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Summary. We explain the main ingredients of the Abstract State Machines (ASM)
method for high-level system design and analysis and survey some of its application
highlights in industrial software-based system engineering. We illustrate the method
by defining models for three simple control systems (sluice gate, traffic light, package
router) and by characterizing Event-B machines as a specific class of ASMs. We point
to directions for future research and applications of the method in other areas than
software engineering.

1 Introduction

In this paper we give an answer to the often asked question What characterizes
the Abstract State Machines (ASM) method among the practical and scientifically
well-founded systems engineering methods? The question is justified since the ASM
method, which has been developed during the 1990’ies (see [24] for a historical
account), is a latecomer among other well-known rigorous system design and analysis
methods, including what misleadingly is called “formal” methods. For answering
the question, we assume the reader to have some basic knowledge of what formal
methods are and what they intend to achieve, but we sketch the major ingredients
of the ASM method.1

We do not speak about special-purpose techniques, like static analysis, model
checking etc., which draw their success from being tailored to particular types of
problems. The discussion is focussed on wide-spectrum methods, which assist sys-
tem engineers in every aspect of an effectively controllable construction of reliable
computer-based systems. In particular such methods have to bridge the gap between
the two ends of system development:

the human understanding and formulation of real-world problems,
the deployment of their algorithmic solutions by code-executing machines on
changing platforms.

1 However, this paper is neither an introduction to the ASM method nor a survey
of its achievements. For the former see [29], for the latter [27], or chapters 2 and
9 of the AsmBook [46].
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The activities these development disciplines have to support cover the wide range
from requirements capture and analysis to writing executable code, including verifi-
cation, validation (testing), documentation and maintenance (change management).
As a consequence a scientifically rigorous approach, which enhances best engineering
practice by adding mathematical rigour to it, calls for a smooth integration, into
traditional hw/sw-system engineering procedures and notations, of multiple ways to
achieve various degrees of certifiable system trustworthiness and quality assurance.

Among such approaches the ASM method is characterized by providing a simple
practical framework, where in a coherent and uniform way the system engineer can
adopt a divide-and-conquer approach, i.e.

systematically separate multiple concerns, concepts and techniques, which are
inherent in the large variety of system development activities,
freely choose for each task an appropriate combination of concepts and techniques
from the stock of engineering and mathematical methods, at the given level of
abstraction and precision where the task occurs.

As will become clear in the following sections, not a single ingredient of the ASM
method is original. What is unique is the simplicity of the method and the freedom
it offers the practitioner to choose for each problem an appropriate combination
of concepts, notations and techniques, which are integrated by the framework in
a coherent way as elements of a uniform mathematical background. Among the
examples we will discuss are the following:

abstract states, which can be richly structured, possibly unbounded or even
infinite, as known from the theory of abstract data types and algebraic specifi-
cations [86, 79, 62, 9, 10], VDM [67], Z [104], COLD [66],
abstract instructions for changing states (high-level operational definition of
state changes by guarded assignments), as familiar from pseudo-code notation,
Virtual Machines2 and later RAISE [74],
synchronous parallel execution model, including conditional multiple assign-
ments as present also in UNITY [87] and COLD [65],
locality principle as known from programming languages,
functional definitions, as in mathematics and functional programming [14],
declarative (axiomatic) definitions, as known from logic and declarative pro-
gramming and specification languages,
refinement concept, generalizing the method which has been introduced by
Wirth [113] and Dijkstra [59] and adapted to numerous formal specification
methods [11, 90, 12, 54], including Z [114, 58] and B [1],
decomposition and hierarchy concepts, as familiar from automata theory, layered
architectures and the problem frames approach [83],
function classification into monitored, controlled, shared etc., as known from
programming and Parnas’ Software Cost Reduction (SCR) method [95, 81],
mathematical verification of model properties by proofs at the needed level of
precision: sketched, detailed, machine assisted (interactive or fully automated),
experimental validation by simulation (model execution), e.g. for model checking
invariants, run-time verification of properties, testing of runs (scenarios).

2 For example in Cremers’ and Hibbard’s data spaces [53] the operational transfor-
mations of abstract states are described by means of static functions, which form
what is called there an information structure.
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The combined separation and integration capabilities of the ASM framework,
which allow the engineer to tailor his methods to the problem under investiga-
tion, are responsible for the successful applications of the ASM method in a variety
of academic and industrial projects. They range from the design and analysis of
programming languages, computer architectures, protocols and web services to the
design, reengineering and validation of industrial control systems and the definition
of industrial standards. Some examples are highlighted in Sect. 7.

Among the different development and analysis tasks, which can be coherently
linked together in the ASM framework, we discuss the following ones:

Design. The design activities split into three major groups:

– Ground model construction, i.e. definition of a system blueprint that can
be justified to correctly capture the requirements. This is supported by the
ASM ground model technique explained in Sect. 4.

– Model refinement, reflecting one by one the various design decisions, which
lead from the ground model to code. A rigorously controllable discipline of
stepwise adding implementation details is supported by the ASM refinement
method explained in Sect. 5.

– Model change, a combination of the ground model construction and re-
finement task, which uses the hierarchy of models constructed during the
transformation of the ground model into code. When change requirements
occur, this hierarchy is analyzed to determine the level starting from where
new refinements are needed to traceably incorporate the requested changes.
Changing the models may trigger also new analysis tasks.

Analysis. The goal of the analysis activities is to provide a documentation and
justification for the steps that lead from the requirements to the ground model
and its implementation. This is needed for two purposes: a) an evaluation (read:
explanation, verification, validation) of each design decision by repeatable pro-
cedures, b) change management and reuse of models. The analysis activities
split into two major groups:

– mathematical verification of system properties, by a variety of reasoning
techniques, applicable to system models at different levels of precision and
under various assumptions, e.g.

· outline of a proof idea or proof sketch
· mathematical proof in the traditional meaning of the term
· formalized proof within a particular logic calculus
· computer-checked (automated or interactive) proof

– experimental validation of system behaviour through simulation and testing
of rigorous models, at various levels of abstraction, like system test, module
test, unit test, simulation of ground model scenarios, etc.

The core of the ASM method is based upon the following three concepts we
are going to explain in the following sections, starting with an illustration by three
simple examples in Sect. 2.

Notion of ASM, a mathematically precise substitute for the intuitive no-
tion of high-level algorithmic processes (including what software engineers call
pseudo-code) and for the nowadays omnipresent concept of Virtual Machines
(VMs). Technically ASMs can be defined as a natural generalization of Finite
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State Machines (FSMs) by extending FSM-states to Tarski structures. Tarski
structures, also called first-order or simply mathematical structures, represent
truly abstract data types. Therefore, extending the special domains of FSM-
computations to these structures turns finite state machines into abstract state
machines, which work over possibly richly structured yet abstract states, as is
explained in Sect. 3.
ASM ground models as accurate high-level descriptions of given system require-
ments. They are expressed at a level of abstraction that is determined by the
application domain and provide a requirements documentation that is to be used
as authoritative reference for an objective evaluation of the requirements and
the following further system development activities. The ground model must be
kept synchronized with those activities, namely:3

– detailed design,
– design evaluation and quality assurance via analysis, including testing and

an inspection and review process, focussed on certifying the consistency,
correctness and completeness properties of the system that are needed to
guarantee the desired degree of reliability,4

– system maintenance, including requirements change management.

In Sect. 4 we discuss the ASM ground model method further.
ASM refinements, linking the more and more detailed descriptions at the suc-
cessive stages of the system development cycle in an organic and effectively
maintainable chain of rigorous and coherent system models. The refinement
links serve the purpose to guarantee that the system properties of interest are
preserved in going from the ground model via a series of design decisions to
its implementation by the code—and to document this fact for possible reuse
during maintenance and in particular for change management. We discuss the
concept of ASM refinement further in Sect. 5.

