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Abstract

The paper provides a mathematical model for the innermost version of the functional logic programming

language BABEL [MR89, MR92] and re�nes it stepwise towards a mathematical speci�cation of its imple-

mentation by a graph-narrowing machine [KLMR90]. Our description directly re
ects the basic intuitions

underlying the language and can thus be used as a primary mathematical de�nition of innermost BABEL.

For each re�nement step a mathematical correctness proof is given, thus paving the way for a correctness

proof of the graph-narrowing machine implementation (a full correctness proof could be achieved by providing

some further re�nement steps, leading to the machine's abstraction level). The speci�cation uses evolving

algebras, thus allowing the descriptions to be procedural and nevertheless abstract, readable as `pseudocode

over abstract data'.

Keywords: functional logic languages, mathematical speci�cation, evolving algebras.

1 Introduction

Many investigations during the last years have been devoted to the combination of the functional and logic

programming paradigms (for surveys on di�erent approaches and proposals, see e.g. [DL86], [BL86], [AN89]).

The interest of such an integration has been well motivated by several researchers and is presently quite widely

accepted.

One of the possible approaches to logic + functional programming builds so called functional logic lan-

guages [Red85, Red87], which are syntactically very similar to functional languages, but have narrowing

as operational semantics. From the point of view of functional logic programming, narrowing is a natural

extension of the reduction mechanism used for functional programs. It reduces a computation expression by

applying rewrite rules, but using uni�cation instead of matching.

This paper deals with the mathematical speci�cation of the functional logic language BABEL [MR89,

MR92], ultimately aiming at a full correctnes proof for its implementation through the innermost graph-

narrowing machine IBAM [KLMR90]. IBAM belongs to a series of abstract machines which were designed

during the last years for compiler implementations of logic + functional languages (see e.g [Loo93] for infor-

mation on such approaches). This kind of machines usually combine features from reduction machines for

functional languages [PJ87, FH88] and Warren's Prolog Engine WAM [War83], [AK91].

�Technical Report DIA 94/5, March 1994, Dep.de Informatica y Automatica, Universidad Complutense, Madrid. An abridged

version of this paper has appeared under the title A model for mathematical analysis of functional logic programs and their imple-

mentations in: B. Pehrson and I. Simon (Eds.) IFIP 13th World Computer Congress 1994, Volume I: Technology/Foundations,

Elsevier, Amsterdam.
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It is well known that providing mathematically precise but nevertheless understandable speci�cations

of complex systems is a diÆcult task. Recently, Gurevich's evolving algebra approach [Gur88, Gur91] has

proved very adequate for providing mathematical descriptions of various logic programming languages and

implementation methods [B�90a, BB92, BR91, BR92a, BR92b, BR93, BS91]. The de�nitions of Prolog and

the WAM [BR92b, BR92a], yielding correctness conditions for Prolog compilers, are particularly related to

the present paper, which can be understood as a �rst step towards extending this speci�cation methodology

to functional logic languages and machines. Evolving Algebras provide procedural and nevertheless abstract

descriptions, easy to adapt to di�erent abstraction levels, and easy to read (without special mathematical

training) as `pseudocode over abstract data'. We present a series of successively more re�ned descriptions

of BABEL by means of evolving algebras, starting at the abstract level of the observable computational

behaviour, and coming close to the level of machine implementation. We provide detailed hints of correctness

proofs for each of the descriptions with respect to the preceding one.

The organization of this paper is as follows. Section 1 is this Introduction. In Section 2 we provide the

information on Evolving Algebras and the BABEL language which is needed for understanding the rest of

the paper. Section 3 develops the description of innermost BABEL at the user level of observable behaviour,

through a series of three algebras which specify essentially the search tree of BABEL goal expressions and the

search for solutions via leftmost innermost narrowing and backtracking. Section 4 moves closer to the level

of machine implementation by replacing the tree structure of BABEL's search space by a stack structure.

In Section 5, we re�ne the description by taking care of features more related to the functional dimension

of the language, namely the creation of computation tasks responsible for evaluating some subexpression of

the main goal expression and returning the result to the activator task. This organization, and the way it

combines with backtracking, do correspond to the actual IBAM implementation [KLMR90], which is not

approached closer in this paper (next re�nement steps should deal with machine code generation). Section

6 presents, on an abstract level, some optimizations of the IBAM implementation. Section 7 summarizes

our conclusions and points to possible lines of future research. In an appendix whole sets of rules for all the

re�nements of the algebra can be found.

2 Notation and prerequisites

We expect from the reader only rudimentary knowledge of the language of �rst order logic, logic programming

and term rewriting. We list nevertheless in this section some de�nitions which might help to read our

description|which uses Gurevich's notion of evolving algebra 1 without presupposing more than what is

listed here|as `pseudocode over abstract data'. We brie
y indicate also how our correctness proofs can be

carried out in this framework.

The abstract data come as elements of (not further analysed) sets (domains, universes). The operations

allowed on universes will be represented by partial functions. We shall allow the setup to evolve in time, by

executing function updates of form
f(t1; : : : ; tn) : = t

whose execution is to be understood as changing (or de�ning, if there was none) the value of function f at

given arguments.We shall also allow some of the universes to grow in time, by executing universe extensions

extend A by t1; : : : ; tn with updates endextend

where updates may (and should) depend on ti's, setting the values of some functions on newly created elements

ti of A.
The precise way our `abstract machines' (evolving algebras ) may evolve in time will be determined by a

�nite set of rules of form
if condition then updates

where condition or guard is a boolean, the truth of which triggers simultaneous execution of all updates listed

in updates . Simultaneous execution helps us avoid coding to, say, interchange two values.

Every evolving algebra|formally pair (A;R) where A is a �rst-order heterogeneous algebra with partial

functions and possibly empty domains, and R is a �nite system of transition rules as explained above|

determines a class of structures that we shall call algebras or states of (A;R). Within such classes we will

have a notion of initial and terminal algebras, expressing initial resp. �nal states of the target system. We are

essentially interested only in those states which are reachable from inital states by R. In our re�nement steps

we typically construct a \more concrete" evolving algebra (B;S) out of a given \more abstract" evolving

algebra (A;R) and relate them by a (partial) proof map F mapping states B of (B;S) to states F(B) of
(A;R), and rule sequences R of R to rule sequences F(R) of S, so that the following diagram commutes:

1For motivation and a precise de�nition of evolving algebras see [Gur91].
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We shall consider such a proof map to establish correctness of (B;S) with respect to (A;R) if F preserves

initiality, success and failure (value of stop) of states, since in that case we may view successful (failing)

concrete computations as implementing successful (failing) abstract computations.

We shall consider such a proof map to establish completeness of (B;S) with respect to (A;R) if every
terminating computation in (A;R) is image under F of a terminating computation in (B;S), since in that

case we may view every successful (failing) abstract computation as implemented by a successful (failing)

concrete computation.

In case we establish both correctness and completeness in the above sense, as we do on every of our

re�nement steps, we may speak of operational equivalence of evolving algebras. Since this last notion is

symmetric, it does not matter any more which way F goes. The attentive reader will notice that we indeed

have, in a few places, found it more convenient to reverse the direction of F , mapping the `abstract' algebra
into the `concrete' one.

The forms obviously reducible to the above basic syntax, which we shall freely use as abbreviations, are

let and if then else. We shall assume that we have the standard mathematical universes of booleans,

integers, lists of whatever, trees etc (as well as the standard operations on them) at our disposal without

further mention. We use usual notations, in particular Prolog notation for lists.

In the rest of this paper, the name \BABEL" will always refer to the innermost version of the BABEL

language, as described in [KLMR90]. We do not presupose any speci�c knowledge of BABEL or its imple-

mentation. But obviously, some elementary knowledge of functional + logic programming languages can only

be helpful, and some very basic facts about BABEL are reported here to help understanding our presentation

of BABEL algebras.

BABEL's syntax is based on well-typed expressions built from variables, free constructors and function

symbols. Types are statically checked at compile time. Expressions can be �rst-order terms using only

constructors and variables, or possibly higher-order expressions involving also application, function symbols

and prede�ned operations. These include boolean operations, a prede�ned equality, and operators used for

building two kinds of conditional expressions:

(b! e) meaning if b then e else unde�ned

(b! e1#e2) meaning if b then e1 else e2

Conditional expressions of the form (b ! e) are also called guarded expressions. They allow to express the

e�ect of conditional rewrite rules, as well as Prolog clauses (taking the boolean constant true as e). In fact,

BABEL programs consist of de�ning rules for function symbols, having the form

f(t1; :::; tn) := r

where r may be a guarded expression (b ! e). In spite of the fact that a rule right hand side may be also

not guarded, we shall use f(t1; : : : ; tn) := b! e as our default notation for BABEL rules. Number n, noted
as arity(f), is called the program arity of f .

