Contribution to a Rigorous Analysis
of Web Application Frameworks

Egon Borger and Antonio Cisternino and Vincenzo Gervasi

Universita di Pisa, Dipartimento di Informatica, I-56125 Pisa, Italy
gervasi,cisterni,boerger@di.unipi.it

Abstract. We suggest an approach for accurate modeling and analysis
of web application frameworks.

1 Introduction

In software engineering the term ‘application’ traditionally refers to a specific
program or process users can invoke on a computer. The emergence of dis-
tributed systems and in particular of web applications has significantly changed
this meaning of the term. Here functionality is provided by a set of indipendent
cooperating modules with a distributed state, in web applications all offering a
unified interface to their user—to the point that the user may have no way to
distinguish whether a single application or a set of distributed web applications
is used. Also recent non-web systems, like mobile apps, follow the same paradigm
allowing the state of an application to be persistent and distributed, no longer
tied to the traditional notion of operating system process and memory.

There is still no precise general definition or model of what a web appli-
cation is. What is there is a variety of (often vague and partly incompatible)
standards, web service description languages at different levels of abstraction
(like BPEL, BPMN, workflow patterns, see [9] for a critical evaluation of the
latter two) and difficult to compare techniques, architectures and frameworks
offered for implementations of web applications, ranging from CGI (Common
Gateway Interface [23]) scripts to PHP (Personal Home Page) and ASP (Appli-
cation Server Page) applications and to frameworks such as ASP.NET [19] and
Java Server Faces (JSF [1]). All of them seem to share that a web application
consists of a dynamically changing network of systems that send and receive
through the HTTP protocol data to and from other components and provide
services of all kinds which are subject to continuous change (as services may
become temporarily or permanently unavailable), to dynamic interference with
other services (competing for resources, suffering from overload, etc.) and to all
sorts of failures and attacks.

The challenge we see is to discover and formulate the pattern underlying
such client-server architectures for (programming and executing concurrent dis-
tributed) web applications. We want to make their common structural aspects

explicit by defining precise high-level (read: code, platform and framework in-
dependent) models for the main components of current web application systems
such that the major currently existing implementations can be described as re-
finements of the abstract models. The goal of such a rational reconstruction is
to make a rigorous mathematical analysis of web applications possible, includ-
ing to precisely state and analyze the similarities and differences among existing
frameworks, e.g. the similarities between PHP and ASP and the differences be-
tween PHP/ASP and JSP/ASP.NET. This has three beneficial consequences:
a) it helps web application analysts to better understand different technologies
before integrating them to make them cooperate; b) it builds a foundation for
content-based certifiability of properties one would like to guarantee for web
applications; ¢) it supports teachers and book authors to provide an accurate
organic birds’ perspective of a significant area of current computer technology.
For the present state of the art, given the lack of rigorous abstract models of
(at least the core components of) web application frameworks, it is still a theo-
retical challenge to analyze, evaluate and classify web application systems along
the lines of fundamental behavioral model properties which can be accurately
stated and verified and be instantiated and checked for implementations.

The modeling concepts one needs to work on the challenge become clear if
we consider the above mentioned feature all web applications have in common,
namely to be an application whose interface is presented to the user via a web
browser, whose state is split between a client and a server and where the only
interaction between client and server is through the HT'TP protocol. This implies
that an attempt to abstractly model web application frameworks must define at
least the following two major client-server architecture components with their
subcomponents and the communication network supporting their interaction:

= the browser with all its subcomponents: launcher, netreader, (html, script,
image) parsers, script interpreter, renderer, etc.

» the server with its modules providing runtimes of various programming lan-
guages (e.g. PHP, Python [2], ASP, ASP.NET, JSF),

= the asynchronous network which supports the interaction (in particular the
communication) between the components.

This calls for a modeling framework with the following features:

= A notion of agents which execute each their (possibly dynamically changing)
program concurrently, possibly at different sites.

= A notion of abstract state covering design and analysis at different levels
of abstraction (to cope with heterogenecous data structures of the involved
components) and the distributed character of the state of a web application.

= A sufficiently general refinement method to controllably link (using valida-
tion and/or verification) the different levels of abstraction, specifically to
formulate different existing systems as instances of one general model.

m A flexible mechanism to express forms of non-determinism which can be
restricted by a variety of constraints, e.g. by different degrees of transmission

reliability ranging from completely unreliable (over the internet) to safe and
secure (like for components running on one isolated single machine).

n A flexible environment adaptation mechanism to uniformly describe web
application executions modulo their dependence on run-time contexts.

» A smooth support for traceable model change and refinement changes due to
changing requirements in the underlying (often de facto) standards.

1.1 Concrete Goals and Results So Far

As a first step towards the goal outlined above we started to model the client-
server architecture of a browser interacting with a web server. In [17] the trans-
port and stream levels of an abstract web browser model are defined. To this
we add here models for the main components of the context level layer (Sect. 2)
which together with the web server model defined in Sect. 3 allow one to de-
scribe one complete round of the Request-Reply pattern [18,8] that character-
izes browser /server interactions (see Fig. 1).! In Sect. 3.1 a high-level functional
Request-Reply web server view is defined which is then detailed (by refinement
steps) for the two main approaches to module execution:

» the CGl-approach where the server delegates the execution of an external
process to another agent (Sect. 3.3),
= the script-approach where the server itself executes script code (Sect. 3.4).

We explain how one can view existing implementations as instantiations of
these models.

