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Abstract. We show how to model distributed algorithms by Abstract
State Machines (ASMs). Comparing these models with Petri nets (PNs)
reveals a certain number of idiosyncrasies of PNs which complicate both
model design and analysis. The ASMs we define illustrate how one can
avoid such framework related technicalities.1

1 Introduction

This paper is about modeling of distributed algorithms and property verification
using ASMs [9]. Since among theoretical computer scientists PNs seem to be
considered suitable for distributed algorithms we compare the ASMs with PNs.

There is a variety of PNs with different semantics, expressiveness and com-
plexity, depending on the incorporated features, e.g. priorities, time, colours,
stochastic, continuous or hybrid discrete-continuous features, etc., see [25]. To
make a concrete comparison feasable we stick to the PNs defined in [28] to “pro-
vide the expressive power necessary to model elementary distributed algorithms
adequately, retaining intuitive clarity and formal simplicity” (ibid. p.VII).

To avoid any bias in selecting the comparison examples we follow the author
of [28], who is considered an authority in the field, for the “choice of small and
medium size distributed algorithms” proposed as representative “for a wide class
of distributed algorithms” which “can help the practitioner to design distributed
algorithms” [28, p.V]. We focus on the ‘Advanced System Models’ in [28, Parts
B,D]; that they range among the simpler ones in the standard text book [22]
should not diminish the relevance of a comparative analysis.

We discovered that the proposed PNs, compared to the ASMs shown below,
are neither ‘intuitively clear’ nor ‘formally simple’ but hide the underlying intu-
ition under various technicalities of the low-level token-based modeling approach
and as a consequence make the mathematical analysis of model properties more
complicated than necessary. We hope that the concrete comparison between PNs
and ASMs in this paper will help the practitioner to see how ASMs allow one

1 This work was partially supported by the European Commission funded project
BIOMICS, Grant no. 318202.



to efficiently design and analyse distributed algorithms without being detracted
by extraneous technicalities of the underlying modeling framework.

Caveat. I learnt PNs 50 years ago when Dieter Rödding at the Institute for
Mathematical Logic and Foundational Studies in Münster started their system-
atic investigation and elaboration in his seminars on the theory of automata and
networks, seminars which became a regular event at the universities of Münster,
Dortmund and Paderborn until Rödding’s premature death in 1984. I also heard
Petri explain his ideas in person. My (at that time a logician’s) interest in PNs
was biased by their challenging mathematical theory, in particular by in the
60’ies/70’ies open expressiveness and decidability questions, but also by their
use to study the semantics of concurrency (see [27] for a good textbook). Only
in 1990 when I started systematic experiments to model computational systems
with ASMs I looked at PNs through a practitioner’s eyes, as I do here, namely
to figure out how practical the language is for modeling distributed systems in
combination with appropriate property verification methods.

2 Network Algorithms

In this section we investigate some distributed network algorithms for which
one finds in [28] (carefully layed out!) PN formalizations we behaviorally com-
pare with ASMs. For an unbiased statement of the requirements, unless we take
them directly from [28] we resort to the problem descriptions in the standard
textbook [22]. This allows the reader to evaluate to which degree the two frame-
works support capturing requirements accurately, in a way that can be ‘justi-
fied’ and ‘checked’(for epistemological reasons not mathematically verified!) to
be ‘correct’ (ground model problem [3]), and to document design decisions in
a transparent, easily accessible way [23]. To be able to also include visualiza-
tion aspects into the behavioral comparison we define the ASM models using
the traditional flowchart representation for control-state ASMs, an extension of
FSMs with well-known meaning (precisely defined in [9, Fig.2.5]). The phase
(also called mode) structure of FSMs offers componentwise2 definitions and to
separate visualized control-flow (phase structure) elements from (better textually
described) communication/data/resource-related predicates and actions. mode
can also be interpreted as a flag so that for ASM rules a guard with mode = wait
(as used below) does not necessarily imply busy waiting.

Many of the algorithms below have as background structure finite directed
graphs (Process,Edge) of agents each executing some program using (an ab-
stract form of unless otherwise stated reliable) communication among Neighbors
where Neighbp = {q | (p, q) ∈ Edge} (outgoing neighbors). We use the following
abstract operations on each agent’s (initially empty) mailbox :

Send(msg , p) with effect to (eventually) Insert(msg ,mailboxp)
Received(msg) iff msg ∈ mailbox
Consume(msg) = Delete(msg ,mailbox )

2 See the use of modes in [23] as a means to structure the set of states.



We state explicitly if the graph is undirected or mailbox is considered to be a
queue instead of a set (with corresponding refinement of its operations).

2.1 Leader Election in Connected Graphs

Fig. 1. Basic leader election Petri net ([28, Fig.32.1])

For a directed connected graph of linearly ordered Processes p design and
verify a distributed algorithm which uses communication only among Neighbor
processes. Each p starts considering itself as a leader cand idate (candp = p),
Proposes cand to its Neighbors and checks it against its Neighbors’ proposals
s.t.:

Leader Election Property ([22, 15.2]): In every asynchronous run of pro-
cesses each with program FloodingLeadElect, if every enabled process will
eventually make a move, eventually for every p ∈ Process holds:

cand = max (Process) (everybody ‘knows’ the leader wrt their order <)
mailbox Proposals = ∅ (there is no more communication)

Before proceeding to a detailed comparison of Fig. 1 and Fig. 2 we invite the
reader to grasp an understanding of the two diagrams (noticing the effort and
time needed to comprehend each model) and to compare the definitions in Fig. 1
with the textual definitions of the actions and predicates occuring in Fig. 2: they
mark the transition from a description in natural language to a mathematically
rigorous model (a ground model in the sense described in [3,5]) and for this
reason must be understandable and checkable by domain experts to ‘correctly’
capture the intended intuitive meaning.