The following are simple examples of de�ning rules which could be part of a BABEL program, using lists

with constructors [ ] and [: j :] and natural numbers with constructors 0 and suc. They de�ne functions called
map, plus and dominates:

map(F; [ ]) := [ ]:
map(F; [X jXs]) := [@(F;X)jmap(F;Xs)]:

plus(0; Y ) := Y:
plus(suc(X); Y ) := suc(plus(X;Y )):

dominates(Xs; Y s) := map(plus(N); Y s) = Xs! true:

3



This shows some typical uses of higher-order programming features in BABEL. Functions can be partially

applied, as plus(N) above, and an application operator @ is also available. BABEL's syntax does not use

@ explicitely, but making it explicit is harmless and helps to simplify our descriptions. Note that higher-

order variables (as F in the rules for map) can be used only in de�ning rules which introduce them in the

left hand side. This, together with the absence of �-terms in the syntax, ensures that the language can be

executed without higher-order uni�cation. Solving BABEL goals yields in general multiple solutions, which

are computed by narrowing and backtracking. For instance, the rules above allow to compute two solutions

for a particular goal, as indicated below:

solve dominates([suc(0); X ]; [Y; 0])
true fX=0; Y=suc(0)g
true fX=suc(0); Y=0g

Before giving the formal speci�cation of the operational semantics by means of evolving algebras, we

still present an even simpler example which will serve as running example all along the paper, to help

understanding our speci�cation.

In the following program we de�ne the function append returning the concatenation of two lists, and the

predicate { de�ned as a true-valued function { pre�x which is true for two lists when the �rst one is a pre�x

of the second one. In addition we have a function g simply switching the constants a and b.

(A1) append([]; Y s) := Y s:
(A2) append([X jXs]; Y s) := [X jappend(Xs; Y s)]:
(P1) prefix(Xs; Y s) := append(Xs;Zs) = Y s! true:
(G1) g(a) := b:
(G2) g(b) := a:

To solve, for instance, the goal prefix([g(X); g(Y )]; [a;X; b]), means to �nd values (a most general sub-

stitution) for the variables X and Y such that the given expression is reducible to normal (irreducible) form

by using the rules of the program and the prede�ned functions of the language. The reduction of expressions

and the bindings for the variables is done simultaneously by innermost narrowing. Innermost means that

redexes occupying a deeper position in the expression must be reduced before trying to reduce redexes in

outer positions.

In our goal example there are two innermost redexes, namely g(X) and g(Y ). One of them must be

selected for narrowing it. A selection function could be considered for that purpose, as in the case of logic

programming for selecting a literal to resolve upon. In BABEL the leftmost innermost redex is always

selected.

In our example the leftmost innermos redex is g(X), for which there are two rules { G1 and G2 { for

narrowing it. These two alternatives would narrow the entire expression to prefix([b; g(Y )]; [a;X; b]) and
prefix([a; g(Y )]; [a;X; b]) respectively, with respective substitutions fX=ag and fX=bg. In both cases the

new leftmost innermost redex is g(Y ).
It is clear that solving a goal generates a search space { similar to SLD-trees in logic programming {

due to the di�erent don't know alternative rules for the selected redex. The search tree for our example is

depicted in Fig.1. At each node of the tree the current expression to be reduced is written (append, pre�x

and true are abbreviated) , and the position of the leftmost innermost redex is underscored. The branches

for a node correspond to the alternative program rules which can be applied to the selected redex, and we

annotate them with the substitution coming from uni�cation with the head of the rule (only substitutions

for the variables in the goal expression are written). The non failed leaves contain the normal forms obtained

by di�erent narrowing derivations, and for each one the answer substitution is built by composing all the

substitutions in the path to the root, projected into the variables in the initial goal. In this particular tree

the only answer consists of the normal form true together with the answer substitution fX=b; Y=ag.
As in the case of Prolog, the search over this tree in BABEL is done in a leftmost, depth �rst manner,

with chronological backtracking in case of failure or asking for more solutions. We do not give here a precise

de�nition of the construction of the tree and the search on it; instead, we leave our speci�cation to do the

work.

3 Babel tree algebras

A Babel computation can be seen as systematic search of a space of possible solutions to an initially given

goal. The goals are expressions which have to be reduced to normal form using narrowing (uni�cation and

reduction) with respect to the given Babel program (a set of de�ning rules for the user de�ned functions,
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X/a X/b
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pr([g(X),g(Y)],[a,X,b])

pr([b,g(Y)],[a,a,b]) pr([a,g(Y)],[a,b,b])

true

pr([b,b],[a,a,b]) pr([b,a],[a,a,b]) pr([a,b],[a,b,b]) pr([a,a],[a,b,b])

Figure 1: A narrowing tree
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as explained in Section 2). Thus a description of Babel's operational semantics has to incorporate, besides

reduction to normal form, the concepts of uni�cation and backtracking which are well known from logic

programming languages.

3.1 The narrowing{backtracking core

Our top level description of Babel re
ects the backtracking structure as dynamically created tree structure

with father relation representing backtracking to alternative (single) narrowing steps | corresponding to

di�erent rules for a certain function |, following an idea used already in [B�90b] (in hybrid stack oriented

form) and in [BR91, BR92a] as basis to de�ne an abstract model for Prolog. Thus we represent Babel

computation states in a set NODE with two distinguished elements root and currnode|the latter representing

the (dynamically) current state|and a total backtracking father function

bfather : NODE � frootg ! NODE

such that from each state (except root) there is a unique bfather path towards root . We create the tree algebra

(NODE ; root ; currnode ; bfather )

dynamically as the computation proceeds, out of the initial state (determined by given program and expres-

sion) as the value of currnode, with the (empty) root as the value of bfather(currnode).

Each element n of NODE has to carry all information relevant|at the desired abstraction level|for the

computation state it represents. At the top level, this information|we will call it environment of n|consists

of the expression still to be reduced, the substitution computed so far, and the sequence of alternative states

still to be tried, as we will explain below. When in currnode a redex f(t1; : : : ; tn) with user-de�ned function

f is encountered for reduction, we will create a son for each rule in the program which might be applied to

the redex, to control the alternative computation threads. All such candidate sons are attached to n as a list

cands(n), in the order re
ecting the ordering in which corresponding rules in the program should be applied.

Therefore the signature of cands is

cands : NODE � frootg ! NODE�

We require of course the cands-lists to be consistent with bfather , i.e. whenever Son is among cands(Father ),

then bfather (Son) = Father .

This action of branching the tree with cands(n) takes place at most once, when n gets �rst visited (in

Apply mode) 2.

The mode then turns to Select for handling the alternatives. In Selectmode a narrowing step is attempted,

whereby the �rst son >from cands(n) with applicable rule gets visited (becomes the value of currnode) and

switches to mode Eval (for further evaluation of the resulting expression, see below). The selected son is

simultaneously deleted from the cands(n) list. If control ever returns to n, (by backtracking , cf. below), it

will be in Select mode, and the next candidate son will be selected, if any.

If in Select mode cands(n) = [ ], all attempts at narrowing from the state represented by n will have failed,

and n will be abandoned by returning control to its backtracking father bfather . This action is usually called

backtracking . The bfather function then may be seen as representing the structure of Babel's backtracking

behaviour .

The narrowing step, applied at a son from the cands list with associated candidate rule (guarded equation)

f(t1; : : : ; tn) : = b! e, is executed in terms of the expression attached to each state: if the redex f(e1; : : : ; en)
in expression is uni�able with the left hand side f(t1; : : : ; tn) of the de�ning rule associated to the son, the

redex is replaced by the right hand side b! e of that de�ning rule, and the whole expression gets updated,

for further evaluation (see below), by the (most general) uni�er of the redex and the rule's left hand side. As

we shall see, it is convenient to represent and parse also expressions in the form of trees , in order to describe

the search for redices within an expression.

We complete now the de�nition of signature (statics) and transition rules (dynamics) which will make the

above description precise. The environment will be associated to states by appropriate (in general partial)

functions on the universe NODE . For each state we have to know the expression still to be reduced, provided

by a function

exp : NODE ! EXPRESSION

where EXPRESSION is the domain of Babel expressions. Since reduction steps might take place in subex-

pressions of the given expression, we also introduce a function

2The di�erent modes and their respective roles will become clear from the speci�cations we present below.
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pos : NODE ! POSITION

providing for given state the position in the associated expression at which the next reduction step will take

place. As usual, we assume that positions u are coded as �nite sequences of positive integers; see e.g. [DJ90].