We use the ASM (Abstract State Machines) method [12] as modeling frame-
work because it offers all the features listed above which are needed for our
endeavor? and because various ASM models in the literature contribute specifi-
cally to the work undertaken here. For example both the browser and the server
model use a third group of basic components, namely SCRIPTINTERPRETERS for
various Script languages, which can be specified by an ASM model adopting the
method used in [22] to define an interpreter for Java (and reused in [11,15,16]
to rigorously define the semantics of C# and the CLR). These models provide a
significant part of the infrastructure web applications typically use. For example
applets which run inside a browser, or the Tomcat application server [3], are
written in Java. Furthermore, the method developed for modeling Java/JVM
can be reused to define a model for the JavaScript interpreter (see [14] for some
details) corresponding to the ECMAScript standard ECMA-262 [4], a standard
that serves as glue to link various technologies together.

In Sect. 4 we list some verification goals we suggest to pursue on the basis of
(appropriately completed) precise abstract models of web application framework
components, i.e. to rigorously formulate and check (verify or falsify) properties
of interest for the models and/or their implementations.

! In the Request-Reply pattern of two-way conversations the requestor (one applica-
tion) sends a request to the provider (another application) and the provider returns
a reply to the requestor.

% See [10] for the recent definition of a simple flexible ambient ASM concept.

The models we define and their properties we discuss come without any
completeness claim and are intended to suggest an approach we consider to be
promising for future FM research in a core area of computer technology.

2 Modeling Browser Components

Our browser models focus on those parts of the browser behaviour that are most
relevant for the deployement and execution of web applications. The models are
developed at four layers. The main components of the transport layer (express-
ing the TCP/IP communication via HTTP) and the stream layer (describing
how information coming from the network is received and interpreted) are de-
fined in [17]. In this section we add models for characteristic components of the
context layer, which deals with the user interaction with the document repre-
sented by the Document Object Model (DOM). Without loss of generality we
omit in this paper the browser layer where the behaviour of a web browser seen
as an application of the host operating system is described. In practice, most
web applications are entirely contained in a single browsing context; in fact an
important issue in the development of web standards is how to ensure for secu-
rity reasons that multiple browsing contexts in the same browser are sufficiently
isolated from each other (a security property that we leave to future work).

2.1 Browsing Context

A browsing context is an environment in which documents are shown to the
user, and where interaction with the user occurs. In web browsers, browsing
contexts are usually associated with windows or tabs, but certain deprecated
HTML structures (namely, frames) also introduce separate browsing contexts.
In our model, a browsing context is characterized primarily by five elements:

= a document (i.e. a DOM as described in [17]), which is the currently active
document presented to the user;

m a session history, which is a navigable stack of documents the user has visited
in this browsing context;

= a window, which is a designated operating system-dependent area where the
Document is presented and where any user interaction takes place;

» a renderer, which is a component that produces a user-visible graphical ren-
dering of the current Document (Section 2.2);

= an event loop, which is a component that receives and processes in an ordered
way the various operating system-supplied events (such as user interaction
or timer expiration) that serve as local input to the browser (Section 2.3).

We keep the window abstract, as its behaviour can be conveniently hidden
by keeping the actual rendering abstract and by assuming that user interaction
with the window is handled by the operating system. Thus we deal with events
that have been already pre-processed by a window manager. We also omit the
rather straightforward modeling of the session history.

When STARTIing a newly created Browsing Context k, DOM (k) is initial-
ized by a pre-defined implementation-dependent initial document initialDOM;
it is usually referred to through the URL about:blank and may represent an
empty page or a “welcome page” of some sort. Two agents are equipped with
programs to execute the RENDERER and the EVENTLOOP for k.

STARTBC(k) =
let a =new Agent, b =new Agent in
program(a) := RENDERER (k)
program(b) := EVENTLOOP(k)
DOM (k) := initialDOM

The RENDERER and EVENTLOOP macros are specified below.

2.2 Renderer

The RENDERER produces the user interface of the current DOM in the (implicit)
given window. It is kept abstract by specifying only that it works when it is (a)
supposed to perform (at system dependent RenderingTime) and (b) allowed to
perform because no other agent has a lock on the DOM (e.g., while adding new
nodes to the DOM during the stream-level loading of an HTML page).

RENDERER(k) =
if renderingTime(k) and —locked(DOM (k)) then
GENERATEUI(DOM (k), k)

2.3 Event Loop

We assume that events are communicated by the host environment (i.e., the
specific operating system and Ul toolkit of the client machine where the browser
is executed) to the browser by means of an event queue. These Ul events are
merged and put in sequential order with other events that are generated in the
course of the computation, e.g. DOM manipulation events (fired whenever an
operation on the DOM, caused by user actions or by Javascript operations, leads
to the execution of a Javascript handler or similar processing) or History traversal
events (fired whenever a user operates on the Back and Forward buttons offered
by most browsers to navigate through the page stack).

Here we detail the basic mechanism used in (the simplest form of) web ap-
plications to prepare a Request to be sent to the server (with the understanding
that when a Response is received, it will replace the current page in the same
browsing context). HTML forms are used to collect related data items, usually
entered by the user, and to package them in a single Request. Figure 1 shows
when the macros defined below and in [17] are invoked; lifelines represent agents
executing a rule. Remember that ASM agents can change their program dynam-
ically (e.g., when RECEIVE becomes HTMLPROC) and that operations by an
agent in the same activation, albeit shown in sequence, happen in parallel.

