded) instructions. It is a cyclic tape
of 18 bits, using a selector switch35 to sense 18 blue little DIP-switches that
represent the program.

Tape Q is the skip counter for the program tape and equivalent to a (cyclic)
tape with only one mark. Two selector switches are connected back-to-back, so
that their equal position can be sensed modulo the number of positions. One is
used for forward movement, the other one for backward movements.

Tape R (Fig.22) is the working and result tape. It uses the same 35mm halved
contact sheet paper film as in the Alte Wang, but a different method to mark
the tape. Instead of punching a (round) hole in the middle, a notch is punched
at the upper end, and a lever is released vertically to sense the notch, Fig.23.

In contrast to the tapes of the Alte Wang, this tape drive was apparently
made by Hasenjaeger himself. Note that the sprocket wheel comes from Meccano,
sold in Germany by Märklin.

35 also known as Strowger switch after its inventor

35

Fig. 22. Mini-Wang working tape

Fig. 23. Mini-Wang punch mechanism

36

The state machine uses 16 relays, which are not relays commonly used by
the German post office.36 The relays are properly orientated so that the gap
between the contacts is vertical to avoid dust pile up.37

In Summer 2011, the second author reverse-engineered the machine to obtain
the schematics shown in Fig.24. Four relays, labelled X, X’, Y and Y’ form two
conventional flipflops for four states. Four relays are for the clock generator. The
remaining 8 relays make up 4 Master-Slave flip-flops labelled R, L, O and U.

Fig. 24. Mini-Wang schematics

From the schematics, the state table was recovered, but found to be dubious,
because the tape P would require repeats as forward jumps depending on the
cyclicity of the tape.

36 One reason might be that it is hard to find 16 relays with the same coils; in the second
author’s own collection of more than 200 post office relays, he was happy to find for a
gray counter 5 such relays. Circuits were massively optimized for component count,
ignoring the repair costs.

37 This has been one of the major technological steps for larger reliability in German
telephone exchanges using the Flachrelais 24. Zuse in his Z3 rebuild has the gap
horizontally.

37

The recovered state table was:

Z PQR Z" action

I 0._ II P+

0.* II P+

1._ . P+ M

1.* . P+

II 0!. III P+ Q-

00. . P+ Q+

1!. I P+ Q- L

10. I P+ R

III 0._ . P+

0.* . P+ Q+

1._ I P+

1.* IV . Q+

IV 0!. . P-

00. I P+

1!. . P- Q-

10. I P+

As there was a unidirectional tape found with the others, in the action column
there was originally no distintion between P+ and P-. The instructions to be
coded on tape P were

1 M mark the tape

01 R right move

001 L left move

000ⁿ1 n skip if the tape is marked

The conditional skip was originally assumed to be forward, using the cyclicity
of the tape, which however made finding progammes rather difficult, as there are
no neutral instructions (no-ops) to fill the tape.

The solution came when a bidirectional selector switch in its original boxing
was found in Hasenjaeger’s home in Plettenberg. Re-interpreting the schematics,
it was clear that the machine was built for a bidirectional programme-tape, which
was then created from the new switch and could be alternatively used, see Fig.25.

The Wang like encoding with variable length instructions requires in this
case a minimum of 4 states to count the number of zeroes until it is clear that it
is a skip. The Q-Tape may be used as a state extension and reduce the number
of states to 3, which does not help to reduce the number of relays in practice.

A different punching tool was found and a small stock of already cut tape;
both worked flawlessly at 24V, while using celloloid film required to increase the
supply.

38

Fig. 25. Bidirectional progamme tape

So the above skip is finally a skip-back-if-marked, which corresponds to the
repeat operator in Rödding’s register machines, only the proper nesting is not
enforced.

A programme to find the next space to the right and mark it (15 bits):

L R 1 M 0

001 01 00001 1 0001

The first L is for the case that the tape is on a space. Then a tight loop moves
right, checks for a mark, and if marked, repeats. If not marked, punches a mark,
and a zero jump is a dynamic stop, which does jump infinitely, because the tape
is marked.

More details are available. The formerly published descriptions (e.g. [127],
[128]) are not up to date.38

To estimate the compactnesss of multi-tape Turing machines, the second
author has proposed a Turing machine index ([126]) which is 24.0 (basic index)
for this machine.

A proof that this machine is universal and also computationally efficient can
be found in [218].

38 Try [http://rclab.de/] for more details.

39

http://rclab.de/

9.4 The RTL/70

A Box labelled RTL/70 was found in his legacy in Plettenberg (see Fig.26),
containing a base module and four pluggable modules, labelled S, R, Q and P

Thus it looks like a 4-tape machine.

Fig. 26. RTL 70 in transport box and assembled

Used are early integrated digital circuits of the very early Resistor-Transistor-
Logic (RTL) by Motorola (HEP570 to HEP584), for which not datasheets were
found in the WEB.

An early attempt to reverse engineer the machine and re-build it using SMD
replacements for the RTL ICs, was abandoned. Later, some documentation and
the corresponding Motorola catalog was found, but the task was not restarted.

It might be suspected that this was a machine materializing the 2-state ma-
chine described in Hasenjaegers 1984 report ([138]), but that machine used a
set of R-tapes, and this machine in its tailored box seems to be complete and
intended for demonstrations.

The machine is very interesting because it is compact; its relevance can only
be determined if analysed more extensively. The TM index cannot be guessed
as the machine features are too vague.

9.5 The 1984 machine

Hasenjaeger gave the state table of a 2-state machine with 2 bits per instruction
in [138]. It uses a P- Q- and a set of R-tapes, that could be cyclically selected, a
technique he had persued since the Alte Wang.

40

The instructions on the P-tape are uniformly 2 bits long:

E: enlarge (increment) the current R-tape
D: decrement the current R-tape
C: cyclically change to the next R-tape
F: for if : conditional jump

As two F-instructions in a row are useless, the jump distance is encoded by
the corresponding number of contiguous F-instructions.

The state table has been rearranged for better readability:

S PRJ rj s Remark

Group 1: sequential instructions

0 c.0 #. . cycle tape

d10 -. . decrement register

e.0 +. . increment register

f.0 .. 1 start jumping

Group 2: executing a jump

0 c.1 .- . decrement J for c

d.1 .- . decrement J for d

f.1 .. . skip f

Group 3: do not jump as R is zero

1 c0. .. 0 terminated by c

d0. .. 0 terminated by d

f0. .. . ignore f

Group 4: collect jump distance

1 c1. .. 0 found c

d1. .. 0 found d

f1. .+ . count number of ’f’s

According to the text, the programme tape is assumed to by cyclic. As this
is apparently a Turing machine simulating a register machine, backward jumps
would be more appropriate, but require a different state table, that might nev-
ertheless still have 2 states.

Until now, the only purpose of this machine seems to demonstrate the use
of Jones-Matiyasevich-Masking to formally describe such a machine, which suc-
ceeded in an astonishing short proof.

The TM index is not as small as it seems, because the states of the tape
multiplexer must be multiplied with the two visible states. The result tape is a
single binary tape for the basic index, and there are 3+2 operations, thus the
basic TM index is 6*sqrt(8*5/2) = 26.8. Penalties for the cyclic programme tape
would be necessary. With backward jumps, there are two more actions in the
state table, so the basic TM index is 6*sqrt(8*7/2) = 31.7, with no penalties.

9.6 The TTL machines

When TTL logic ICs became available, they were much cheaper than Motorola’s
RTL logic, and thus Hasenjaeger switched to this technology.

41

He created a large amount of modules that are connected using cables with
2mm plugs, see Fig.27.

Fig. 27. TTL modules.jpg

Ground and power supply was from the bottom, thus the cables were only
needed for signals.

No further analysis and inventory of the modules has been carried out so far.

9.7 More artefacts

A photo from the first Turingraum shows an object with old German telephone
relays, (Fig. 28) which apparently is a shift register where the state is temporarily
stored in capacitors in the front. Such shift registers could well serve as Turing
tapes; if it is a ring counter, where only one relay is active ever, it is a Turing
tape with just one mark, to be used as count register.

Similar artefacts are preserved but were not yet analyzed; some of these look
like (another) relay shift register (see Fig. 29).

42

Fig. 28. Turingraum with relay shift register

Fig. 29. Relay shift register

43

Acknowledgement. We thank the following persons who have helped with
criticism, suggestions, information, pictures: Volker Claus, Peter Päppinghaus,
Andreas Podelski, Walburga Rödding, Uwe Schöning, Inge Schwank. We are
particularly thankful to Elmar Cohors-Fresenborg who pointed us to most of
the material in Sect. 6, and to Jonathan Bowen who after the presentation of
his historical analysis of the community that has developed itself around the
Abstract State Machines method (see [58,57]) suggested to write a companion
paper that analyses the influence Turing’s epochal 1937 paper had on the Schule
von Münster, a community formed by activities that are focussed on the relations
between logic and computing science.