The speci�cation of the function pos depends on the reduction strategy; in this model for Babel we will de�ne

it for the leftmost innermost strategy (which corresponds to an eager implementation).

For accessing and manipulating subexpressions of given expressions (read: subtrees of trees), in connection

with POSITIONwe will use four standard tree functions3: yielding the subexpression e[u] of e at position u,
the result e[u  e0] of replacing e[u] by e0 in e, the information occurs(u,e) whether u is a legal position in

e, and concatenation of positions 4 .

The substitution current at a state, accumulated from the uni�cations in preceding narrowing steps, is

represented by a function

s : NODE ! SUBST

where SUBST is a universe of abstract substitutions with a function

mgu : EXPRESSION � EXPRESSION ! SUBST [ fnilg

which at this level of description remains abstract, associating to two expressions either a substitution (their

most general uni�er), or the answer that there is none. For technical convenience we assume that mgu

returns an idempotent substitution. Application of substitution � to an expression e, and its composition

with another substitution � will be denoted by the usual post�x notation, e�; ��.
The above mentioned switching of modes will be represented by a distinguished element

mode 2 fApply ;Select ;Eval ;: : : g indicating the action to be taken at currnode: creating the alternative

states for narrowing by rule application, selecting among them, evaluating the expression obtained by nar-

rowing, etc. To be able to speak about termination we will use a distinguished element stop 2 f0; 1;�1g, to
indicate respectively running of the system, halting with success and �nal failure.

We shall keep the above mentioned notion of candidate de�ning rule (for applying a narrowing step

to an expression) abstract (regarding it as implementation de�ned), assuming only the following integrity

constraints: every candidate (guarded) de�ning rule for a given expression

� has the proper function (symbol), i.e. the same function as the expression (correctness); and

� every de�ning rule whose left hand side uni�es with the given expression is candidate de�ning rule for

this expression (completeness).

Access to candidate equations is thus handled by a function

fundef : EXPRESSION � PROGRAM ! RULES+;

of which we assume only to yield the (properly ordered) list of the candidate de�ning rules for the given

expression in the given program. The program is represented by a distinguished element pg of PROGRAM

(the program). Note that existence of fundef is all that we assume of the abstract universe PROGRAM .

This concludes the de�nition of the signature of Babel tree algebras. Minor additions, pertaining only to

some special constructs, will be presented in corresponding sections.

Notationally, since we deal mainly with values of functions at currnode, we usually suppress this parameter

writing

bfather � bfather (currnode) cands � cands(currnode) fst cand � fst(cands(currnode))

exp � exp(currnode) pos � pos(currnode) s � s(currnode);

exp, pos and s constitute the environment of currnode. The selected exp-subexpression |the current expres-

sion|is accessed from the environment by

currexp � exp[pos]:

Now to dynamics. We assume the following initialization of Babel tree algebras: The child of root is

supposed to be the initial value of currnode; it has the initial expression as associated expression, pos is the

empty position and s the empty substitution; the mode is Eval , stop has value 0; pg has the given program as

value. The list cands of alternative states is not (yet) de�ned at currnode. This initial algebra is graphically

shown in Fig.2 for our running example. The current node currnode is boldfaced and the current position

7
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Figure 2: Initial Algebra

pos is underscored; the edges in the tree represent the bfather relation. The mode can be found in the right

upper part of the tree.

We now de�ne the rules by which the system attempts, given a Babel program, to reach a state with

stop = 1 (due to �nal success of the computation) or with stop = �1 (due to �nal failure by backtracking all
the way to root). No transition rule will be applicable in such a case, which is a natural notion of `terminating

state'. All transition rules will thus be tacitly assumed to stand under the guard stop = 0. We introduce the

following abbreviation for backtracking:

backtrack � if bfather = root then stop := �1
else currnode := bfather

mode := Select

A reduction step of a redex f(t1; : : : ; tn) with user-de�ned f and arguments ti in normal form is split into

applying the function call (to create new candidate nodes for alternative states of currnode), to be followed

by selecting one of them. We will correspondingly have two rules. The following call rule (Call ), invoked by

having a user{de�ned function call in Apply mode, will create as many sons of currnode as there are candidate

de�ning rules in the procedure de�nition of its function symbol, to each of which the corresponding de�ning

rule will be associated.
if is user de�ned(currexp) &mode = Apply

& currexp = f(e1; : : : ; en) & 0 � n = arity(f)
then let [ dr1; : : : ; drm ] = fundef (currexp; pg)

extend NODE by n1; : : : ; nm with

bfather (ni) : = currnode

defrule(ni) := dri
cands : = [n1; : : : ; nm ]

endextend

mode := Select

where is user de�ned is a Boolean function recognizing those expressions whose function symbols are user

de�ned (as opposed to free constructors and prede�ned operations), defrule is an auxiliary labeling function,

arity(f) indicates the (program) arity of f . Note that expressions and substitutions, attached to candidate

sons, are at this point unde�ned, and that the value of currnode does not change.

The following selection rule (Sel) attempts to select a candidate state (selecting thereby the associated

rule). If there is none, the system backtracks. If the left hand side of the renamed selected rule does not unify

with the call pattern, the corresponding son is erased >from the list of candidates. Otherwise the selected

rule of the �rst successful candidate is activated: the corresponding son becomes the value of currnode in

Eval mode (and gets erased from its father's cands list), its environment is de�ned as the result of narrowing

applied to the current environment|replacing in currnode's expression the current subexpression by the

right hand side of the rule and applying the unifying substitution to both s and (new) exp for which the

evaluation has to proceed then. Renaming of variables in an expression e is realized abstractly by introducing
the current variable renaming index vi 2 N , and denoting by rename (e,vi )|or shorter e0|the result of e

3We consider these functions here as static, i.e. functions which are known and not updated by rules. One might view them

as procedures.See [Gur91]
4u:(i+ 1) is (next to the right) brother position of u:i, u:1 is the leftmost child of position u and u is father of all positions

u:i.
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after renaming of all variables at level vi . The update vi : = vi+1 ensures freshness of subsequent renamings.

if mode = Select

thenif cands = [ ] then backtrack

else let (Lhs = Rhs) = defrule(fst cand)

let � = mgu(currexp;Lhs 0)
cands : = rest(cands)

if � 6= nil then go fst cand in Eval

narrow curr env(Rhs' ; �)
vi : = vi + 1

with fst cand denoting the �rst element in cands and with abbreviations:

go fst cand in Eval � currnode : = fst cand

mode : = Eval

narrow curr env(E; �) � exp(fst cand) : = exp[ pos  E] �
pos(fst cand) : = pos

s(fst cand) : = s �

The application of the Call and Select rules for the running example is shown in Fig.3. Some steps of the

backtracking due to the failure of the left part of the tree (see Fig.1) are shown in Fig.4, where discontinuous

lines are used for that part of the tree which will not be visited any more, that is, abandoned nodes.
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Figure 3: Call and Select rules
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Figure 4: Bactracking

3.2 Rules for reduction to normal form

In this section we de�ne the rules for evaluation of expressions to normal form. Since evaluation follows the

leftmost innermost strategy, it is started by searching the position of the leftmost innermost subexpression
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of the current expression which is not in normal form. If currexp is not in normal form, we check whether its

leftmost subexpression (at position pos.1, i.e. the extension of the current position by 1) is responsible for

this. Otherwise we have to continue the evaluation for the next relevant subexpression (brother- or father-

expression of currexp, see below). This is described by the following evaluation starting rule (EvStart):

if mode = Eval thenif is not in normal form(currexp)

then pos : = pos :1
else mode : = Continue

where is not in normal form is an auxiliary Boolean{valued function (with the obvious meaning) and Con-

tinue a possible value of mode whose appearence here signals that currexp has been reduced to normal

form.

Once currexp appears to be in normal form, the computation goes on to evaluate the next brother

expression if there is one; otherwise the computation passes to apply the outermost symbol of the father

expression (whose arguments have been already reduced to normal form). There is a special case: some

prede�ned functions are considered as strict 5 only in the �rst argument. For these functions, once the �rst

argument has been reduced to normal form, the evaluation must proceed at the father position in mode

Apply. All this is formalized by the following evaluation continuation rule (EvCont) :

if mode = Continue & pos = u:i
thenif :occurs(u:(i+ 1); currexp) or nonstrict(u)

then pos : = u
mode : = Apply

else pos : = u:(i+ 1)

mode : = Eval

where nonstrict(u) tells whether the subexpression exp[u] is an application of one of the prede�ned functions

which are strict only in the �rst argument, i.e. it takes one of the forms

and(b1; b2); or(b1; b2); b! e; b! e1#e2:

These expressions need special rules, given below, to describe their evaluation.

