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Abstract

We provide a complete mathematical semantics for the parallel logic

programming language PARLOG. This semantics is abstract but never-

theless simple and supports the intuitive operational understanding of

programs. It is based on Gurevich's notion of Evolving Algebras ([20])

and is obtained adapting ideas from the description of full (Sequential)

Standard PROLOG in [5] and the speci�cation of imperative parallel

computation phenomena of OCCAM developed in [24]. We develope a

complete speci�cation of the core of PARLOG which governs the com-

putation of goals by user de�ned predicates. The built-in predicates

can be described as for Standard PROLOG (see [4]-[6]) and are there-

fore omitted here. We give an explicit formalization of the two kinds of

parallelism occurring in PARLOG: the AND-Parallelism and the (or-

thogonal) OR-Parallelism. Our description uses an abstract notion of

PARLOG terms and PARLOG substitutions which is unburdened by

representation details and implementation constraints.
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1 Introduction

Gurevich's notion of Evolving Algebras, initially developed to provide oper-

ational semantics for programs and programming languages by improving

on Church's thesis (see [21], [22]), has since been shown to apply as for-

mal speci�cation method for real programming languages like Modula2 [23],

Smalltalk [3], Occam [24], Standard (Sequential) Prolog ([4], [5], [6], [12]),

Prolog III [14], an object-oriented data base language [18]. In [13] and [7] it

has allowed a systematic analysis of Prolog database views and their imple-

mentation. In [10] and [11] a series of Evolving Algebras extensions, starting

from the Prolog algebras of [5] and proved to be correct w.r.t. the latter,

has been developed which yields an entirely mathematical but transpar-

ent speci�cation of Warren's Abstract Machine for executing Prolog. This

speci�cation together with the correctness proof has been extended to type-

constraint logic programming for the case of Protos-L by Beierle & B�orger

in [2].

In this paper we provide a complete mathematical semantics, based on

Evolving Algebras, for the parallel logic programming language Parlog. This

seems to be the �rst attempt of a complete, formal (machine independent)

speci�cation of Parlog in the literature. In the conclusion we relate our re-

sult to other approaches.

We start from the Evolving Algebras description of (Standard) Prolog given

by B�orger (see [5]) and combine it with basic ideas developed by Gurevich

and Moss for an Evolving Algebras speci�cation of functional parallel compu-

tation phenomena of Occam (see [24]). We develope a complete speci�cation

of the core of Parlog which governs the computation of goals by user de�ned

predicates. The built-in predicates occurring in Parlog (see [16]), can be

treated in a similar way as already shown for (Standard) Prolog (see in par-

ticular [4], [5], [6]).

We give an explicit formalization of the two kinds of parallelism occur-

ring in Parlog: the AND-Parallelism and the (orthogonal) OR-Parallelism.

It turned out that the AND-Parallelism and the OR-Parallelism of Parlog

can be speci�ed almost independently one from the other. Both phenomena

are described using an abstract notion of Parlog terms and Parlog substi-

tutions which is unburdened by representation details and implementation

constraints. This is similar to what has been done for the conjunctive and

disjunctive components of the WAM in [10] and we believe that a natural

extension of the term algebras developed in [11] for the WAM can be de�ned

to obtain a Parlog - JAM from our present Parlog speci�cation.

The paper is organized as follows:
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- in Section 2 we adapt Gurevich's [20] de�nition of Evolving Algebras

to our purposes;

- in Section 3 we de�ne universes and functions of Parlog Algebras (ex-

tending B�orger's [5] de�nitions for Sequential Prolog) and give the

Transition Rules for AND-Parallelism in Parlog;

- in Section 4 we extend the previous Parlog Algebras (introducing new

universes and functions and modifying the existing ones) to formalize

OR-Parallelism in Parlog and give the Transition Rules for it;

- in the Appendix the complete Transition Rule System describing the

semantics of Parlog is listed.

A preliminary version of this paper has appeared in [8], [9]. Indeed in [8]

we have given a formalization of the AND-Parallelism of Parlog which uses

an abstract notion of OR-Parallelism and therefore can be applied mutatis

mutandis to other parallel logic programming languages like Concurrent Pro-

log or GHC. In [9] we have made this abstraction explicit by a system of

rules for the OR-Parallelism, thus showing that it is orthogonal to the AND-

Parallelism. We correct here the candidate clause search of [9] which turned

out to be unnecessary complicated. (For details see sections 4.2.3 - 4.2.6).

In [25] the correctness of this "implementation" is proved.

2 Evolving Algebras

To describe the semantics of a programming language from an operational

point of view means to describe the way in which an ideal abstract machine

executes the commands of the given language.

In algebraic operational semantics, an instantaneous con�guration of a

computing (abstract) machine is interpreted as a �nite, many-sorted struc-

ture having �nite sets, called universes, and partial functions de�ned on

cartesian products of the universes. (Supposing that the set Bool of boolean

values is always present as universe, we can represent predicates by their

characteristic functions.)

Since a computation is a sequence of machine con�gurations, an abstract

machine can be mathematically seen as an algebra whose universes and func-

tions may change in time by application of �nite number of transition rules

which guide the evolution of the algebra from one state to another. The

transition rule system describes the way in which the abstract machine ex-

ecutes the commands of the language.

The framework proposed by Y.Gurevich in [21] (see also [20]) and based
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on the notion of Evolving Algebras, allows us to capture the intuition of

the dynamic and resource-bounded aspects of computations. For motivation

and complete de�nitions we refer the reader to [20] - [22].

Adapting [20] to our purposes, we de�ne an Evolving Algebra as fol-

lows:

An Evolving Algebra is a pair (A; T ) consisting of a (�nite), many-sorted,

partial, �rst-order algebra A of some �nite signature and a �nite set T of

transition rules of the same signature.

A computation of A is a (�nite or in�nite) sequence s0; s1; � � � ; sk; sk+1; � � �,

where s0 = A and each sk+1 is obtained from sk by applying one or more

transition rules.

2.1 Transition Rules

A transition rule has the form:

If b(p) then F

where b(p) is a �rst order expression of the given signature of the algebra

(sometimes called guard); only very simple expression for b(p) will be used,

mostly boolean;

F is a set of updates U1(p),U2(p),: : : ,Um(p);

p is a set of variables ranging over some universes of the given algebra.

To execute a transition rule on a given algebra A means to perform si-

multaneously the U1(p), U2(p),: : : , Um(p) updates in A for each value of p

such that b(p) is true in A. So doing the given algebra A changes to another

algebra of the same signature.

Note that in writing down our rules, we often make use of the notational

device "Let abbreviation long-expression" which allows to write a short "ab-

breviation" instead of the full "long-expression".

Remark: Following the given de�nition, a system of transition rules is

non-deterministic because in a given moment more than one guard may be

true (and the corresponding rule executed) in a given algebra. If a language

is deterministic, the system of transition rules must be formulated so that

the guards are mutually exclusive and the whole system turns out to be

deterministic, too.

