
Egon Börger (Pisa)

Closing the Gap

between Business Process Models and their Implementation

Towards Certified BPMs

Joint work with Albert Fleischmann (Metasonic)

boerger@di.unipi.it
Università di Pisa, Dipartimento di Informatica, Italy

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 1



The problem

Frequently experienced mismatch between

users’ understanding of a Business Process (BP)

behavior of machines which execute the BP

It is not avoided by BPMs designed with standardized notations

e.g. OMG BPMN 2.0 and ‘standard’ compilation to OASIS BPEL

– due to insufficient precision, lack of completeness, conceptual
mismatch, etc. (see critical evaluation in J.SSM Sept. 2011)

This is an instance of a well-known general problem to bridge the gap
between the two ends of system development:

human understanding and formulation of real-world problems

deployment of their solutions by code-executing machines on changing
platforms

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 2



The gap: how to match requirements and code?

Requirement documents are descriptions of real-world problems and
activities, typically written by domain experts for system design
experts (usually not knowledgeable in the application domain),
formulated in natural language, interspersed with diagrams, tables,
formulae, etc. Frequently such descriptions suffer from lack of
precision, ambiguity, incompleteness, inconsistency.

Compilable programs are software representations of computer-based
systems, written for mechanical elaboration by machines (symbol
manipulation) and therefore coming with every needed implementation
detail (technical precision, completeness, consistency).

How can (informal) requirements and (formal) code, the latter written
to satisfy the former, be linked in a way to certifiably guarantee that
the code does what the requirements describe and not something else?

How can the link between requirements and code be reliably preserved
during maintenance (requirements change)?

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 3



What is needed to ‘bridge the gap’

a precise general language with a validation framework

– practicing domain experts & system designers can use in daily work

to formulate, justify and document prior to coding
accurate models of real-world problems
(ground model problem)

a rigorous general design and verification method

– practicing software system managers and programmers can
incorporate into their development environment

• including system maintenance (‘design for change’)

to successively detail (stepwise implement) in a controllably correct
manner model abstractions down to executable code
(verifiable-implementation problem)

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 4



What are ground models?

Accurate blueprints of the to-be-implemented piece of real world
—called ‘golden models’ in the semiconductor industry—which

define ‘the conceptual construct/the essence’ of the software system
(Brooks) prior to coding, abstractly and rigorously

– at an application-problem-determined level of detailing (minimality)

– formulated in application domain terms (precision, informal accuracy)

– authoritatively for the further development activities: design
contract/process/evaluation and maintenance (completeness)

ground the design in reality by justifying the definition as

– correct: model elements reliably convey original intentions

– complete: every semantically relevant feature is present (env,arch,
domain knowledge), no gap in understanding of ‘what to build’

– consistent: conflicting objectives in requirements resolved

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 5



Ground model justification must solve three problems

Communication (language) problem: mediate between

– sw designers, domain experts and customers for common
understanding prior to coding of ‘precisely what to build’

– problem domain and world of models, requiring

• capability to calibrate degree of model precision to the problem

• general data and operation framework and general interface
concept (to represent system environments)

Verification method problem: no infinite regress

– no math. transition from informal to precise descriptions, BUT

– inspection can provide evidence of direct correspondence bw ground
model and reality the model has to capture (completeness,
correctness, empirical interpretation of extra-logical terms)

– domain-specific reasoning can check consistency issues

Validation problem: need for repeatable experiments to validate
(falsify) model behaviour (runtime verification and analysis, testing)

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 6



Appropriateness of ASMs for building ground models

flexible expressability of states and state evolution which

– is arguably most general (ASM Thesis)

– uses basic language elements, in particular rules of form

if Condition then Action

•Action assigns vals (of whatever type) to parameterized mem locs

locName(exp1, . . . , expn) := exp

•Condition is any state expression

with generally understood intuitive but mathematically precise
behavioral semantics

executability of such rules (conceptually and tool supported) permits
experimental validation (simulation, testing, model checking)

mathematical definition of semantics yields verifiability of properties by
proofs (proof sketch, mathematical or machine checked proof)

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 7



Examples of ASMs serving as ground models

variety of ASM ground models for industrial standards and systems in
railway control, telecommunication, programming languages, protocols,
business systems, etc. (see AsmBook)

ground model ASM for Metasonic’s Subject-Oriented Business Process
Modeling (S-BPM) tool

– correctly interpretes the BPMs designed by users

– mediates bw users’s application-domain-centric view and
implementers’s code view

• of BP defined by the model (using the graphical editor) and
executed by the code running machine

in fact used inhouse for maintenance purposes

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 8



Consequence: one can tailor ASMs specifically for BPM

We define an appropriate class of ASMs based upon which the BP expert
can express a BP design using directly BP-knowledge-based (graphically
represented) terms/notations which are supported in two directions by:

underlying ASM constructs expressing their intuitive understanding

– correctly: for the BP expert, controllably by inspection and validation

– precisely: for the sw expert as spec of the implementation

an implementation of the ASM models

– the correctness of which is (in principle) provable, given the
mathematical character of ASM models and their behavior preserving
ASM refinements to executable code (see below)

Consequence: the mathematically precise ASM definition of the
behavioral semantics of the graphical notations

can be hidden without loss of reliability to the BP developer who works
with the underlying intuitive understanding of the graphical constructs

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 9



Hierarchical BP view in S-BPM

Three stepwise refinable levels of detail reflect the structure of:

communication links through which subjects (read: behavior-executing
agents) interact with each other by exchanging messages,

behavior of single subjects, i.e. the sequence of individual internal
function or communication actions performed by a single subject,

data, i.e. information about business objects the subjects manipulate
locally (by internal functions) or transmit (via message exchange).