If there is no father expression, re
ected by pos coming back to its initial empty value (say �), the whole
initial expression has been reduced to normal form, and hence the computation of one solution has been

completed. Then the computed solution is added to the solution list, and the user is asked interactively

whether more solutions are wanted. The latter feature is formalized abstractly by using a Boolean valued

0-ary function more|external in the sense of [Gur91]|to take care of external request of more solutions

after a solution has been found. Otherwise the computation terminates with �nal success. This is described

by the following stop rule (Stop) :

if mode = Continue & pos = �
then solution list : = [hexp; s jGoalvarsi j solution list ]

if more = 1 then backtrack

else stop = 1

By s jV we denote the restriction of the substitution s to the set of variables V . Goalvars is a (static) 0-ary

operation ranging over a universe VAR of variables. Goalvars is initialized to be the set of variables of the

initial expression to be reduced, and is not changed during the computation.

In Apply mode there are several cases to consider, depending on the value of currexp: it can be an

expression formed by a user{de�ned function applied to arguments which are all in normal form (in which

case narrowing takes place as described above by call and selection rules), it may be a constructor expression

or a partial application of a user de�ned function, it may consist of an application of the \apply" operator @,

and last but not least, it may be the application of some other prede�ned function. For each of these cases

there is a corresponding rule.

If in Apply mode currexp is an expression formed by a constructor c with number of arguments which does

not exceed the constructor's arity arity(c) or an expression formed by a user{de�ned function but with less

arguments than the (program) arity arity(f) of this function f|we denote this by a Boolean valued function

is construction 6 |, then the evaluation of currexp has �nished and must continue at another (brother{ or

father{) expression, as described by the following construction rule (Construction) :

if mode = Apply & is construction(currexp) thenmode : = Continue

5f is strict in its i-th argument i� f(a1; : : : ; ai; : : : ; an) is unde�ned whenever ai is unde�ned.
6Note that partial applications of user de�ned functions are viewed in BABEL as analogous to applications of free constructors.
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If the current subexpression is an expression @(e0; e1) then the arguments ei have already been reduced

to normal form, and due to well-typedness e0 is a partial application7. The system simply adds the second

expression as further argument to the �rst expression. Note that mode does not change. This is described

by the following partial application rule (PApp) :

ifmode = Apply & currexp = @(e0; e) & e0 = op(e1; : : : ; em)
then exp : = exp[pos op(e1; : : : ; em; e)]

where op is a constructor or a function symbol.

For the sake of example we show here two cases for prede�ned functions, namely the self{explanatory

rules for conditionals: 8

if currexp = b! e
& mode = Apply

thenif b = true

then exp : = exp[pos e]
mode : = Eval

else backtrack

if currexp = b! e1#e2
& mode = Apply

then if b = true

then exp : = exp[pos e1]
else exp : = exp[pos e2]

mode : = Eval

Similar rules for the other prede�ned Boolean expressions are skipped here. The equality rule (Eq) |

asking for uni�ability of the equated expressions|relies upon the abstract uni�cation functionmgu introduced

above:
if currexp = eq(e1; e2) & mode = Apply

then let mgu = mgu(e1; e2)
if mgu = nil then exp : = exp[pos false]

else exp : = (exp[pos true])mgu

s : = smgu

4 Babel stack algebras

In order to come closer to a realistic implementation, in this section we re�ne Babel tree algebras by structure

sharing for expressions, explicit computation of the normal form condition and embedding of the backtracking

tree structure into a stack. We indicate at each step how to prove the correctness of the re�nement.

4.1 Structure sharing for expressions

Here we introduce structure sharing for expressions: when during narrowing the left hand side of an equation is

replaced by its right hand side, we put only the source code expression involved, without applying the unifying

substitution which is kept apart. This means that a) the update for exp(fst cand),exp in the selection, equality

rule respectively is changed to be without applying the unifying substitution, and b) to those occurrences

of currexp or expressions e; e1; e2; b in the rules the substitutions must be applied, where the condition to

be checked or the operation to be performed on those expressions really depend on the substitution. 9 The

latter happens in the following cases:

� in currexp when procdef is used in the call rule for collecting the candidate equations for narrowing

currexps, 10

� in the de�nition of mgu in the selection and equality rule,

� in exp when solution list is updated in the stop rule,

� in b for the test b = true in the rules for the prede�ned conditionals, and

7i.e. its number of arguments is smaller than the arity of its functor.
8The reader will notice that the case where b is a variable, say X, is missing. The two alternatives for the computation to

proceed correspond to the bindings fX=trueg and fX=falseg. For the sake of simplicity, instead of describing the branching by

new rules, we assume X to be replaced by an expression bool gen(X), where bool gen is a user-de�ned function assumed to be

in every program, with BABEL de�ning rules bool gen(true) = true and bool gen(false) = false. The Call rule for bool gen will

then take care of the branching. This is indeed what is done in the real implementation.
9This re�nement, in combination with the normal form test re�nement of the next subsection, allows to avoid the traversal

of complex terms which originated from substitutions. Note that s always substitutes normal forms for variables because the

patterns in rule heads are normal forms and because arguments of a function application are reduced to normal form before the

function rule is applied. Hence e is in normal form i� e s is.
10To consider here currexps is not needed if procdef depends only on the outer function symbol f of currexp { i.e. if procdef

returns all the program rules for f {. But it would be needed for a possible re�nement including some indexing mechanism.
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� in e for the condition e = op(e1; : : : ; em) in the partial application rule; e s is needed because e might
be a higher order variable coming from a program rule. As an example, consider F in the rules for map

in the example of section 2; when we reduce, f.i., map(plus(0); [0]) replacing it by the right handside

of the second rule for map, the (sub)expression @(F;X) is generated, together with the substitution

fF=plus(0); X=0g. We need to `dereference' F for the partial application rule, in order to reduce

@(F;X) to plus(0; X).

The proof mapping F : (A1;R1)! (A0;R0) is de�ned as follows: F preserves all the universes, all the rules

(in the sense that F maps rules from R1 to homonymous rules from R0), and all the operations except exp.

Given an instance A1 of (A1;R1), for all n 2 NODE

exp
F(A

1

)(n) = [exp
A
1

(n)]s(n)

4.2 Re�ning normal form test

In this section we re�ne the is normal form function used in the evaluation starting rule. The idea is to

traverse an expression in mode Eval until a non decomposable normal form|namely a variable, a constructor

symbol or a user{de�ned non evaluable function symbol (i.e. of arity > 0)|is reached. 11 Thus the new

evaluation starting rule:

if mode = Eval thenif :atomic(currexp) then pos : = pos :1
else mode : = Continue

where atomic(e) recognizes if the expression e is a variable, a constructor symbol c or a function symbol f

with arity(f) > 0.

The proof mapping F : (A1;R1)! (A2;R2) preserves all the universes and operations and maps R1-rules

to homonymous R2-rules except the evaluation starting rule. A single application of this rule in R1 may

correspond to a sequence of rules in R2, if currexp is in normal form and of form '(t1; : : : ; tn), with n > 0

and ' a constructor symbol c or a user{de�ned function symbol f with n < arity(f) 12. In this case (A2;R2)

requires a sequence of rules among evaluation starting/continuation/stop rules in order to recognize that the

subexpression is in normal form.

The sequence traversal(currexp) of R2-rules which corresponds to an appearance of EvStart in a sequence

of R1-rules is de�ned by

traversal(e) = EvStart if e = X j c j f
traversal('(t1; : : : ; tn)) = EvStart ; traversal(t1);EvCont ; : : : ; traversal(tn);EvCont ;Construction
if e = '(t1; : : : ; tn); where ' = c or ' = f; n < arity(f)

4.3 From backtracking tree to backtracking stack

Classi�cation of Babel tree nodes suggests a straightforward stack representation: disregarding the abandoned

nodes (since they, once abandoned, play no further role in the computation), we may view the path of active

nodes as a stack|if cands lists are represented in some other way. It suÆces to change the signature of cands

to

cands : NODE � frootg ! RULES�

and to update|when creating (and passing control to) one new state by action of the Call rule|the value

of cands for this new state to the complete list of rules applicable to that call. Backtracking will then consist

in looking for remaining candidate rules.

In the following new call rule we create therefore one new state which becomes current state, which

upon failure will backtrack to currnode, and which through appropriate decoration of its cands value will

control execution of the alternatives for the current call. To keep our correctness proof simple, we let here

the new node fetch its environment for narrowing from its backtracking father currnode 13.