10 Appendix: The Genealogy of the School of Münster

The Logic School of Münster in half a century had 65 doctoral students, listed
below, and 1,353 descendants (data (not completely reliable) from [221], con-
sulted on August 4 and November 25, 2021, with slight corrections due to direct
knowledge of the first author, see in particular [32]).

Heinrich Scholz’ 11 doctoral students in Münster (1,265 descendants):

Candidate Year Students Descendants
Anna Holling 1930
Friedrich Bachmann 1934 26 314
Walter Kinder 1935
Hermann Schweitzer 1935
Eugen Roth 1937
Hans Hermes 1938 28 398
Shih-hua Hu 1939
Karl Schröter 1941 16 263
Eduard Arens 1944
Gisbert Hasenjaeger 1950 11 378
Werner Markwald 1952

44

Hans Hermes’ 20 doctoral students in Münster.

Candidate Year Students Descendants
Heinz Gumin 1954
Arnold Oberschelp 1957 7 20
Walter Oberschelp 1958 20 257
Ludwig Brinkmann 1961
Horst Burwick 1961
Klemens Döpp 1961 3 13
Walther Heinermann 1961 1 1
Herbert Fiedler 1962
Dieter Titgemeyer 1962
Klaus Brockhaus 1963
Paul Röver 1963
Joachim Hornung 1964
Laurent Larouche 1964
Jürgen Genenz 1965
Friedrich-Karl Mahn 1965
Walburga Schwering 1965
Giorgio Germano 1966 1 1
Joachim Bammert 1967
Heinz-Dieter Ebbinghaus 1967 7 47
Klaus Rödding 1967

In Freiburg Hermes had the following 8 doctoral students: Reiner Durchholz
(1968), Robert Kerkhoff (1968), Michael Richter (1968), Hubert Schwarz
(1968), Jörg Flum (1969), Dieter Klemke (1970), Klaus Heidler (1973), Walther
Kindt (1973).
In total Hermes had 28 doctoral students and 398 descendants.
Gisbert Hasenjaeger’s 11 doctoral students (378 descendants):

Candidate Year Students Descendants
Dieter Rödding 1961 15 251
Ronald Jensen 1964 13 92
Ulrich Perret 1968
Ibrahim Garro 1972
Wilhelm Johannes Backhausen 1973
Gerda Thieler-Mevissen 1974
Tassilo von der Twer 1976
Ralf Bülow 1980
Dimitrios Christodoulakis 1980
Peter Schroeder-Heister 1981 6 22
Emile Weydert 1988

45

Dieter Rödding’s 15 doctoral students (251 descendants):

Candidate Year Students Descendants
Helmut Schwichtenberg 1968 16 25
Michael Deutsch 1968
Thomas Ottmann 1971 22 78
Jürgen Bartnick 1971
Egon Börger 1971 4 6
Elmar Cohors-Fresenborg 1971 11 14
Hansjürgen Brämik 1972
Hans-Georg Carstens 1972 22 58
Helmut Müller 1974
Lutz Priese 1974
Peter Körber 1976
Hans Kleine Büning 1977 9 13
Klaus-Peter Kniza 1980
Joachim Müller 1982
Anne Brüggemann-Klein 1985 2 2

Copyright Notice. It is permitted to (re-)use this text or parts thereof
under the CC-BY-NC-SA licence

https://creativecommons.org/licenses/by-nc-sa/4.0/

i.e. in particular under the condition that

the two original authors are mentioned
modified text is made available under the same licence
the (re-) use is not commercial

46

References

1. A.Blass, E.Börger, and Y.Gurevich, editors. Theory and Application of Abstract
State Machines. Schloss Dagstuhl, 2002. Seminar Report 336. https://www.

dagstuhl.de/02101.

2. J.-R. Abrial. The B-Book. Cambridge University Press, Cambridge, 1996.

3. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge, 2010.

4. A.Church. A note on the Entscheidungsproblem. J. of Symbolic Logic, 1:40–41,
1936.

5. A.Church. An unsolvable problem of elementary number theory. American J. of
Mathematics, 58:345–363, 1936.

6. W. Ackermann. Zum Hilbertschen Aufbau der reellen Zahlen. Mathematische
Annalen, 99:118–133, 1928.

7. W. Ackermann. Solvable Cases of the Decision Problem. North–Holland, 1954.

8. W. Ackermann. Von den natürlichen zu den reellen Zahlen. Lecture Notes,
Institut für math. Logik und Grundlagenforschung, Winter Term 1961/2.

9. A.Clausing. Heinrich Scholz’ early interest in Turing’s papers. https://ivv5hpp.
uni-muenster.de/u/cl/. Consulted July 11, 2021.

10. A.Cobham. The intrinsic difficulty of functions. In Proc.1964 Congress for Logic,
Mathematics, and Philosophy of Science, pages 24–30, 1964.

11. A.Durand, D. Jones, J. Makowsky, and M. More. Fifty years of the spectrum
problem: survey and new results. Bull. Symbol. Logic, 18:505–553, 2012.

12. A.Grzegorczyk. Some classes of recursive functions. Rozprawy Matematiyczne IV,
IV:3–45, 1953.

13. A.Hodges. Alan Turing: The Enigma. Simon and Schuster, 1983.

14. H.-C. S. am Busch and K.F.Wehmeier. ”Es ist die einzige Spur, die ich hin-
terlasse”. Dokumente zur Entstehungsgeschichte des Instituts für Mathematische
Logik und Grundlagenforschung. In H.-C. S. am Busch and K.F.Wehmeier, edi-
tors, Heinrich Scholz. Logiker, Philosoph, Theologe, pages 93–101. Mentis (Pader-
born), 2005.

15. A.Mostowski. Concerning a problem of H. Scholz. Zeitschr. f. math. Logik u.
Grundlagen d. Math., 2:210–214, 1956.

16. A.M.Turing. Computing machinery and intelligence. Mind, LIX(236):433–460,
1937. https://doi.org/10.1093/mind/LIX.236.433.

17. A.M.Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, s2-42(1):230–
265, 1937. https://doi.org/10.1112/plms/s2-42.1.230.

18. A.Raschke, E.Riccobene, and K.-D.Schewe, editors. Logic, Computation and Rig-
orous Methods, volume 12750 of LNCS. Springer-Verlag, 2021. Essays Dedicated
to Egon Börger on the Occasion of His 75th Birthday.

19. A.R.Meyer and D.M.Ritchie. Computational complexity and program structure.
IBM Watson Research Center at Yorktown Heights, Research Report RE–1817,
p.1-15, 1967.

20. J. V. Atanasoff. Computing machine for the solution of large systems of linear
algebraic equations. In B. Randell, editor, The Origins of Digital Computers,
pages 305–325. Springer-Verlag, 1973.

21. A.Tarski. Der Wahrheitsbegriff in den formalisierten Sprachen. Studia Philosoph-
ica, 1:261–405, 1936.

47

https://www.dagstuhl.de/02101
https://www.dagstuhl.de/02101
https://ivv5hpp.uni-muenster.de/u/cl/
https://ivv5hpp.uni-muenster.de/u/cl/
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1112/plms/s2-42.1.230

22. A. Blass and Y. Gurevich. Abstract State Machines capture parallel algorithms.
ACM Trans. Computational Logic, 4(4):578–651, 2003.

23. A. Blass and Y. Gurevich. Abstract State Machines capture parallel algorithms:
Correction and extension. ACM Transactions on Computation Logic, 9(3), 2008.

24. F. Boniol, V. Wiels, Y.Ait-Ameur, and K.-D. Schewe, editors. ABZ 2014: The
Landing Gear Case Study, volume 433 of Communications in Computer and In-
formation Science. Springer, 2014.

25. E. Börger. Brief an G. Hasenjaeger 04.10.1985. Anlage: von M. Richter verfasste
Dokumentation zur Rödding-Nachfolge. See Hasenjaeger Nachlass, Deutsches
Museum München, NL 288 / 149.

26. E. Börger. On the constrution of simple first-order formulae without recursive
models. In Proc. Coloquio sobra logica simbolica, pages 9–24, Madrid, 1975. Uni-
versidad Complutense.

27. E. Börger. A new general approach to the theory of the many-one equivalence of
decision problems of algorithmic systems. volume 25, pages 135–162, 1979. Also
published as vol.30 of R.Kaerkes and L.Merkwitz and W.Oberschelp: Schriften
zur Informatik und Angewandten Mathematik, RWTH Aachen.