A Parlog computation is non-deterministic and so will be the Parlog system

of transition rules. Moreover a Parlog computation may involve a concurrent

computation of more than one processes. This implies that the transition

from a current algebra Ask
to the subsequent algebra Ask+1

will be realized
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applying simultaneously more than one rule (one for each process which

works in parallel with others). We will only use non-con
icting rules.

2.2 Updates

We have said that an algebra represents an instantaneous con�guration (a

state) of the (abstract) machine. Passing from one state to another, the

algebra is updated according to the rules which encode the execution of the

language commands by the machine.

We will use two kinds of updates:

a) function updates;

b) universe extensions.

Note. We will not use universe contraction rules which were considered in

[21]. For Parlog their application would in most cases correspond to garbage

collection, which need not be part of the formal description of the semantics

of programming languages. This practice was already adopted in [4].

A function update has the form:

f(t1; t2; � � � ; tn) := t

where f is a function symbol and t1; t2; � � � ; tn; t are terms in the signature of

the language.

To execute a function updatemeans to compute the terms t1; t2; � � � ; tn; t

in the given algebra, say with result a1; a2; � � � ; an; a; then the result of the

update's execution is to assign the new value a to the function f on the

argument (a1; a2; � � � ; an):

A universe extension update has the form:

Extend U by temp1, temp2,: : : , tempt with

S

end Extend
where U is a universe of the algebra, t a term and S a set of function updates

where temp1, temp2,: : : , tempi,: : : , tempt may occur. To apply this universe

extension update on an algebra A means to compute t in A, say with

resulting number n, to extend the universe U of A with new elements temp1,

temp2,: : : , tempn and to perform the sequence S of function updates for all

values i between 1 and n simultaneously.
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2.3 Auxiliary functions for Evolving Algebras

We suppose that each Parlog Algebra is equipped with some standard

functions which we summarize here.

� Given a setD, letD�� be (a subset of) the set of sequences of elements

of D.

For f : D ! T; we de�ne f�� : D�� ! T�� such that

f��(d1; � � � ; dn) = (f(d1); � � � ; f(dn)):

� The Parlog Algebras are equipped with the standard list operations.

In particular we see a list as:

List = [headjtail]

where head is the �rst sequence element and tail the rest of the se-

quence. The function

proj : Index�D�� ! D;

is the projection function. Index is a set of indices equipped with a

successor function

succ : Index! Index:

On lists we assume the "integrity constraint"

List = [proj(1; List); � � � ; proj(length(List); List)];

where length is the function which yields the number of list compo-

nents.

� We will use an [op]-decomp function de�ned as follows:

if op is an associative term building operator (like "," ,"&", ".", ";")

and t a term,

[op]-decomp(t)

denotes the sequence [t1; � � � ; tn] of immediate components of t w.r.t.

op, i.e. such that

t � t1 op � � � op tn and 8i : ti 6= op(a; b):

[op]-decomp comes with its inverse function [op]-comp which yields

the term t built by the elements of the sequence [t1; � � � ; tn] using the

operator op.
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� We introduce two other auxiliary functions for lists to simplify the

notation of transition rules.

If t is a term built by an operator op (like "," ,"&", ".", ";") having

form t1 op � � � op tn, we de�ne the following two functions:

[op]-head(t) = head([op]-decomp(t))

which gives the �rst element t1 of term t;

[op]-tail(t) = [op]-comp(tail([op]-decomp(t)))

which yields the term t without its �rst element t1.

3 AND-Parallelism

A Parlog program is a set of guarded clauses.

To run a program P means to give a query Q to the system and try to

satisfy the goal(s) represented by Q, using facts and rules de�ned by P.

A query is a term built up from literals by "," and "&":

� "," is the parallel conjunction operator;

� "&" is the sequential conjunction operator.

To compute g1; g2; � � � ; gn, means to compute g1 and g2 and : : : and gn in

parallel.

To compute g1&g2& � � �&gn, means to compute �rst g1 and then g2 and

: : : and �nally gn. In Parlog it is allowed to mix parallel with sequential

conjunction operators. The parallel operator "," has higher binding priority

than the sequential operator "&". For ex., the query g1; g2&g3 has the e�ect

of running g1 concurrently with g2 and, if and when both have terminated

successfully, then running g3. The higher precedence of "&" operator can

be altered using parentheses, for ex. in g1; (g2&g3).

3.1 Universes and functions for AND-Parallelism

We imagine the computation of a query Q w.r.t. a Parlog program P as

evolution (dynamic construction and traversal) of a "computation tree".

This "tree" is not a static structure de�ned by P; its form (the number

of vertices and edges) and its labeling depend on the given query and its

evaluation w.r.t. P.
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We formalize this "tree structure", each incarnation of which represents

the essentials of an instantaneous description of a Parlog computation, by

introducing a set Node as basic universe of the Parlog Algebra.

Node is an evolving universe, because during the computation the "tree"

grows by extending Node and the functions de�ned on it. (Note that in

absence of discard rules Node will never shrink.)

3.1.1 Universes and functions adapted from Standard (Sequen-

tial) Prolog

Since a Parlog computation can be seen, in a certain way, as parallel compu-

tation of di�erent Prolog computations, some of the universes and functions

introduced in [5] to describe Standard (Sequential) Prolog can be used to

de�ne Parlog Algebras.

In this section we list those universes and functions which we have adapted

to Parlog Algebras from B�orger's Prolog Algebras.

Each subtree, having a node(2 Node) as root, performs a subcomputation

which is associated to its root.

In order to describe this (sub)computation, we have, in analogy to the

case of Sequential Standard Prolog, the following decorating functions:

a)

goal : Node! Goal

associates with a node the goal to be evaluated during the subcompu-

tation starting from node.

If Lit is the universe of all Parlog literals, then Goal is the set of all

terms constructed applying a �nite number of times the operators ","

and "&" to elements of Lit.

In Parlog Algebras the substitution is treated by the following three

functions:

b)

subres : Term�� � Sub! Term��;

where Sub is the universe of substitutions. subres yields the result of

applying the given substitution to the terms in the given sequence.

On universe Sub of substitutions we introduce a 0-ary function sub,

representing the current variable bindings.

This global substitution allows for Parlog's stream-And-Parallelism

where calls can be evaluated concurrently, communicating incremen-

tally through bindings to shared variables.
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c) We also introduce a function res (for result) - taken from [24] -

res : Node! fsuccess; failureg:

to report success or failure of the computation performed by node2Node.

d)

rename : Term�Node! Term

is an external function (see [20]) which to a term associates a new copy

where all variables are renamed at the level determined by the given

node.

>From the Standard (Sequential) Prolog description we also adopt the 0-ary

function (a "constant" which functions as global variable)

database 2 Clause��

representing the current database. Clause is the universe of (user-de�ned)

program clauses.

3.1.2 New Parlog universes and functions

On the universe Node we introduce some functions to realize the dynamic

tree structure we are interested in.

children : Node! Node��

yields the sequence of children associated with a node. A speci�c child of a

node can be obtained using the projection function

child(i; p) = proj(i; children(p)):

By the integrity constraint assumed for lists, we have

children(p) = [child(1;p); � � � ; child(length(children(p));p)]:

When a node p has only one child, we will write child(p) instead of child(1; p):

Sometimes we will also use the function parent to refer to a parent of a given

node p having p as root. We use the expression p = parent(q) as a short

way to write 9i 2 Index : q = child(i; p): To keep control of the "tree"

extension and traversal we take an idea from the description of OCCAM in

[24] to introduce a set of modes each of which tells the current phase of the
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computation associated with the given node.