1
I
I
1
|

new windo
CreateBC

1
! <<create>>
: <<create>> EventLoop N
sends request
new url from \;lser ; [@— Pageload
| l§— Transfer
>< l@— Send

l@— TCPSend X
==createsS P| Receive
|
receives and

parses HTTP
header

checks that we
had a "200 OK"
response

HTMLParser

Builds the DOM
tree

displays rlendered DOM

%

»
Torm submit kel

lag—0ne of MutateURL, SubmitBody etc.

l—) PagelLoad N
<__l Transfer sends request
[@— TCPSend

@— Send
receives and
parses HTTP

header

HTMLProc

| | checks that we
had a "200 OK"
response

HTMLParser

Builds the DOM
tree

X

D
|

1
1
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

displays rendered DOM

V*i Renderer |

Visual updates
happen as the
DOM is built

Fig.1. A diagram depicting the behaviour of our browser model for a user
who opens a new window in a browser, manually loads the first page of a web
application, interacts locally with a form, and then sends the data back to the
server, receiving a new or updated page in response.

An HTML form is introduced by a <FORM> element in the page. All the
input elements® that appear in the subtree of the DOM rooted at the <FORM>
are said to belong to that form. Among the various input elements, there is
normally a designated one (whose UI representation is often an appropriately
labeled button) tasked with the function of submitting a form. This involves
collecting all the data elements in the form, encoding them in an appropriate
format, and sending them to a destination server through various means. This
may include sending the data by email or initiating an FTP transfer, although
these possibilities are seldom, if ever, used in contemporary web applications.

It is also of interest to note that submission of a form may be initiated
from a script, by invoking the submit () method of the form object, and hence
happen indipendently from user behaviour. In the following, we will not concern
ourselves with the details of how a submit operation has been initiated, but only
with the emergence of the submit event in the event queue, whatever its origin.

We model the existence of a separate event queue for each browsing context,
which is processed by a dedicated agent created in the STARTBC macro above.
When an event is extracted from the event queue that indicates that the user has
provided a new URL to load (e.g., by typing it in a browser’s address bar, or by
selecting an entry from a bookmarks list, etc.), the browsing context is navigated
to the provided URL by starting an asynchronous transfer (in the normal case,
the HTTP Request will be sent to the host mentioned in the URL, and later
processing of the Response will replace the DOM displayed in the page).

When an event is extracted from the event queue that indicates a form sub-
mission, the form and related parameters are extracted from the event, appropri-
ate encoding of the data is performed based on the action and method attributes
as specified in the <FORM> node, and finally either the data is sent out (e.g., in the
case of amailto: action) or the browsing context is populated with the results
returned from a web server identified by the form’s action. In normal usage, that
will be the same web server hosting the web application that originally sent out
the page with the form, thus completing the loop between server and client and
realizing the well-known page-navigation paradigm of web applications®.

As for RENDERER, the event loop receives a parameter, k, which identifies
the particular instance. The macro PAGELOAD is defined below.

EveNTLOOP(k) =
if eventAvailable(eventQueue(k)) then
let ¢ = headFEvent(eventQueue(k)) in
dequeue e from eventQueue(k)
if isNewUrlFromUser(e) then
PAGELOAD(GET, url(e), (), k)
elseif isFormSubmit(e) then

3 These include elements such as <INPUT>, <SELECT>, <OPTION> etc.

4 Notice that we are not considering here AJAX applications, where a Request is sent
out directly from Javascript code, and the results are returned as raw data to the
same script, instead of being used to replace the contents of the page. The general
processing for this case is, however, similar to the one we describe here.

let f = formElement(e), data = encodeFormData(f),
a = action(f), m = method(f), u = resolveUrl(f, a) in
match (schema(u), m) :
case (http, GET) : MUTATEURL(u, data, k)
case (http,POST) : SUBMITBODY(u, data, k)
case (ftp, GET) : GETACTION(u, data, k)
case (ftp,POST) : GETACTION(u, data, k)
case (javascript, GET) : GETACTION(u, data, k)
case (javascript,POST) : GETACTION(u, data, k)
case (data, GET) : GETACTION(u, data, k)
case (data,P0OST) : POSTACTION(u, data, k)
case (mailto,GET) : MAILHEAD(a, data)
case (mailto,POST) : MAILBODY(a, data)
else
’ handle other events ‘

We do not further specify here the mail-related variants MAILHEAD and
MaiLBoDY (although it is interesting to remark that they do not need further
access to the browsing context, contrary to most other methods, since no re-
ply is expected from them — and thus their applicability in web applications is
close to nil). We also glide over the possibility of using a https schema, which
however implies the same processing as http, with the only additional step of
properly encrypting the communication. Given the purposes of this paper we
omit a definition of GETACTION and POSTACTION, since they involve URL
schemas (namely: ftp, javascript and data) that have not been addressed in
the transport layer model in [17]. Thus, below we only refine MUTATEURL and
SUBMITBODY together with PAGELOAD.