11By this we come closer to implementations, where in the compilation process all the expressions in the source program are

traversed and code instructions are generated for them.
12Note that n = arity(f) would mean that currexpis not in normal form and that the call rule could be applied.
13In the later re�nement to states controlling subcomputations, a copy of the narrowing environment will be stored at the

new node, as it happens in the IBAM.

12



if is user de�ned(currexp) &mode = Apply

& currexp = f(e1; : : : ; en) & 0 � n = arity(f)
then extend NODE by N with

bfather (N) : = currnode

currnode : = N
cands(N) : = fundef (currexp; pg)
endextend

mode := Select

The new selection rule checks whether there are (still) rules to consider; in positive case it executes

the narrowing step and restores at currnode the relevant information (expression, position, substitution) for

the now starting evaluation of the narrowed expression. Remember that this information is kept by the

backtracking father (which is responsible for the currently executed call).

if mode = Select thenif cands = [ ]

then backtrack

else let (Lhs = Rhs) = fst cands

let � = mgu(exp(bfather )[pos(bfather )] s(bfather );Lhs 0)
cands : = rest(cands)

if � 6= nil then mode : = Eval

narrow bfather env(Rhs' ; �)
vi : = vi + 1

where

narrow bfather env(E; �) � exp : = exp(bfather )[pos(bfather ) E]
pos : = pos(bfather )

s : = s(bfather ) �

The e�ect of the new Call and Select rules for our running example is shown in Fig.5.
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N2

s=fX/ag

cands = [G2]

pr([g(X),g(Y)],[a,X,b]) pr([g(X),g(Y)],[a,X,b]) pr([g(X),g(Y)],[a,X,b])

pr([b,g(Y)],[a,X,b])

Call SelectApply Select Eval

Figure 5: Call and Select rules in Stack Algebras

For the de�nition of backtrack to work properly, cands must be initialized in this algebra to be [ ] for the

child of root (the initial currnode). Otherwise, since the new call rule attributes cands to the child created for

currnode, cands would remain unde�ned for the child of root, and the condition cands = [ ] in the selection

rule would crash if backtracking takes place at the child of root.

We de�ne the proof mapping by a function F which associates homonymous rules and maps stack elements

to tree nodes using an auxiliary function F : NODE 3 ! NODE2 such that:

exp(F (n)) = exp(bfather (n)) pos(F (n)) = pos(bfather (n))
s(F (n)) = s(bfather (n)) cands(F (n)) = mk cands(F (n); cands(n))

bfather (F (n)) = F (bfather (n)) F (root) = root

where mk cands(n; [l1; : : : ; lm]) � [hn; l1i; : : : ; hn; lmi] keeping in mind that candidate nodes in the tree can

be thought of as hnode ; defrule i pairs, since these are their only decorations. Consequently when fst cands

is chosen by rule Sel3, then F(currnode3) = currnode2 is a pair hn; fst candsi.
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5 Babel graph algebras

In this section the normal form computation for expressions will be `localized'. In order to keep the correctness

proof simple, this is done in two steps: introduction of states which control normalization of subexpressions,

completed by subsequent replacement of `global' by dedicated `local' environments.

5.1 States controlling subcomputations

Up to now, states (nodes of NODE ) re
ect only backtracking. They are created when a function call is made

for reducing currexp, but their role does not correspond exactly to computing just that subexpression. In

fact, if no more calls are performed, the created state remains current one until the end of the computation

for the whole exp.

We now make states responsible only for the computation of the corresponding subexpression. Once this

computation is �nished, control will be returned (by a return rule) to the state which was current in the

moment of the call. We will call this state the activator of the state created by the call and denote it by a

function act node from NODE to NODE .

This calling structure induces a new tree structure in NODEwhich is actually the core of the IBAM and

imposes two changes in connection with backtracking:

� currnode may now be updated also by the new return rule. Consequently, when a new state is created

by a call, currnode may not represent the last created state to which to backtrack from the new state.

Therefore a 0-ary function (global variable) lastnode is introduced to store the (chronologically) last

created node. Initially lastnode is set to be the child of root.

� All the alternatives for a given call have to be tried with the same environment, namely exp, pos, s

as they were in the moment of the call. In the previous algebras, these values were accessed from the

environment of the backtracking father. This will not be safe any more, since exp,pos and s for the

backtracking father could have changed in the meantime, had control come back to it by the return

rule. Therefore in the moment of a call, `safe copies' of exp,pos and s are stored in the new state. We

denote these values by functions act exp, act pos, act s de�ned on NODE .

act node, act env, lastnode are handled by additional updates to Call and Sel rules. Since in this �rst step

towards `local', subexpression-normalization, the global expressions are still kept (to simplify the proof map)

as decorations of states, we obtain the modi�ed call rule by changing the update of bfather to bfather (N)

:=lastnode and by adding the updates act node(N):=currnode and store act env at N, using the abbreviation

store act env at N � act exp(N) : = exp

act pos(N) : = pos

act s(N) : = s

if is user de�ned(currexp) &mode = Apply

& currexp = f(e1; : : : ; en) & 0 � n = arity(f)
then extend NODE by N with

currnode : = N
cands(N) : = fundef (currexp s ; pg)
bfather (N) : = lastnode

act node(N) : = currnode

store act env at N

endextend

mode := Select

The modi�ed select rule is literally the same as before, replacing bfather env by act env, both in the

de�nition of the mgu � and in the abbreviation narrow bfather env. Formally:

� = mgu(act exp[act pos] act s;Lhs 0)
narrow act env(E; �) � exp : = act exp[act pos E]

pos : = act pos

s : = act s �

In addition lastnode, to which bfather will be set by the following execution of Call rule, is updated to

currnode. The modi�ed evaluation continuation rule obtains the additional test whether the current

14



position is root of a subcomputation which has been activated by currnode; in this case it switches to a

new mode Return. Formally it is suÆcient to replace the guard in the evaluation continuation rule by the

following one:
if mode = Continue

thenif pos = act pos then mode : = Return

else let u:i = pos

if :occurs(u:(i+ 1); currexp) or nonstrict(u)
: : :

For technical convenience, we assume that act pos is initialized to be � for the child of root, which means

that the switching to mode Return will also happen when the evaluation of the whole initial expression

�nishes (in this case, pos = act pos = �). As a consequence, the condition mode = Continue & pos = � in the

Stop rule changes to mode = Return & bfather = root in the modi�ed stop rule.

The new mode Return is governed by a Return rule (Ret) through which control is returned to the

activating node, with expression (still globally) updated by the result of the just terminated subcomputation.

if mode = Return & bfather 6= root

then currnode : = act node

return curr env to act env

mode := Continue

with the abbreviation

return curr env to act env � exp(act node) : = exp

pos(act node) : = pos

s(act node) : = s

In Fig.6 some relevant steps for our running example are displayed. We have graphically emphasized the

act node relation, which is represented by solid edges. The resulting tree can be understood as a task tree .

The bfather relation is represented by discontinous arrows, while lastnode is no explicitly drawn, since it is

always the deepmost rightmost active node. Following these arrows from lastnode up to root, the backtracking

stack can be reconstructed. For the sake of clarity, the decoration of nodes is omitted when unchanged or

irrelevant.

At step (a) the Call rule is going to be applied for narrowing g(X). A new node N2 is created and

activated for this purpose, its backtracking father and activator node being the previously current one. The

activator environment (which is framed in the picture) is copied into N2 (step (b)). This safe copy will remain
unchanged for all the life of N2. After using the program rule G1 for narrowing g(X) into b, step (c) will
be reached, where the Return rule gives back the current environment to the activator, as the result of the

subcomputation (step (d)). The computation proceeds under the control of N1, and after some steps the

nodes N3 and N4 will be created for reducing g(Y ) and prefix([b; b]; [a;X; b]) respectively; both N3 and N4

have N1 as activator, but their backtracking fathers are N2 and N3 respectively, since the latter were the

respective last nodes when N3 and N4 were introduced (steps (e) and (f)).
In (g) we show the situation encountered when N3 is reactivated for trying the alternative rule G2, after

the failure of all the alternatives for N4 and its created descendants (they are abandoned nodes now). N3

is at this point as it was in (f). Neither the environment of its activator N1 ( which also remains as it was

in (f)) or of its backtracking father N2 (which remains as it was in (c)) can be used for restoring the the

computation to the state as it was when N3 was created. This clearly shows the role of the safe copy Env2
stored together with N3.