Formally speaking we have a universe Mode and a function

mode : Node!Mode:

For Mode we assume

Mode = fdormant ; ready ; starting ;waiting ; reporting :g

A node has mode:

� ready when it is ready to receive the control;

� starting when it has received the control;

� waiting when it waits for an answer of (one of) its subcomputations;

� reporting when it reports to its parent node;

� dormant when it becomes inactive.

Each node ofNode has also a label which can be :and-par, and-seq or or-

par. The node's label is given in order to encode the type of the computation

managed by the node. If a node is labelled by

� and-par, it coordinates the computation of concurrent (conjunctive)

processes;

� and-seq, it performs the computation of sequential (conjunctive) pro-

cesses;

� or-par, it controls the reduction process associated with the execution

of a call in the given program.

Formally we have a universe

Tag = fand � par ; and � seq ; or � parg

with the function

tag : Node! Tag:

The following function
~tag : Term! Tag;
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associates a label of Tag with a term t according to the principal functor of

t. It is de�ned as follows:

~tag(t) :=

8><
>:

and-par if t � t1; t2; � � � ; tn
and-seq if t � t1&t2& � � �&tn
or-par if t 2 Lit

Remark on notation When we write, for example, "and-par node p"

we mean the expression "tag(p) = and-par & p 2 Node".

Instead of writing "tag(p) = and-par & mode(p) = starting", we write "the

and-par node p is starting".

In the same way we use the expression "and-par node p reports success"

instead of "tag(p) = and-par & mode(p) = reporting & res(p) = success".

3.2 Transition Rules for AND-Parallelism

The general form of the Transition Rule System for a Parlog Algebra is as

described in Section 2.1. We now give the de�nition of the single Transition

Rules.

The variable p occurring in Parlog Transition Rules ranges over the uni-

verse Node.

In writing down these rules we will make use of simplifying notation, like

abbreviating:

for all children s of p : b(s; p) for 8s(p = parent(s)! b(s; p));

for some child s of p : b(s; p) for 9i 2 Index(s = child(i; p)&b(s; p)):

In function updates we write "for all children s of p : fo(s) = eo& : : :&fn(s) =

en"; instead of all function updates "fo(s) = eo; : : : ; fn(s) = en" where s

ranges over all the nodes s such that p = parent(s).

3.2.1 Beginning and end of computations

In our description of a Parlog computation started from a query w.r.t. a

given program, we give no rule for the initialization of the "computational

tree", but assume the following initialization of Parlog Algebras.

The universe Node contains a unique element p (the root) and the func-

tions are initialized as follows:

database:= "program",

goal(p):= "query",

sub:= empty,

tag(p):= ~tag("query"),
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mode(p):= starting.

On the root of the "tree" the parent function is unde�ned. (We may

also consider res(p) as unde�ned in the initial algebra.) We may represent

this pictorially as follows (leaving out database because it is never changed

during a Parlog computation):

" (parent)=

~tag(query) j starting j . j query

When the whole computation has terminated the control comes back to

the root.

Based on our assumption that the root is uniquely determined by having

no parent, we can formalize the stop rule as follows:

If mode(p) = reporting & parent(p) = undef

then

mode(p):= dormant.

This stop rule only stops the system without giving output. The latter

could be provided by some output rule (which we do not formalize here)

using the substitution information coded in sub.

3.2.2 The and-par node operation

When an and-par node receives the control (i.e. when its mode is starting),

it creates as many children as there are computations that should be executed

in parallel. The [; ]-decomp function on the goal g associated with the node,

provides those new parallel processes gi = proj(i; [; ]-decomp(g)) for i =

1; 2; � � � ; n: The tag of children nodes is determined by ~tag on term gi. The

and-par node becomes waiting and the control passes to each of its children

which become ready. We therefore have the following:

and-par starting rule
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If tag(p) = and-par & mode(p) = starting

then

Let parlist [,]-decomp(goal(p))

Create p-subtree of children temp(1),: : : , temp(length(parlist))

with mode ready and

tag(temp(i)):= ~tag(proj(i,parlist))

goal(temp(i)):= proj(i,parlist)

end Create

where
Create p-subtree of childfreng temp(1),: : : , temp(l)

f with tag t, mode m, g f passing g : : : and g

updates

end Create

is an abbreviation for the following update:

Extend Node by temp(1),: : : , temp(l) with

child(i,p):= temp(i),

ftag(temp(i)):= t,

mode(temp(i)):= m,g

fg(temp(i)):= g(p),
...g

updates

end Extend,

mode(p):= waiting.

Typically we will use goal for g; updates stands for a set of function

updates; updates written between f g are optional. Note that - in order to

avoid the necessity to distinguish the case of a root labelled with and-par

but with empty query - we understand the preceding rule as doing nothing

in case l=0.

Remark. In our formalization of and-par nodes we have to depart from the

fully parallel point of view taken in Gurevich and Moss (see [24]) for Occam

PAR nodes in one major respect: we do not describe how the children of an

and-par node become starting. How such a node becomes starting depends

on the implementation. In a fully parallel system all children would have

starting mode because all of them must work simultaneously. This would

correspond to identify ready with starting, or respectively to add the rule

if mode(p) = ready then mode(p):= starting
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If our machine has fewer processors than (parallel) processes, then one or

more processors must work on more than one process. In this case we have

not a parallel run, but concurrent runs which are realized by time sharing

or (memory) interleaving.

We have adopted this point of view in order to point out to the reader that

di�erent implementations of the system may di�er in this respect, and that

a full description has to take a de�nite decision with respect to the crucial

phenomenon we have isolated here.

Each child which has been created by the above rule computes one ele-

ment of the conjunction. A conjunction succeeds if each of its calls succeeds,

and fails if one of its calls fails. Therefore an and-par node gives back the

control either when all of its children have �nished their subcomputation

with success - the and-par node reports success - or when one of them has

failed its subcomputation - the and-par node reports failure to the parent

and all siblings' computations of the reporting child are aborted (i.e. set

to dormant) -. These two cases are formally described by the following two

rules:

and-par success rule

If tag(p) = and-par & mode(p) = waiting

& for all children q of p : mode(q) = reporting & res(q) = success

then

report from p-subtree with success.

and-par failure rule

If tag(p) = and-par & mode(p) = waiting

& for some child q of p: mode(q) = reporting & res(q) = failure

then

report from p-subtree with failure.

The abbreviation "report from p-subtree (or -leaf) with success (or fail-

ure)" stands for the following three function updates:

mode(p):= reporting,

res(p):= success (or failure),

for each child s of p: mode(s):= dormant.

The latter update is not there if p is a leaf of the "tree". We include the

update for later use for reasons of uniformity.