The macro MUTATEURL consists in synthesizing a new URL from the action
and the form data (which are encoded as query parameters in the URL) and in
causing the browsing context to navigate to the new URL:

MUTATEURL(u, data, k) =
let ' = u -7 data in PAGELOAD(GET, v, (), k)

The macro SUBMITBODY differs only in the way the data is encoded in the
request, namely not as part of the URL, as above, but as body of the request:

SuBMITBODY(u, data, k) = PAGELOAD(POST, u, data, k)

The macro PAGELOAD starts an asynchronous TRANSFER—which is defined
in [17]—and (re-)initializes the browsing context and the HT MLPROCessor; the
latter is also defined in [17] and will handle the Response:

PAGELOAD(m, u, data, k) =
TRANSFER(m, u, data, HTMLPROC, k)
htmlParserMode (k) := Parsing
let d =new Dom in

DOM (k) :=d
curNode (k) := root(d)

Notice that while for the sake of brevity we have modeled navigation to the
response provided by the server as a direct TRANSFER here, in reality it would
require a few additional steps, including: storing the previous document and as-
sociated data in the session history, releasing resources used in the original page
(e.g., freeing images or stopping plug-ins that were running), etc. While resource
management can be conveniently abstracted, handling of history navigation (i.e.,
the Back, Forward and Reload commands available in most browsers) is a crit-
ical component in proving robustness, safety and correctness properties of web
applications, and will be addressed in future work.

3 A High-Level WEBSERVER Model

We define here a companion model to the browser model: a high-level model
WEBSERVER (Sect. 3.1) with typical refinements for the underlying handler
modules, namely for file transfer (Sect. 3.2), CGI (Sect. 3.3) and scripting mod-
ules (Sect. 3.4).

To concentrate on the core issues we abstract in this section from the trans-
mission protocol phase during which the connection between client and server
is established and rely upon an abstract SEND mechanism; the missing elements
to incorporate this phase can be defined as shown in detail for the browser
component models in [17].

3.1 Functional Request-Reply Web Server View

In the high-level view the server appears as dispatcher which to handle a request
finds and triggers the code (a ‘module’) the execution of which will provide a
response to the request.® Thus a high-level web server model can be formulated
as an ASM WEBSERVER which in a reactive manner, upon any request in its
requestQueuve, will delegate to a new agent (read: a thread we call request han-
dler) to handle the EXECution of the request—if the request passes the Security
check and the requestedModule is Available in and can be loaded by the server.

We succinctly describe checking various kinds of Property (here access se-
curity, module availability and loadability) by functions (here checkSecurity,
findModule loadModule) whose values are

= either three-digit-values v in an interval [n00,n99], for some n € [0,9] as
defined for each Property of interest in [5, Sect.4.1] to indicate that the
Property holds or fails to hold (in the latter case of PropertyFailure(v) the
value v also indicates the reason for the failure), or

® The ASM model for the Virtual Provider (VP) defined in [7] has a similar structure:
it receives requests, forwards them to appropriate providers and collects the replies
from the providers to return them to the original requestor.

» some different value, like a found requested module, which implicitly also
indicates that the checked Property holds, e.g. that the requested module is
available or could be successfully loaded.

Since in case PropertyFailure(v) is true the function value v is assumed to
indicate the reason for the failure, the value appears in the failureReport the
WEBSERVER will SEND to the client. The function failureReport abstracts from
the details of formatting the response message out of the parameters.

The requestedModule depends on the server environment, the resourceName
that appears as part of the request and the header(request). For a loaded module
STARTHANDLER creates a new thread and puts it into its initial state from where
the thread will start its program, namely to EXECute the module. A loaded
module is of one of finitely many kinds. For the fundamental CGI and scripting
module types we will detail in Sect. 3.3,3.4 what it means to EXEcute such a
module.

To reflect the functional client/server request/reply view STARTHANDLER
appears as atomic action of the WEBSERVER which goes together with deleting
the request from the requestQueue. At the transmission protocol level the latter
action becomes closing the connection. The atomicity reflects the fact that once
a request has been handled, the server is ready to handle the next request.’

WEBSERVER =
let request = head(requestQueue)
if request # undef then // react if there is some request
let env = env(server, request)
let s = checkSecurity(request, env)
if SecurityFailure(s)
then SEND(failureReport(request, s))
else
let requestedModule =
findModule(env, resourceName(request), header(request))
if ResourceAvailabilityFailure(requestedModule) then
SEND(failureReport(request, requestedModule))
else
let module = loadModule(requestedModule, env)
if ModuleLoadabilityFailure(module)
then SEND(failure Report(request, module))
else STARTHANDLER(module, request, env)
CLOSE(request)
where
SecurityFailure(s) iff s = 403
ResourceAvailabilityFailure(m) iff m = 503
ModuleLoadabilityFailure(module) iff module = 500
STARTHANDLER(module, request, env) =
let a = new (Agent) // launch a request handler thread

5 The ASM model supports this view due to the reactive character of ASMs.

program(a) := EXEC(module)(request, env)
mode(a) = init
CLOSE(request) = DELETE(request, requestQueue)

3.2 Refinement for File Transfer EXECcution

To start with a simple case we illustrate how the machine EXEC(module) can be
detailed to a machine EXECFILETRANSFER(module) which handles file transfer
modules, the earliest form of server module. Such a module simply buffers the
requested file in an output buffer if the file is present at the location determined
by the path from the root(env) to the resourceName(request). We use a machine
TRANSFERDATAFROMTO which abstracts from the details of the (not at all
atomic, but durative) transfer action of the requested file data to the output.
The function requestOutput(request) abstractly represents the appropriate socket
through which the response data are sent from the server to the requesting
browser.”

We leave it open what the scheduler does with the request handler when
the latter is DEACTIVATEd once the file transfer isFinished, i.e. when it has
been detected (here via TRANSFERDATAFROMTO) that no more data are to be
expected for the transfer.