Fig. 2. 2-phase FloodingLeadElect ASM

Propose = forall q ∈ Neighb Send(cand , q)
ProposalsImprove = (max (Proposals) > cand)
ImproveByProposals = (cand := max (Proposals))

We agree that one purpose of model verification is “to make intuitive state-
ments and conclusions transparent and precise, this way deepening the reader’s
insight into the functioning of systems” [28, p.143]. With this in mind we in-
vite the reader to compare the technically involved (formalistic, lengthy and
hard to follow) ‘proof graph’-based PN verification of Fig. 1 in [28, p.258-260]
with proving the Leader Election Property for Fig. 2 by a step-properties-based,
intuition-guided induction on ASM runs and on the sum of the differences
diff (max (Process), cand) until this sum becomes 0.3 The induction progresses
each time some p PROPOSEs its candp to a neighbor q with smaller candq ,
so that next time that neighbor checks whether its ProposalsImprove, candq

increases (wrt <) yielding a decrease of diff (max (Process), candq).

Idiosyncrasy 1. Low-level token-based encoding turns objects and executing
agents indistinctly into (though abstract) tokens and actions into token manip-
ulations, enforcing to carry agents around (often together with some of their
attributes) to wherever they must perform an action. This complicates to grasp
(via decoding) the intuitive behavioral meaning of actions of single agents.

For example to Send the current leader idea cand to all Neighbors (the
Propose action in Fig. 2) is implemented in Fig. 1 by a transition which

deletes a token (x , y)—encoding a process x with leader candidate y—from
place pending and adds it to place updating

• This encodes the mode update for x from send (proposeToNeighbors) to
receive (checkProposals): changing place x must drag along also y !

adds the set M (x , y) = W (x )× {y} of tokens to place messages

• W (x ) encodes the logical expression forall q ∈ Neighb: instead of the
communication medium forwarding the cand msg y into each neighbors’

3 diff (p, q) = orderNumber(p) − orderNumber(q) for processes numbered 1, 2, . . . , in
increasing order.



mailbox it is x which moves around all its neighbors (coupled with y) for
further processing at place messages (a global mailbox of all processes)!

Correspondingly the initialization condition that cand = self for each process
is encoded by the token set V in place pending .

See Sect. 2.5 for a structural diagram change due to the token encoding of
adding an agent attribute to satisfy a small requirements change.

Idiosyncrasy 2. The global overall process view4 obstructs the separation of
concerns, obfuscates the architectural system view (here the structure of com-
municating agents) and burdens the net layout with background elements one
better deals with in the background.

For example in Fig. 1 the Neighborhood background structure is coded into
the diagram together with the dynamic control structure instead of dealing with

4 Not to be confused with the issue of a global vs local state view.



(frequently static) background elements separately using standard mathematical
means. In one PN the initialization, actions and communications of each process
are defined5 instead of describing them locally as executed by agents with precise
component interfaces, in component-based and stepwise refinable fashion. For
ex. the components Propose, CheckProposals, ImproveByProposals in
Fig. 2 are defined with implicit (or where needed explicit self or p) parameter
instead of carrying everywhere x explicitly around as done in Fig. 1 for the ≤ / <
test though only cand and message values y , z are needed.

Idiosyncrasy 3. The visualization is helpful mostly for control flow but must
resort to less clear encodings to describe underlying data flow.6

For example, in Fig. 1 the alternation between pending and updating is ex-
plicitly visualized, but the equally important checking of Proposals is ‘visible’
only indirectly via its elementwise implementation, in contrast to the direct and
explicit graphical representation of its conceptual meaning (applying the ‘high-
level’ max function to the entire mailbox Proposals) in the flowchart of Fig. 2.

2.2 Master/Slave Agreement

Fig. 3. 2/3-phase Master/Slave ASM programs

In this four-phase protocol a master Enquires about a JobToAssign to slaves
[28, p.119]; they will execute it if they all Answered to accept the job which

5 The problem to separate business from coordination logic triggered a similar obser-
vation in [18, p.133] that in a PN “every component must be modeled explicitly”.

6 One would expect that using colored tokens [16] may help, but the tokens in [28] are
already of a most general nature, namely elements of abstract domains (represented
by first-order logical terms) which comprise colored tokens.



otherwise is canceled: a) master sends an inquiry to all slaves and waits for
their answer; b) slaves Answer to accept or refuse; c) when all AnswersArrived
master will OrderJob execution (in case all accepted) OrCancel his request
(otherwise); d) slaves go busy (UponJobArrival) or return idle (UponCancelMsg).
Thus eventually master returns idle, with each slave idle or each slave busy .

Compare Fig.30.1 (copied from [28]) with Fig. 3 and its predicate/action
definitions. JobToAssign describes the event that triggers a protocol round.

Enquire = forall s ∈ Slave Send(enquire, s)
AnswersArrived = forall s ∈ Slave

Received((accept , s)) or Received((refuse, s))
OrderJobOrCancel =
if SomeSlaveRefused then forall s ∈ Slave Send(cancel , s)
else forall s ∈ Slave Send(job, s)

CleanUp // clean up work for next round
SomeSlaveRefused = forsome s ∈ Slave Received((refuse, s))

CleanUp =

{
mailbox := ∅
JobToAssign := false // consume input event trigger

Asked = Received(enquire)

Answer =

{
choose answer ∈ {accept , refuse} Send((answer , s),master)
Consume(enquire) // consume input msg

UponCancelMsg = Received(cancel), UponJobArrival = Received(job)

The surprisingly involved master/slave PN in Fig.30.1 compared to the sim-
ple MasterSlave ASMs in Fig. 3 illustrates once more the PN idiosyncrasies
explained in Sect. 2.1 and adds a consequence of Idiosyncrasy 1.