28. E. Börger. Decision Problems in Predicate Logic. In G.Lolli, G.Longo, and
A.Marcja, editors, Logic Colloquium’82, pages 263–301. North-Holland, Studies
in Logic and the Foundations of Mathematics vol.112, 1984.

29. E. Börger. Spektralproblem and completeness of logical decision problems. In
E. Börger, G. Hasenjaeger, and D.Rödding, editors, Logic and Machines: Decision
Problems and Complexity, pages 333–356. Springer LNCS 171, 1984.

30. E. Börger. Berechenbarkeit,Komplexität,Logik. Vieweg Verlag Braunschweig,
1985. 2nd ed.1986, 3d extended edition 1991, engl.translation Computability,
Complexity, Logic (vol. 128 of Studies in Logic and the Foundations of Mathe-
matics, North-Holland 1989), italian transl. Computabilità, Complessità, Logica
vol.1: Teoria delle Computazione, Serie di Informatica, Bollati Borighieri 1989.

31. E. Börger, editor. Computation Theory and Logic. In memory of Dieter Rödding.
Springer LNCS 270, 1987.

32. E. Börger. D.Rödding: Ein Nachruf. Jahresbericht der Deutschen Mathematiker-
Vereinigung, 89:144–148, 1987.

33. E. Börger. Logic as Machine: Complexity relations between programs and for-
mulae. In E. Börger, editor, Trends in Theoretical Computer Science, pages 59–
94, 1988. A survey of the main results was presented to the centenary Scholz-
Festkolloquium held at the logic institute in Münster on February 8–9, 1985.

34. E. Börger. Complexity of logical decision problems. In G. Corsi, M. Chiara, and
G. Ghirardi, editors, Bridging the Gap: Philosophy, Mathematics, and Physics,
pages 71–86. Kluwer Academic Publisher, 1993.

35. E. Börger. Ten years of CSL conferences (1987-1997). EATCS Bulletin, 63:61–63,
1997.

36. E. Börger. The ASM ground model method as a foundation of requirements
engineering. In N.Dershowitz, editor, Verification: Theory and Practice, volume
2772 of LNCS, pages 145–160. Springer-Verlag, 2003.

37. E. Börger. The ASM refinement method. Formal Aspects of Computing, 15:237–
257, 2003.

38. E. Börger, H. Büning, G.Jäger, S. Martini, and M.Richter, editors. CSL’92, vol-
ume 702 of Lecture Notes in Computer Science. Springer, 1993.

39. E. Börger, H. Büning, G.Jäger, and M.Richter, editors. CSL’91, volume 626 of
Lecture Notes in Computer Science. Springer, 1992.

48

40. E. Börger, H. Büning, and M.Richter, editors. CSL’87, volume 329 of Lecture
Notes in Computer Science. Springer, 1988.

41. E. Börger, H. Büning, and M.Richter, editors. CSL’88, volume 385 of Lecture
Notes in Computer Science. Springer, 1989.

42. E. Börger, H. Büning, and M.Richter, editors. CSL’89, volume 440 of Lecture
Notes in Computer Science. Springer, 1990.

43. E. Börger, H. Büning, M.Richter, and W.Schönfeld, editors. CSL’90, volume 533
of Lecture Notes in Computer Science. Springer, 1991.

44. E. Börger, E.Grädel, and Y.Gurevich. The Classical Decision Problem. Perspec-
tives in Mathematical Logic. Springer-Verlag, 1997. Second printing in “Univer-
sitext”, Springer-Verlag 2001.

45. E. Börger and U. Glässer. Abstract State Machines 2001: New developments
and applications. In E. Börger and U. Glässer, editors, J. Universal Computer
Science, volume 7(11), pages 914–917. Springer-Verlag, 2001. Selected extended
papers from 8th international ASM workshop.

46. E. Börger, G. Hasenjaeger, and D.Rödding, editors. Logic and Machines: Decision
Problems and Complexity, volume 171. Springer LNCS, 1984.

47. E. Börger and J. Huggins. Abstract State Machines 1988–1998: Commented ASM
bibliography. Bull. EATCS, 64:105–127, 1998.

48. E. Börger and U. Löwen. Logical decision problems and complexity of logic
programs. Fundamenta Informaticae, 10:1–34, 1987.

49. E. Börger, M.Butler, J. P.Bowen, and P.Boca, editors. Abstract State Machines,
B and Z, volume 5238 of Lecture Notes in Computer Science. Springer, 2008.
First International Conference ABZ 2008.

50. E. Börger and A. Raschke. Modeling Companion for Software Practitioners.
Springer, 2018. ISBN 978-3-662-56641-1. For Corrigenda and lecture material on
themes treated in the book see http://modelingbook.informatik.uni-ulm.de.

51. E. Börger and K.-D. Schewe. Concurrent Abstract State Machines.
Acta Informatica, 53(5), 2016. http://link.springer.com/article/10.1007/

s00236-015-0249-7, DOI 10.1007/s00236-015-0249-7. Listed as Notable Article
in ACM 21th Annual BEST OF COMPUTING, see www.computingreviews.com/
recommend/bestof/notableitems.cfm?bestYear=2016.

52. E. Börger and K.-D. Schewe. A behavioral theory of recursive algorithms. Fun-
damenta Informaticae, 177(1):1–37, 2020. DOI 10.3233/FI-2020-1915.

53. E. Börger and J. Schmid. Composition and submachine concepts for sequential
ASMs. In P. Clote and H. Schwichtenberg, editors, Computer Science Logic (Pro-
ceedings of CSL 2000), volume 1862 of Lecture Notes in Computer Science, pages
41–60. Springer-Verlag, 2000.

54. E. Börger and R. F. Stärk. Abstract State Machines. A Method for High-Level
System Design and Analysis. Springer, 2003.

55. E. Börger, Y.Gurevich, H. K. Büning, and M.Richter. Computer Science
Logic. 1992. Dagstuhl Seminar Report 40 (9229), https://www.dagstuhl.de/
fileadmin/files/Reports/92/9229.pdf.

56. E. Börger, Y.Gurevich, and K.Meinke, editors. CSL’93, volume 832 of Lecture
Notes in Computer Science. Springer, 1994.

57. J. P. Bowen. ABZ 2021 conference report. FACS FACTS, 2021(2):65–70, July
2021.

58. J. P. Bowen. Communities and ancestors associated with Egon Börger and ASM.
In A. Raschke, E. Riccobene, and K.-D. Schewe, editors, Logic, Computation and
Rigorous Methods, volume 12750 of Lecture Notes in Computer Science, pages
96–120. Springer, 2021.

49

http://modelingbook.informatik.uni-ulm.de
http://link.springer.com/article/10.1007/s00236-015-0249-7
http://link.springer.com/article/10.1007/s00236-015-0249-7
www.computingreviews.com/recommend/bestof/notableitems.cfm?bestYear=2016
www.computingreviews.com/recommend/bestof/notableitems.cfm?bestYear=2016
https://www.dagstuhl.de/fileadmin/files/Reports/92/9229.pdf
https://www.dagstuhl.de/fileadmin/files/Reports/92/9229.pdf

59. A. Brüggemann. Stochastische Zuverlässigkeit fehlertoleranter Netzwerke. PhD
thesis, Inst.math.Logik und Grundlagenforschung, Universität Münster, 1985.
The scientific advisor of this dissertation has been D.Rödding, but the thesis
was submitted after Rödding’s death so that the Mathematics Genealogy Project
does not associate it with D.Rödding.

60. A. Brüggemann, L.Priese, D.Rödding, and R.Schätz. Modular decomposition
of automata. In E.Börger, G.Hasenjaeger, and D.Rödding, editors, Logic and
Machines: Decision Problems and Complexity, pages 198–236. Springer Lecture
Notes in Computer Science vol.171, 1984.

61. M. J. Butler, K.-D. Schewe, A. Mashkoor, and M. Biro, editors. Abstract State
Machines, Alloy, B, TLA, VDM, and Z - 5th International Conference ABZ
2016, volume 9675 of Lecture Notes in Computer Science, Linz (Austria), 2016.
Springer.

62. C.Boehm and G.Jacopini. Flow diagrams, Turing machines and languages with
only two formation rules. Communications of the ACM, 9:366–371, 1966.

63. C.Carstensen. Eine schaltalgebraische Realisierung von Registermaschinen.
Prüfungsarbeit zur Ersten Staatsprüfung für das Lehramt an Realschulen, 1975.

64. C.Christen. Spektren und Klassen elementarer Funktionen. PhD thesis, ETH
Zürich, 1974.

65. A. K. Chandra and D.Harel. Computable queries for relational data bases. J.
Computer and System Sciences, 21:156–178, 1980.