Finally, (i) illustrates how a succesful derivation is going to �nish in mode Return with the child of root as

currnode, having the empty position and the computed normal form and substitution as environment. The

Stop rule would add the computed solution to the list of solutions, and would ask the user for more solutions

to be computed by backtracking.

For the proof mapping F from (A4;R4) to (A3;R3), let A4 be an instance of (A4;R4). The instance

A3 � F(A4) of (A3;R3) is de�ned as follows: let S0; : : : ; Sn 2 NODEA
4

be a bfather-chain from rootA
4

to

lastnodeA
4

, i.e.

S0 = rootA
4

Sn = lastnodeA
4

Si�1 = bfather
A
4

(Si); for1 � i � n

Then we de�ne

NODEA
3

= fS0; : : : ; Sng currnodeA
3

= Sn rootA
3

= S0

The A3-environment for Sn is that of currnodeA
4
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exp
A
3

(Sn) = exp
A
4

(currnodeA
4

)

pos
A
3

(Sn) = pos
A
4

(currnodeA
4

)

sA
3

(Sn) = sA
4

(currnodeA
4

)

The A3-environment for the remaining nodes in NODEA
3

is reconstructed from the act env in the backtrack-

ing chain: therefore, for all 1 � i � n� 1

exp
A
3

(Si) = act exp
A
4

(Si+1)

pos
A
3

(Si) = act pos
A
4

(Si+1)

sA
3

(Si) = act sA
4

(Si+1)

modeA
3

is the same as modeA
4

, if it is not Return. Otherwise modeA
3

is Continue. For the mapping of a

sequence R4 of rules in A4 to a sequence R3 in A3, let us notice that a single occurrence of EvCont in A3

is followed in A4 by Ret ;EvCont if it correspond to a just �nished subcomputation (more of such pairs of

rules will appear if there is a chain of returns). At the end of the computation, Stop applies in A3, while

EvCont ;Stop are needed in A4. Therefore, given R4, R3 is the result of deleting in R4 the pairs EvCont ;Ret ,
and replacing EvCont ;Stop by Stop.

5.2 Subcomputations with local expressions

In this re�nement step the `global' environments are replaced by `local' ones, i.e. handling of act env (nar-

rowing of and returning to in Selection and Return rules) is done with the relevant `local' expression. For

the new selection rule, narrow act env(Rhs',�) is re�ned using the `local' updates exp : = Rhs 0 ; pos : = �.
In the new return rule the subcomputation result is returned to act node by placing it into the ex-

pression of act node at its activation position (thus making it `global' relative to act node). Formally this

means to re�ne return curr env to act env assigning act exp[act pos  exp] to exp(act node) and act pos to

pos(act node). Notice that the use of the safe copies act exp, act pos of the activator environment has moved

from the Select rule to the Return rule. In addition, due to the rede�nition of pos in the selection rule, the

condition pos = act pos in EvCont rule for switching to mode Return must be replaced by pos = �.
The proof mapping F from (A4;R4) to (A5;R5) preserves all universes, rules and operations, except exp,

pos, act exp and act pos, which are `local' in A5. For a given instance A4 of A4 we de�ne A5 � F(A4) as

follows: for each S 2 NODE � frootg

pos
A
5

(S) = if bfather (S) = root then pos
A
4

(S)
else u where act pos

A
4

(S) � u = pos
A
4

(S)

exp
A
5

(S) = if bfather (S) = root then exp
A
4

(S)
else exp

A
4

(S)[act pos
A
4

(S)]

act pos
A
5

(S) = if bfather (S) = root then act pos
A
4

(S)
else u where act pos

A
4

(act nodeA
4

(S)) � u = act pos
A
4

(S)

act exp
A
5

(S) = if bfather(S) = root then act exp
A
4

(S)
else act exp

A
4

(S)[act pos
A
4

(S)]

6 Optimizations

In this section we introduce abstract versions of some time and space optimizations in the IBAM. Their role

and justi�cation are much better understood in this more abstract setting than at the implementation level
14.

6.1 Return without restoring

When a task returns a value , it is not always needed to use the safe copies (act exp, act pos) of its activator

for returning to it the computed value. In some situations the current values exp(act node), pos(act node)

14There is another optimization in the IBAM which is not covered by this section, namely detection of deterministic com-

putations, also called dynamic cut. It consists in the following: when applying a program rule for narrowing an expression, if

no variable becomes bound during uni�cation with the head of the rule and solving the conditions in the guard, then there

is no need of trying alternative rules, since they cannot produce more general solutions. This should be not considered as an

optimization of the implementation, but of BABEL operational semantics itself, hence the natural place for considering it is at

the most abstract description level of the operational semantics. It would not be diÆcult to do so and to proof the correctness

of the optimization, relying on the theorems [LW91] stating the safeness of dynamic cut.
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can be used instead for this purpose. This will save the time of restoring the activator with these safe values.

The obvious conditions for this to be correct are

(i) act exp[act pos exp] = exp(act node)[pos(act node) exp]

(ii) pos(act node) = act pos

But (ii) can only hold (in mode Return) if act pos = � or if it is the �rst time the current task returns a

value to its activator, and in both cases (i) is always veri�ed (trivially for the �rst case, and because nothing

has been done under the control of act node since currnode was activated).

The optimized return rule simply needs to transform the updates of exp(act node) and pos(act node)

into conditional updates, distinguishing the optimizable cases from the rest. This means to re�ne once more

the abbreviation return curr env to act env to

if pos(act node) = act pos

then exp(act node) : = exp(act node)[pos(act node) exp]

else exp(act node) : = act exp[act pos exp]

pos(act node) : = act pos

s(act node) : = s

This optimization covers the �rst return optimization of the IBAM, which corresponds to the second case

discussed above.

6.2 Optimized last return

When a a value is returned by a task which is the last (active) created task and has an empty list of alter-

natives, then this task will not perform any other succesful computation. If by backtracking it is reactivated

later on, it will fail immediately and backtracking will be done to its backtracking father. We can anticipate

this situation by resetting lastnode to the backtracking father of the task (the task node itself could in fact

be collected as garbage). The optimized last return rule expresses this adding a conditional update for

lastnode:
if lastnode = currnode & cands = [ ] then lastnode : = bfather

Note that the e�ect of this optimization and the previous one could be combined into a single optimized

return rule.

6.3 Optimized call

This optimization complements the last return optimization. It consists in the following: if the current node

N0 is the last created one, the list of its alternatives is empty, and furthermore a call, creating a child node

N1, is going to be done as the last thing to do for N0, then the value returned by N1 will be returned also

as the value for N0. This transmission of the values returned by N1 | maybe several times because of

backtracking on N1 | will be the only role of N0 in the future (because N0 has no alternatives and there is

no task between N0; N1). This fact suggests that we can reuse the node corresponding to N0 for N1:
The optimized call rule only needs an additional test for deciding if the node can be reused.

if is user de�ned(currexp) &mode = Apply

& currexp = f(e1; : : : ; en) & 0 � n = arity(f)
thenif lastnode = currnode & cands = [ ] & pos = �

then cands : = fundef (currexp; pg) % The node is reused

else : : :

7 Conclusions and future work

Starting from related work for Prolog and the WAM, we have used Evolving Algebras to give a description

of the innermost narrowing semantics for the functional logic language BABEL, and we have speci�ed a

series of provably correct re�nement steps towards a de�nition of BABEL's implementation by the innermost

graph-narrowing abstract machine IBAM [KLMR90].

Thus, we have paved the way for a full correctness proof for IBAM, which we believe will arise quite

naturally by further re�nement of the current description. This will be subject of future work. Moreover, we

plan to develop a description of lazy semantics and implementation techniques for BABEL, which involves

a more diÆcult kind of control [MKLR90, Loo93] and will require substantial modi�cations of the present

description.
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A Rules for the algebras

This appendix contains complete sets of rules for all the re�nements of the algebra. A mark (|) in a rule

indicates that it has been changed with respect to the previous algebra.