The simple mathematical foundation of ASMs as FSMs working over arbitrary
data types makes it easy for practitioners to understand and work with the con-
cept. It also allows one to exploit for the ASM method the uniform conceptual and
methodological framework of traditional mathematics, where one can consistently
relate standard notions, techniques and notations to express any system features
or views.5 Having as background for the ASM method not just one a priori chosen
formal language and associated proof calculus, but the full body of usual mathemat-

3 The definition of the ground model may change during the design phase, namely if
it is recognized during the implementation process that some important feature is
missing in the ground model or has to be changed there. The process of building a
ground model is iterative; it ends only with the completion of the design and may
be re-opened during maintenance for change management. But at each moment
of the development process, there is one ground model, documenting the current
understanding of the problem the system has to solve.

4 Note that the evaluation of the design against the ground model also provides an
objective, rational ground for settling disputes on the code after its completion.

5 Thus the ASM method satisfies Parnas’ request [94] to base the foundation for
a reliable software engineering discipline on standard mathematics, avoiding the
introduction of complicated specification languages and theories of language se-
mantics.
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ical notations and techniques “supports a rigorous integration of common design,
analysis and documentation techniques for model reuse (by instantiating or modify-
ing the abstractions), validation (by simulation and high-level testing), verification
(by human or machine-supported reasoning), implementation and maintenance (by
structured documentation)”[46, pg.1]. We discuss this in Sect. 6 and illustrate it
there by a characterization of Event-B Machines as a family of specialized ASMs.
In Sect. 7 we point to some application highlights of the ASM method.

2 Illustration by Examples

We illustrate here ASMs by three simple examples for a) the construction of ASM
ground models, which can be shown to capture the requirements in application prob-
lem terms, b) their refinements, which can be proven to correctly reflect both b1)
the implementation details and b2) the changes in the models when changes in
the requirements come along. The examples are taken from [83], a book which ex-
plains very well the various descriptions one has to make and to fit together into
a correctness argument, in order to show that under certain assumptions on the
environment—typically reflecting the relevant domain knowledge—the behaviour of
the specification satisfies the requirements. What we call a ground model is a closed
model. It includes both the specification and the statement of the environmental
assumptions and domain knowledge that are needed in a correctness argument.

2.1 Sluice Gate Control

The following problem description is taken from [83, p.49], the italics are ours:

A small sluice, with a rising and falling gate, is used in a simple irrigation
system. A computer system is needed to control the sluice gate: the re-
quirement is that the gate should be held in the fully open position for ten
minutes in every three hours and otherwise kept in the fully closed position.
The gate is opened and closed by rotating vertical screws. The screws are
driven by a small motor, which can be controlled by clockwise, anticlockwise,
on and off pulses.
There are sensors at the top and bottom of the gate travel; at the top it’s
fully open, at the bottom it’s fully shut.
The connection to the computer consists of four pulse lines for motor control
and two status lines for the gate sensors.

Ground Model. To simplify the correctness argument to be provided for the ground
model, we stick to first modelling only the user requirements for the equipment, ab-
stracting from the details about the screws, the motor, the sensors and the pulses.
This reduces the system to an abstract device which switches from a fullyClosed
phase to a fullyOpen phase whenever the time closedPeriod has elapsed, and back
when openPeriod has elapsed. To separate the issues related to (an implementation
of) the timing model from the analysis of the user requirements, we use two so-
called monitored locations (read: array or instance variables) Passed(openPeriod),
Passed(closedPeriod). Their truth values are assumed to be controlled correctly
by the environment and to indicate when the intended time periods have passed,
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here openPeriod = 10 min for fullyOpen and closedPeriod = 3 hrs − 10 min for
fullyClosed . We interpret the term ‘for ten minutes in every three hours’ as ‘at the
end of the closure period’ and being included in the total period = 3 hrs. This leads
to the model in Fig. 1, which is displayed in the usual FSM-style graphical nota-
tion using circles for phases (also called control states or internal states), rhombi
for test predicates (also called guards) and rectangles for actions of submachines
(for a definition of these control state ASMs see Sect. 3). Due to the abstraction
from the motor and the sensors, the submachines to Open respectively Shut the
gate do nothing and are included only to hold the place for the refinement by motor
actions. Assuming appropriate conditions on initial states, this abstract machine

Fig. 1. SluiceGateGround Model

SluiceGateGround can clearly be justified, in terms of the gate being kept open
(read: the device being in state fullyOpen) for openPeriod and closed (read: the de-
vice being in state fullyClosed) for closedPeriod , to rigorously reflect the (apparently
intended meaning of the) above stated requirement.
A refinement step. The first refinement step reflects the domain knowledge about
a screw’s driving motor and the sensors. We know that the motor can be set on
and off and has two move direction values clockwise (say to raise the gate) and
anticlockwise (say to lower the gate). It is in these terms, namely of two so-called con-
trolled locations motor, dir , which can be updated to any of their values in {on, off }
respectively {clockwise, anticlockwise}, that the submachines Open and Shut are
refined by using three motor action submachines StartToRaise, StartToLower,
StopMotor. The control of these actions uses the environmental gate status in-
formation that is obtained from the two sensors. The indication by the sensors
that the gate travel has reached its top (fully open) respectively bottom (fully
closed) position is formalized by two monitored locations Event(Top) respectively
Event(Bottom) taking boolean values. The time assumed for the execution of the
new submachines is taken into account by refining the definition of closedPeriod
and openPeriod . These two locations are examples of what we call derived locations,
since their value is defined in a fixed manner (here by an equation) in terms of the
values of other locations. This leads to the refinement SluiceGateMotorCtl of
SluiceGateGround as defined in Fig. 2, together with the following definition of
abstract motor actions:6

6 In general, in an ASM all updates are executed in parallel, though in this example
also a sequential reading will do.
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StartToRaise = dir := clockwise
motor := on

StopMotor = (motor := off )

StartToLower = dir := anticlockwise
motor := on

closedPeriod = period
−(StartToRaiseTime + OpeningTime + StopMotorTime)
−(StartToLowerTime + ClosingTime + StopMotorTime)

Fig. 2. SluiceGateMotorCtl refinements of motor actions

The correctness proof for this refinement uses an Input Locations Assumption.
It relates what happens at the environmental sensors to the model events:

When the top respectively bottom of the gate travel is detected by the cor-
responding sensor, Event(Top) respectively Event(Bottom) becomes true in
SluiceGateMotorCtl.

Another refinement step. Here we introduce the four status lines connecting the
controller and the physical equipment. The single SluiceGateMotorCtl machine
is replaced by a so-called multi-agent ASM SluiceGate. The latter consists of two
abstract machines, an environmental machine Pulses describing the equipment ac-
tions when pulses appear and a software machine SluiceGateCtl. In the definition
of Pulses we use the notation upon Event do Action for if Event then Action.

Pulses = upon Event(Clockwise) do dir := clockwise
upon Event(AntiClockwise) do dir := anticlockwise
upon Event(MotorOn) do motor := on
upon Event(MotorOff ) do motor := off

SluiceGateCtl is the same as SluiceGateMotorCtl except for a refined
submachine StartToRaise. The refined submachine will Emit(Pulse(Clockwise))
and Emit(Pulse(MotorOn)). Similarly for StartToLower,StopMotor.

SluiceGateCtl = SluiceGateMotorCtl where
StartToRaise = Emit(Pulse(Clockwise))

Emit(Pulse(MotorOn))

StartToLower = Emit(Pulse(AntiClockwise))
Emit(Pulse(MotorOn))

StopMotor = Emit(Pulse(MotorOff ))
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The correctness proof for this refinement step relates runs of the abstract and
the refined machine. It relies upon the following assumptions:

Pulse Output Assumption: each Emit(Pulse(p)) yields Event(p) to happen in
the environment.
Input Locations Assumption, reinterpreted to reflect that the information de-
tected by the sensors arrives at SluiceGateCtl via two status lines as input
Event(Top), Event(Bottom).

We also use the usual convention that events are consumed when they trigger a
rule to be fired. Note that the refinement type is (1, 2), meaning that every segment
consisting of one step of SluiceGateMotorCtl is refined by a segment of two
corresponding steps of SluiceGate, namely of one step of the software machine
followed by one step of the environment machine.