66. A. K. Chandra and D.Harel. Structure and complexity of relational queries. J.
Computer and System Sciences, 25:99–128, 1982. https://doi.org/10.1016/

0022-0000(82)90012-5.

67. C.Kaune. Das Wissen um Unterschiede in den kognitiven Strukturen von
Schülerinnen und Schülern als Erklärung von Unterrichtsbeiträgen. Zentralblatt
für Didaktik der Mathematik, 35:102–109, 2003.

68. E. Cohors-Fresenborg. Registermaschine. email of Nov 1 to Egon Börger.

69. E. Cohors-Fresenborg. On the representation of algorithmic concepts. In
F.Lowenthal and F.Vandamme, editors, Pragmatics and Education, Boston (MA),
1986. Springer. https://doi.org/10.1007/978-1-4757-1574-3_13.

70. E. Cohors-Fresenborg. Individual differences in cognitive structures and the ef-
fect on business reengineering. In Proceedings of the IV European Congress of
Psychology, pages 153–160, Göttingen, 1996.

71. J. Copeland. Turing’s great invention: the universal computing machine. In
J. Copeland, J. Bowen, M. Sprevak, and R. Wilson, editors, The Turing Guide,
2017. DOI:10.1093/oso/9780198747826.003.0013.

72. M. Deutsch. Ein neuer Beweis und eine Verschärfung für den Reduktionstyp
∀∃∀∞(0, 1) mit einer Anwendung auf die spektrale Darstellung von Prädikaten.
Zeitschrift für math. Logik und Grundlagen der Math., 38:559–564, 1992.

73. D.Hilbert and W.Ackermann. Grundzüge der theoretischen Logik. Springer,
1928,1938. English translation of the 2nd edition: Principles of Mathematical
Logic, Chelsea Publishing Company, New York (1950).

74. B. Dreben and W. Goldfarb. The decision problem: solvable cases of quantifica-
tional formulas. Addison-Wesley, 1979.

75. D.Rödding. Darstellungen der (im Kalmár-Csillagschen Sinne) elementaren
Funktionen. PhD thesis, Inst. für math. Logik und Grundlagenforschung, Univer-
sität Münster, 1961. Presented at the International Congress of Math., Stockholm
1962, and published in Arch. Math. Logik Grundlagenforsch. 7 (1965) 139–158.

50

https://doi.org/10.1016/0022-0000(82)90012-5
https://doi.org/10.1016/0022-0000(82)90012-5
https://doi.org/10.1007/978-1-4757-1574-3_13

76. D.Rödding. Theorie der Rekursivität über dem Bereich der endlichen Mengen
von endlichem Rang. Habilitationsschrift, Institut für math. Logik und Grundla-
genforschung, 1964.

77. D.Rödding. Klassen rekursiver Funktionen. In M. H. Löb, editor, Proceedings of
the Summer School in Logic (Leeds 1967), pages 159–222, 1968.

78. D.Rödding. Einführung in die Theorie der berechenbaren Funktionen. Lecture
Notes (written by E.Börger), Institut für math. Logik und Grundlagenforschung,
1969. Reviewed in Mathematical Reviews (number 56 # 15384a/b).

79. D.Rödding. Höhere Prädikatenlogik: Interpolationstheorem, Reduktionstypen.
Lecture Notes (written by H.Schwichtenberg), Institut für math. Logik und
Grundlagenforschung, 1969.

80. D.Rödding. Reduktionstypen der Prädikatenlogik. Lecture Notes (written by
E.Börger), Institut für math. Logik und Grundlagenforschung, 1970. Reviewed in
Mathematical Reviews 57 (number 2903) and Zentralblatt für Mathematik 267
(number 02034).

81. D.Rödding. Einführung in die Theorie der berechenbaren Funktionen I. Lecture
Notes (written by P. Koerber), Institut für math. Logik und Grundlagenforschung,
1972. Summer Term 1972.

82. D.Rödding. Einführung in die Theorie der berechenbaren Funktionen II. Lecture
Notes (written by P. Päppinghaus), Institut für math. Logik und Grundlagen-
forschung, 1973. Winter Term 1972/73.

83. D.Rödding. Klasseneinteilungen im Bereich der rekursiven Funktionen. Lecture
Notes, Institut für math. Logik und Grundlagenforschung, Winter term 1964/65.

84. H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1995.
85. H.-D. Ebbinghaus, J. Flum, and W.Thomas. Mathematical Logic. Springer, 1995.
86. E.Börger. Reduktionstypen in Krom- und Hornformeln. PhD thesis, Institut für

math. Logik und Grundlagenforschung, Universität Münster, 1971.
87. E.Börger. Reduktionstypen der klassischen Prädikatenlogik, Teil 1. Lecture

Notes, Institut für math. Logik und Grundlagenforschung, 1972.
88. E.Börger. The origins and the development of the ASM method for high level

system design and analysis. J.Universal Computer Science, 8:2–74, 2002.
89. E.Börger, editor. Abstract State Machines and high-level system design and anal-

ysis, volume 336 (2–3) of Theoretical Computer Science (Special Issue). Elsevier,
2005. ISSN 0304–3975. Selection of extended papers from ASM’03 (Taormina,
Sicily).

90. E.Börger, editor. The Abstract State Machines method, volume 77 of Fundamenta
Informaticae (Special Issue). IOS Press, 2007. ISSN 0169–2968. Selection of
extended papers from ASM’05 (Paris).

91. E.Börger, A.Gargantini, and E.Riccobene, editors. Abstract State Machines 2003.
Advances in Theory and Practice, volume 2589 of LNCS. Springer, 2003. Contains
Proceedings of 10th ASM Workshop (Taormina, Italy). For a selection of extended
workshop papers see [89].

92. E.Börger and A.Prinz, editors. Quo vadis Abstract State Machines?, volume 14
(12) of J. Universal Computer Science (Special Issue). 2008. Selection of extended
papers from ASM’07 (Grimstadt, Norway).

93. E.Börger, D. Beauquier, and A. Slissenko. Proc. 12th international workshop
on Abstract State Machines ASM’05. Université Paris 12 (France), 2005. For a
selection of extended workshop papers see [90].

94. E.Cohors-Fresenborg. Subrekursive Funktionsklassen über binären Bäumen. PhD
thesis, Inst.math.Logik und Grundlagenforschung, Universität Münster, 1971.

51

95. E.Cohors-Fresenborg. Berechenbare Funktionen und Registermaschinen Ein
Beitrag zur Behandlung des Funktionsbegriffs auf konstruktiver Grundlage. Di-
daktik der Mathematik, 3:187 –209, 1973.

96. E.Cohors-Fresenborg. Dynamische Labyrinthe. Didaktik der Mathematik, 1:1–21,
1976.

97. E.Cohors-Fresenborg. Mathematik mit Kalkülen und Maschinen. Vieweg, Braun-
schweig, 1977.

98. E.Cohors-Fresenborg. Verschiedene Repräsentationen algorithmischer Begriffe.
Journal für Mathematikdidaktik, 6:187–209, 1985.

99. E.Cohors-Fresenborg and B.Reimers. Ein Demonstrationsmodell für Register-
maschinen. Der Mathematische und Naturwissenschaftliche Unterricht (MNU),
XXVIII, 1975.

100. E.Cohors-Fresenborg, D.Finke, and S.Schütte. Dynamische Labyrinthe. Os-
nabrücker Schriften zur Mathematik, 1979. English version 11–19, Dutch version
31–39, also translated to Chinese and Indonesian.

101. E.Cohors-Fresenborg, M. Griep, and I. Schwank. Registermaschinen und
Funktionen–Ein Schulbuch zur Einführung des Funktionsbegriffs auf der Grund-
lage von Algorithmen. Osnabrücker Schriften zur Mathematik, 22, 1979.

102. E.Cohors-Fresenborg and C. Kaune. Von Anweisungen zu Funktionen.
Forschungsinstitut für Mathematikdidaktik e.V., Osnabrück, 2012. 3d revised
edition.

103. E.Cohors-Fresenborg, C. Kaune, and M. Griep. Einführung in die Computer-
welt mit Registermaschinen. Forschungsinstitut für Mathematikdidaktik e.V.,
Osnabrück, 1995.

104. E.Cohors-Fresenborg, S.Brinkschmidt, and S.Armbrust. Augenbewegungen als
Spuren prädikativen oder funktionalen Denkens. Zentralblatt für Didaktik der
Mathematik, 35:86–93, 2003.

105. E.Cohors-Fresenborg and I. Schwank. On the modelling of learning processes by
αβγ - automata. In Proc.7th International Congress of Logic, Methodology and
Philosophy of Science, pages 24–27, 1983.

106. E.Cohors-Fresenborg and I. Schwank. Kognitive Aspekte des Business Reengi-
neering. Gestalt Theory, 18:233–256, 1996.