Idiosyncrasy 3b. The complexity of the graphical layout to define PNs, in
particular where unrelated to the algorithmic problem structure, complicates both
the understanding of the model7 and its verification.

7 We disregard here the peculiar (global overall process view triggered?) design deci-
sion in Fig.30.1 where the slaves organize the refusal case among themselves, trig-



The verification of Fig.30.1 in [28, p.255-257] is to be compared with an
induction on concurrent ASM runs of MasterSlave showing that if the master
starts to Enquire, then (assuming that every enabled agent will eventually make
a move) eventually the master becomes idle and either all slaves become idle too
or all slaves become busy. In [28, p.255] the correctness property appears as:

(1) Σ75.1 |= B ↪→ A ∧ (N .U ∨ P .U )

and is proved using the proof graph of Fig. 75.2 which in turn is based upon 6
invariants (Sect.75.2 State properties, both copied from [28]) and is justified on
p. 256-258 using some net-representation-driven (syntactical) ‘proof patterns’.
This illustrates one of the author’s goal, namely to reach “a maximally tight
combination of modeling and analysis techniques” [28, p.2]. It is the reader to
judge whether such net-structure-driven verifications of properties which too
are derived from the static net structure come up to the claim “to make intu-
itive statements and conclusions transparent and precise, this way deepening the
reader’s insight into the functioning of systems” [28, p.143].

gering (via c) the master to eventually return to idle (via f ), without further master
involvement: no slave ‘reports ... refusal to the master’ and never ‘the master sends
a cancellation to each slave’, contrary to the formulated requirements [28, p.30].



2.3 Acknowledged Broadcast (Echo algorithm)

Here we illustrate the lack of support by PNs, mentioned in Sect. 2.2, to di-
rectly capture via their graphical layout the underlying algorithmic intuitions,
which makes it difficult to build satisfactory ground models domain experts can
understand, justify and check to correctly reflect the requirements ([5]). We use
an algorithm which guarantees an initiator’s message being broadcast (build-
ing a spanning tree) and acknowledged (echoed) through a connected, for bi-
directional communication undirected graph of processes, using only communi-
cation between Neighbours. The algorithmic idea ([22, 4.2.2]) is that

the distinguished initiator upon BroadcastTrigger will Broadcast an info
msg to its Neighbors and then waitForAck messages from them
if a not yet informed non-initiator node ReceivedInfoFromSomeNeighbor it
will PropagateInfoToNonParentNeighbors and waitForAck
once a non-initiator ReceivedAckFromAllChildren it in turn sends an
AckToParentNeighb node by which it had been informed
initiator Terminates once it ReceivedAckFromAllChildren

The encoding scheme for the PN solution in Fig.33.3 (copied from [28]) is
explained there on two pages [p.127-129]. In contrast, the ASM programs in
Fig. 4 directly reflect the algorithmic idea: the upper program lines (from left to
right) describe building a spanning tree, the lower lines (from right to left) the
notification of completion from leafs back to the initiator .

Fig. 4. 2-phase Echo ASMs

In Fig. 4 event BroadcastTrigger triggers the initiator to start.

Broadcast = forall n ∈ Neighb Send(infoFrom(initiator),n)
Terminate = Empty(mailbox ) // clear for next round



Response actions capture spanning tree construction and navigation:

ReceivedInfoFromSomeNeighb =
forsome p ∈ Neighb Received(infoFrom(p))

PropagateInfoToNonParentNeighb = // tree building step
choose p ∈ Neighb with Received(infoFrom(p))

forall n ∈ Neighb \ {p} Send(infoFrom(self),n)
parent := p // define receiver of later ackFrom msg
InformAboutChildRelation(p)

ReceivedAckFromAllChildren = // true at leafs
ChildKnowlIsComplete and forall m ∈ Children Received(ackFrom(m))

Childrenn = {m ∈ Neighbn | parent(m) = n}
AckToParentNeighb = // pass notification along spanning tree
Send(ackFrom(self), parent)
parent := undef Empty(mailbox ) // clear for next round

InformAboutChildRelation(p) =
Send(IamYourChild(self), p)
forall q ∈ Neigh \ {p} Send(IamNotYourChild(self), p)

ChildKnowlIsComplete iff forall n ∈ Neighb
Received(IamYourChild(n)) or Received(IamNotYourChild(n))

Comparing the verification of Fig.33.3 and Fig. 4 illustrates once more the
heavy burden the graphical PN complexity can put on the verification effort.



The correctness proof for Fig.33.3 in [28, p.260-266] is 6 pages long and hides
the intuition underlying the fundamental spanning tree method to a large extent
in the PN ‘proof graphs’. In contrast one can show by induction on concurrent
Echo runs (where each enabled agent will eventually make a move):

Lemma 1. Each PropagateInfoToNonParentNeighbors increases in
the tree of agents waitingForAck the distance to the initiator until leafs are
reached. (Proof by downward induction.)
Lemma 2. When an agent executes AckToParentNeighbor, in the tree
the distance to the initiator of nodes with a subtree of informed agents
shrinks, until the initiator is reached. (Proof by upward induction.)