EXECFILETRANSFER(module)(request, env) =
let file = makePath(root(env), resourceName(request))
if mode(self) = init then
if UndefinedFile(file) then
SEND(failureReport(request, ErrorCode(UndefinedFile)))
DEACTIVATE(self) // request handler termination
else
SEND(successReport(request, OkResponseCode))
mode(self) := transferData // Start to transfer the file
if mode(self) = transferData then
TRANSFERDATAFROMTO(file, request Output(request))
if isFinished(file) then DEACTIVATE(self)
where
ErrorCode(UndefinedFile) = 404
OkResponseCode = 200
DEACTIVATE(self) = (mode(self) := final)

3.3 Refinement for Common Gateway Module EXECution

A Common Gateway Interface (CGI) [23] module allows the request handler
to pass requests from a client web browser to an (agent which executes an)
external application and to return application output to the web browser. There
are two main forms of CGI modules, the historically first one (called CGI) and

" Again this can be made precise as shown in detail for the browser model in [17].

an optimized one called FastCGI [13]. They differ in the way they introduce
agents for external process execution: CGI creates one agent for each request,
whereas FastCGI creates one agent and re-uses it for subsequent requests to the
same application (though with different parameters).

CGI Module A CGI module sends an error message if the executable for the
requested process is not defined at the indicated location. Otherwise the re-
quested process execution (by an independent newly created agent a, not by the
request handler)® is triggered for the appropriate requestVariables (also called
environment variables containing the request data), like Auth(entication)-Type,
Query-String, Path-Info, RemoteAddr (of the requesting browser) and Remote-
Host (of the browser’s machine), etc.(see [23, Sect.5]) and a positive response is
sent to the requesting client. Once the new agent a has been CONNECTed the
request handler

m accepts any further requestInput stream (read: data stream coming from the
browser) as input for the execution of the process by a, namely via the stdin
stream of the module, and

= transmits any output which (via a’s processing the ezecutable) becomes avail-
able on the module’s stdout stream to the requestOutput stream (from where
it will be sent to the requesting browser)—as long as there are data on the
requestInput resp. on the stdout stream.

Thus to CONNECT a to (the agent self executing) the CGI module a channel
is established between the inputStream(a) and the module’s stdin stream resp.
between the outputStream(a) and the module’s stdout stream®.

It is usually assumed that the executable program(a) agent a gets equipped
with eventually disconnects a (from the request handler self) so that the predi-
cate Connected(a,self) becomes false. Then EXEC(module) terminates wherefor
the request handler is DEACTIVATEd. Nevertheless the agent a even after having
been disconnected may continue the execution of the associated executable and
may not terminate at all, but such a further execution would be unrelated to the
computation of the request handler and from the WEBSERVER’s point of view
yields a garbage process. Even more, no guarantee is given that program(a) does
disconnect a. In these cases the operating system has to close the connection
and/or to kill the process by descheduling its executing agent (e.g. via a time-
out). The CGI standard [23] leaves this issue open, but is has to be investigated
if one wants to provide some behavioral guarantees for the execution of CGI
modules.

8 Therefore each request triggers a fresh instance of the associated external application
program to be executed. This is a possible source for exceeding the workload capacity
of the machine where the server runs.

9 In ASM terms inputStream(a) is a monitored and outputStream(a) an output loca-
tion for the ezecutable, whereas for the module stdin is an output location (whereby
the request handler self passes input to a for the processing of the executable) and
stdout a monitored location (whereby the request handler self receives from a output
produced through processing the ezecutable.)

ExECc(module)(request, env) =
let executable = makePath(root(env), resourceName(request), env)
if mode(self) = init then
if UndefinedProcess(executable) then
SEND(failureReport(request, ErrorCode(UndefinedProcess)))
DEACTIVATE(self)
else
let a = new (Agent) // launch a new process instance
program(a) := executable(processEnv(env, request Variables(request))))
CONNECT(a, self)
SEND(request, OkResponseCode)
mode(self) := transferData
if mode(self) = transferData then
if DataAvailable(stdout)
TRANSFERDATAFROMTO(stdout, requestOutput (request))
if verb(request) = POST and DataAvailable(requestInput(request))
then TRANSFERDATAFROMTO(requestInput(request), stdin)
if isDisconnected(a) then DEACTIVATE(self)
where
ErrorCode(UndefinedProcess) = 404
OkResponseCode = 200
isDisconnected(a) = not Connected(a,self)

Remark. The server environment is needed as argument to compute the
path information in makePath. This is particularly important for the optimized
FastCGI version we describe now.

FastCGI Module Concerning the execution of external processes a FastCGI
module has the same function as a CGI module. There are two behavioral dif-
ferences:

m A FastCGI module creates a new agent for the execution of a process only
upon the first invocation of the latter by the request handler. An agent a
which has been created to process an executable is kept alive once this pro-
cessing isFinished so that the agent can become active again for the next
invocation of that executable—with the new values for the requestVariables.
To CONNECT(a, self) now means to link its (local variables for) input resp.
output locations, denoted below by in(a), out(a), to corresponding locations
of the (request handler self executing the) module from where resp. to which
the data transfer from requestInput resp. to requestOutput is operated. In
particular in(a) is used to pass the parameters requestVariables(request) of
the process to initialize the executable.

» It is assumed that the program program(a) agent a gets equipped with even-
tually sets a location EndOfRequest for the current request to false, namely
by updating this location during the TRANSFERDATAFROMCGI action. This
makes the request handler terminate.