107. E.Cohors-Fresenborg and I. Schwank. Individual differences in the managerial
mental representation of business processes. In R. P. et al., editor, Managerial
Behaviour and Business Processes: European Research Issues, pages 93–106, Lou-
vain, 1997.

108. E.Engeler. Algorithmic properties of structures. Math. Systems Theory, 1:183–
195, 1967.

109. E.G.Wagner. Uniformly reflexive structures: on the nature of Gödelizations and
relative computability. Transac.American Mathematical Society, 144:1–41, 1969.

110. T. Eichholz. Semantische Untersuchungen zur Entscheidbarkeit im
Prädikatenkalkül mit Funktionsvariablen. Archiv für math. Logik u. Grundlagen-
forschung, pages 19–28, 1957.

111. F.-K.Mahn. Über die Strukturunabhängigkeit des Begriffs der primitiv-rekursiven
Funktionen. PhD thesis, Institut für math. Logik und Grundlagenforschung, Uni-
versitä Münster, 1965.

112. F.-K.Mahn. Primitiv-rekursive Funktionen auf Termmengen. Arch. math. Logik,
12:54–65, 1969.

113. F. Ferrarotti, K.-D. Schewe, L. Tec, and Q. Wang. A new thesis concerning
synchronised parallel computing – simplified parallel ASM thesis. Theor. Comp.
Sci., 649:25–53, 2016.

52

114. F.L.Bauer. The formula-controlled logical computer Stanislaus. Mathematics of
Computation, 14:64–67, 1960.

115. M. Fürer. Alternation and the Ackermann case of the decision problem. L’
Enseignement Mathématique, II:137–162, 1982.

116. G. Gabriel, H.Hermes, F. Kambartel, C.Thiel, and A.Veraart, editors. Gottlob
Frege. Wissenschaftlicher Briefwechsel. Felix Meiner Verlag Hamburg, 1976.

117. G.Asser. Das Repräsentantenproblem im Prädikatenkalkül der ersten Stufe mit
Identität. Zeitschr. f. math. Logik u. Grundlagen d. Math., 1:252–263, 1955.

118. G.Hasenjaeger. Nachlass. Deutsches Museum München, Archiv, NL 288.
119. G.Hasenjaeger. Register-Maschinen. Deutsches Museum München, Archiv, NL

288/081. See [123].
120. G.Hasenjaeger. Einführung in die Mengenlehre. Lecture Notes (written by Hans-

Rüdiger Wiehle) at University of Münster, 1953/4.
121. G.Hasenjaeger. Einführung in die Grundbegriffe und Probleme der modernen

Logik. Alber, Freiburg and Munich, 1962. Engl.translation Introduction to the
basic concepts and problems of modern logic, D. Reidel Publishing Company,
Dordrecht, Holland, and Humanities Press, New York, 1972.

122. G.Hasenjaeger. Rekursive Funktionen. Lecture Notes (written by G. Seebach,
Tassilo von der Twer and Jutta Klucken) at University of Bonn, 1971/2.

123. G.Hasenjaeger. Registermaschinen. Contact, 14 and 15, 1976.
124. G.Hasenjaeger. Zur Vor- und Frühgeschichte des (bis heute so genannten) “Know-

How- Computers”. pages 1–4, 1984. Apparently unpublished (but most of the
material went into [125]). See Hasenjaeger Nachlass, Deutsches Museum München,
NL 288 / 089.

125. G.Hasenjaeger. On the early history of register machines. In Computation Theory
and Logic, volume 270 of Lecture Notes in Computer Science, pages 181 – 188.
Springer, 1987.

126. R. Glaschick. A size index for multi tape Turing machines. Isaac Newton Institute
Cambridge preprint, 18.7.2018. https://www.newton.ac.uk/files/preprints/

ni12061\0.pdf.
127. R. Glaschick. Alan Turings Wirkung in Münster. Mitteilungen der Deutschen

Mathematiker-Vereinigung, 20(1):42–48, 2012. https://doi.org/10.1515/

dmvm-2012-0019.
128. R. Glaschick. Turing machines in Münster. In S. B. Cooper and J. van Leeuwen,

editors, Alan Turing: His Work and Impact. Elsevier, 2013. ISBN 9780123869807.
129. E. Grädel. The Complexity of Subclasses of Logical Theories. PhD thesis, Uni-

versität Basel, 1987. For a summary see Bulletin of the EATCS vol. 34 (1988),
289–291.

130. E. Grädel. Subclasses of Presburger Arithmetic and the Polynomial-Time Hier-
archy. Theoretical Computer Science, 56:289–301, 1988.

131. E. Grädel. Dominoes and the complexity of subclasses of logical theories. Annals
of Pure and Applied Logic, 43:1–30, 1989.

132. E. Grädel. Size of models versus length of computations. On inseparability by
nondeterministic time complexity classes. In Proceedings of the Second Workshop
on Computer Science Logic CSL 88, Duisburg 1988, LNCS 385, pages 118–137.
Springer, 1989.

133. E. Grädel. On logical descriptions of some concepts in structural complexity
theory. In Proceedings of the Third Workshop on Computer Science Logic CSL
89, Kaiserslautern 1989, LNCS 440, pages 163–175. Springer, 1990.

134. Y. Gurevich. A new thesis. Abstracts, American Mathematical Society, 6(4):317,
August 1985. abstract 85T-68-203.

53

https://www.newton.ac.uk/files/preprints/ni12061\ 0.pdf
https://www.newton.ac.uk/files/preprints/ni12061\ 0.pdf
https://doi.org/10.1515/dmvm-2012-0019
https://doi.org/10.1515/dmvm-2012-0019

135. Y. Gurevich. Evolving algebras 1993: Lipari Guide. In E. Börger, editor, Specifi-
cation and Validation Methods, pages 9–36. Oxford University Press, 1995.

136. Y. Gurevich. Sequential Abstract State Machines capture sequential algorithms.
ACM Trans. Computational Logic, 1(1):77–111, July 2000.

137. D. Harel and A. Pnueli. On the development of reactive systems. In K.Apt,
editor, Logics and models of concurrent systems, pages 477–498. Springer-Verlag
New York, 1985.

138. G. Hasenjaeger. Universal Turing machines (UTM) and Jones-Matiyasevich-
masking. In E. Börger, G.Hasenjaeger, and D.Rödding, editors, Logic and Ma-
chines: Decision Problems and Complexity, volume 171 of Lecture Notes in Com-
puter Science, pages 248–253. Springer Berlin / Heidelberg, 1984.

139. H.Brämik. Beweistheoretische Charakterisierung der ω3-rekursiven Funktionen.
PhD thesis, Inst.math.Logik und Grundlagenforschung, Universität Münster,
1972.

140. H.Bruderer. Wie erfuhr die ETH Zürich von der Zusemaschine Z4? https:

//doi.org/10.3929/ethz-a-010001419, 2013.

141. H.Friedman. Algorithmic procedures, generalized Turing algorithms, and ele-
mentary recursion theory. volume 61 of Studies in Logic and the Foundations of
Mathematics, pages 361 – 389. 1971.

142. H.Hermes. Definite Begriffe und berechenbare Zahlen. Semesterberichte zur Pflege
des Zusammenhangs von Universität und Schule aus den mathematischen Sem-
inaren, pages 110–123, 1937.

143. H.Hermes. Eine Axiomatisierung der allgemeinen Mechanik. PhD thesis, Uni-
versität Münster, 1938. Published in Leipzig as Heft 3 of Forschungen zur Logik
und zur Grundlegung der exakten Wissenschaften.

144. H.Hermes. Maschinen zur Entscheidung von mathematischen Problemen.
Mathematisch-Physikalische Semesterberichte (Göttingen), pages 179–189, 1952.

145. H.Hermes. Die Universalität programmgesteuerter Rechenmaschinen.
Mathematisch-Physikalische Semesterberichte (Göttingen), pages 42–53, 1954.

146. H.Hermes. Vorlesung über Entscheidungsprobleme in Mathematik und Logik. As-
chendorffsche Verlagsbuchhandlung, 1955. Vol.15 of Ausarbeitungen mathema-
tischer und physikalischer Vorlesungen.

147. H.Hermes. Aufzählbarkeit - Entscheidbarkeit - Berechenbarkeit. Einführung in
die Theorie der rekursiven Funktionen. Springer-Verlag, 1961. Various editions,
english translation 1965, spanish translation INTRODUCCION A LA TEORIA
DE LA COMPUTABILIDAD. See also the manuscript [146].

148. H.Hermes. Einführung in die mathematische Logik - Klassische Prädikatenlogik.
Teubner Verlag, 1963. Second extended edition 1969, english translation Intro-
duction to Mathematical Logic 1973.