NB. Granularity of S-BPMs depends on decision about which subjects
explicitly appear as actors of the to-be-defined BP

reflecting particular business needs of a process

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 10



Subject interaction diagrams

Directed graph defining communication structure (signature):

nodes represent (read: are labeled by) subjects

directed arcs represent type of messages subjects send resp. receive

SIDs hide internal actions the subjects can perform and msg content

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 11



Subject Behavior Diagram (SBD)

ASMs with FSM control structure displayed by traditional flowchart of:

nodes representing

– internal function (Perform(A)) control states

– send control states

– receive control states

arcs representing ExitCond itioned control state transitions

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 12



S-BPM interpreter ASM BehaviorBP for a BP

ASM Behavior(subj , node) describes what a subj ect does at node

sequential ASM Behaviorsubj (D)—set of Behavior(subj , node)
for all nodes of D—describes what a subj ect does when stepping
through the SBD from initial to end state

concurrent ASM BehaviorBP—set of Behaviorsubj (D) for all
relevant subj ects and D—describes the behavior of the entire BP

Intuitive understanding of Behavior(subj , node) is accurate relative
to understanding of what it means to Start and to Perform the
associated service until it is Completed—three notions which are
defined:

for internal actions by domain-specific meaning known to BP expert

for communication actions by specific ASM refinements below for:

– Sending (synchronous or asynchronous)

– Receiving (synchronous or asynchronous)

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 13



Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 14



Structure of Sending: three-step-refinement definition

single send action, i.e. sending one message

multiple send action by which a given multitude of messages can be
sent as a bundle

alternative send action allowing to repeatedly select among a set of
alternatives

NB. Conservative (purely incremental) ASM refinement strongly
supports modular design and verification techniques.

S-BPM communication via inputPool(subject) where sender may
deliver msgs and from where receiver may be ready to receive (read:
locally store) them

configurable when input pool is accessible or blocked (for a message of
a specific type and/or from a specific sender)

– to uniformly handle synchronous/asynchronous communication

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 15



The SingleSend machine

PrepareMsg: abstract interface to data handling (message content)

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 16



The component TryToSend

inputPool, if accessible, possibly blocked for async PassMsg

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 17



The component TryToReceive

NB. inputPool configurable to asynchronously/synchronously receive
msgToBeHandled of expected kind from expected sender

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 18



Refinement of SingleSend to MultiSend

PrepareMsg prepares a set MsgToBeHandled of mult many msgs

choose msgToBeHandled which is passed to SingleSend

TerminateSend extended to CheckMultiRound completion

extension is modular

refinement is conservative (purely incremental): ‘same’ behavior as
SingleSend for singleton sets MsgToBeHandled (where mult = 1)

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 19



MultiSend refinement to AlternativeSend TryAlt(Send)

one by one each alternative MsgToBeHandled is selected to be
handled by MultiSend

refinement is conservative: same behavior as MultiSend for
singleton sets of alternatives

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 20



Send component Performsubj (Send)

one non-interruptable TryAlt(Send) round trying all alternatives

then further time/user interruptable TryAlt(Send) rounds

Same diagram for Receive with TryAlt(Receive), MultiReceive:
reusable component-based ASM design

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 21



Conclusion

Close correspondence bw intuitive intended meaning of graphical
notations and accurate ASM definitions can be extended to additional
(definable) S-BPM concepts like

alternative action control states allowing interleaving

design-for-change schemes to extend SBD by new/exception behavior
(model-based mastering of on-the-fly adaptation of running systems)

BPM-ASMs, tailored to model basic concepts of S-BPM (and its tool
suite) can serve as ground model descriptions to mediate bw domain
expert and sw system designer views of BPs:

possible because ASM language uses only (semantically well defined)
fundamental description as well as reasoning scheme of both natural
and scientific languages:

if Condition then Statement

where Condition (event/property) triggers to-be-performed action
resp. implies to-be-proved logical expression described by Statement .

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 22



A BP certification procedure

build correct models for meaning of (graphical) BP notations

– define meaning in precise application domain terms

– define BPM-ASM ground models (end-user-oriented
domain-knowledge-expressing interfaces) for the meaning

– validate ground models to ‘correctly’ represent intended meaning

provide guaranteed correct BP ground model

– design BP using above defined (graphical) notations

– inspect/validate BP design to correctly reflect intentions

provide guaranteed correct ground model implementation

– use resulting ground model BPM-ASM of a graphical BP design as
precise and complete spec for sw implementation of the BP

– verify the coding to be correct

Result: implementation is guaranteed (and can be certified) to correctly
reflect the meaning the BP expert intended by high-level BPM.

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 23



Degrees of certificate quality

Quality (degree of reliability) of a correctness certificate for a BP is
proportional to the quality of:

the ground model validation, e.g. by model inspection, model checking,
model-based testing

verification of the stepwise refinements used to develop/generate code
for an executable version of the BP spec, e.g. by

– compiling ground model BPM-ASM using a verified compiler

– providing proof sketches or standard mathematical or machine
supported (interactive or fully automated) proofs of (some critical or
all) code generating refinement steps

S-BPM approach to BP development offers all the ingredients which
allow one to produce certifiably correct industrial BPs

NB. This is a BP-specific version of Hoare’s ‘verified software grand
challenge’.

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 24



References

A. Fleischmann, W. Schmidt, C. Stary, S. Obermeier, E. Börger:
Subject-Oriented Business Process Management.

– Springer Open Access Book 2012.

E. Börger and R. Stärk: Abstract State Machines.
A Method for High-Level System Design and Analysis.

– Springer-Verlag 2003.

E.Börger: Approaches to modeling business processes: a critical analysis
of BPMN, workflow patterns and YAWL

J. Software and Systems Modeling, September 2011 (14 pages)
DOI 10.1007/s10270-011-0214-z

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 25