Thus the CGI structure is refined to the FastCGI module structure as follows:

EXEC(module)(request, env) =
let ezecutable = makePath(root(env), resourceName(request), env)
if mode(self) = init then
if UndefinedProcess(executable) then
SEND(failureReport(request, ErrorCode(UndefinedProcess)))
DEACTIVATE(self)
else
if thereisno a € Agent with
program(a) = executable(processEnv(env))
then
let a = new (Agent)
program(a) := executable(processEnv(env))
mode(self) := connect
if mode(self) = connect then
let o = 1z(z € Agent and
program(a) = executable(processEnv(env)))
CONNECT(a, self)
INITIALIZE(program(a))
mode(self) := transferData
if mode(self) = transferData then
let reqin = requestInput(request), reqout = requestOutput(request)
if DataAvailable(out(a))
TRANSFERDATAFROMCGI(out(a), reqout, End OfRequest(request))
if verb(request) = POST and DataAvailable(regin) then
TRANSFERDATATOCGI(regin, in(a))
if EndOfRequest(request) then DEACTIVATE(self)
where
ErrorCode(UndefinedProcess) = 404
INITIALIZE(program(a)) =
PASSPARAMS(request Variables(request), in(a))
EndOfRequest(request) := false

TRANSFERDATATOCGI implies an encapsulation of the to be transmitted
content into messages which carry either data or control information; inversely
TRANSFERDATAFROMCGI implies a decoding of this encapsulation.

3.4 Refinement for Scripting Module EXECution

Scripting modules like ASP, PHP, JSP all provide dynamic web page facilities
by allowing the server to run (directly through its request handler) dynamically
provided code. We define here a scheme which makes the common structure of
such scripting modules explicit.

As for CGI modules first the file for the to be executed code is searched at the
place indicated by the resourceName of the request, starting at the root of the

server environment. If the file is defined, the code is executed not by an indepen-
dent agent as for CGI modules, but directly by the request handler which uses
as program the SCRIPTINTERPRETER. For the state management accross differ-
ent server invocations by a series of requests from the same client the uniquely
determined sessionID (associated to the request under the given environment)
and the corresponding session and application (if any) have to be computed.
The computation of session and application comprises that a new session resp.
application is created in case none is defined yet in the server environment for
the sessionID resp. applicationName of the request.'® Furthermore the syntax
conversion of the script file from quotation to full script code (denoted here by a
machine QUOTETOSCRIPT which is refined below for ASP, PHP and JSP) has
to be performed and the corresponding host objects have to be created to be
passed as parameters to the SCRIPTINTERPRETER call.

The functions involved to COMPUTESESSION and to COMPUTEAPPLICATION,
which allow the server to track state information between different requests of a
same client, depend on the module, namely sessionID, makeSession (and there-
fore session), applicationName, makeApplication (and therefore application).
Similarly for the functions involved to COMPUTEINTERPRETEROBJECTS. We
express this using the amb notation as defined in [10].

EXEC(module)(request, env) =
let script = makePath(root(env), resourceName(request))
amb module in // NB: use of module sensitive functions
if mode(self) = init then
if script = ErrorCode(UndefinedScript) then
SEND(failureReport(request, ErrorCode(UndefinedScript)))
DEACTIVATE(self)
else
let id = sessionID(request, env)
COMPUTESESSION(id, request, env)
let applName = applicationName(resourceName(request))
COMPUTEAPPLICATION (applName, request, env)
scriptCode(request) + QUOTETOSCRIPT(script, env)*!
mode(self) := complInterprObjs
if mode(self) = compInterprObjs then
COMPUTEINTERPRETEROBIECTS(request, id, applName)
program(self) :=
SCRIPTINTERPRETER(scriptCode(request), InterpreterObjects))
where
ErrorCode(UndefinedScript) = 404
COMPUTESESSION(id, request, env) =

10 Typical refinements of the sessionID function also contain specific security policies
we necessarily have to abstract from in this high-level description.

"1 The definition of ASMs with return value supporting the notation I < M(z) is taken
from [12, Def.4.1.7.].

if session(id) = undef then
session(id) := makeSession(request, env, id)
COMPUTEAPPLICATION(applName, request, env) =
if application(applName) = undef then
application(applName) := makeApplication(request, env, applName)
COMPUTEINTERPRETEROBJECTS(request, id, applName) =
reqObj (request) := makeRequestHostObj (request)
responseObj (request) := makeResponseHostObj (request)
sessionObj (request) := makeSessionHostObj (session(id))
applObj (request) := makeApplicationHostObj (application(applName))
serverObj (request) := makeServerHostObj (request, env)
InterpreterObjects =
[reqObj (request), response Obj (request),
sessionObj (request), applObj (request), serverObj(request)]

ASP/PHP /JSP Module ASP, PHP and JSP modules are instances of the
scripting module scheme described above. In fact their EXEC(module) is defined
as for the scripting scheme but each with a specific way to produce dynamic
webpages, in particular with a specific computation of QUOTETOSCRIPT, as we
are going to describe below.

Also the following auxiliary functions and the called SCRIPTINTERPRETER
are specific (as indicated by an index ASP, PHP, JSP) though not furthermore
detailed here:

» The make ... HostObj functions are specialized to make . .. HostObj;p, e, func-
tions for each index € {ASP, PHP, JSP}.