149. H.Hermes. Eine Termlogik mit Auswahloperator. Springer-Verlag Berlin, 1965.
Vol.6 of Lecture Notes in Mathematics. English translation Term Logic with
Choice Operator in 1970.

150. H.Hermes. In memoriam WILHELM ACKERMANN 1896-1962. Notre Dame
Journal of Formal Logic, VIII:1–8, 1967.

151. H.Hermes. Entscheidungsprobleme und Dominospiele. In K. Jakobs, editor, Se-
lecta Mathematica II, pages 114–140. Springer, 1970.

152. H.Hermes. A simplified proof for the unsolvability of the decision problem in
the case ∀∃∀. In R. Gandy and C. Yates, editors, Selecta Mathematica II, pages
307–310, Amsterdam, 1971. North-Holland.

54

https://doi.org/10.3929/ethz-a-010001419
https://doi.org/10.3929/ethz-a-010001419

153. H.Hermes. Logistik in Münster um die Mitte der Dreissiger Jahre. In H.Dollinger,
editor, Logik und Grundlagenforschung. Festkolloquium zum 100. Geburtstag von
HEINRICH SCHOLZ, volume 8 (Neue Folge), pages 41–52. Schriftenreihe der
Westfälischen Wilhelms-Universität Münster, 1986.

154. H.Hermes and D.Rödding. A method for producing reduction types in the re-
stricted lower predicate calculus. In Formal Systems and Recursive Functions,
pages 42–47, Oxford, 1965.

155. H.Hermes and H.Scholz. Mathematische Logik. In Enzyklopädie der math. Wis-
senschaften Vol. I, 1.1, page 82, Leipzig, 1952. Teubner.

156. H.Hermes, F. Kambartel, and F. Kaulbach, editors. Gottlob Frege. Nachgelassene
Schriften. Felix Meiner Verlag Hamburg, 1969.

157. H.Lewis. Complexity results for classes of quantificational formulas. Journal of
Computer and System Sciences, 21:317–353, 1980.

158. H.Müller. Klassifizierungen der primitiv-rekursiven Funktionen. PhD thesis,
Inst.math.Logik und Grundlagenforschung, Universität Münster, 1974.

159. H.Scholz. Ein ungelöstes Problem in der symbolischen Logik. Journal of Symbolic
Logic, 17:160, 1952.

160. H.Scholz and G.Hasenjaeger. Grundzüge der Mathematischen Logik. Springer
Verlag, 1961.

161. H.Schwichtenberg. Eine Klassifikation der mehrfach-rekursiven Funktionen. PhD
thesis, Inst.math.Logik und Grundlagenforschung, Universität Münster, 1968.

162. H.Schwichtenberg. Rekursionszahlen und die Grzegorczyk-Hierarchie. Archive f.
math. Logik u. Grundlagenforschung, 12:85–97, 1969.

163. H.Schwichtenberg. Eine Klassifikation der ε0-rekursiven Funktionen. Zeitschrift
f. math. Logik u. Grundlagen d. Math., 17:61–74, 1971.

164. H.Schwichtenberg and S.S.Wainer. Proofs and Computations. Cambridge Uni-
versity Press, 2011. ISBN: 9780521517690.

165. H.Wang. A variant of Turing’s theory of computing machines. J. ACM, 4:63–92,
1957.

166. I.Schwank. Präferenzgesteuerte αβγ-Automaten. PhD thesis, Universität Os-
nabrück, 1984.

167. J.-R.Abrial and U.Glässer. Rigorous Methods for Software Construction and
Analysis. 2006. https://www.dagstuhl.de/06191. See Proceedings [168].

168. J.-R.Abrial and U.Glässer, editors. Rigorous Methods for Software Construction
and Analysis. Essays Dedicated to Egon Börger on the Occasion of his 60th Birth-
day. Springer, 2009. Lecture Notes in Computer Science vol. 5115.

169. J.A.Makowsky. Some thoughts on computational models: from massive human
computing to Abstract State Machines. In Logic, Computation and Rigorous
Methods. Essays Dedicated to Egon Börger on the Occasion of His 75th Birthday,
Springer Lecture Notes in Computer Science vol.12750, pages 173–186, 2021.

170. J.Bartnick. Eine algebraisch-kombinatorische Darstellung der Prädikatenlogik.
PhD thesis, Institut für math. Logik und Grundlagenforschung, Universitä
Münster, 1971. The scientific advisor of this dissertation has been D.Rödding,
but the thesis is not listed in the Mathematics Genealogy Project [221].

171. J.Bennett. On spectra. PhD thesis, Princeton University, 1962.
172. J.Büchi. Turing machines and the Entscheidungsproblem. Mathematische An-

nalen, 148:201–213, 1962.
173. J.Derrick, J.Fitzgerald, S.Gnesi, S.Khurshid, M.Leuschel, S.Reeves, and

E.Riccobene, editors. Abstract State Machines, Alloy, B, VDM, and Z - Third
International Conference ABZ 2012, volume 7316 of Lecture Notes in Computer
Science, Pisa (Italy), 2012. Springer.

55

https://www.dagstuhl.de/06191

174. J.Elstrodt and N. Schmitz. Geschichte der Mathematik an der Universität
Münster. Teil II:1945–1969, Kap.7: Ehemalige Professoren 1945 - 1969. http:

//www.math.uni-muenster.de/historie/. Consulted July 11, 2021.
175. R. Jensen. Ein neuer Beweis für die Entscheidbarkeit des einstelligen

Prädikatenkalküls mit Identität. Archiv math. Logik u. Grundlagenforschung,
7:128–138, 1962.

176. J.Genenz. Reduktionstheorie des Entscheidungsproblems im Prädikatenkalkül
der ersten Stufe nach der Methode von Kahr-Moore-Wang, 1965. Diplomarbeit,
Universität Münster.

177. J.Genenz. Untersuchungen zum Entscheidungsproblem im Prädikatenkalkül der
ersten Stufe. PhD thesis, Inst.math.Logik und Grundlagenforschung, Universität
Münster, 1965.

178. J.Müller. Die mathematische Behandlung von Präferenz und Tausch unter Zu-
grundelegung des Automatenbegriffs. PhD thesis, Inst.math.Logik und Grundla-
genforschung, Universität Münster, 1982. The scientific advisor of this dissertation
has been D.Rödding, but the thesis is not listed in the Mathematics Genealogy
Project [221].

179. J. Jones and Yu.V.Matijasevich. Register machine proof of the theorem on expo-
nential diophantine representation of enumerable sets. Journal of Symbolic Logic,
49:818–829, 1984.

180. N. Jones and A. Selman. Turing machines and the spectra of first-order formulas.
Journal of Symbolic Logic, 39:139–150, 1974.

181. J.Suranyi. Reduktionstheorie des Entscheidungsproblems im Prädikatenkalkül der
ersten Stufe. Verlag der Ungarischen Akademie der Wissenschaften (Budapest),
1959.

182. K.-D.Schewe and F.Ferrarotti. Behavioural theory of reflective algorithms I: Re-
flective sequential algorithms. arXiv:2001.01873. submitted 2020.

183. K.-P.Kniza. Automaten und rekursive Funktionale endlichen Typs. PhD thesis,
Inst.math.Logik und Grundlagenforschung, Universität Münster, 1980.

184. K.Erk and L.Priese. Theoretische Informatik. Eine umfassende Einführung.
Springer, 2000.

185. K.Heidler. Untersuchungen zur Reduktionstheorie des Entscheidungsproblems in
der Prädikaten- und Termlogik. PhD thesis, Universität Freiburg, 1973.

186. K.Heidler, H.Hermes, and K.Mahn. Rekursive Funktionen. Bibliographisches
Institut-Wissenschaftsverlag, Mannheim, Wien, Zürich, 1977.

187. H. Kleine Büning. Über Probleme bei homogener Parkettierung von Z Z durch
Mealy-Automaten bei normierter Verwendung. PhD thesis, Inst. für math. Logik
und Grundlagenforschung, Universität Münster, 1977.

188. H. Kleine Büning. Some undecidable theories with monadic predicates and with-
out equality. Archiv math. Logik u. Grundlagenforschung, 21:137–148, 1981.

189. H. Kleine Büning. Complexity of LOOP-problems in normed networks. In Logic
and Machines: Decision Problems and Complexity, Springer LNCS 171, pages
254–269, 1984.

190. H. Kleine Büning and T. Lettmann. Classes of first order formulas under various
satisfiability definitions. In 8th International Conference on Automated Deduction
(CADE 1986), Springer LNCS 230, pages 553–563, 1968.