Admittedly this is an elementary example. The very same technique has been
applied in [41, 89] to successively refine an ASM ground model for a robot controller
to a validated C++ control program.

2.2 One-Way Traffic Light Control

This example is about one-way traffic control:

. . .the traffic is controlled by a pair of simple portable traffic light units. . .one
unit at each end of the one-way section. . .connect(ed). . .to a small computer
that controls the sequence of lights.
Each unit has a Stop light and a Go light.
The computer controls the lights by emitting RPulses and GPulses, to which
the units respond by turning the light on and off.
The regime for the lights repeats a fixed cycle of four phases. First, for
50 seconds, both units show Stop; then, for 120 seconds, one unit shows
Stop and the other Go; then for 50 seconds both show Stop again; then for
120 seconds the unit that previously showed Go shows Stop, and the other
shows Go. Then the cycle is repeated.

Ground Model. From the user perspective the problem is about two light units,
each equipped with a StopLight(i) and a GoLight(i) (i = 1, 2) which can be set on
and off . In the ground model we treat the latter as controlled locations to which
a value on or off can be assigned directly, abstracting from the computer emitting
pulses. We also abstract from an explicit time computation and treat the passing of
time by monitored locations Passed(timer(phase)), where the function timer defines
the requested light regime. The monitored locations are assumed to become true in
the model when timer(phase) has elapsed in the environment since the current phase
was entered.

For definiteness let us assume that the sequence of lights starts with both
StopLight(i) = on and both GoLight(i) = off . Let us call this phase Stop1Stop2. Af-
ter timer(Stop1Stop2) has passed, the control executes a submachine SwitchToGo2
and then enters phase Go2Stop1 (say), followed upon Passed(timer(Go2Stop1)) be-
coming true by a SwitchToStop2 to enter phase Stop2Stop1, then a SwitchToGo1
to enter phase Go1Stop2, finally a SwitchToStop1 to return to phase Stop1Stop2.
This behaviour of the equipment is rigorously expressed by the sequence of four
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Stop1
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ToGo1
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Fig. 3. 1WayTrafLightGround Model

phase changing ‘ASM rules’ in Fig. 3, defined again in FSM-like notation and using
the submachine macros defined below.

The four control states correspond to the required combinations of ‘showing’
Goi and Stopj , reflecting that in the above requirements description the values of
StopLight(i),GoLight(i) appear to be complementary:

Stop i means StopLight(i) = on ∧GoLight(i) = off
Go i means GoLight(i) = on ∧ StopLight(i) = off

The complementarity of StopLight(i),GoLight(i) values implies that switch-
ing them can be done in parallel. Thus the two submachines SwitchToGo,
SwitchToStop are copies of one machine (which only later will be refined to dif-
ferent instantiations introducing a sequentialization, see below):

SwitchToGoi = SwitchToStopi = Switch(GoLight(i))
Switch(StopLight(i))

where Switch(Light) = (Light := Light ′)
(′ for complement)

The light regime (50,120,50,120) associates to each phase its length (in terms of
some time measurement), represented by function values timer(phase). Following
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the requirements, for this ground model the function is assumed to be static (set
before running the machine). A change request to include the possibility to configure
the time intervals associated to the phases would make it dynamic and controlled
by the configuration machine.

timer(phase) = case phase of Stop1Stop2 : 50sec
Go2Stop1 : 120sec
Stop2Stop1 : 50sec
Go1Stop2 : 120sec

With these definitions and assumptions, 1WayTrafLightGround can be jus-
tified in application domain terms to realize the desired cyclic light sequence.
A refinement step. We used for the ground model a mixed behavioural and declar-
ative instead of a purely declarative observational description to ease the correct-
ness proofs for adding further details, which eventually should transform the ab-
stract ground model into executable code. In a first refinement step we introduce
the software interface feature that relates R/G Pulses of the computer to turning
the light units on/off. As in the sluice gate control example in Sect.2.1, this re-
finement step replaces the single abstract machine 1WayTrafLightGround by a
multi-agent ASM 1WayTrafLight consisting of an environmental pulse-triggered
machine Pulses and a software machine 1WayTrafLightCtl. The latter is ob-
tained from 1WayTrafLightGround by refining the submachines SwitchTo...i
to emitting pulses:

1WayTrafLightCtl = 1WayTrafLightGround where
forall i ∈ {1, 2} SwitchTo...i = Emit(RPulse(i))

Emit(GPulse(i))

Pulses = forall i ∈ {1, 2}
upon Event(RPulse(i)) do Switch(StopLight(i))
upon Event(GPulse(i)) do Switch(GoLight(i))

The link between 1WayTrafLight and 1WayTrafLightGround is provided by
the following Pulse Output Assumption, which relates the software actions to what
happens in the environment:

Emit(RPulse(i)) yields Event(RPulse(i)) to happen in the environment
Emit(GPulse(i)) yields Event(GPulse(i)) to happen in the envirnoment

Using this assumption, it is easy to prove the refinement to be correct, observing
that each software control step of the refined SwitchTo...i triggers an environment
step of Pulses, which switches the corresponding lights. Thus one ground model
step is correctly refined to two steps in the refined multi-agent machine ((1, 2)-
refinement).
Change requirement. We illustrate here two simple change requests, which lead
to reusing the abstract machines defined above. The first one is:

use simultaneous Stop and Go lights to indicate ‘Stop, but be prepared to
Go’ [83, p.111]
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To adapt the models to this request for change, it suffices to give up the view that
the StopLight(i),GoLight(i) values are complementary to each other and to refine
the SwitchToGoi submachines by a sequentialized version. Everything else is kept
unchanged in both the above ground model and its refinement. With this instantia-
tion of SwitchToGoi , it should be clear how to show that the new ground model
correctly reflects the changed requirements and how to prove that it is correctly
refined by the new refined model.7

SwitchToGoigrd =
GoLight(i) := GoLight(i)′ seq StopLight(i) := StopLight(i)′

SwitchToGoiref = Emit(GPulse(i)) seq Emit(RPulse(i))

Another typical change request could be to add a simultaneous Stop and Go
lights period (change time) of say 10 seconds. This comes up to refine SwitchToGoi
from an atomic to a durative action, leaving everything else unchanged. A natural
way to do this is to introduce an intermediate control state WaitToGo between
the executions of Switch(GoLight(i)) and Switch(StopLight(i)), as indicated in
Fig. 4. The new function chgTime indicates the length of the WaitToGo phase, in
the example 10 seconds.

Fig. 4. Refining SwitchToGo by Change Time

Admittedly, these reuse examples are rather elementary, but the method is gen-
eral. The reader who is interested in a more involved example may look at [38, 69,
71, 70] for a reuse for C# and .NET CLR of the ASM models built and analyzed
in [107] for Java and the JVM.

2.3 Package Router Control

In this example we illustrate the use of a) the synchronous parallelism underlying
the semantics of ASMs and b) an abstract event handling scheme. The problem is
about the control of a package router to sort packages into bins according to their
destinations and appeared in [82]. The formulation below is copied from [83, p.147]8.

7 The definition of the seq constructor in the context of the parallel ASM execution
model is defined in [45].

8 For reasons of space we leave out the operator commands to stop or start the
conveyor. Adding them would involve adding an operator machine.
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The packages carry bar-coded labels. They move along a conveyor to a
reading station where their package-ids and destinations are read. They
then slide by gravity down pipes fitted with sensors at top and bottom.
The pipes are connected by two-position switches that the computer can
flip (when no package is present between the incoming and outgoing pipes).
At the leaves of the tree of pipes are destination bins, corresponding to the
bar-coded destinations.
A package cannot overtake another either in a pipe or in a switch. Also,
the pipes are bent near the sensors so that the sensors are guaranteed to
detect each package separately. However, packages slide at unpredicatable
speeds, and may get too close together to allow a switch to be set correctly.
A misrouted package may be routed to any bin, an appropriate message
being displayed . . .
The problem is to build the controlling computer . . . to route packages to
their destination bins by setting the switches appropriately, and to report
misrouted packages.