Once a node has become dormant, it will never be used any more in our

algebra. This means that the whole "subtree" of a dormant node is marked
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for garbage collection.

To abort all children's subcomputations of a reporting node p, it is not

(always) suÆcient to change the mode of p's children to dormant because a

descendant node s of p may remain active when its parent subcomputation

has been killed. It can be proved however (see [25]) that these possibly still

active sub-sub-computations could not a�ect the substitution sub. How the

computation of a child node of a dormant node is aborted depends on the

implementation.

Note also that the and-par success rule does not update the associated

goals. This is because and-par nodes can appear only at the root (if the initial

query has form t1; � � � ; tn) or under an and-seq node (which will update its

restgoalsequence discarding the goal of its and-par child).

3.2.3 The and-seq node operation

When a node p labeled and-seq has mode starting, goal(p) contains a term

of the form a1&a2 � � �&an, where

ai =

(
bi1 ; bi2 ; � � � ; bis
lit

are goals to be executed in the indicated order, starting with a1:

In starting mode the and-seq node creates a child having label according

to ~tag function on [&]-head(goal(p)) :

- or-par if a1 2 Lit;

- and-par if a1 = b11 ; b12 ; � � � ; b1s .

To its child the and-par node passes the �rst element of the sequence

[&]-decomp(goal(p)) as value of the function goal. Thus we have the follow-

ing

and-seq starting rule

If tag(p) = and-seq & mode(p) = starting & goal 6= nil

then

Let goal [&]-head(goal(p))

Create p-subtree of child temp

with tag ~tag(goal), mode starting and

goal(temp):= goal

end Create

When its child (or-par or and-par) is reporting, the and-seq node gets
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the control again. If the child reports failure, then p reports failure, since

the computation of a1&a2 � � �&an fails.

and-seq failure rule

If tag(p) = and-seq & mode(p) = waiting

& mode(child(p)) = reporting & res(child(p)) = failure

then

report from p-subtree with failure.

If the child reports success, the computation of a1 has been evaluated with

success.

The following step will be the computation of a2& � � �&an under a certain

substitution � satisfying a1.

The goal function is updated to the value a2& � � �&an, whereas the sub-

stitution � has been included in sub (see below).

and-seq continuation rule

If tag(p) = and-seq & mode(p) = waiting

& mode(child(p)) = reporting & res(child(p))=success

then

mode(p):= starting,

goal(p):= [&]-tail(goal(p)),

mode(child(p)):= dormant.

If the whole sequential conjunction a1&a2 � � �&an has been run success-

fully eventually we will have goal(p) = nil (tag(p) = and-seq). Then p

becomes reporting and it reports success.

and-seq success rule

If tag(p) = and-seq & mode(p) = starting & goal(p) = nil

then

report from p-subtree with success.

4 OR-Parallelism

A Parlog program consists of a set of procedures de�ning Parlog relations.

If R(t1; t2; : : : ; tn) is a relation, its de�nition (procedure) consists of the fol-

lowing two elements:
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1) a "mode declaration" of the form

modeR(m1;m2; : : : ;mn)

where mi is either "?" (to indicate that this argument is input) or "^"

(to indicate that this argument is output);

2) a "sequence of clauses". The clauses are de�ned using "." (parallel

search) and ";" (sequential search) operators in a particular way ex-

plained below.

When the Parlog computation system begins the reduction process of a given

procedure call lit (of form R(t1; t2; : : : ; tn)), it comes into the so-called test-

commit-output-spawn phase.

The system �rst tries to �nd a clause which satis�es the candidate clause

condition among those that de�ne the procedure of lit.

For any call lit, a clause "head guard : body" is a candidate clause if:

� it is an unguarded clause for which input matching 1 of lit and head

succeeds,

or

� it is a guarded clause for which

a) input matching of lit and head succeeds with a substitution s;

b) guard evaluation (i.e. the computation of the clause guard by

the program) succeeds with a substitution s';

c) the substitutions s and s' are consistent.

When a candidate clause is found, the calling literal lit commits to it (com-

mit phase) interrupting the search for (other) candidate clauses - for reasons

which concern the substitution handling, the real implementation is slightly

di�erent, see section 4.2.4 -, output uni�cation is performed between the

output mode argument terms of lit and those of the selected clause (output

phase); the lit computation is reduced to the evaluation of the candidate

clause's body under the computed output substitution (spawn phase).

1Input matching (of a literal lit and a term t) is de�ned as uni�cation of lit and

t in which no variable is bound which occurs in an input argument of lit (in the given

program).

In contrast to input matching one speaks of output uni�cation to refer to a uni�cation of

two terms which appear in an output mode argument (of a literal w.r.t. a given program).

This fa�con de parler stresses that for the uni�cation of terms occurring in output mode

arguments there is no restriction on the direction of the bindings (from goal to clause

head (output) or viceversa (input)).
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4.1 New universes and functions of Parlog Algebras for OR-

Parallelism

To formalize in terms of evolving algebras the structure of a Parlog program

we de�ne a universe Program whose elements are Parlog programs which

are sets of procedures taken from a universe Procedure = Decl �Seqbloc

with

� Decl the universe of relation mode declarations;

� Seqbloc de�ned as set of sequences, called seqblocs, of the form:

S1;S2; � � � ;Sn

where the Si are going to be executed in sequential order and are

themselves sequences of form

C1:C2: : : : :Cm

with clauses Ci 2 Clause. The latter sequences are also called par-

clauses (clauses to be executed in parallel) and are elements of the

Parclause universe.

Therefore an element of Seqbloc has the form

C11 :C12 : : : : :C1q| {z }
S1

; � � � � � � ;Cn1 :Cn2 : : : : :Cnp| {z }
Sn

with Cij
2 Clause; the operator "." has higher binding power than

";".

On the new universes we de�ne the functions:

a)

decl : Lit�Program! Decl;

associates with a literal of a Parlog program its mode declaration in

the given program.

b)

in var : Term�Program! }(Var);

assigns to a term t the set of all variables occurring in input argument

positions of its mode declaration (in the given program). Var is the

universe of variables and }(Var) is its powerset.

From Sequential (Standard) Prolog Algebras (see [5]), we take the

following functions adapting their de�nition to Parlog Algebras:
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c)

unify : Term�Term! Sub [ nil;

where Term is the set of (Parlog) terms. We suppose Goal � Term.

This function assigns to two terms either a substitution ( the uni�er

and possibly the most general uni�er) if they are uni�able or nil if they

are not. nil is di�erent from the empty substitution.

d)

procdef : Program� Lit! Seqbloc;

yields a copy of the procedure in the given program which de�nes the

predicate having the same functor as lit 2 Lit.

e) In connection with the universe Clause we need three standard aux-

iliary functions whose names suggest their meaning:

clhead : Clause! Lit;

clguard : Clause! Goal;

clbody : Clause! Goal:

For an explicit description of the candidate clause search and the subsequent

commitment to it, we imagine each or-par node as root of a computation

subtree performing the test-commit-output phase and of another (later

created) subtree to perform the spawn phase.