191. H. Kleine Büning and T. Lettmann. Aussagenlogik: Deduktion und Algorithmen.
Teubner, 1994.

192. H. Kleine Büning and L.Priese. Universal asynchronous iterative arrays of Mealy
automata. Acta Informatica, 13, 1980.

56

 http://www.math.uni-muenster.de/historie/
 http://www.math.uni-muenster.de/historie/

193. H. Kleine Büning and Th.Ottmann. Kleine universelle mehrdimensionale Turing-
maschinen. J. Inf. Process. Cybern., 13:179–201, 1977.

194. K.Rödding. Zur Klasseneinteilung der rekursiven Funktionen nach Kleene. PhD
thesis, Inst. math. Logik und Grundlagenforschung, Universität Münster, 1967.

195. K.Schröter. Ein allgemeiner Kalkülbegriff. PhD thesis, Universität Münster, 1941.
196. K.Schröter. Axiomatisierung der Fregeschen Aussagenkalküle. PhD thesis, Uni-

versität Münster, 1943. Habilitationsschrift.
197. L.Blum, M.Shub, and S.Smale. On a theory of computation and complexity over

the real numbers. Bulletin American Math.Society, 21:1–46, 1989.
198. H. Lewis. Unsolvable Classes of Quantificational Formulas. Addison-Wesley, 1979.
199. L.Priese. Über einfache unentscheidbare Probleme: Computational- und construc-

tional universelle asynchrone cellulare Räume. PhD thesis, Inst. math. Logik und
Grundlagenforschung, Universität Münster, 1974. The scientific advisor of this
dissertation has been D.Rödding, but the thesis is not listed in the Mathematics
Genealogy Project [221].

200. L.Priese. On the minimal complexity of component-machines for self-correcting
networks. Journal of Cybernetics, 5:97–118, 1975.

201. L.Priese. On a simple combinatorial structure sufficient for sublying non-trivial
self-reproduction. Journal of Cybernetics, 6:101–137, 1976.

202. L.Priese. On stable organization of normed networks. In Proceedings of the third
European meeting on cybernetics and systems research, pages 381–394, 1976.

203. L.Priese. Reversible Automaten und einfache universelle 2-dimensionale Thue-
systeme. Zeitschr.f.math.Logik und Grundlagen der Math., 22:353–384, 1976.

204. L.Priese. Normed networks: Their mathematical theory and applicability. In
Applied General Systems Research, NATO Conference Series vol.5, pages 381–
394, 1978.

205. L.Priese. Towards a precise characterization of the complexity of universal and
nonuniversal Turing machines. SIAM J. Computing, 8:508–523, 1979.

206. L.Priese. Modular implementation of concurrency. International Journal of The-
oretical Physics, 21:993–1005, 1982.

207. L.Priese. On the concept of simulation in asynchronous, concurrent systems.
Progress in Cybernetics and Systems Research, II, 1982. Proceedings of European
Meeting on Cybernetics and Systems Research (Linz 1978).

208. L.Priese. Automata and concurrency. Theor. Comp. Sci., 25:221–265, 1983.
209. L.Priese and D.Rödding. A combinatorial approach to self-correction.

J.Cybernetics, 4:7–24, 1974.
210. M.Butler, A.Raschke, T.S.Hoang, and K.Reichel, editors. Abstract State Ma-

chines, Alloy, B, TLA, VDM, and Z, volume 10817 of Lecture Notes in Computer
Science. Springer, Southampton (UK), 2018. 6th International Conference ABZ
2018.

211. M.Davis. Computability and Unsolvability. New York, 1958.
212. M.Davis, R.Sigal, and E.Weyuker. Computability, Complexity, and Lan-

guages: Fundamentals of Theoretical Computer Science (2nd ed.). Elsevier Sci-
ence and Technology, San Francisco (US), 1994. ISBN10 0122063821,ISBN13
9780122063824.

213. M.Deutsch. Normalformen aufzählbarer Prädikate. PhD thesis, Inst.math.Logik
und Grundlagenforschung, Universität Münster, 1968.

214. M.Frappier, U.Glässer, S.Khurshid, R.Laleau, and S.Reeves, editors. Abstract
State Machines, Alloy, B, and Z - Second International Conference ABZ 2010,
volume 5977 of Lecture Notes in Computer Science, Orford,QC (Canada), 2010.
Springer.

57

215. M. Minsky. Recursive unsolvability of Post’s problem of ‘tag’ and other topics in
the theory of Turing machines. Annals of Mathematics, 74:437–455, 1961.

216. M.Mölle and I.Schwank. Dimensional complexity and power spectral measures of
the eeg during functional versus predicative problem solving. Brain and Cognition,
44:547 –563, 2000.

217. E. Moore. A simplified universal Turing machine. ACM National Meeting
(Toronto), pages 50–54, 1952. http://doi.acm.org/10.1145/800259.808993.

218. T. Neary, D. Woods, N.Murphy, and R.Glaschick. Wangs B machines are effi-
ciently universal, as is Hasenjaegers small universal electromechanical toy. J.of
Complexity, 30:634–646, 2014. https://doi.org/10.1016/j.jco.2014.02.003,
ISSN 0885-064X.

219. N.Immerman. Descriptive and computational complexity. In J. Hartmanis, editor,
Computational Complexity Theory, pages 75–91. American Math.Society, 1989.

220. NN. Heinrich Scholz. Biography. https://mathshistory.st-andrews.ac.uk/

Biographies/Scholz/. Published at School of Mathematics and Statistics, Uni-
versity of St Andrews, Scotland.

221. NN. Mathematics Genealogy Project. https://genealogy.math.ndsu.nodak.

edu/. Consulted July 14, 2021.
222. B. Pehrson and I. Simon, editors. Technology and Foundations. Information Pro-

cessing’94, volume I, Track 4, Stream C: Evolving Algebras, Hamburg (Germany),
1994. Elsevier. Contains Proceedings of First ASM Workshop.

223. P.Koerber. Untersuchung an sequentiellen, durch normierte Konstruktionen
gewonnenen Netzwerken endlicher Automaten. PhD thesis, Inst.math.Logik und
Grundlagenforschung, Universität Münster, 1976.

224. P.Koerber and Th.Ottmann. Simulation endlicher Automaten durch Ketten aus
einfachen Bausteinen. EIK, 10:133–148, 1974.

225. A. Raschke and D. Méry, editors. Rigorous State-Based Methods, volume 12709
of Lecture Notes in Computer Science, Ulm (Germany), 2021. Springer. 8th In-
ternational Conference ABZ 2021.

226. A. Raschke, D. Méry, and F. Houdek, editors. Rigorous State-Based Methods, vol-
ume 1271 of Lecture Notes in Computer Science, Ulm (Germany), 2020. Springer.
7th International Conference ABZ 2020.

227. R.Fagin. Contributions to the model theory of finite structures. PhD thesis,
University of California, Berkeley, 1973.

228. R.Fagin. Generalized first-order spectra and polynomial-time recognizable sets.
In R.Karp, editor, Complexity of Computation, pages 43–73. SIAM-AMS Pro-
ceedings vol.7, 1974.

229. R.Moreno-Diaz and A.Quesada-Arencibia, editors. Formal Methods and Tools for
Computer Science. Eurocast 2001, Las Palmas (Spain), 2001. IUCTC Universida
de Las Palmas de Gran Canaria. Contains Extended Abstracts of 8th ASM
Workshop. For selected full workshop papers see [45].

230. D. Rödding. Über die Eliminierbarkeit von Definitionsschemata in der Theorie
der rekursiven Funktionen. Zeitschr. Math. Logik Grundlagen der Mathematik,
10:315–330, 1964.

231. D. Rödding. Einige äquivalente Präzisierungen des intuitiven Berechenbarbeits-
begriffs. Math. Unterricht, 11:21–38, 1965.

232. D. Rödding. Über Darstellungen der elementaren Funktionen II. Arch. Math.
Logik Grundlagenforsch., 9:36–48, 1966.

233. D. Rödding. Primitiv-rekursive Funktionen über einem Bereich endlicher Mengen.
Arch. Math. Logik Grundlagenforsch., 10:13–29, 1967.

58

http://doi.acm.org/10.1145/800259.808993
https://doi.org/10.1016/j.jco.2014.02.003
 https://mathshistory.st-andrews.ac.uk/Biographies/Scholz/
 https://mathshistory.st-andrews.ac.uk/Biographies/Scholz/
 https://genealogy.math.ndsu.nodak.edu/
 https://genealogy.math.ndsu.nodak.edu/

234. D. Rödding. Registermaschinen. Math.Unterricht, 18:32–41, 1972.
235. D. Rödding. Modular decomposition of automata. In M.Karpinski, editor, Proc.

FCT-1983 Conference, Lecture Notes in Computer Science vol.158, pages 394–
412. Springer, 1983.