From the layout illustration in Fig. 5 one can recognize the elements of the
problem signature: a static tree structure whose nodes are decorated with elements
from various sets, namely PkgLabel , Pipe, Switch, Bin. Each of these domains is

Fig. 5. Package Router Layout

equipped with various functions. Assuming a unique association of bar-coded labels
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to packages, the reader decodes elements l ∈ PkgLabel and stores the obtained
information into locations pkgId(l), dest(l). To separate the decoding program from
the control program, we consider these locations as static for the ground model.

Each p ∈ Pipe comes with locations inSensor(p) outSensor(p) to signal package
passing events. Elements sw ∈ Switch come with a controlled location pos(sw)
indicating the current value of the switch position, right or left . To be able to
correctly set pos(sw) at runtime to reach a given bin b, a static function dir with
values dir(sw , b) ∈ {left , right ,none} is needed indicating whether there is a path
from sw to b and in the positive case where to direct sw for taking this path.

Bin comes with a static function associating to every d ∈ Destination the cor-
responding bin(d) where packages for that destination are requested to be routed.
It is needed to define the derived predicate MisroutedPkgInBin, which is defined to
be true for a pair (l , b) if and only if the package identified by pkgId(l) arrived in
bin b, but bin(dest(l)) 6= b.

The static tree structure is defined by the root reader and successor locations
that satisfy the following conditions:

succ(reader) ∈ Pipe
forall p ∈ Pipe : succ(p) ∈ Switch ∪ Bin
forall sw ∈ Switch : succ(left , sw), succ(right , sw) ∈ Pipe

Using these locations we can define the following derived successor location for
switches, which indicates its current, dynamically computed successor:

succ(sw) = succ(pos(sw), sw)

The information on no overtaking of packages can be formalized as first-in first-
out behaviour of packages, using three types of queues:

queue(reader) of labels of packages whose label has been read, but which did
not yet enter the top pipe succ(reader)
queue(pipe) of labels of packages that entered the pipe at inSensor(pipe) but
did not yet exit it at outSensor(pipe)
queue(switch) of labels of packages that

– entered into switch at its entry point outSensor(pipe), where pipe is the
predecessor of switch

– did not yet exit at its end point inSensor(succ(switch))9

We define the control program ground model as a parallel composition of five sub-
machines, each concerned with transfering a package (label) from one queue to the
next one. The synchronous parallelism allows us to separate the routing function-
ality from the decision about the concrete scheduling mechanism needed for an
implementation.

9 This is well-defined since by assumption, switch can be flipped only when there is
no package in it, i.e. succ(switch) and thereby the exit point of switch can change
only when queue(switch) is empty.
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PackageRouter = IntoReader
FromReader2Pipe
FromPipe2Switch
FromSwitch2Pipe
FromPipe2Bin

Each of these submachines is triggered by an event, namely a package arriving at
a sensor. It is represented by a predicate of the corresponding sensor location. For
a succinct notation we adopt the convention that events are consumed by firing a
rule guarded by this event, which saves us to repeat in each rule body the update
through which the event predicate is reset to false. There are three types of events:

Event(ArrPkgLab(l)) becomes true when the reader has decoded the bar-code
of a package into its associated label l ,
for any sensor , EventOn(sensor) becomes true when the leading edge of a pack-
age arrives at sensor ,
for any sensor , EventOff (sensor) becomes true when the trailing edge of a
package leaves the sensor behind.

The machine IntoReader simply enqueues a newly arrived package label:

IntoReader = if Event(ArrPkgLab(l)) then Enqueue(l , queue(reader))

Labels of packages arriving in a pipe, from the reader or from a switch, simply
advance from the reader or switch queue to the queue of the pipe:

FromReader2Pipe =
if EventOn(inSensor(succ(reader))) then AdvanceFrom(reader)

FromSwitch2Pipe
forall sw ∈ Switch

if EventOn(inSensor(succ(sw))) then AdvanceFrom(sw)
where

AdvanceFrom(a) = Dequeue(queue(a))
Enqueue(fstout(queue(a)), queue(succ(a)))

Before advancing labels of packages that leave a pipe to enter a switch, one
has to determine the correct position of that switch for that package to be routed
correctly (if still possible). The correctness of the positioning submachine comes
from the definition of dir and the assumption in the requirements that a switch can
be flipped only when no package is present between its incoming and outgoing pipes.

FromPipe2Switch = forall p ∈ Pipe
if succ(p) ∈ Switch and EventOff (outSensor(p)) then

Position(succ(p), fstout(queue(p))) seq AdvanceFrom(p)
where Position(sw , e) =

if Empty(queue(sw)) and dir(sw , bin(dest(e))) 6= none
then pos(sw) := dir(sw , bin(dest(e)))
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Upon moving a package from a pipe into a bin, a submachine checks whether
this package has been misrouted:

FromPipe2Bin = forall p ∈ Pipe
if succ(p) ∈ Bin and EventOff (outSensor(p)) then

MoveToBin(p)
ReportMisrouting(fstout(queue(p)), succ(p))

where
MoveToBin(p) = Dequeue(queue(p))

Insert(fstout(queue(p)), succ(p))
ReportMisrouting(l , b) =

if bin(dest(l)) 6= b then Display(pkgId(l), b)

The reader will have noticed that we left various submachines and auxiliary functions
unspecified, for example for queue operations or insertion of elements into bins, which
we consider as generally understood or not critical for the investigated problem. The
ASM method allows the specifier to build models with holes, that is to leave parts
of the specification either as completely abstract or as accompanied by informal
explanations. For proving properties of such models, appropriate assumptions have
to be made for these not furthermore specified parts and have to be proved once
the holes are filled by definitions. This pragmatic separation of definition and proof
concerns is an efficient technique to piecemeal solve complex problems, which is
deeply rooted in the tradition of mathematics.
Refining Position. Assume that the control program cannot access the location
pos(sw) directly, but only send a pulse to Switch(pos(sw)). As in Sect. 2.1,2.2, this
can be reflected by letting the switching be done by an abstract machine Pulses
triggered by a pulse, which is emitted by a refined ASM Positionref . But one has
to pay attention: if pos(sw) := dir(sw , bin(dest(e))) is executed when pos(sw) =
dir(sw , bin(dest(e))) already holds, by the semantics of ASMs this update will leave
pos(sw) unchanged. But an execution of Switch(pos(sw)) changes the value of
pos(sw) anyway, so that for a correct refinement its trigger must be restricted to
the case that the direction needed for the newly arrived package is different from
the one needed by the preceeding package. Had we included this condition already
into the guard of the abstract machine Position, the refinement here would have
become a pure data refinement. As alternative one can include the additional guard
into the refinement step:

Positionref (sw , e) =
if Empty(queue(sw)) and dir(sw , bin(dest(e))) 6= none

and pos(sw) = dir(sw , bin(dest(e)))′ then Emit(Pulse(sw))

Verification. The requirement for the control program, namely “to route pack-
ages to their destination bins by setting the switches appropriately, and to report
misrouted packages”, does not state anything about the relation between correct
routing and misrouting and when misrouting is to be expected. Given that

reader and sensors are guaranteed to detect packages separately
packages cannot overtake in neither conveyor nor pipes nor switches
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the following can be proved for (an appropriately initialized) PackageRouter:

Lemma 1. Every package from the conveyor belt eventually arrives at some bin b
(if PackageRouter is not stopped before). If the package never meets and suc-
ceeds another package with a different destination bin in a switch, then b is its
associated destination bin. It the package is misrouted, Display(pkgId(l), b) will be
activated, where l is the label associated to the package and sent by the reader to
PackageRouter.

This can be proved by an induction on the level(sw) of the switches the package
goes through in the router tree. For the induction step a stronger hypothesis is
needed for packages that never meet and succeed another package with a different
destination bin in a switch, so that for the proof the correctness statement has to
be strengthened to guarantee also the following property:

Assume a package labeled l , which never meets and succeeds another package
with a different destination bin in a switch, enters a switch sw in state S . Then
in this state dir(sw , bin(dest(l))) 6= none is true. Additionally in state S either
pos(sw) = dir(sw , bin(dest(l))) holds or the guard of Positionref is true; in the
second case pos(sw) is correctly set to dir(sw , bin(dest(l))).