The procedure de�ning the calling literal lit comes in the form of

procdef(database; lit) = C11 :C12 : : : : :C1m1| {z }
S1

; � � � � � � ;Cn1 :Cn2 : : : : :Cnmn| {z }
Sn:

First we search through the clauses of the �rst block S1; among the S1-

clauses the search is in parallel.

If no candidate clause is found in the block S1, the clauses of the second

block S2 are tried, in parallel. If the search fails again the subsequent blocks

are considered in the same way. For each clause we have to perform in

parallel input matching and guard evaluation.

If there is no clause which satis�es the candidate clause condition, it is

impossible to reduce the calling literal lit and its computation fails. For a

particular clause the search process may also be suspended (see below).

This is illustrated by �g.1.

To formalize this search subtree we extend the previous Mode and Tag

Parlog universes as follows:
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a) We extend the Tag universe with seq-search, or- search, try-clause,

input-match, guard-eval elements.

A node has tag:

� seq-search if it coordinates the candidate clause search among

blocks (of clauses) which have to be tried sequentially (the �rst

level S1, S2, : : : in �g.1);

� or-search if the node performs the disjunctive search of a candidate

clause through a block of clauses that are tried in parallel (the

second level of Cij
for �xed i in �g.1);

� try-clause when its subtree tests if the selected clause is or not a

candidate clause for the given literal lit (the third level C1, C2,

: : : in �g.1);

� input-match when its subcomputation controls the input match-

ing condition (leaf level in �g.1);

� guard-eval if the node performs the guard evaluation condition

(leaf level in �g.1).

b) We extend the Mode universe with an element suspend.

A node has mode suspend when there is a uni�er for the calling literal

and the clause head which however tries to bind a variable occurring

(in a term) in an input argument position of the call.

We need the following new functions on the extended universe Node:

1.

parcl : Node! Parclause

associates with a node a sequence of clauses (for parallel search of a

candidate clause);

2.

seqbloc : Node! Parclause��

associates with a node a sequence of "parclauses" (for sequential search

of a candidate clause through subsequent blocks of clauses);

3.

clause : Node! Clause

associates a clause with a node (the one which will be considered for

the candidate clause test).
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In the or-par node subtree description, the function goal will be used to

pass from parent to child the calling literal lit which is responsible for the

candidate clause search. The same function will be used to report from child

to parent the body of the identi�ed candidate clause for the calling literal.

In connection with the input matching during the candidate clause search,

Parlog also uses a clause transformation which shifts the uni�cation of certain

arguments - so called output arguments - from the input matching phase

to the clause body computation, introducing fresh variables. Formally we

represent this by a function

out� unif � shift : Clause�Node! Clause

which associates with a given clause Head  Guard : Body and a node p

the clause

Head[t=y] Guard : t = y;Body

where t is the sequence of output arguments of Head, y is a corresponding

sequence of pairwise distinct variables renamed at level p, Head[t=y] denotes

the result of substituting the output arguments from t by the corresponding

variables from y, and t = y denotes the sequence of uni�cations of y-variables

with the corresponding t-arguments.

or-par
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4.2 Transition Rules for OR-Parallelism

4.2.1 The or-par node operation

When the or-par node has mode starting, its goal lit has to be reduced by

starting the candidate clause search through its procdef(database; lit), fol-

lowed later by the computation of the selected body (if any).

For this purpose the control is �rst passed to a newly created child labeled

seq-search whose subtree manages the search of a candidate clause through

the blocks S1; S2; � � � ; Sn of procdef(database; varindex; lit) that are tried

in sequence.

Remember that we are specifying the computation of user-de�ned predi-

cates, which occur as our goals.

or-par starting rule

If tag(p) = or-par & mode(p) = starting

then

Create p-subtree of child temp

with tag seq-search, mode starting, passing goal

end Create

The or-par node is waiting until the child seq-search becomes reporting.

If the child seq-search is reporting with failure, no candidate clause has

been found and the or-par node becomes reporting with failure:

or-par failure rule

If tag(p) = or-par & mode(p) = waiting

& mode(child(p)) = reporting & res(child(p)) = failure

then

report from p-subtree with failure.

If the child seq-search is reporting with success, a candidate clause has

been found and the system has committed to it (by e�ecting the corre-

sponding output substitution). Therefore the body of this candidate clause

is reported by the goal function of the seq-search node.

The subsequent step, triggered by the following or-par spawn rule, is the

computation of the selected (really extended, see section 4.2.4) clause body:

a new node of the or-par child is created to perform the body computation.

The seq-search node becomes dormant.
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or-par spawn rule

If tag(p) = or-par & mode(p) = waiting & tag(child(p)) = seq-search

& mode(child(p)) = reporting & res(child(p)) = success

then

Create p-subtree of child temp

with tag ~tag(goal(child(p))), mode starting and

goal(temp):= goal(child(p)),

mode(child(p)):= dormant

end Create

If the body computation ends with failure the previous or-par failure rule

(for the new child) is performed and the or-par node becomes reporting with

failure.

Instead, if the body computation ends with success, the or-par node be-

comes reporting with success.

or-par success rule

If tag(p) = or-par & mode(p) = waiting & tag(child(p)) 6= seq-search

& mode(child(p)) = reporting & res(child(p)) = success

then

report from p-subtree with success

4.2.2 The seq-search node operation

The seq-search node rules are similar to those of our and-seq nodes and to

the description of SEQ node for OCCAM [24].

A node labeled seq-search with goal lit manages the search of a candidate

clause through the ";"-sequence of blocks of clauses that form the procedure

de�ning lit, i.e. of procdef(database,lit).

When the node seq-search is starting and procdef(database; lit) = nil,

then failure is reported:

seq-search failure rule 1

If tag(p) = seq-search & mode(p) = starting

& procdef(database,goal(p)) = nil

then

report from p-subtree with failure.
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When the node seq-search is starting and procdef(database; lit) 6= nil,

we create a child labelled or-search. By the function parcl the �rst parclause

of those de�ning the procedure of lit (which have to be tried in sequence

searching a candidate clause) is passed to the child or-search together with

goal lit and seqbloc at the node seq-search is updated to the remaining par-

clauses. (Note that the necessary renaming of clauses will be done only at

or-search nodes where individual clauses are set for being tried).

seq-search starting rule

If tag(p) = seq-search & mode(p) = starting

& procdef(database,goal(p)) 6= nil

then

Create p-subtree of children temp

with tag or-search, mode starting, passing goal and,

parcl(temp):= [;]-head(procdef(database,goal(p)))

seqbloc(p):= [;]-tail(procdef(database,goal(p)))

end Create

If the search performed by the child labeled or-search fails, a new child

or-search is created with the same function for the next parclause in seqbloc;

the previous node or-search becomes dormant:

seq-search continuation rule

If tag(p) = seq-search & mode(p) = waiting

& p = parent(q)

& mode(q) = reporting & res(q) = failure

& seqbloc(p) 6= nil

then

Create p-subtree of children temp

with tag or-search, mode starting, passing goal and,

parcl(temp):= [;]-head(seqbloc(p))

seqbloc(p):= [;]-tail(seqbloc(p))

end Create,

mode(q):= dormant

If all parclauses have been tried and no candidate clause has been found,

the seq-search node becomes reporting and reports failure:
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seq-search failure rule 2

If tag(p) = seq-search & mode(p) = waiting

& p = parent(q)

& mode(q) = reporting & res(q) = failure

& seqbloc(p):= nil

then

mode(p):= reporting,

res(p):= failure,

mode(q):= dormant.