The two lemmas imply that each time the initiator performs a Broadcast of
an infoFrom message it will eventually Terminate (termination), but only after
all other agents have Received that infoFrom msg and have acknowledged this
to their parent neighbor by an ackFrom msg (correctness). (See [22, 15.3])

2.4 Load Balancing in Rings

Here the goal is to balance the workLoad (number of Tasks to be executed
by a process) among a fixed set of (say at least 3) processes in a given ring using



communication only with leftNeighbor and rightNeighbor, assuming a fixed total
workload. The algorithmic idea (see [28, p.140]) is that every process sends

a LeftNeighbLoad message (i.e. its workLoad) to its rightNeighbor,
a task Transfer message to its leftNeighbor to balance their workloads,

and when ReceivedTransfer message, i.e. some t ∈ Task ∪ {nothingToTransfer}
from its rightNeighb, accepts the task to balance their workloads (unless transfer =
nothingToTransfer).

This 3-phase protocol is directly expressed by Fig. 5 with its (straightforward)
action/predicate definitions. In Fig.37.1 (copied from [28]) the control flow is
encoded in the subgraph of places state i (i = 1, 2, 3); the other two places are
two global (!) mailboxes (each one used by all processes).

Fig. 5. 3-phase RingLoadBalance ASM

TransferTaskToLeftNeighb =
let {leftNeigbLoad} = mailbox ∩Nat
if workLoad > leftNeighbLoad // there is a task to transfer
then choose task ∈WorkLoad

Send(task , leftNeighb) Delete(task ,WorkLoad)
else Send(nothingToTransfer , leftNeighb)

Consume(leftNeighbLoad)
AcceptTask =
let {transfer} = mailbox ∩ (Task ∪ {nothingToTransfer})
if transfer ∈ Task then Add(transfer ,WorkLoad)
Consume(transfer) // msg removal from mailbox

The correctness property—that eventually the workload difference between
two neighboring nodes becomes and remains at most 1, with constant total
workload—follows by induction on the workLoad count differences, to be com-
pared with the lengthy verification of Fig.37.1 in [28, p.291-297].



In [28] Fig.37.2 is proposed for an adaptation to dynamic workload change
triggered by the environment. Comparison with the ASM refinement in Fig. 6
illustrates the following problem with PN modeling of multi-agent systems.

Idiosyncrasy 4. The lack of component structure8 and more generally of the
structure of communicating agents and/or their environment leads to model en-
vironment actions by nondeterministic internal transitions (abuse of nondeter-
minism, see also Sect.2.9).

In fact Fig.37.2 models the interaction of one (global?!) environment with
any local process as a nondeterministic internal transition change:

From the perspective of the local balance algorithm, this interference
shines up as nondeterministic change of the cardinality of the site’s work-
load. ([28, p.141-142]

Similarly in the PNs in Fig.27.7,28.1,28.2 the message loss action of the
communication medium is modelled as a nondeterministic internal action of the
file transfer message protocol. Such a theoretically sound use of nondeterminism

8 Compare this with the “illustration of the power of decomposition methods in
enabling simple descriptions (and proofs) of complicated distributed algorithms”
in [22], quote from p.532.



Fig. 6. DynRingLoadBalance ASM

fits the semantical PN and verification framework, but is inappropriate from the
modeling point of view. In asynchronous systems “input actions are assumed
not to be under the automaton’s control—they just arrive from the outside” [22,
p.200]. So we model the environment/process interaction in Fig. 6 by letting
each p a) watch a local event—an input location workLoadChangep with values
in {add(T ), delete(T ),noInput}—and b) ChangeWorkLoad when triggered
to do so and otherwise execute RingLoadBalance as before. For the local
process there is no nondeterminism here.

WorkLoadChange iff workLoadChange ∈ {add(T ), delete(T )}
ChangeWorkLoad =
if workLoadChange = add(T ) then Add(T ,WorkLoad)
if workLoadChange = delete(T ) then Delete(T ,WorkLoad)
Consume(workLoadChange) // input consumption

For the same reason we model in Fig. 4,3 the trigger events which start the
process (but do not appear in the PNs in Fig.33.3,30.1) and in Sect. 2.6,2.7 the
timeout events which trigger resending (but do not appear in the PN models
in Fig.27.7,28.1,28.2) as guards for local process actions. Treating timeout as
nondeterminism makes interfacing scheduling mechanisms difficult the timeout
location in Fig. 9,8 prepares the ground for.

2.5 Consensus in graphs

The algorithmic idea to “organize consensus about some contract or agreement
among the sites of a network”, using only communication between neighbors,
without considering “neither the contents of messages nor the criteria for a site
to accept or refuse a proposed contract” [28, p.134] is that every agent (site,
node) may

spontaneously go to agreed (when without new requests),



Fig. 7. 3-phase Consensus ASM

LaunchNewRequest to its Neighbors and waitForOk from them,
receive and Answer requests,
if AllNeighbAccept its last launched request either go to agreed or once more
LaunchNewRequest

such that IF the algorithm terminates (maybe never), then all agents agreed and
there are no requests left.

The algorithmic idea can be directly traced in the control structure of Fig. 7,
to be compared with Fig. 35.1 (copied from [28]). In particular the predominant
role of nondeterminism in start mode is brought to the surface in Fig. 7 by the
explicit ChoiceIsToAgree option (whose definition below uses a choice function
as interface for “the criteria for a site to accept or refuse a proposed contract” [28,
p.134]), whereas from the PN in Fig. 35.1 this feature has to be extracted from
the edge structure at pending sites. Also the encoding of requests/answers by to-
kens (y , x )/(x , y) in ‘initiated/completed’ places yields an artificial initialization
(instead of an initially empty mailbox), described by (pg.135):

‘Initially ... each msg is completed (i.e. in the hands of its sender)’

For the sake of comparison completeness we list here the (straightforward)
definitions for Consensus predicates and actions.