A.1 BABEL tree algebras

Call rule
if is user de�ned(currexp) &mode = Apply

& currexp = f(e1; : : : ; en) & 0 � n = arity(f)
then let [ dr1; : : : ; drm ] = fundef (currexp; pg)

extend NODE by n1; : : : ; nm with

bfather (ni) : = currnode

cands : = [n1; : : : ; nm ]

endextend

defrule(ni) := dri
mode := Select

Select rule

if mode = Select

thenif cands = [ ] then backtrack

else let (Lhs = Rhs) = defrule(fst cand)

let � = mgu(currexp;Lhs 0)
cands : = rest(cands)

if � 6= nil then go fst cand in Eval

narrow curr env(Rhs' ; �)
vi : = vi + 1

with fst cand denoting the �rst element in cands and with abbreviations:

go fst cand in Eval � currnode : = fst cand

mode : = Eval
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narrow curr env(E; �) � exp(fst cand) : = exp[ pos  E] �
s(fst cand) : = s �
pos(fst cand) : = pos

backtrack � if bfather = root then stop := �1
else currnode := bfather

mode := Select

Evaluation starting rule

if mode = Eval thenif is not in normal form(currexp)

then pos : = pos :1
else mode : = Continue

Evaluation continuation rule

if mode = Continue & pos = u:i
thenif :occurs(u:(i+ 1); currexp) or nonstrict(u)

then pos : = u
mode : = Apply

else pos : = u:(i+ 1)

mode : = Eval

Stop rule

if mode = Continue & pos = �
then solution list : = [hexp; s jGoalvarsi j solution list ]

if more = 1 then backtrack

else stop = 1

Construction rule
if mode = Apply & is construction(currexp)

thenmode : = Continue

Partial application rule

ifmode = Apply & currexp = @(e0; e) & e0 = op(e1; : : : ; em)
then exp : = exp[pos op(e1; : : : ; eme)]

Rules for conditionals

if currexp = b! e
& mode = Apply

thenif b = true

then exp : = exp[pos e]
mode : = Eval

else backtrack

if currexp = b! e1#e2
& mode = Apply

then if b = true

then exp : = exp[pos e1]
else exp : = exp[pos e2]

mode : = Eval

Equality rule

if currexp = eq(e1; e2)
& mode = Apply

then let mgu = mgu(e1; e2)
if mgu = nil then exp : = exp[pos false]

else exp : = (exp[pos true])mgu

s : = smgu

A.2 Structure sharing for expressions

Call rule (|)
if is user de�ned(currexp) &mode = Apply

& currexp = f(e1; : : : ; en) & 0 � n = arity(f)
then let [ dr1; : : : ; drm ] = fundef (currexp s; pg)

extend NODE by n1; : : : ; nm with

bfather (ni) : = currnode

cands : = [n1; : : : ; nm ]

endextend

defrule(ni) := dri
mode := Select
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Select rule (|)

if mode = Select

thenif cands = [ ] then backtrack

else let (Lhs = Rhs) = defrule(fst cand)

let � = mgu(currexp s;Lhs 0)
cands : = rest(cands)

if � 6= nil then go fst cand in Eval

narrow curr env(Rhs' ; �)
vi : = vi + 1

with fst cand denoting the �rst element in cands and with abbreviations:

go fst cand in Eval � currnode : = fst cand

mode : = Eval

narrow curr env(E; �) � exp(fst cand) : = exp[ pos  E]
s(fst cand) : = s �
pos(fst cand ) : = pos

backtrack � if bfather = root then stop := �1
else currnode := bfather

mode := Select

Evaluation starting rule

if mode = Eval thenif is not in normal form(currexp)

then pos : = pos :1
else mode : = Continue

Evaluation continuation rule

if mode = Continue & pos = u:i
thenif :occurs(u:(i+ 1); currexp) or nonstrict(u)

then pos : = u

mode : = Apply

else pos : = u:(i+ 1)

mode : = Eval

Stop rule (|)
if mode = Continue & pos = �
then solution list : = [hexp s; s jGoalvarsi j solution list ]

if more = 1 then backtrack

else stop = 1

Construction rule
if mode = Apply & is construction(currexp)

thenmode : = Continue

Partial application rule (|)

ifmode = Apply & currexp = @(e0; e) & e0 s = op(e1; : : : ; em)
then exp : = exp[pos op(e1; : : : ; eme)]

Rules for conditionals (|)

if currexp = b! e
& mode = Apply

thenif b s = true

then exp : = exp[pos e]
mode : = Eval

else backtrack

if currexp = b! e1#e2
& mode = Apply

then if b s = true

then exp : = exp[pos e1]
else exp : = exp[pos e2]

mode : = Eval
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Equality rule (|)

if currexp = eq(e1; e2)
& mode = Apply

then let mgu = mgu(e1 s; e2 s)
if mgu = nil then exp : = exp[pos false]

else exp : = (exp[pos true])

s : = smgu

A.3 Re�ning test for normal form

Call rule
if is user de�ned(currexp) &mode = Apply

& currexp = f(e1; : : : ; en) & 0 � n = arity(f)
then let [ dr1; : : : ; drm ] = fundef (currexp s; pg)

extend NODE by n1; : : : ; nm with

bfather (ni) : = currnode

cands : = [n1; : : : ; nm ]

endextend

defrule(ni) := dri
mode := Select

Select rule

if mode = Select

thenif cands = [ ] then backtrack

else let (Lhs = Rhs) = defrule(fst cand)

let � = mgu(currexp s;Lhs 0)
cands : = rest(cands)

if � 6= nil then go fst cand in Eval

narrow curr env(Rhs' ; �)
vi : = vi + 1

with fst cand denoting the �rst element in cands and with abbreviations:

go fst cand in Eval � currnode : = fst cand

mode : = Eval

narrow curr env(E; �) � exp(fst cand) : = exp[ pos  E]
s(fst cand) : = s �
pos(fst cand ) : = pos

backtrack � if bfather = root then stop := �1
else currnode := bfather

mode := Select

Evaluation starting rule (|)

if mode = Eval thenif :atomic(currexp) then pos : = pos :1
else mode : = Continue

Evaluation continuation rule

if mode = Continue & pos = u:i
thenif :occurs(u:(i+ 1); currexp) or nonstrict(u)

then pos : = u
mode : = Apply

else pos : = u:(i+ 1)

mode : = Eval
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Stop rule

if mode = Continue & pos = �
then solution list : = [hexp s; s jGoalvarsi j solution list ]

if more = 1 then backtrack

else stop = 1

Construction rule
if mode = Apply & is construction(currexp)

thenmode : = Continue

Partial application rule

ifmode = Apply & currexp = @(e0; e) & e0 s = op(e1; : : : ; em)
then exp : = exp[pos op(e1; : : : ; eme)]

Rules for conditionals

if currexp = b! e
& mode = Apply

thenif b s = true

then exp : = exp[pos e]
mode : = Eval

else backtrack

if currexp = b! e1#e2
& mode = Apply

then if b s = true

then exp : = exp[pos e1]
else exp : = exp[pos e2]

mode : = Eval

Equality rule

if currexp = eq(e1; e2)
& mode = Apply

then let mgu = mgu(e1 s; e2 s)
if mgu = nil then exp : = exp[pos false]

else exp : = (exp[pos true])

s : = smgu

A.4 BABEL stack algebras

Call rule (|)
if is user de�ned(currexp) &mode = Apply

& currexp = f(e1; : : : ; en) & 0 � n = arity(f)
then extend NODE by N with

bfather (N) : = currnode

currnode : = N
cands(N) : = fundef (currexp; pg)
endextend

mode := Select

Select rule (|)

if mode = Select thenif cands = [ ]

then backtrack

else let (Lhs = Rhs) = fst cands

let � = mgu(exp(bfather )[pos(bfather )] s(bfather );Lhs 0)
cands : = rest(cands)

if � 6= nil then mode : = Eval

narrow bfather env(Rhs' ; �)
vi : = vi + 1

with fst cand denoting the �rst element in cands and with abbreviations:

narrow bfather env(E; �) � exp : = exp(bfather )[pos(bfather ) E]
pos : = pos(bfather )

s : = s(bfather ) �
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backtrack � if bfather = root then stop := �1
else currnode := bfather

mode := Select

Since this point cands is assumed to be initialized to [ ] for the child of root.