3 Enriching FSMs to ASMs

Following [23, 31] we start by analyzing Finite State Machines (FSM), which we con-
sider as the archetype of Abstract State Machines10. In fact, from the practitioner’s
point of view it seems obvious that to accurately characterize Virtual Machines,
it suffices to extend FSM instructions from symbol-reading/writing to reading and
updating of arbitrarily structured abstract data.

3.1 Generalizing FSM States

The well known interpretation of FSM instructions

in state i reading input a, go to state δ(i , a) and print output λ(i , a)

of Mealy automata can be formalized as follows by simultaneous updates of a control
state location (read: a variable) ctl state and an output location out when an input
event is present (read: when the input location in is defined).11

MealyFsm(in, out , δ, λ) = if Defined(in) then
ctl state := δ(ctl state, in)
out := λ(ctl state, in)

10 The original definition of ASMs in [78] was motivated by a different goal: an
epistemological desire to generalize Turing’s thesis.

11 We consider here deterministic FSMs, since non-deterministic FSMs can be mod-
eled using the ASM choose construct described below. For the sake of simplicity
of exposition we suppose each input to be consumed by executing a transition,
technically speaking in to be a monitored function as explained below.
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Two restrictions one sees here are characteristic for the FSM computation model,
besides the strict separation of input and output:

only three locations are read resp. updated (per step): in, ctl state, out ,
only three special data types are used: finite sets of a) symbols representing in-
put/output (letters of an alphabet) and of b) abstract control states representing
a bounded memory (typically written as labels or integers).

ASMs result from withdrawing these restrictions and permitting a machine in each
step to read and update arbitrarily many, possibly parameterized, locations whose
values can be of arbitrary type. Consequently, an arbitrary condition may be used
as a rule guard.

Stated differently, the notion of state is generalized from the three FSM-locations
holding FSM-specific values to an arbitrary set of updatable locations where values
of whatever type reside, whether atomic or structured: application objects, mathe-
matical entities, etc. This flat view of state (read: abstract machine memory) lends
itself to standard methods for grouping of data into a modular memory structure.
A common method is to group subsets of data into tables, via an association of a
value to each table entry (l , (a1, . . . , an)), also called location (think of it as an array
variable). Here l plays the role of the name of the table, the sequence (a1, . . . , an)
the role of an entry, l(a1, . . . , an) denotes the value currently contained in the table
entry (l , (a1, . . . , an)). In logic such a table is called the interpretation of a function
or a predicate. The common mathematical notion of structure, as explicitly defined
by Tarski [109] and since then in the center of the model theory branch of math-
ematical logic, is defined as a set of tables. It represents the most general notion
of structure which has come up in occidental science and thus is what we need for
a sufficiently general notion of Virtual Machine or ASM state.12 Via the view of a
Tarski structure as given by domains of objects coming with predicates (attributes)
and functions defined on them, there is also a close relation to the object-oriented
understanding of classes and their instances.

Having as state a set of parameterized locations, it comes natural for state
changes that in one step an ASM can update simultaneously the value not only of
two or three, but of arbitrarily many locations. This generalizes the above FSM-
transition rules to guarded update rules (called ASM rules) of the following form:

if Condition then Updates

where Updates is a finite set of assignments of the form f (t1, . . . , tn) := t .
Such a view is also taken in [3, pg.52] “to completely separate, during the design,

. . . individual assignments from their scheduling”. Sets of guarded update rules as
above in fact constitute a normal form for a class of ASMs which suffice to define
every Event-B model (see the Event-B-model normal form ASMs defined in Sect. 6.1)
and to compute every synchronous UML activity diagram [33].

A basic ASM is therefore defined by a finite set of ASM rules, which play the
role the instructions play for an FSM. They constitute a mathematical substitute for
the intuitive concept of UML activity diagram transitions upon Event do Action,
defining actions as value changes of some locations.

12 This view of Tarski structures supports a generalization of Parnas’ table tech-
nique [95, 94] as a convenient notation for ASMs, as detailed in [22, 23].
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The concept of computation (run) of an ASM is the same as for FSMs, ex-
cept that the possibility of having multiple locations updated in one step is further
enhanced by the following stipulation: an ASM, instead of executing per step one
rule as do FSMs, fires in each step all its rules whose guard is true in the given
state.13 This synchronous parallelism in an ASM step helps the designer to make
the independence of multiple actions explicit and to avoid introducing irrelevant
sequentializations of orthogonal features. For asynchronous multi-agent ASMs it
suffices to generalize the notion of run from sequences of moves (execution of rules)
of just one basic ASM to partial orders of moves of multiple agents, each executing
a basic ASM, subject to a natural coherence condition, see [46, Def.6.1.1].

The general form of ASM rules no longer shows the particular structure deter-
mined by the control states i , j , . . . of an FSM, which however is particularly useful
for modelling control systems, protocols, business processes and the like.14 We there-
fore proposed in [23] the name control state ASMs for ASMs which keep at their
top level the characteristic FSM control states, as a means to model some overall
status or mode guiding the execution of guarded synchronous parallel updates of the
underlying rich state. Formally, control state ASMs are ASMs where all the rules
have the form Fsm(i , if cond then rule, j ), standing for the following ASM rule
(where rule is supposed to also be an ASM rule):

if ctl state = i and cond then
rule
ctl state := j

To display such rules often the standard graphical notation for FSMs is used, where
circles represent the control states, rhombi the guard cond ition and rectangles the
rule body. See Fig. 1–4.

For pragmatic reasons—ease of modelling real-life VMs—we are going to indi-
cate in the next subsection two further constructs to form basic ASM rules, one
which makes it possible to explicitly name forms of non-determinism and one which
enhances the parallelism of finitely many simultaneous updates. Similarly we freely
use other standard notations, where a rigorous definition of their meaning can be
given.

3.2 Classification of Locations, Non-Determinism, Parallelism

The roles played by the locations and functions appearing in an FSM determine
the ASM classification of locations and functions. Some locations or functions are
static, meaning that their values do not depend on the (dynamics of) states, e.g.
the two FSM-functions δ, λ that are defined by the FSM program. Static ASM loca-
tions can be given purely functional or axiomatic definitions, as done for the loca-
tions timer(phase) in Sect. 2.2. Thus ASMs provide a framework for a theoretically

13 More precisely: to execute one step of an ASM in a given state S determine all
the fireable rules in S (s.t. Condition is true in S), compute all expressions ti , t
in S occuring in the updates f (t1, . . . , tn) := t of those rules and then perform
simultaneously all these location updates. This yields the successor state S ′ of S .

14 See the use of modes in [94] as a means to structure the set of states.
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well-founded, coherent and uniform practical combination of abstract operational
descriptions with functional and axiomatic definitions.15

Locations whose values may depend not only on the values of their parameters,
but also on the states where they are evaluated, are called dynamic. Examples are
the FSM-locations in, ctl state, out . These locations can have four different roles:16

in is only read by the FSM and updated only by the environment. Such lo-
cations of an ASM M , that are only readable by the machine and writable
only by other machines or the environment, are termed monitored for M . It
is often convenient to describe their meaning for M axiomatically, by a list of
assumptions, thus relegating the proof for these assumptions to the model of
the other machine(s) where the computation of the monitored locations takes
place (divide-and-conquer technique).
out is only written by the FSM and read only by the environment. Such locations
of an ASM M , that are only writable by M and readable only by other machines
or the environment, are termed output locations of M .
ctl state is read and updated by an FSM. ASM locations that are readable and
writable only by M are called controlled locations of M .
ASM locations that are readable and writable by M and some other machine
or the environment are called shared. Typically protocols are used to guarantee
the consistency of updates of such locations.