ChoiceIsToAgree iff (choice({agree, propose}) = agree)
LaunchNewRequest = // broadcast new request to neighbors
forall n ∈ Neighb Send(requestFrom(self),n)
ReInitializeReplies

ReInitializeReplies =
forall n ∈ Neighb Consume(replyFrom(n))

AllNeighbAccept = forall n ∈ Neighb Received(replyFrom(n))
ReceivedRequest =
forsome n ∈ Neighb Received(requestFrom(n))



Answer = choose n ∈ Neighb with Received(requestFrom(n))
Send(replyFrom(self),n) Consume(requestFrom(n))

An ‘Advanced Consensus’ PN with quiet/demanded sites (Fig.35.2 copied
from [28]) illustrates how to adapt Fig.35.1 to the following requirements change
request [28, p.136]:

... two further states, demanded sites and quiet sites. All sites are ini-
tially quiet . Each newly sent message ... may cause its receiver ... to swap
from demanded to quiet and vice versa... A demanded site u is not quiet .
If demanded and pending , the immediate step to agreed is ruled out.

To reflect this in the ASM model it suffices to (textually!) add to the struc-
turally unchanged Fig. 7 the needed new attribute, action and guard:

Quiet ∈ {true, false}, Demanded = not Quiet : attribute added to signature
Swap = (Quiet :=not Quiet): action added to Answer9

Quiet = true: constraint added to ChoiceIsToAgree guard

2.6 Alternating Bit Protocol

The Alternating Bit protocol [22, 22.3] transfers any sequence F (1), . . . ,F (n) of
files from a sender to a receiver s.t. eventually the receiver has a copy G = F ,

9 We interprete ‘may cause’ as ‘causes’; otherwise add choose s ∈ {swap,noSwap} in
if s = swap then Swap to Answer.



assuming that the communication medium may lose (but not change) finitely
many consecutive messages.10 The algorithmic idea is that in rounds (one per file
with initially file number currRound = 0 at sender, currRound = 1 at receiver;
the receiver remains round-ahead of the sender):

the sender Sends the current file and continues to ReSendFile upon timeout
until an acknowledgement of receipt arrives from the receiver , whereafter in
the next currRound + 1 the sender will StartNxtFileTransfer,
when sending file F (round) a synchronization bit round mod 2 is

10 The protocol specification does not include a specification of the communi-
cation medium. It seems to be another example for PN Idiosyncrasy 2 that
Fig.27.7,28.1,28.2 also define the possible message loss by the transmission lines
as an internal nondeterministic action of the PN. Message loss is not an action of
the protocol agents but of the communication medium.



Fig. 8. 2-phase AltBitSender ASM

• attached to file messages (F (round), round mod 2),
• extracted and resent by the receiver as acknowledgment message,
• checked upon ReceivedMsg by sender/receiver for Matching its own syn-

chronization bit and in case of matching is flipped for the next round +1.

Fig. 9. AltBitReceiver ASM

The algorithmic idea is easily traced in Fig. 8 and Fig. 9; compare with Fig.
27.7 (copied from [28, p.107-111] where its details are explained on 5 pages).

In the ASM the sender/receiver predicates/actions work under the no-msg-
overtaking assumption, reflected by a FIFO-queue mailbox MsgQueue.

StartNextFileTransfer =
Send((nextFile,nextSyncBit), receiver) IncreaseRound

where nextFile = F (currRound + 1)
nextSyncBit = currRound + 1 mod 2 // flipped sync bit

ReSendFile = Send((F (currRound), currRound mod 2), receiver)
ReceivedMsg = iff MsgQueue 6= [ ] // mailbox not empty
Match iff syncBit(currMsg) = currRound mod 2
CloseRound = Consume(currMsg) where currMsg = head(MsgQueue)
IncreaseRound = (currRound := currRound + 1)

Receive&Ack = StoreFile SendAck Consume(currMsg)



SendAck = Send(syncBit(currMsg))
ReSendAck = // NB. receiver is round-ahead of sender
Send(flip(currRound mod 2), sender) // previous sync bit

StoreFile = (G(currRound) := file(currMsg))

We found no PN verification for Fig.27.7 in [28] although it is easy to prove
the correctness by induction on AltBit run phases, see Fig. 10 and [22, 22.3].

Idiosyncrasy 1b. The token-based transition view introduces algorithmically
extraneous technicalities (language specific details about checking the presence
of tokens, token insertion/deletion) which are unrelated to the subject matter,
obfuscate the intutive understanding of the algorithm’s behavior and complicate
both its verification and further refinement to code (implementation).

For example the token-based transition view is responsible for:

moving around unchanged data between places or worse deleting and si-
multaneously adding them from/to one and the same place (Fig.27.7 shows
many examples), a technicality that may produce an overwhelming effect on
net size and readability and is analogous to the frame problem (avoided by
ASMs!) of logical descriptions of the no-change part of actions,
doubling of locations for same data involved in different transitions, possibly
with different values; e.g. in Fig. 27.7 places actualbit and repeatedbit double
the syncBit location at sender and receiver part of the net,
simulation of shared locations by token manipulation which multiplies places
and transitions. This point is illustrated in detail in Sect. 2.8.