Evaluation starting rule

if mode = Eval thenif :atomic(currexp) then pos : = pos :1
else mode : = Continue

Evaluation continuation rule

if mode = Continue & pos = u:i
thenif :occurs(u:(i+ 1); currexp) or nonstrict(u)

then pos : = u
mode : = Apply

else pos : = u:(i+ 1)

mode : = Eval

Stop rule

if mode = Continue & pos = �

then solution list : = [hexp s; s jGoalvarsi j solution list ]

if more = 1 then backtrack

else stop = 1

Construction rule
if mode = Apply & is construction(currexp)

thenmode : = Continue

Partial application rule

ifmode = Apply & currexp = @(e0; e) & e0 s = op(e1; : : : ; em)
then exp : = exp[pos op(e1; : : : ; eme)]

Rules for conditionals

if currexp = b! e
& mode = Apply

thenif b s = true

then exp : = exp[pos e]
mode : = Eval

else backtrack

if currexp = b! e1#e2
& mode = Apply

then if b s = true

then exp : = exp[pos e1]
else exp : = exp[pos e2]

mode : = Eval

Equality rule

if currexp = eq(e1; e2)
& mode = Apply

then let mgu = mgu(e1 s; e2 s)
if mgu = nil then exp : = exp[pos false]

else exp : = (exp[pos true])

s : = smgu

A.5 BABEL graph algebras

Call rule (|)
if is user de�ned(currexp) &mode = Apply

& currexp = f(e1; : : : ; en) & 0 � n = arity(f)
then extend NODE by N with

currnode : = N
cands(N) : = fundef (currexp; pg)
bfather (N) : = lastnode

act node(N) : = currnode

store act env at N

endextend

mode := Select

25



with the abbreviation

store act env at N � act exp(N) : = exp

act pos(N) : = pos

act s(N) : = s

Select rule (|)
if mode = Select thenif cands = [ ]

then backtrack

else let (Lhs = Rhs) = fst cands

let � = mgu(act exp[act pos] act s;Lhs 0)
cands : = rest(cands)

if � 6= nil then mode : = Eval

lastnode : = currnode

narrow act env(Rhs' ; �)
vi : = vi + 1

with fst cand denoting the �rst element in cands and with abbreviations:

narrow act env(E; �) � exp : = act exp[act pos E]
pos : = act pos

s : = act s �

backtrack � if bfather = root then stop := �1
else currnode := bfather

mode := Select

Evaluation starting rule

if mode = Eval thenif :atomic(currexp) then pos : = pos :1
else mode : = Continue

Evaluation continuation rule (|)

if mode = Continue

thenif pos = act pos then mode : = Return

else let u:i = pos

if :occurs(u:(i+ 1); currexp) or nonstrict(u)
then pos : = u

mode : = Apply

else pos : = u:(i+ 1)

mode : = Eval

We assume here that act pos is initialized to be � for the child of root.

Stop rule (|)
if mode = Return & bfather = root

then solution list : = [hexp s; s jGoalvarsi j solution list ]

if more = 1 then backtrack

else stop = 1

Construction rule
if mode = Apply & is construction(currexp)

thenmode : = Continue

Return rule (|)

if mode = Return & bfather 6= root then currnode : = act node

return curr env to act env

mode := Continue
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with the abbreviation

return curr env to act env � exp(act node) : = exp

pos(act node) : = pos

s(act node) : = s

Partial application rule

ifmode = Apply & currexp = @(e0; e) & e0 s = op(e1; : : : ; em)
then exp : = exp[pos op(e1; : : : ; eme)]

Rules for conditionals

if currexp = b! e
& mode = Apply

thenif b s = true

then exp : = exp[pos e]
mode : = Eval

else backtrack

if currexp = b! e1#e2
& mode = Apply

then if b s = true

then exp : = exp[pos e1]
else exp : = exp[pos e2]

mode : = Eval

Equality rule

if currexp = eq(e1; e2)
& mode = Apply

then let mgu = mgu(e1 s; e2 s)
if mgu = nil then exp : = exp[pos false]

else exp : = (exp[pos true])

s : = smgu

A.6 Subcomputations with local expressions

Call rule
if is user de�ned(currexp) &mode = Apply

& currexp = f(e1; : : : ; en) & 0 � n = arity(f)

then extend NODE by N with

currnode : = N
cands(N) : = fundef (currexp; pg)
bfather (N) : = lastnode

act node(N) : = currnode

store act env at N

endextend

mode := Select

with the abbreviation

store act env at N � act exp(N) : = exp

act pos(N) : = pos

act s(N) : = s

Select rule (|)
if mode = Select thenif cands = [ ]

then backtrack

else let (Lhs = Rhs) = fst cands

let � = mgu(act exp[act pos] act s;Lhs 0)
cands : = rest(cands)

if � 6= nil then mode : = Eval

lastnode : = currnode

narrow act env(Rhs' ; �)
vi : = vi + 1

with fst cand denoting the �rst element in cands and with abbreviations:
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narrow act env(E; �) � exp : = E
pos : = �
s : = act s �

backtrack � if bfather = root then stop := �1
else currnode := bfather

mode := Select

Evaluation starting rule

if mode = Eval thenif :atomic(currexp) then pos : = pos :1
else mode : = Continue

Evaluation continuation rule (|)

if mode = Continue

thenif pos = � then mode : = Return

else let u:i = pos

if :occurs(u:(i+ 1); currexp) or nonstrict(u)
then pos : = u

mode : = Apply

else pos : = u:(i+ 1)

mode : = Eval

Stop rule

if mode = Return & bfather = root

then solution list : = [hexp s; s jGoalvarsi j solution list ]

if more = 1 then backtrack

else stop = 1

Construction rule
if mode = Apply & is construction(currexp)

thenmode : = Continue

Return rule (|)

if mode = Return & bfather 6= root then currnode : = act node

return curr env to act env

mode := Continue

with the abbreviation

return curr env to act env � exp(act node) : = act exp[act pos exp]

pos(act node) : = act pos

s(act node) : = s

Partial application rule

ifmode = Apply & currexp = @(e0; e) & e0 s = op(e1; : : : ; em)
then exp : = exp[pos op(e1; : : : ; eme)]

Rules for conditionals

if currexp = b! e
& mode = Apply

thenif b s = true

then exp : = exp[pos e]
mode : = Eval

else backtrack

if currexp = b! e1#e2
& mode = Apply

then if b s = true

then exp : = exp[pos e1]
else exp : = exp[pos e2]

mode : = Eval

Equality rule

if currexp = eq(e1; e2)
& mode = Apply

then let mgu = mgu(e1 s; e2 s)
if mgu = nil then exp : = exp[pos false]

else exp : = (exp[pos true])

s : = smgu
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A.7 Optimizations

Optimized Call rule (|)

if is user de�ned(currexp) &mode = Apply

& currexp = f(e1; : : : ; en) & 0 � n = arity(f)
thenif lastnode = currnode & cands = [ ] & pos = �

then cands(t) : = fundef (currexp; pg) % The node is reused

else extend NODE by N with

currnode : = N
cands(N) : = fundef (currexp; pg)
bfather (N) : = lastnode

act node(N) : = currnode

store act env at N

endextend

mode := Select

with the abbreviation

store act env at N � act exp(N) : = exp

act pos(N) : = pos

act s(N) : = s

Select rule
if mode = Select thenif cands = [ ]

then backtrack

else let (Lhs = Rhs) = fst cands

let � = mgu(act exp[act pos] act s;Lhs 0)
cands : = rest(cands)

if � 6= nil then mode : = Eval

lastnode : = currnode

narrow act env(Rhs' ; �)
vi : = vi + 1

with fst cand denoting the �rst element in cands and with abbreviations:

narrow act env(E; �) � exp : = E
pos : = �
s : = act s �

backtrack � if bfather = root then stop := �1
else currnode := bfather

mode := Select

Evaluation starting rule

if mode = Eval thenif :atomic(currexp) then pos : = pos :1
else mode : = Continue

Evaluation continuation rule

if mode = Continue

thenif pos = � then mode : = Return

else let u:i = pos

if :occurs(u:(i+ 1); currexp) or nonstrict(u)
then pos : = u

mode : = Apply

else pos : = u:(i+ 1)

mode : = Eval
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Stop rule

if mode = Return & bfather = root

then solution list : = [hexp s; s jGoalvarsi j solution list ]

if more = 1 then backtrack

else stop = 1

Construction rule
if mode = Apply & is construction(currexp)

thenmode : = Continue

Optimized Return rule (|)

if mode = Return & bfather 6= root

then currnode : = act node

return curr env to act env

mode := Continue

if lastnode = currnode & cands = [ ]then lastnode : = bfather

with the abbreviation

return curr env to act env � if pos(act node) = act pos

then exp(act node) : = exp(act node)[pos(act node) exp]

else exp(act node) : = act exp[act pos exp]

pos(act node) : = act pos

s(act node) : = s

Partial application rule

ifmode = Apply & currexp = @(e0; e) & e0 s = op(e1; : : : ; em)
then exp : = exp[pos op(e1; : : : ; eme)]

Rules for conditionals

if currexp = b! e
& mode = Apply

thenif b s = true

then exp : = exp[pos e]
mode : = Eval

else backtrack

if currexp = b! e1#e2
& mode = Apply

then if b s = true

then exp : = exp[pos e1]
else exp : = exp[pos e2]

mode : = Eval

Equality rule

if currexp = eq(e1; e2)
& mode = Apply

then let mgu = mgu(e1 s; e2 s)
if mgu = nil then exp : = exp[pos false]

else exp : = (exp[pos true])

s : = smgu
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