» SCRIPTINTERPRETER becomes SCRIPTINTERPRETER jp4e; fOr any index out
of ASP, PHP, JSP.

See [14] for explanations how to construct an ASM model of the JavaScript
interpreter as described in [4].

A PHP module acts as a filter: it takes input from a file or stream con-
taining text or special PHP instructions and via their SCRIPTINTERPRETER pyp
interpretation outputs another data stream for display.

ASP modules choose the appropriate interpreter for the computed scriptCode
(so-called active scripting). Examples of the type of script code are JavaScript,
Visual Basic and Perl.

Thus for ASP the definition of SCRIPTINTERPRETER 4sp has the following
form:

SCRIPTINTERPRETER 4 sp (scriptCode, InterprObjs) =
let scriptType = type(scriptCode)
SCRIPTINTERPRETER g¢ript Type (SCTiptCode, InterprObyjs)

The value of scriptCode(request) is defined as the result computed by a ma-
chine QUOTETOSCRIPT for a script argument. For the original version of PHP,

to mention one early example, this machine simply computed a syntax transfor-
mation transform(script). Later versions introduced some optimization. At the
first invocation of QUOTETOSCRIPT(script)—i.e. when the syntactical transfor-
mation of (the code text recorded at) script has not yet been compiled—or upon
later invocations for a script (with code text) changed since the last compila-
tion of transform(script), due to some code text replacement stored at script
that is out of the control of the web werver, the target bytecode is compiled
and timeStamped, using a compiler which can be specified using the techniques
explained for Java2JVM compilation in [22]. At later invocations of the same
script the already available compiled(transform(script)) bytecode is taken as
scriptCode instead of recompiling again. Since the value of the code text located
at script is not controlled by the web server, the function timeStamp(script)
appears in this model as a monitored function.

scriptCode(request) < QUOTETOSCRIPT(script, env)
where
QUOTETOSCRIPT(script) =
let s = transform(script)
if compiled(s) = undef or
timeStamp (lastCompiled (script)) < timeStamp(script)
then
compiled(s) := compile(s)
result:= compile(s)
timeStamp (lastCompiled (script)) := now
type(compile(s)) := typeOf (script, env)
else result:= compiled(s)

For ASP and PHP the QUOTETOSCRIPT machine describes an optional op-
timization'? that cannot be observed from outside. For ASP the machine has the
additional update for the type of the computed result (namely the scriptCode)
that uses a syntax function typeOf which typically yields a directive, e.g.

< %@QLanguage = “JScript” % >

or a default value.

The type of the scriptCode depends on the script and on the environment;
for example the environment typically defines a default type for the case that
nothing else is specified.

For JSP no syntax translation is required (formally the transform function
is the identity function) because scriptCode is a class file (Servlet which comes
with a certain number of fixed interfaces like doPost (), doGet (), etc.) so that
the operations are performed by a JVM. This permits to embed predefined
actions (implemented by Java code which can also be included from some pre-
defined file via appropriate JSP directives) into static content. Here the ma-
chine QUOTETOSCRIPT is mandatory because different invocations of the same

12 Tt is an ASM refinement of the non-optimized original PHP version.

scriptCode can communicate with each other via the values of static class vari-
ables.

JSF/ASP.NET Modules It seems that a detailed high-level description of
EXEC(module) for the modules as offered by the Java Server Faces (JSF [1]) and
Active Server Pages (ASP.NET [19]) frameworks can be obtained as a refinement
of the ASM defined above for the execution of scripting modules. As mentioned
above PHP, ASP and JSP use a character based approach in which the script
outputs characters (either explicitly through the Response object or implicitly
by using the special notation converted by QUOTETOSCRIPT). The JSF and
ASP.NET frameworks use their virtual-machine based environment (JVM resp.
CLR) to provide more flexible ways for the SCRIPTINTERPRETER to write on
the response stream (e.g. in ASP.NET based on the Windows environment)
and to define a server-side event and state management model that relieves the
programmer from having to explicitly deal with the state of a web page made up
by several components. The programming model offered by these environments
provides a sort of DOM tree where each node upon being visited is asked for the
data to be sent as part of the response so that the programmer has the impression
of manipulating objects rather than generating text of a Web page. For example,
a request handled by the ASP.NET module triggers a complex lifecycle'® which
allows the programmer to manipulate a tree of components each of which has its
own state, in part stored inside the web page (in the form of a hidden field) and
in part put by the application into the session state. We are currently working on
modeling these features as refinements of the ASM model for scripting module
execution.

4 The Challenge of Accurate Analysis

Once sufficiently rich rigorous abstract web application models have been de-
fined they can be used to accurately define properties of interest one would like
to prove or falsify for the models via proofs or counterexamples which are pre-
served by correct refinements for existing implementations. This is by no means
an easy task. For an illustrative example we can refer to [22] where in terms of
rigorous models for Java, the JVM and a compiler Java2JVM the mere math-
ematically precise formulation of the compiler correctness property stated in
Theorem 14.1.1. (p.177-178) needs 10 pages, the entire section 14.1.'* A for-
mulation in terms of some logic language understood by a theorem prover (e.g.
in the language of KIV which has been used for various mechanical verifica-
tions of properties of ASMs [20,21] or in Event-B [6]) is still harder and will be
considerably longer, as characteristic for formalizations.

We list here some properties of web applications we suggest to precisely
formulate and prove or disprove in terms of abstract web application models.