Fig. 10. AltBit run phases

2.7 Adapting AltBit to Sliding Window Protocol

Fig. 11. SlidingWindowSender

The no-msg-overtaking assumption can be dismissed by replacing single file
transfer rounds by (re-) sending in any order multiple files F (i) (and corre-
sponding acks) distinguished by their index i , to be used as (still called) syncBit
instead of i mod 2, in a window [low , high] between low and high s.t.

initially low = 1, high = 0 at sender and receiver ,



sender can perform StartNextFileTransfer and IncreaseWindow (by
the next syncBit high := high + 1) as long as not FullWindow (where
FullWindow = high − low + 1 = maxWinSize),
if Acknowledged(low) (i.e. that F (low) has been received) the sender will
ReduceWindow at its left end (low := low + 1),
since highreceiver ≤ highsender , each time a file is received for the first time,
its index i is larger than the receiver ’s high window end, triggering to
SlideWindow at the right end by setting high := i and updating low .

Fig. 12. SlidingWindowReceiver

To turn this description into an ASM model one can preserve the component
structure of AltBit, except for adding the needed new ReduceWindow com-
ponent and collapsing the abandoned sequential send/waitForAck phases; the
rest is data refining the send/receive predicates and actions as indicated below.
This yields the definition in Fig. 11 and Fig. 12 we invite the reader to compare
with the largely structural PN redesign of Fig.27.7 to Fig.28.1 (copied from [28]).

StartNextFileTransfer is refined by

nextFile = F (high + 1), nextSyncBit = high + 1
IncreaseRound = (high := high + 1) // IncreaseWindow

ReSendFile = Send((F(low),low), receiver)
Match = (low ≤ syncBit(currMsg) ≤ high) // syncBit in window
CloseRound refines Consume(currMsg) by additionally recording that
receipt of currMsg has been acknowledged, i.e.

Acknowledged(syncBit(currMsg)) := true

(initially Acknowledged(i) = false for each i).

In the SlidingWindowReceiver Receive&Ack is not followed any more
by IncreaseRound and in case of no Match one cannot Consume the currMsg
with syncBit(currMmsg) > high but instead the receiver must SlideWindow
to let currMsg Match. Thus ReSendAck = Send(low, sender) and

SlideWindow =
let s = syncBit(currMsg)

high := s and low := max{1, s −maxWinSize + 1}



Remark. In case of no message overtaking finitely many indices suffice us-
ing +1 mod r for updating low , high for a sufficiently large r depending on
maxWinSize: a pure data refinement in the ASM framework. Compare this with
the sophisticated extension of Fig. 28.1 to Fig.28.2 (copied from [28]).

2.8 Mutual Exclusion problem

This is about allocation of one or more nonshareable resources to n ≥ 2 processes.
Peterson’s Mutex algorithm ([22, 10.5]) works for one resource and n processes,
satisfying also the Lockout-Freedom Requirement ([22, 10.4]):

If each process always returns the resource, every process that reaches the
trying region (where it competes for the resource) eventually will enter the
critical region (where it uses the resource).
Every process that reaches its exit region (where it stops using the resource)
eventually will enter a remainder region (without interest in the resource).

In MutexPetersonn processes share some locations used to compete at
successive level = 1, . . . ,n − 1 (a local process variable, initially level = 1):

for every level value a global location stickAtlevel ∈ {1, . . . ,n} (with arbitrary
initial value) all processes can read and write. It must have been Fetched
by p (i.e. updated to p) and—in case some other process is interested—later
be released (i.e. Fetched by another interested process) before p becomes
the level Winner ,



a local location flag ∈ {0, . . . ,n − 1} at every p (initially flag = 0) which is
writable by p and readable by each other process. flagp = l > 0 indicates
that p started the competition (‘is interested’) at level l to get the resource.

We first explain the case n = 2 treated in [28], with fixed competition level = 1.
Compare Fig.13.7 (copied from [28]) with Fig. 13 and its local actions (formu-
lated with level parameter to prepare their generalization to multiple levels):

Re/SetFlag = (flag := 0/level) // for n = 2 holds level = 1

FetchStick = // for n = 2, one more guard below for n > 2

if (not HasSticklevel) then stickAtlevel := self // skip if HasSticklevel
where HasSticklevel iff stickAtlevel = self

Winner = NobodyElseInterested or MeantimeSomebodyElseFetchedStick

NobodyElseInterested(level) = forall p 6= self flagp < level

// for case n = 2 this means flagtheOtherProcess = 0

where theOtherProcess =

{
1 if self= 2
2 else

// only for case n = 2

MeantimeSomebodyElseFetchedStick(level) iff stickAtlevel 6= self

// meaning in case n = 2 that stickAt1 = theOtherProcess



Fig. 13. 4-phase MutexPeterson2 ASM

The reader may also compare the detailed, easy-to-follow correctness proof
for MutexPeterson2 in [22, p.281-282] with the technically involved PN ver-
ification in [28, p.180-182] which uses the ‘evolution proof graph’ in Fig.49.6
(copied from [28]) whose 16 ‘nodes ... are justified’ one by one with help of 4 in-
variants. These nets and proof graphs risk to explode when generalizing Fig.13.7
from 2 to n > 2 processes (see [22, 10.5.2] and the ASM refinemen step below).