This classification distinguishes between the roles different machines (e.g. the
system and its environment) play in using dynamic locations for providing or up-
dating their values. Monitored and shared locations represent two general mecha-
nisms to specify communication types between different ASMs. For modularization
purposes we also distinguish between basic and derived ASM locations. Derived lo-
cations are those whose definition in terms of basic locations is fixed and may be
given separately, e.g. in some other part (“module” or “class”) of the machine or by
axioms, equations, etc. For an example see the function succ(sw) in Sect. 2.3

A function or predicate f is called of a type if every location f (x ) is of that type.
Selection functions constitute a particularly important class of monitored functions,
for which also the following special notation is provided to make the inherent non-
determinism explicit.

choose x with φ in rule

standing for the rule to execute rule for one element x , which is arbitrarily chosen
among those satisfying the selection criterion φ. Similarly, also the synchronous
parallelism which is already present in the execution of ASM rules is extended by
the following standard notation:

forall x with φ do rule

15 This avoids the alleged, though unjustified and in fact destructive, dichotomy be-
tween declarative and operational design elements, which unfortunately has been
strongly advocated in the literature over the last thirty years. See the discussion
at the end of Sect. 6.2.

16 The naming is influenced by its pendant in Parnas’ Four-Variable-Model [94].
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standing for the simultaneous execution of rule for every element x satisfying the
property φ.

4 ASM Ground Model Technique

The concept of ASM ground model goes back to [16, 17, 19, 20, 18, 21], where it
has been used to produce a faithful ASM model for the at the time to-be-defined
ISO standard of Prolog [36, 43]. We describe here the foundational and technical
characteristics of ASM ground models and refer the reader to [25, 30] for a more
detailed dicussion of the concept.

The goal of building a ground model is to turn given informal requirements
into a clear, unambiguous, accurate, complete and authoritative reference document
for their intended content. This document is to be used for the evaluation, the
implementation and possible changes of the requirements. Ground models have to
be formulated and analyzed at the level of abstraction of the given application
domain, prior to coding in any programming language. In other words ground models
are specifications that precisely and authoritatively define, in rigorous application
domain terms and at the level of detailing that is determined by the application,
what the to-be-constructed software-controlled system is supposed to do. Ground
models constitute a “blueprint” of the to be implemented piece of “real world”.
In the semiconductor industry they are named “golden models” [103, pg.26]. They
represent what Brooks [49] calls “the conceptual construct” or the “essence” of a
software system, whose definition precedes the development of its machine-managed
representation by code. It must be possible to justify such a definition as

consistent internally,
correct and complete with respect to the intuitions underlying the informal
requirements.

These three properties characterize specifications we call ground models. To es-
tablish these properties, every available scientific or engineering technique must be
usable. This includes inspection and review of the ground models to get the correct-
ness and completenss properties checked by application domain experts (or potential
users) and system designers. They must be enabled to use a combination of tool-
supported simulation techniques—for systematic experiments (model checking and
testing) with the models—and of mathematical verification techniques—to show the
model to possess the properties of interest, e.g. as part of a certification procedure.

In [30] we explain the meaning of these three basic properties in more detail
and show that to establish them needs a ground model language that satisfies the
following two properties.

The language is understood by all the parties involved. It mediates between
the application world, where user and domain experts live, and the world of
mathematical models and software-intensive systems, where software architects,
programmers, testers, reviewers, maintenance experts live.
The language provides a means for a combined use of both model validation by
simulation (testing or model checking) and property verification by mathemat-
ical proof.
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The language of ASMs satisfies these conditions, clearly separating models and
their properties. It also permits to construct ground models with the following three
constituent attributes:

precision to satisfy the required accuracy exactly,
minimality, abstracting from details that belong only to the further design and
not to the application problem,17

simplicity to be understandable, rigorously analyzable and acceptable as con-
tract by domain experts, system architects, reviewers and testers.18

Thus ground models share all the properties Parnas advocates convincingly for
the software documentation provided by a good engineering discipline [94]. Obvi-
ously most of these properties—precision, accuracy, consistency, correctness, com-
pleteness, authoritative character—must be preserved for the further documentation
produced on the way from ground models to code. This documentation of the de-
tailed design process is provided by the ASM refinement method we are going to
characterize in the next section.

One final word on the often heard claim that such a ground model construction
and analysis effort are an add-on one should avoid in an efficient sofware engineering
process. This claim reflects only the fact that numerous current system development
approaches consider the code as the true definition of the system, excluding any
other authoritative description of the system-to-be-built before it has been encoded.
Among the typical, rather expensive effects of this view one finds the following: a)
the final system may not really do what it was required by the customer to do, b)
the final system is not well-understood (first of all not by the application domain
experts who have to work with it, but often also not by the software specialists
who face serious difficulties in analyzing, understanding and repairing unexpected
system breakdowns), c) the testing effort becomes overwhelming (without the pos-
sibility of guaranteeing a certifiable standard of reliability), d) system changes can
become rather difficult to program and hard to control (e.g. with respect to their
compatibility with some previously guaranteed behaviour), e) maintenance becomes
a nightmare once those who have led the development are not available any more,
etc. Careful construction and analysis of ground models, combined with their step-
wise detailing (refinement) to code, is a means to prevent such undesired effects
of missing conceptual application-centric control over the system. Thus the effort
spent on ground models is highly compensated by what is saved in later development
stages like testing, inspection and maintenance. See also the remark at the end of
Sect. 5 and [30] for further discussion.

17 The minimality avoids to define ground models that restrict the problem solution
unnecessarily. It thus helps to leave the design space open as much as possible.

18 Experience in the following domains has confirmed that the ASM language is
understandable for domain experts without computer science education: rail-
way, control and telephony systems [32, 42, 50], business and aviation security
processes [35, 7, 13, 76, 77], linguistics [84, 91, 92, 55], biology [88], social sci-
ences [48, 47].
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5 ASM Refinement Concept for Detailed Design

Parnas [94] explains why good software documentation must record the key design
decisions in a transparent and easily accessible way. Typically one has to take nu-
merous and often orthogonal design decisions when implementing a ground model
by code. Refined models document those design decisions that do not belong to
the application problem and therefore by the minimality property do not appear
in the ground model, but pertain to the implementation of the algorithmic prob-
lem solution.19 In fact some authors distinguish between requirements specifications,
documented by ground models, and design (also called technical) specifications with
the frequent “explosion of ‘derived requirements’ (the requirements for a particular
design solution), caused by the complexity of the solution process” [96, Fact 26].

We have generalized the classical refinement method [113, 59] to the mathemati-
cally precise notion of structure-transforming pseudo-code defined by ASMs (see [26]
for a recent survey with further details). It allows the designer to fine-tune any given
abstract construct, which can be viewed as “the already-fixed portion of a multi-
step system development”, to the new details needed to realize a design decision
by an implementation, “the yet-to-be-done portion of a multi-step system devel-
opment” [108, p.438]. In this way the ASM refinement method directly supports
the practitioner’s view of an implementation as “a multi-step process. Each stage
of this process is a specification for what follows” [108, p.440]. For this reason and
differently from other refinement notions in the literature, an ASM refinement step
can simultaneously involve both the signature (the data structure) and the control
structure (the flow of step-by-step operations). In fact, in choosing how to refine an
ASM M to an ASM M ∗, one has the freedom to define the following five concepts
(see Fig. 6):

a notion (signature and intended meaning) of refined state,
a notion of states of interest and of correspondence between M -states S and
M ∗-states S∗ of interest. Since certain intermediate M -states or M ∗-states may
be irrelevant (not of interest) for the refinement relation, they are hidden by
defining what are the corresponding states of interest, namely those pairs of
states in the runs one wants to relate through the refinement. Usually initial
states in M and M ∗ correspond to each other, similarly for pairs of final states
(if there are any),
a notion of abstract computation segments τ1, . . . , τm , where each τi represents
a single M -step, and of corresponding refined computation segments σ1, . . . , σn ,
of single M ∗-steps σj , which in given runs lead from corresponding states of

19 As already observed in Sect. 1 for ground models, this distinction does not per-
tain to the process of model building. The classification of what belongs to the
“essence” of the system and what only to its implementation may change during
the design process, typically when “implementation decisions are made before
specification is complete and the decisions can have a major effect on the further
specification of the system” [108, p.440]. The final definition, yielding a document
with the hierarchy of stepwise refined models, can be given only at the end of the
design process. This document too is typically re-opened during maintenance for
change management, where it has to be synchronized with the decisions taken for
the system change.
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interest to (usually the next) corresponding states of interest (the resulting
diagrams are called (m,n)-diagrams and the refinements (m,n)-refinements),
a notion of locations of interest and of corresponding locations, i.e. pairs of
(possibly sets of) locations one wants to relate in corresponding states,
a notion of equivalence ≡ of the data in the locations of interest; these local
data equivalences usually accumulate to a notion of equivalence of corresponding
states of interest.