If the subcomputation of one or-search child node ends with success

(namely a candidate clause has been found and - through committing to it -

the sub substitution has been extended by the output substitution), the

node seq-search becomes reporting and reports to its parent the body of the

candidate clause by the goal function, thus preparing the start of the spawn

phase. All children or-search become dormant:

seq-search success rule

If tag(p) = seq-search & mode(p) = waiting

& p = parent(q)

& mode(q) = reporting & res(q) = success

then

report from p-subtree with success

saving goal from child q.

The abbreviation

"report from p-subtree with success (or failure)

fsaving f,g : : : from child q ,

updates g"

stands for the following sequence of function updates:

mode(p):= reporting,

res(p):= success (or failure),

for each child s of p: mode(s):= dormant,

ff(p):= f(q),

g(p):= g(q),
...

updates g
It is an extension of the previously introduced "reporting" abbreviation.
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4.2.3 The or-search node operation

A node or-search performs the parallel search of a candidate clause through

a parclause, say C1:C2: : : : :Cm.

When a node labelled or-search becomes starting, as many or-search's

children labelled try-clause are created as there are clauses in the given

parclause. (The number of these clauses is computed by the function length

applied to [:]-decomp evaluated on parcl(p).)

Each child try-clause receives the calling literal and one clause (renamed

corresponding to the node to ensure that all variables are fresh with respect

to the whole computation) of the parent's parclause. All children get mode

ready:

or-search starting rule

If tag(p) = or-search & mode(p) = starting

then

Let parlist [.]-decomp(parcl(p)),

Create p-subtree of children temp(1),: : : , temp(length(parlist))

with tag try-clause, mode ready, passing goal and

clause(temp(i)):= rename(proj(i,parlist),temp(i))

end Create

When at least one (but maybe more than one) child try-clause ends

its subcomputation with success, one computed candidate body (really its

transformed version, see section 4.2.4) is selected by the waiting or-search

parent all of whose children's computations are aborted (by changing their

mode into dormant); the or-search node becomes reporting thus realizing the

commit phase of the current call. (As we will see in section 4.2.4, during the

spawn phase, still part of the substitution consistency from input matching

and guard evaluation is realized. Substitution inconsistency will lead to

failure).

or-search success rule

Let succ-resp(q) (parent(q) = p & mode(q) = reporting & res(q) = success)

If tag(p) = or-search & mode(p) = waiting & for some q succ-resp(q)

then

report from p-subtree with success

saving goal from child " q succ-resp(q)

where Hilbert's "-operator is used as (external) choice function. This

re
ects the decision taken by the Parlog design to consider the or-search as
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non deterministic (implementation de�ned) language feature.

If all try-clause children end their subcomputation with failure, no can-

didate clause is in the initially given parclause. The node or-search changes

its mode to reporting and reports failure:

or-search failure rule

If tag(p) = or-search & mode(p) = waiting

& for all children q of p : mode(q) = reporting & res(q) = failure

then

report from p-subtree with failure.

4.2.4 The try-clause node operation

The subcomputation of a node p labelled try-clause consists of verifying

whether the associated clause clause(p) is a candidate clause for the calling

literal goal(p) or not.

To be candidate the clause must satisfy the input matching and the

guard evaluation conditions. These are tried in parallel, controlled by two

newly created p-children labelled input-match resp. guard-eval. The child

input-match receives from the parent, via goal, the literal to be considered,

whereas the child guard-eval receives the guard of the clause. This explains

the try-clause starting rule, except for its last update which transforms

the clause associated to p. This clause transformation presents a subtlety

of Parlog implementation by which the need for multiple environments for

"local" substitutions is avoided.

Since it has a semantical consequence we have to take it into consideration

here. In [9] we had given a formalization which was inspired by some features

in the JAM [17], creating "local" substitutions which became transparent to

the main system only after commitment. Our input matching operation

there uni�es the entire goal with the clause head, and the consistency of

the guard evaluation is checked with the output arguments bindings before

commitment. In reality in Parlog the input matching operation should unify

only the input argument bindings postponing the uni�cation of the output

arguments, and the consistency of the guard evaluation bindings with the

output argument bindings should be checked by output uni�cation only after

commitment.

Let us look at the problem in more detail. Since in Parlog input matching

and guard evaluation are performed in parallel, a variable occurring both

in the head and in the guard of the same clause might be bound to not

unifyable terms by the two computations (in this case the clause should be
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consedered to be rejected. As a matter of fact it will produce failure, should

the system commit to it. See below.). Since we assume that guards are safe

(i.e. the guard evaluation never attempts to bind a variable that occurs in an

input mode argument position of the clause head), the problem of possible

incompatible bindings can come up only for those variables of the guard

which occur in output mode argument positions of the head. The problem

is solved by postponing uni�cation of the output arguments, shifting it from

the input matching phase to the moment of the computation of the body

(whereby the compatibility with the bindings of the guard evaluation is also

checked.) Formally this shift of uni�cation of output arguments is realized

by the clause transforming function out-unif-shift (applied in the following

rule to the newly created node temp(1) as second argument to ensure that

the dummy variables y, introduced for the output arguments t, are new for

the whole computation).

try-clause starting rule

If tag(p) = try-clause & mode(p) = starting

then

Create p-subtree of children temp(1),temp(2)

with mode ready and

tag(temp(1)):= input-match,

tag(temp(2)):= guard-eval,

goal(temp(1)):= goal(p),

goal(temp(2)):= clguard(clause(p)),

clause(p):= out-unif-shift(clause(p),temp(1))

end Create

If one of the two children fails its subcomputation, the try-clause node

changes its mode into reporting and reports failure (because one of the two

conditions, input matching or guard evaluation, has failed):

try-clause failure rule

If tag(p) = try-clause & mode(p) = waiting

& for some child q of p: mode(q) = reporting & res(q) = failure

then

report from p-subtree with failure.

If both children report success, the try-clause node ends its subcomputa-

tion with success and the computed clause is candidate for the calling literal.

Thus the node try-clause becomes reporting and it reports, via the goal

28



function, the body of the candidate clause by which the calling literal will

be replaced (if this clause will be selected in the or-search success rule).

Remember that at this moment, the clause attached to the node try-clause

is the result of the out-unif-shift application to the original clause (when

entering try-clause).

try-clause success rule

If tag(p) = try-clause & mode(p) = waiting

& for all children s of p :

mode(s) = reporting & res(s) = success

then

report from p-subtree with success,

goal(p):= clbody(clause(p)).

4.2.5 The input-matching node operation

A node labelled input-match is a leaf node of the Parlog computation "tree".

When the control arrives to an input-match node, we try to compute input

matching between the head of the given clause (clhead(clause(parent(p))))

and the calling literal under the current substitution (subres(goal(p),sub)).