Fig.13.7 illustrates how the simulation of shared locations by token manipu-
lation multiplies places and transitions (see Idiosyncrasy 1b, Sect. 2.6). Here it
produces 8 places and 12 transitions to simulate updates of 3 locations:

stickAt read/write is simulated by 6 places pendil , pendir , atl , atr (i = 1, 2)
with

• 2 token swapping transitions which simulate the 2 possible writes
• 4 token checking read (‘simultaneous delete/add token’) transitions

multi-reader single-writer flags are encoded by places finishedl ,finishedr with



• for a reader a transition to simulate reading a value of the writer’s flag
• for the writer for each possible update value one transition

∗ here two transitions encoded as delete resp. add token transitions at
place finished of each writer process

Fig. 14. MutexPetersonn (competition thru levels) ASM

Multiplication of places/transitions risks to result in spaghetti PNs where
shared locations involve more than two values and/or processes. In compari-
son the ASM refinement MutexPetersonn for n > 2 in Fig. 14 iterates the
MutexPeterson2 competition through levels 1 to n − 1, guaranteeing that at
each level there is a least one loser , i.e. a process that has to waitToWin until



NobodyElseInterested(level) any more. Thus at level k at most n − k processes
can win so that at most one can win at level n − 1.

Refining Fig. 14 means to add an iterator component and a further guard
to FetchStick guaranteeing that in each step at most one process p can write
stickAtlevel . To permit an implementation by any component which computes
the select ion we formulate the additional guard using a choice function:

chosenWriterFor(stickAtlevel) = self
where chosenWriterFor(stickAtl) =

select({p | flagp = l and modep = getStick and stickAtl 6= p})
CompetitionFinished iff level = n − 1
Increase(level) = (level := level + 1) Reset(level) = (level := 1)

2.9 Remark on nondeterminism and interleaving

MutexPeterson2 illustrates an adequacy problem related to the use of nonde-
terminism in modeling with PNs (see Idiosyncrasy 4). Consider the case that the
two processes, say left and right , both are enabled to fetch the stick—formalized
in MutexPeterson2 by both being in mode = getStick and in Fig.13.7 by a
token in both places pend1l , pend1r—and that the stick is with process right—
i.e. in MutexPeterson2 stickAt1 = right resp. in Fig.13.7. place atr has a
token. Which process will be the first to enter the critical section depends in
the PN of Fig.13.7 on a nondeterministic choice which one of the two enabled
but conflicting transitions m and c is fired first; one will have to define this
(centralized?) selection separately when refining the algorithm to an implemen-
tation. The MutexPeterson2 ASM needs no such additional selection proce-
dure: both processes can independently (even simultaneously) make their next
enabled FetchStick step and proceed to mode = waitToWin whereafter the
decision about which process can enter the critical section depends only on the
Winner condition, as in Fig.13.7 for the process which succeeded to put a to-
ken in place pend2l resp. pend2r .11 So the concurrent ASM needs no additional
external help by nondeterministic or other choices: if such not furthermore spec-
ified choices are allowed to appear in the algorithm one could simplify matters
by choosing right away one of the two processes to get the resource.

However for MutexPetersonn with n > 2 the problem reappears. Consider
the analogous case where at any given level there are n − (level − 1) simulta-
neously enabled processes to fetch the stick. Since it is assumed that only one
process can write the shared location stickAtlevel an additional selection proce-
dure is needed12 to decide upon who becomes the chosenWriterFor(stickAtlevel)

11 [22, p.280] has a similar nondeterministic choice for the order in which the processes
write the shared stickAt1 (there called turn) location, a nondeterminism resulting
from the interleaving assumption of the underlying asynchronous shared memory
I/O automata execution model. But this extraneous nondeterminism could easily be
avoided the same way as in the ASM model.

12 This is already a form of mutual exclusion. For a solution of the mutual exclusion
problem for multiple writers see [19].



(which in the considered case will make it the loser at this level). By introducing
the function chosenWriterFor(stickAtlevel) into the ASM model in Fig. 14 this
selection is at least made explicit. In [22, p.286] the selection is hidden in the
interleaving assumption which decides in each step upon which process among
the enabled ones to write stickAtlevel (called there turn(level)) will be chosen to
write that location. As refinement to compute such a choice function often the
head function of a FIFO queue structure is used; this means that the queue is
assumed to decide upon the insertion order if two or more processes request si-
multaneously to get Inserted.13 The question remains why instead of running a
complicated algorithm such a queue structure is not used right away to organize
the decision about which one among n > 2 simultaneously interested processes
is selected to (be the first to) write a shared location which guards entering the
critical section, choosing once a winner instead of choosing n − 1 times a loser
(one per level).14

3 Lifting Petri nets to concurrent ASMs

The analysis of PNs in Sect. 2 reveals three major sources of the inadequacy of
the PNs proposed in [28] as high-level models for distributed algorithms:

insufficient abstraction and introduction of algorithmically irrelevant techni-
calities resulting from the low-level token-based view of objects (including
executing agents), predicates and transitions—despite of the abstract data-
interpretation of tokens in [28, Sect.16] as elements of some abstract domain
so that “local states of nets are ... propositions and predicates, thus providing
the elements for logic-based analysis techniques”(ibid., p.VII),
lack of component structure (architectural system view)15 and of separation
of concerns, mainly due to the global overall process view, thus failing to
support appropriate modeling of interaction among agents and/or the envi-
ronment16 and complicating the implementation process,
complexity of graphical layout even for small algorithms, indicating a too
great esteem of the graphical ‘nature’ of PNs as a help to understand (or
even to define)17 them and the lack of an appropriate combination of visual
and textual description elements.

13 For a prominent example see [22, p.346]. [20] uses the assumption only for concurrent
atomic read/write operations of single digits.

14 See [21, p.561] for a distributed mutual exclusion algorithm which deals with the
case where the order matters in which requests for the resource are made.