σ1 · · · σn︸ ︷︷ ︸
n steps of M ∗

-State S∗ S∗′

6

?

≡
6

?

≡

-State S S ′

m steps of M︷ ︸︸ ︷
τ1 · · · τm

With an equivalence notion ≡ between data in
locations of interest in corresponding states.

Fig. 6. The ASM refinement scheme

Once the notions of corresponding states and of their equivalence have been de-
termined, one can define that M ∗ is a correct refinement of M if and only if every
(infinite) refined run simulates an (infinite) abstract run with equivalent correspond-
ing states. This ASM refinement concept generalizes other more restricted refinement
notions in the literature, as analysed in [97, 98], and scales to the controlled and
well documented stepwise development of large systems.

In particular the ASM refinement method supports modular system descrip-
tions, including the modularization of ASM refinement correctness proofs aimed at
mechanizable proof support, for examples see [97, 107, 37, 44].

If the authoritative character of both ground and intermediate models is taken
seriously, then refined models support change management, namely by documenting
natural points for possible design changes, e.g. to cover new cases or to optimize a
solution. Obviously this implies that to maintain the series of models as documenta-
tion of a changed system, the models affected by the change have to be updated and
to be kept synchronized with the ground model or other intermediate models, as
already pointed out in the preceeding footnote. If this implies additional modelling
work, it saves work for the coding during maintenance steps. The report [42] on the
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successful use of the ASM method for an industrial reengineering project shows that
in certain situations, using a compiler from the underlying class of ASMs to exe-
cutable code can even make re-coding completely superfluous and keep maintenance
at the application-centric modelling level, where the changed requirements are for-
mulated. More generally the report illustrates that using the ASM method produces
no useless overhead: it typically shifts the most error-prone part of the development
effort from the late coding and testing phases to the early modelling phase. This
phase is dictated by high-level architectural concerns, major design decisions, the
need to achieve a correct overall system understanding by experts and to lay the
ground for a certification of the required trustworthiness. But the amount of the
overall system development effort is essentially kept unchanged. See also the remark
at the end of section 4.

Good intermediate models, refining an otherwise unaltered model to capture a
to-be-realized design feature, provide descriptions which are easier to understand
than the code. This is helpful in particular when the maintenance team has to take
its information on the system behaviour from the documentation, after the devel-
opment team has left. The examples in the literature (e.g. [44, 37, 42, 107]) and my
own industrial experience show that, contrary to Parnas’ claim [94] on the classical
refinement method, good ASM refinements do not lead to long or repetitive pro-
grams, but allow the designer to succinctly document design decisions in a focussed
and piecemeal manner, one by one, avoiding any irrelevant detail or repetition.

6 Integration of Multiple Design and Analysis Methods

Due to the mathematical character and the simplicity of the conceptual framework
of the ASM method, the method can be combined in a semantically coherent and
natural way with any other accurate (scientifically well-defined) design and analysis
technique. We illustrate this in Sect. 6.1 by a characterization of Event-B models
as a particular class of ASMs, coming with a specialized refinement definition. In
Sect. 6.2 we highlight the embedding of further (including so-called semi-formal)
approaches to system design and analysis into the ASM method.

6.1 ASM-Characterization of Event-B Machines

Event-B models are presented in [2, 3, 6] as an extension of B-machines [1], which
have been used with success for the development of reliable industrial control soft-
ware in a variety of safety-relevant large-scale industrial applications [5]. A discussion
of the foundational relations between B-machines and ASMs can be found in [23,
Sect.3.2]. We limit ourselves here to characterize Event-B models as a class of ASMs,
following [31, Sect.4]. The three basic constituents to analyze are the notions of state,
event and refinement.
States of Event-B models can be viewed as Tarski structures with a static and a
dynamic part. The static part, called context, consists of three items:

sets s which represent the universes of discourse (domains),
constants c which are supposed to have a fixed interpretation,
properties (c, s) used as axioms characterizing the intended model class.
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The dynamic state part consists of variables v and an environment, which is viewed
as another Event-B model. Inputting is captured by non-determinacy. The states
are supposed to be initialized, technically via a special event with true guard.
Events come in the form

if guard then action

where the guard is a closed first-order set theory formula with equality and action
has one of the following three forms (we use the ASM notation which is slightly
different from Abrial’s notation):

Updates. The syntactical Event-B-model reading of Updates is that of a simulta-
neous substitution v1, . . . , vn := e1, . . . , en(v) of vi by ei , whereas its equivalent
semantic ASM reading is that of a finite set of simultaneous updates vi := ei of
the values of variables (parameter-free locations) by expression values,
skip,
choose x with P(x , v) in Updates where Updates is a simultaneous substitu-
tion v1, . . . , vn := e1, . . . , en(x , v)

Abrial views the operational interpretation of events, for example as defined above
by the semantics of ASM rules, only as an informal intuitive account, whereas the
official semantic definition comes in the form of logical descriptions using pre/post
conditions and invariants. For the present comparison with ASMs it suffices to con-
sider invariants as descriptions of properties the designer wants and claims to hold
in every state that is reachable from an initial state. Of course, eventually such
invariants will have to be justified, by whatever available means.

The preceding definition of events represents an Event-B normal form for ASM
rules. The outstanding characteristic feature, namely the underlying interleaving
semantics (“at each moment only one event can occur”), is reflected by a top-
level choice among the finitely many events which may be applicable. For this non-
deterministic choice among ASM rules R(i) we use the following notation:

R(0) or . . . or R(n − 1) = choose i with i < n in R(i)

There is a technical consequence of this interleaving interpretation the designer
should be aware of. The form in which simultaneous updates are collected under
a guard into one event has an impact on the semantics of the model, differently
from the basic parallelism of ASMs where in each state every applicable rule (read:
event) is applied. The splitting of updates into different events implies some non-
deterministic scheduling of events with overlapping guards. This is reflected by the
following Event-B normal form (the part in brackets [ ] is optional):

Rule1 or . . . or Rulen where forall 1 ≤ i ≤ n
Rulei = if condi then [choose x with Pi(x ) in] Updatesi

In this normal form the limit cases are that condi is always true (unconditional up-
dates) or that the set Updatesi is empty (skip). We have disregarded the constraint
imposed in [4] that in an Event-B model, no parallel update is allowed for the same
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variable. This constraint is only of technical nature and prevents the case with in-
consistent update sets to happen, whereas the semantics of ASMs prescribes in this
case only that the computation is aborted.

In comparison to the general form of ASM rules there are no rules of the form
forall x with P(x ) do Rule and the only external choose (i.e. one that is not
applied directly to a set of updates) which is permitted is the top-level one on rules
defining the interleaving model so that there is no further nesting of choices. This
prevents the designer from using complex quantifier-change structures in his models,
so that they have to be circumscribed by different means in case they are part of a
‘natural’ description of intended system behaviour.

Refinement of Event-B models plays a crucial role for the B-method, as it does
for the ASM method. However, the goal to provide definitions of Event-B models
together with mechanically checked (interactive or automated) proofs of the desired
invariants dictates a restriction to certain forms of the general ASM refinement
concept. Using the analysis of the ASM refinement concept in [97, 98] one can
say that for Event-B model refinements, only (1,n)-refinements with n > 0 are
permitted. No (1, 0)-refinement is allowed, reflecting the condition that each abstract
event must be refined by at least one refined event, and no (n,m)-refinement with
n > 1 is allowed. In addition Event-B model refinements must satisfy the following
constraints:

in a (1,n)-refinement F1, . . . ,Fn ,F of E , each Fi is supposed to be a new event
refining skip,
the new events Fi do not diverge,
if the refinement deadlocks, then the abstraction deadlocks.