If there is no uni�cation at all - formally if

unify(subres(goal(p)sub); clhead(clause(parent(p)))) = nil �;

then surely the node input-match becomes reporting with failure:

input-match failure rule

If tag(p) = input-match & mode(p) = starting

& unify(subres(goal(p),sub),clhead(clause(parent(p)))) = nil

then

report from p-leaf with failure.

If there is some uni�er, then we need to check that it satis�es the input

matching condition, i.e. that it does not bind variables occurring in input

argument positions of the calling literal lit (w.r.t. the underlying program

db).

In order to check this condition we use a function:

domain : Sub! }(Var)
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which associates with a substitution � 2 Sub the set of variables bound by

�:

A uni�er unif satis�es the input matching condition for lit, if the set of

variables bound by unif has empty intersection with the set of variables

occurring in input positions of lit w.r.t. the underlying program db; formally

if

domain(unif) \ in var(lit; db) = ;:

We have to apply this for

lit = subres(goal(p); sub);

head = clhead(clause(parent(p));

unif = unify(lit; head):

If the intersection is empty, the node input-match becomes reporting with

success and the current substitution sub is updated by the uni�er substitu-

tion. We note that the following transition rule is performed if the guard

condition allowed(p) = 1 is true. Allowed is an external function (see [20])

having value 1 on at most one node p at any moment. The role of this

function is to avoid that the current value of sub could be simultaneously

updated by more than one node p performing parallel processes. Using

this function we simulate Parlog's approach to the commit/output access to

shared information by parallel processes.

input-match success rule

Let lit subres(goal(p),sub)

head clhead(clause(parent(p)))

If tag(p) = input-matching & mode(p) = starting

& unify(lit,head) 6= nil

& domain(unify(lit,head)) \ in var(lit,db)) = ;

& allowed(p) = 1

then

report from p-leaf with success,

sub:= unify(lit,head)

If the intersection is not empty, the uni�er exists but it tries to bind an

input variable.

In this case the node input-match changes its mode into suspend and

the input variables of lit that the uni�er tries to bind are put into a set

susp var(p,db) of suspended variables.
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input-match suspension rule

Let lit subres(goal(p),sub)

head clhead(clause(parent(p)))

If tag(p) = input-matching & mode(p) = starting

& unify(lit,head) 6= nil

& domain(unify(lit,head)) \ in var(lit,db) 6= ;

then

mode(p):= suspend,

susp var(p,db):= in var(lit,db) \ domain(unify(lit,head)).

If and when one variable of susp var(p,db) is bound by one of its producer

processes - which means that it enters into the substitution sub -, the node

input-match starts to work again (its mode changes from suspend to starting)

in its attempt to �nd an input matching.

input-match re-starting rule

If tag(p) = input-match & mode(p) = suspend

& susp var(p,db) \ domain(sub) 6= ;

then

mode(p):= starting

4.2.6 The guard-eval node operation

In our description we assume that guards are safe (i.e. a guard evaluation

never attempts to bind a variable that occurs in an input mode argument

position of the calling literal) as is required for a Parlog program. This

guard safety property has to be assumed by the programmer or may be

considered at compile time.

If the current clause has no guard, i.e. the function goal has empty value

on the node, the guard-eval node becomes reporting with success. Therefore

we have:

guard-eval empty rule

If tag(p) = guard-eval & mode(p) = starting & goal(p) = empty

then

report from p-subtree with success

If the clause guard is not empty, the guard-eval node has to start a (sub)computation

which performs the guard evaluation. It consists of computing a substi-
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tution satisfying the guard of the given clause. (Note that guard evaluation

may be nested).

The guard-eval node works in the same way as the Parlog "tree" root hav-

ing the renamed clause guard as its query. Therefore its subcomputation is

performed by the rules seen so far. The operation of a node labeled guard-

eval is therefore as follows.

When the guard evaluation starts, the node labeled guard-eval (in starting

mode) creates a child to which the new queries are passed by the function

goal.

The label of that child is computed by the function ~tag on goal(p).

guard-eval starting rule

If tag(p) = guard-eval & mode(p) = starting & goal(p) 6= empty

then

Create p-subtree of child temp

with tag ~tag(goal(p)), mode starting, passing goal

end Create

The guard-eval node receives the control again when its subcomputa-

tion ends. If the latter ends with success, the node changes its mode into

reporting, while its child becomes dormant.

guard-eval success rule

If tag(p) = guard-eval & state(p) = waiting

& mode(child(p)) = reporting & res(child(p)) = success

then

report from p-subtree with success.

If the child's computation ends with failure, the node guard-eval becomes

reporting with failure:

guard-eval failure rule

If tag(p) = guard-eval & state(p) = waiting

& mode(child(p)) = reporting & res(child(p)) = failure

then

report from p-subtree with failure.

In the appendix we list all thus obtained transition rules for the semantics

of Parlog.
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5 Conclusion

Let us conclude by a comparison of our approach to related work in the lit-

erature. The interesting approach in [1] which is based on Milner's CCS has

diÆculties with a precise description of the commit-operator. Our approach

allows to describe commitment in a natural and simple way due to the fact

that a notion of time (temporal order) is built-in into evolving algebras. (By

the way this makes also the connection of evolving algebras to dynamic logic,

observed by Gurevich in [20].)

The program of ca. 150 "Horn clauses with negation" in [26], proposed

as formal speci�cation of Parlog, presupposes a semantics for standard logic

programs with negation; it is unstructured and technically rather involved.

Our formal model for Parlog starts from scratch - we presuppose only the

notion of evolving algebras, but our rules can be read also simply as pseudo-

code over abstract data, avoiding even the notion of evolving algebra -; it

is developed by stepwise re�nement (which allowed us to isolate the inde-

pendence of a semantical de�nition of AND-parallelism and OR-parallelism)

and is a direct formalization of the basic intuition of Parlog, thus helping the

programmer to understand and to control the computational e�ect of his pro-

grams. Furthermore it is to be expected that the present high-level formal

speci�cation of Parlog can be transformed naturally into an implementa-

tion of the WAM-like machine model underlying the Parlog implementation,

along the lines of the corresponding way for sequential Prolog in [10, 11].

Our description of Parlog semantics is a complete speci�cation of the core

of Parlog which governs the computation of goals by user de�ned predicates.

The model can be easily extended to the usual built-in predicates using the

evolving algebras based methods developed for Sequential (Standard) Pro-

log in [4]-[6]. To perform the execution of built-in predicates we need other

transitions rules (one or more for each predicate) for the operation of the

node or-par which, in this case, will be a leaf of the \Parlog tree". For those

built-in predicates having input mode arguments, the or-par node may have

mode suspend and can be removed from such a state using the same tech-

nique as for the input-match node.

In our model we have no rule which tests for a possible deadlock state

reached by the system during the computation when all processes suspend.