236. D. Rödding. Some logical problems connected with a modular decomposition
theory of automata. In M. Richter, E. Börger, W. Oberschelp, B. Schinzel, and
W. Thomas, editors, Computation and proof theory, Lecture Notes in Mathemat-
ics vol.1104, pages 365–388. Springer, 1984.

237. D. Rödding and E. Börger. The undecidability of ∀∃∀(0, 4) – formulae with binary
disjunctions. Journal of Symbolic Logic, 39:412–413, 1974.

238. D. Rödding and H.Schwichtenberg. Bemerkungen zum Spektralproblem. Zeitschr.
f. math. Logik u. Grundlagen d. Math., 18:1–12, 1972.

239. D. Rödding and W. Rödding. Networks of finite automata. In Proceedings of the
third European meeting on cybernetics and systems research, Progress in Cyber-
netics and Systems Research 1979. Hemisphere, Washington D.C., 1976.

240. W. Rödding. Netzwerke abstrakter Automaten als Modelle wirtschaftlicher und
sozialer Systeme. Schriftenreihe der Österreichischen Studiengesellschaft für Ky-
bernetik, 1975.

241. W. Rödding and H.Nachtkamp. On the aggregation of preferences to form a
preference of a system. Naval Research Logistic Quarterly, 1978.

242. R.Vobl. Komplexitätsuntersuchungen an Basisdarstellungen endlicher Auto-
maten. Diplomarbeit am Inst. für math. Logik und Grundlagenforschung in
Münster, 1980.

243. R.W.Ritchie. Classes of predicatably computable functions. Transactions Amer-
ican Math.Society, 106:139–173, 1963.

244. K.-D. Schewe. Computation on structures: Behavioural theory, logic, complexity.
In A.Raschke, E. Riccobene, and K.-D. Schewe, editors, Logic, Computation and
Rigorous Methods. Essays Dedicated to Egon Börger on the Occasion of His 75th
Birthday, volume 1275 of Lecture Notes in Computer Science, pages 266–282.
Springer, 2021.

245. I. Schwank. Cognitive structures of algorithmic thinking. In Proceedings of
the 10th International Conference for the Psychology of Mathematics Education,
pages 404 – 409, 1986.

246. I. Schwank. αβγ-automata realizing preferences. In E.Börger, editor, Computa-
tion Theory and Logic, volume 270 of LNCS, pages 320–333. Springer, 1987.

247. I. Schwank. Maschinenintelligenz: ein Ergebnis der Mathematisierung von
Vorgängen Zur Idee und Geschichte der Dynamischen Labyrinthe. In
C. Kaune, I. Schwank, and J. Sjuts, editors, Mathematikdidaktik im Wis-
senschaftsgefüge: Zum Verstehen und Unterrichten mathematischen Denkens,
pages 30–72. Forschungsinstitut für Mathematikdidaktik in Osnabrück, 2005.

248. S.C.Kleene. General recursive functions of natural numbers. Math.Ann., 112:727–
742, 1936.

249. S.C.Kleene. Introduction to Metamathematics. North-Holland, 1952.
250. S.Cook. The complexity of theorem-proving procedures. In Proc. 3rd Annual

ACM Symposium on Theory of Computing, pages 151–158, 1971.
251. J. Shepherdson and H. Sturgis. Computability of recursive functions. J. ACM,

10:217–255, 1963.
252. S.Stein and A.Wegener. Bericht über die Dienstreise nach Münster/W zur Durch-

suchung des Korrespondenz-Nachlasses von Prof. Scholz. HNF - Heinz Nixdorf
MuseumsForum, 2011.

59

253. R. F. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine:
Definition, Verification, Validation. Springer-Verlag, 2001.

254. Th.Ottmann. Einfache universelle mehrdimensionale Turingmaschinen. Habilita-
tionsschrift (Universität Karlsruhe).

255. Th.Ottmann. Eine Theorie sequentieller Netzwerke. PhD thesis, Inst.math.Logik
und Grundlagenforschung, Universität Münster, 1971.

256. Th.Ottmann. über Möglichkeiten zur Simulation endlicher Automaten durch eine
Art sequentieller Netzwerke aus einfachen Bausteinen. Zeitschrift f.math.Logik
und Grundlagen der Mathematik, 19:223–238, 1973.

257. Th.Ottmann. Arithmetische Prädikate über einem Bereich endlicher Automaten.
Archiv f.math.Logik, 16, 1974.

258. Th.Ottmann. Eine universelle Turingmaschine mit zweidimensionalem Band.
Elektronische Informationsverarbeitung und Kybernetik, 11:27–38, 1975.

259. Th.Ottmann. Eine einfache universelle Menge endlicher Automaten. Zeitschrift
f.math.Logik und Grundlagen der Mathematik, 24, 1978.

260. B. Trakhtenbrot. The impossibility of an algorithm for the decision problem for
finite models. Dokl. Akad. Nauk SSSR, 70:596–572, 1950. English translation in:
AMS Transl. Ser. 2, vol.23 (1963), p.1-6.

261. U.Glässer and P.Schmitt, editors. Fifth International Workshop on Abstract State
Machines, Magdeburg (Germany), 1998. Otto-von-Guericke-Universität. Con-
tains Proceedings of Fifth International ASM Workshop at Informatik’98.

262. U.Rohde. Computer für Anfänger.Teil 1. mc, 5:40–45, 1983.
263. B. van der Waerden. Denken ohne Sprache. In G.Révész, editor, Thinking and

Speaking, pages 165–174. North-Holland, 1954.
264. W.Heinermann. Untersuchungen über die Rekursionszahlen rekursiver Funktio-

nen. PhD thesis, Institut für math. Logik und Grundlagenforschung, Universität
Münster, 1961.

265. C.-P. Wirth. A most interesting draft for Hilbert and Bernays Grundlagen der
Mathematik that never found its way into any publication, and 2 cv of Gisbert
Hasenjaeger. SEKI Working-Paper SWP201701 https://arxiv.org/pdf/1803.

01386.pdf, 2017.
266. W.Oberschelp. Hans Hermes 12.2.1912 bis 10.11.2003. Jahresbericht der

Deutschen Mathematiker-Vereinigung, 109:99–109, 2007.
267. D. Woods and T. Neary. The complexity of small universal Turing machines: A

survey. Theoretical Computer Science, 410:443–450, 2009.
268. W.Rödding. Geschichte des Turingraums. Personal Communication to Egon

Börger (November 8, 2021) and Letter of 27.4.2012 to Norbert Ryska from the
Heinz Nixdorf MuseumsForum in Paderborn (Germany). Unpublished.

269. W.Schwabhäuser. Entscheidbarkeit und Vollständigkeit der elementaren hyper-
bolischen Geometrie. PhD thesis, Humboldt-Universität Berlin, 1960.

270. W.Schwabhäuser, W.Szmielew, and A.Tarski. Metamathematische Methoden in
der Geometrie. Springer Verlag, 1983.

271. W.Zimmermann and B.Thalheim, editors. Abstract State Machines 2004. Ad-
vances in Theory and Practice, volume 3052 of LNCS. Springer, 2004. Contains
Proceedings of 11th ASM Workshop (Lutherstadt Wittenberg).

272. Y.Ait-Ameur and K.-D.Schewe, editors. Abstract State Machines, Alloy, B, TLA,
VDM, and Z - 4th International Conference ABZ 2014, volume 8477 of Lecture
Notes in Computer Science, Toulouse (France), 2014. Springer.

273. Y.Gurevich, P.W.Kutter, M.Odersky, and L.Thiele, editors. Abstract State Ma-
chines. Theory and Applications, volume 1912 of LNCS, Monte Verità (Switzer-
land), 2000. Springer. Proceedings of 7th International ASM Workshop.

60

https://arxiv.org/pdf/1803.01386.pdf
https://arxiv.org/pdf/1803.01386.pdf

274. K. Zuse. Ansätze einer Theorie des allgemeinen Rechnens unter besonderer
Berücksichtigung des Aussagenkalküls und dessen Anwendung auf Relaisschaltun-
gen. https://digital.deutsches-museum.de/item/NL-207-0281/. Proposal for
a doctoral dissertation submitted to H.Scholz. Unpublished.

275. K. Zuse. Mathematische Logik und Informatik. In Proc. GI-5.Jahrestagung,
volume 34 of Springer Lecture Notes in Computer Science, pages 57–70, 1975.

Appeared in Newsletter of the Formal Aspects of Computing Science
ISSN 0950-1231, published by British Computer Society-FACS Specialist Group.
volume 2022, number 1 (2022), pages 69-129.

61

https://digital.deutsches-museum.de/item/NL-207-0281/