As to the observables in terms of which Event-B refinements are formally defined,
they correspond to what we have called the locations of interest of an ASM [26].
Formally they can be viewed as projections of state variables. Technically speaking,
in Event-B refinements the observables are variables which are required to satisfy
the following conditions:

they are fresh variables with respect to state variables and to invariants,
they are modifiable only by observer events of form a := A(v),
they depend only on state variables v ,
the abstract observables A(v) can be ‘reconstructed’ from the refined ones by
an equation A(v) = L(B(w)) which represents an “invariant gluing the abstract
observables to the refined ones”.

The only pragmatically relevant one of these technical conditions on observables
is the gluing invariant. In ASM refinements any mathematically accurate scheme
to relate refined and abstract observables is allowed, it need not be describable
equationally.

6.2 Integrating Special Purpose Methods

In a similar way to Event-B models and to UML activity diagrams and Parnas’ ta-
ble technique, mentioned in Sect. 3.1, all the major computation and system design
models turned out to be natural instances of specific classes of ASMs (for details
see [23, 28]). This confirmes the unifying-framework character of the ASM approach
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to systems engineering. Many specification approaches are geared for some particu-
lar type of application and equipped with specially tailored definition or proof tech-
niques. Such features can be naturally reflected by imposing appropriate restrictions
on the class of ASMs, the refinement scheme and the related proof methods.

For the general, but loose UML-based approach to system engineering, the ASM
method offers a rigorous, semantically well-defined version. The ASM ground model
and refinement concepts replace the loose character of human-centric UML mod-
els and of the links the UML framework offers between descriptions at different
system design levels. Starting from the accurate ASM-based semantic definition of
the various UML diagrams and related notations (see [33, 34, 51, 52]), this equips
UML-based practice with the degree of mathematical precision that distinguishes a
scientifically rooted engineering discipline worth its name. ¡

Another way to seamlessly include so-called semi-formal design techniques into
an ASM-based development process goes as follows. The less rigorous a specification
is, e.g. when there are reasons to momentarily leave parts of the specification as only
informally explained, the more ‘holes’ the ASM model shows that one has to fill by
providing assumptions on the intended meaning. These assumptions have to be
discharged for the refined models, where the detailed design introduces the missing
elements. Within the framework of mathematics, much of which is what in computer
science is called semi-formal, this is a legitimate way to proceed. A similar freedom
of formality concerns the notations. As is characteristic for mathematical disciplines,
the ASM method is not bound by the straitjacket of a particular formal language,
but allows one to freely use any standard algorithmic and mathematical notation.
The only condition for adopting any useful description technique, whether textual
or tabular or graphical or whatever, is a mathematically rigorous definition of its
meaning.

The ASM method also incorporates within one common modelling framework
two pairs of approaches that in the literature are frequently, but erroneously, viewed
as antagonistic instead of complementary, namely using so-called declarative (deno-
tational) versus operational and state-based versus event-based system descriptions.
For the definition of an ASM one can use as much of declarative or denotational
characterizations as desired, using functional definitions or logico-axiomatic descrip-
tions. But this does not exclude the use of abstract operational descriptions where
the latter turn out to be simpler, more intuitive and easier to refine to code. Declar-
ative definitions are often used to define the background signature of an ASM (via
static, monitored, derived functions, see Sect. 3.2). It is also often used to define
what among the class of all possible runs of an ASM is considered as a legal run,
describing axiomatically a certain number of features one wants to abstract away at
the investigated level of abstraction. Similarly, whatever one wants to classify as an
event can be included into the declaration of the state signature and be treated cor-
respondingly in rule guards; see for example Event-B, where events are considered
as rule firings, or [15] where process-algebraic event-based structuring techniques
and concurrency patterns are combined with the state-based abstraction mechanism
and synchronous parallelism of ASMs.

In a similar way the general mathematical framework of the ASM method allows
one the coherent separation and integration of defining a model and proving model
properties. The ASM method does not force you to simultaneously define your mod-
els and prove properties for them, still less to do this in an a priori determined
deductive system, but it allows you to add proofs to your definitions, where appro-
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priate, and to do this in various ways, depending on what is needed. Obviously a
price has to be paid for this generality: if one wants a machine-assisted mechanical
verification of your system, one will have to formalize it in the language of the the-
orem prover. In this case it will be an advantage if one succeeds to define a model
right from the beginning as a set of particular logical or set-theoretical formulae, as
is the case for example in the B method [1]. On the other side, since ASMs are not
formulae but represent executable models, the ASM method allows one to adopt
for abstract models simulation, run-time verification and testing techniques, where
proofs for whatever reason are not viable.

7 ASM Method Applications in a Nutshell

The proposal to use Abstract State Machines a) as a precise mathematical form of
ground models and b) for a generalization of Wirth’s and Dijkstra’s classical refine-
ment method [113, 59] to a practical systems engineering framework supporting a
systematic separation, structuring and documentation of orthogonal design decisions
goes back to [16, 17, 21]. It was used there to define what became the ISO standard
of Prolog [36]. Since then numerous case studies provided ground models for various
industrial standards, e.g. for the forthcoming standard of BPEL4WS [64], for the
ITU-T standard for SDL-2000 [75], for the de facto standard for Java and the Java
Virtual Machine [107], the ECMA standard for C# and the .NET CLR [38, 105, 71],
the IEEE-VHDL93 standard [39]. The ASM refinement method [26] has been used
in numerous ASM-based design and verification projects surveyed in [24].

The ASM method, due to the mathematical nature of its constituent concepts,
could be linked to a multitude of tool-supported analysis methods, in terms of both
experimental validation of models and mathematical verification of their properties.
The validation (testing) of ASM models is supported by various tools to mechani-
cally execute ASMs, including ASM Workbench [56], AsmGofer [100], an Asm2C++

compiler [101], C-based XASM [8], .NET-executable AsmL engine [68], CoreASM
Execution Engine [63]. The verification of ASM properties has been performed using
justification techniques ranging from proof sketches [41] over traditional [37, 40] or
formalized mathematical proofs [106, 93] to tool supported proof checking or inter-
active or automatic theorem proving, e.g. by model checkers [112, 57, 73], KIV [99]
or PVS [60, 72]. As needed for a comprehensive development and analysis environ-
ment, various combinations of such verification and validation methods have been
supported and have been used also for the correctness analysis of compilers [61, 85]
and hardware [111, 110, 102, 80].

For more applications, including industrial system development and re-engineering
case studies that show the method to scale to large systems, see the website of the
ASM Research Center at www.asmcenter.org and the AsmBook [46].

8 Concluding Remarks

The ASM method is not a silver bullet, but shares the intrinsic limitations of every
engineering discipline rooted in mathematics. Whereas ASMs are easily grasped and
correctly understood by application domain experts and system engineers, namely
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as rule sets describing event triggerred actions, or as pseudo-code or FSMs over
arbitrary data types, it is not an easy task to teach or to learn a judicious use of
the inherent abstraction potential for constructing appropriate ground models and
refinement hierarchies.

There are also pragmatical limitations, which the method shares with other
rigorous practical methods, as for example the B-method [5]. They have to do with
the proposed shift in the current software system development process. The proposal
is not to start coding right away and not to relegate the correctness and reliability
issues to an ever growing testing phase. Instead it is suggested to first construct and
reason about accurate ground models for the requirements and exact interfaces for
the various design decisions, leading to more and more detailed models. From that
and only from that basis should executable code be generated, which then comes with
objectively verifiable and validatable correctness properties one can trace through
the refinement hierarchy to their ground model pendant. It is by no means easy to
influence let alone to change an established industrial practice.

Besides the engineering of complex software-based systems we see other ex-
citing directions where the ASM method can be (and partly has been started to
be) applied, mainly by exploiting the modeling potential of ASMs in areas where
dynamic features are in the focus. Examples are business and similar technical pro-
cesses [7, 76, 77], social processes [47] and biological systems [88].
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