13 See http://msdn.microsoft.com/en-us/library /ms178472.aspx.
' Tn comparison the proof occupies 24 pages, the rest of chapter 14.

A first group consists of correctness properties for the crucial session and
state management:

= Session management refers to the ability of an application to maintain the
status of the interaction with a particular browser. A typical property is that
session state is not corrupted by user actions like hitting the Back/Forward
buttons or navigating away from the page and then coming back.

» State management is about the virtual state of the application, which is usu-
ally distributed among multiple components on both client and server side,
with parts of the state ‘embedded’ into the local state of several programs,
and often also replicated entirely or partially. Typical desirable properties
are that at significant time instants replicated parts of the state

e are consistent, that is they are allowed to be out-of-sync at times and
consistence is considered up to appropriate abstraction functions,

e are equivalent between the client-side and the server-side of the state,

e can be reconstructed, e.g. when the client can change and its state must
be persisted to another client (for example from desktop to mobile).

A second group concerns robustness e.g. upon loss of a session or client and
server state going out-of-sync, security and liveness.

A third group consists of what we consider to be the most challenging prop-
erties which are also of greatest interest to the users, namely application cor-
rectness properties. These properties are about the dependence of the intended
application-focussed behavior of web applications on the programming and exe-
cution infrastructure—on the used browser, web server, net infrastructure (e.g.
firewall, router, DNS), connection, plug-ins, etc. Such components are based on
their own (not necessarily compatible) standards and therefore may influence
the desired application behavior in unexpected ways. This makes their rigorous
high-level description mandatory for a precise analysis. An outstanding class of
such application-group-specific properties is about application integration where
common services are offered on an application-independent basis (e.g. authenti-
cation or electronic payment services). We see such investigations as a first step
towards defining objective content-based criteria for the reliability of web appli-
cation software and for building reliable web applications, read: web applications
whose properties of interest can be certifiably guaranteed—by theorem proving
or model checking or testing or combinations of these activities—to hold under
precisely formulated boundary conditions.

Acknowledgement. This paper is published in the two Proceedings volumes
of the joint iFM2012 and ABZ2012 Conference held in Pisa (Springer LNCS 7321
and 7316).

References

1. Java Server Faces. http://www.jcp.org/en/jsr/detail?id=314.
2. Python. http://www.python.org/.
3. Tomcat. http://tomcat.apache.org/.

10.

11.

12.

13.
14.

15.
16.

17.
18.
19.

20.

21.

22.

23.

ECMAScript language specification. Standard ECMA-262, Edition 5.1, June 2011.
http://www.ecma-international.org/publications/standards/Ecma-262.htm.
HTTP1.1 part 2 message semantics. www.ietf.org, cosulted February 2012.

J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge, 2010.

M. Altenhofen, E. Borger, A. Friesen, and J. Lemcke. A high-level specification
for virtual providers. IJBPIM, 1(4):267-278, 2006.

A. Barros and E. Borger. A compositional framework for service interaction pat-
terns and communication flows. In K.-K. Lau and R. Banach, editors, Proc. ICFEM
2005, volume 3785 of LNCS, pages 5-35. Springer, 2005.

E. Borger. Approaches to modeling business processes. A critical analysis
of BPMN, workflow patterns and YAWL. JSSM, pages 1-14, 2011. DOLI:
10.1007/s10270-011-0214-z.

E. Borger, A. Cisternino, and V. Gervasi. Ambient Abstract State Machines with
applications. JCSS, 78(3):939-959, 2012.

E. Borger, G. Fruja, V. Gervasi, and R. Stark. A high-level modular definition of
the semantics of C#. Theoretical Computer Science, 336(2-3):235-284, 2005.

E. Borger and R. F. Stark. Abstract State Machines. A Method for High-Level
System Design and Analysis. Springer, 2003.

M. R. Brown. Fast CGI specification. http://www.fastcgi.com/, April 1996.

C. Dittamo, V. Gervasi, E. Borger, and A. Cisternino. A formal specification of
the semantics of ECMAScript. In VSTTE-10, Edinburgh, 2010. Poster session.
N. G. Fruja. Towards proving type safety of NET CIL. SCP, 72(3):176-219, 2008.
N. G. Fruja and E. Borger. Modeling the .NET CLR Exception Handling Mecha-
nism for a Mathematical Analysis. Journal of Object Technology, 5(3):5-34, 2006.
V. Gervasi. An ASM model of concurrency in a web browser. In Proceedings
ABZ2012, LNCS. Springer, 2012.

G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing, Building and
Deploying Messaging Solutions. Addison-Wesley Longman Publishing, 2003.
Microsoft. ASP.NET. http://www.asp.net.

G. Schellhorn and W. Ahrendt. The WAM case study: Verifying compiler cor-
rectness for Prolog with KIV. In W. Bibel and P. Schmitt, editors, Automated
Deduction — A Basis for Applications, volume III, pages 165-194. 1998.

G. Schellhorn, H. Grandy, D. Haneberg, and W. Reif. The Mondex Challenge:
Machine Checked Proofs for an Electronic Purse. In J. Misra, T. Nipkow, and
E. Sekerinski, editors, FM 2006, volume 4085 of LNCS, pages 16-31. Springer,
2006.

R. F. Stérk, J. Schmid, and E. Borger. Java and the Java Virtual Machine: Defi-
nition, Verification, Validation. Springer-Verlag, 2001.

W3C. CGI: Common Gateway Interface. http://www.w3.org/CGI/.