The test could be performed introducing an external function which repre-

sents the state of the system and which is updated to the value "deadlock"

when no transition rule can be applied.
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Appendix: List of �nal Transition Rules

stop rule

If mode(p) = reporting & parent(p) = undef

then

mode(p):= dormant

and-par starting rule

If tag(p) = and-par & mode(p) = starting

then

Let parlist [,]-decomp(goal(p))

Create p-subtree of children temp(1), : : : , temp(length(parlist))

with mode ready and

tag(temp(i)):= ~tag(proj(i,parlist))

goal(temp(i)):= proj(i,parlist)

end Create

and-par success rule

If tag(p) = and-par & mode(p) = waiting

& for all children q of p : mode(q) = reporting & res(q) = success

then

report from p-subtree with success

and-par failure rule

If tag(p) = and-par & mode(p) = waiting

& for some child q of p: mode(q) = reporting & res(q) = failure

then

report from p-subtree with failure
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and-seq starting rule

If tag(p) = and-seq & mode(p) = starting & goal 6= nil

then

Let goal [&]-head(goal(p))

Create p-subtree of child temp

with tag ~tag(goal), mode starting and

goal(temp):= goal

end Create

and-seq continuation rule

If tag(p) = and-seq & mode(p) = waiting

& mode(child(p)) = reporting & res(child(p)) = success

then

mode(p):= starting,

goal(p):= [&]-tail(goal(p)),

mode(child(p)):= dormant

and-seq success rule

If tag(p) = and-seq & mode(p) = starting & goal(p) = nil

then

report from p-subtree with success

and-seq failure rule

If tag(p) = and-seq & mode(p) = waiting

& mode(child(p)) = reporting & res(child(p)) = failure

then

report from p-subtree with failure

or-par starting rule

If tag(p) = or-par & mode(p) = starting

then

Create p-subtree of child temp

with tag seq-search, mode starting, passing goal

end Create
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or-par spawn rule

If tag(p) = or-par & mode(p) = waiting & tag(child(p)) = seq-search

& mode(child(p)) = reporting & res(child(p)) = success

then

Create p-subtree of child temp

with tag ~tag(goal(child(p))), mode starting and

goal(temp):= goal(child(p)),

mode(child(p)):= dormant

end Create

or-par success rule

If tag(p) = or-par & mode(p) = waiting & tag(child(p)) 6= seq-search

& mode(child(p)) = reporting & res(child(p)) = success

then

report from p-subtree with success

or-par failure rule

If tag(p) = or-par & mode(p) = waiting

& mode(child(p)) = reporting & res(child(p)) = failure

then

report from p-subtree with failure.

seq-search failure rule 1

If tag(p) = seq-search & mode(p) = starting

& procdef(database,goal(p)) = nil

then

report from p-subtree with failure

seq-search starting rule

If tag(p) = seq-search & mode(p) = starting

& procdef(database,goal(p)) 6= nil

then

Create p-subtree of children temp

with tag or-search, mode starting, passing goal and

parcl(temp):= [;]-head(procdef(database,goal(p)))

seqbloc(p):= [;]-tail(procdef(database,goal(p)))

end Create
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seq-search continuation rule

If tag(p) = seq-search & mode(p) = waiting

& p = parent(q)

& mode(q) = reporting & res(q) = failure

& seqbloc(p) 6= nil

then

Create p-subtree of children temp

with tag or-search, mode starting, passing goal and

parcl(temp):= [;]-head(seqbloc(p))

seqbloc(p):= [;]-tail(seqbloc(p))

end Create,

mode(q):= dormant

seq-search success rule

If tag(p) = seq-search & mode(p) = waiting

& p = parent(q)

& mode(q) = reporting & res(q) = success

then

report from p-subtree with success

saving goal from child q

seq-search failure rule 2

If tag(p) = seq-search & mode(p) = waiting

& p = parent(q)

& mode(q) = reporting & res(q) = failure

& seqbloc(p):= nil

then

mode(p):= reporting,

res(p):= failure,

mode(q):= dormant

or-search starting rule

If tag(p) = or-search & mode(p) = starting

then

Let parlist [.]-decomp(parcl(p)),

Create p-subtree of children temp(1), : : : , temp(length(parlist))

with tag try-clause, mode ready, passing goal and

clause(temp(i)):= rename(proj(i,parlist),temp(i))

end Create
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or-search success rule
Let succ-resp(q) (parent(q) = p & mode(q) = reporting & res(q) = success)

If tag(p) = or-search & mode(p) = waiting

& for some q succ-resp(q)

then

report from p-subtree with success

saving goal from child " q succ-resp(q)

or-search failure rule
If tag(p) = or-search & mode(p) = waiting

& for all children q of p : mode(q) = reporting & res(q) = failure

then

report from p-subtree with failure

try-clause starting rule

If tag(p) = try-clause & mode(p) = starting

then

Create p-subtree of children temp(1),temp(2)

with mode ready and

tag(temp(1)):= input-match,

tag(temp(2)):= guard-eval,

goal(temp(1)):= goal(p),

goal(temp(2)):= clguard(clause(p)),

clause(p):= out-unif-shift(clause(p),temp(1))

end Create

try-clause failure rule

If tag(p) = try-clause & mode(p) = waiting

& for some child q of p: mode(q) = reporting & res(q) = failure

then

report from p-subtree with failure

try-clause success rule

If tag(p) = try-clause & mode(p) = waiting

& for all children s of p :

mode(s) = reporting & res(s) = success

then

report from p-subtree with success,

goal(p):= clbody(clause(p))
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input-match failure rule

If tag(p) = input-match & mode(p) = starting

& unify(subres(goal(p),sub),clhead(clause(parent(p)))) = nil

then

report from p-leaf with failure

input-match success rule

Let lit subres(goal(p),sub)

head clhead(clause(parent(p)))

If tag(p) = input-matching & mode(p) = starting

& unify(lit,head) 6= nil

& domain(unify(lit,head)) \ in var(lit,db)) = ;

& allowed(p) = 1

then

report from p-leaf with success,

sub:= join(sub, unify(lit,head))

input-match suspension rule

Let lit subres(goal(p),sub)

head clhead(clause(parent(p)))

If tag(p) = input-matching & mode(p) = starting

& unify(lit,head) 6= nil

& domain(unify(lit,head)) \ in var(lit,db) 6= ;

then

mode(p):= suspend,

susp var(p,db):= in var(lit,db) \ domain(unify(lit,head))

input-match re-starting rule

If tag(p) = input-match & mode(p) = suspend

& susp var(p,db) \ domain(sub) 6= ;

then

mode(p):= starting

guard-eval empty rule

If tag(p) = guard-eval & mode(p) = starting & goal(p) = empty

then

report from p-subtree with success

39



guard-eval starting rule

If tag(p) = guard-eval & mode(p) = starting & goal(p) 6= empty

then

Create p-subtree of child temp

with tag ~tag(goal(p)), mode starting, passing goal

end Create

guard-eval success rule

If tag(p) = guard-eval & state(p) = waiting

& mode(child(p)) = reporting & res(child(p)) = success

then

report from p-subtree with success.

guard-eval failure rule

If tag(p) = guard-eval & state(p) = waiting

& mode(child(p)) = reporting & res(child(p)) = failure

then

report from p-subtree with failure
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