15 See the observation in [11, p.3]: “The core issue of Petri nets is that they model
behavioral aspects of distributed systems, i.e., systems with components that are lo-
cally separated and communicate with each other. Surprisingly, neither components
nor any notion of locality appears with the usual definition of a Petri net”.

16 Note that at the time of Petri’s doctoral thesis [24] computers were monolithic
mainframes, there were no agents interacting via pools of networks, servers, services,
etc.

17 In [28, p.V] it is even suggested that “The hurried reader may just study the pic-
tures”! See also the analysis in [11, p.2] where the characteristics that “Petri nets are



ASMs are well-known not to suffer from any of these problems. In the con-
trary they provide a justifiably most general abstraction concept—see the various
forms of ASM thesis ([8] contains over a dozen of references)—which is coupled
to a correspondingly general refinement concept [4] that supports a strong sepa-
ration of concerns and componentwise design discipline—see the numerous suc-
cessful practical applications of the ASM refinement method (e.g. [29], for other
programming language applications see the recent survey [6]).

The concept of multi-agent ASMs carries these abstraction and refinement
capabilities to component-based multi-process modeling and concurrency [8].

Using control-state ASMs as we did in Sect. 2 allows one to explicitly separate
and appropriately combine visual (control flow, run-time relevant) and textual
(data structure related) description elements to express the underlying (whether
static or dynamically changing) data, predicates on data, the effect of actions on
data, communication and resources. Such a conceptually well-founded practical
combination of these two fundamental elements of a complete system state is
crucial for a practical modeling method.

How can PNs share these properties of concurrent ASMs? As has been an-
alyzed already in [9, pg.297] (and elaborated in one more bit of detail in [8,
Appendix C]) PNs represent a specific class of multi-agent ASMs, characterized
by a particular notion of state and various concepts of (interleaved, lock-step,
concurrent, also called distributed) run. In fact each PN P can be defined as a
multi-agent ASM where each agent has exactly one transition t of P as its rule
of form

if Enabled(t) then Fire(t)

This view—which holds mutatis mutandis also for the version of PNs used in
[28] and more generally for colored and so-called high-level PNs—allows one to
enhance the modeling capabilities of PNs by abstraction, refinement, separation
of concerns, component- and agent-based modeling features and combinability
of visual and textual description elements the ASM method comes with. We
wouldn’t even be surprised to see (in particular PN-based) formulations of well-
known concepts of concurrency theory [30] get simplified within an ASM-based
mathematical framework [8],18 in analogy to the simplifications one can obtain
for classical computation theory [1] and the theory of algorithms by using ASMs
instead of the multitude of specific (historically important) machine concepts
and complexity measures [9, Sect.7.1.1].

a graphical notion and at the same time a precise mathematical notion” are taken
as “the most important properties”.

18 Right before sending this paper for the Proceedings Klaus-Dieter Schewe and myself
discovered that distributed PN runs are distributed ASM runs in the sense of Gure-
vich [13]. A further investigation of the consequences of this surprising fact remains
to be done.



4 Related Criticism

Other researchers have observed the inadequacy of PNs to model complex com-
putational systems in practice, in particular in the field of Business Process Mod-
eling (BPM). One main issue there is the lack of sufficient support for a seamless
inclusion of data, resources and communication among processes into control-
flow-centric (e.g. PN inspired BPMN) models, for references see the survey in [17,
Ch.2]. On the positive side the control-flow character of traditional PNs comes
out clearly from the beautiful foundational result that computationally they are
equivalent to asynchronous automata nets built up from a few rather elementary
components [26]. But modeling BPs needs more expressive means. For further
discussion of this issue see [10], the work at IBM on the data-centric Guard-State-
Milestone approach [15],19 Fleischmann’s Subject-Oriented-BPM approach [12],
the observation in [18, p.132] that with (even colored) PNs “the modeling is
quite low-level and ... does not provide any higher-level abstractions” resulting
in unreadable diagrams (a fascinatingly useless (PN-tool-generated!) example is
shown in op.cit. Fig.9), the recent comparative BPM case study by YAWL ex-
perts reporting that “YAWL diagrams only depict the control flow and not the
resource perspective” [14, Sect.4], etc. Also in the domain of stochastic simula-
tion of biological systems it has been recognized that the PN approach “makes it
difficult to exploit compositionality of nets to build models incrementally” [31,
p.354].

5 Conclusion

The author of [28] warns the reader that the “book’s scope is modest, as it
sticks to a choice of small and medium size algorithms”, furthermore the pro-
posed design and analysis method is disclaimed to work for large systems where
“systematic refinement of specifications and compositional proof techniques are
inevitable”[28, p.13]. However it is also stated that “nevertheless this book’s
claims are ambitious: Just as PASCAL-like programming structures and Hoare-
style proof techniques appear optimal for a wide class of sequential algorithms,
this book’s formalism is suggested to be optimal for a wide classe of distributed
algorithms” and “can help the practitioner to design distributed algorithms”(ibid.,
p.V). Neither our experience in teaching nor the cooperation with industrial
partners nor the analysis above confirm these two claims. Furthermore if “large
algorithms require adequate techniques for small algorithms” (ibid., p.13), by
contraposition an unsatisfactory framework for small algorithms will not be help-
ful for large systems. We hope that the above definition of ASMs shows that
some improvement can be obtained for PNs, even for design and analysis of
small distributed algorithms, by freeing oneself from the low-level token-based
PN view and switching to a language where distributed control, data, resource
and communication structures can be combined in a technically simpler way,

19 In [7] ASM nets are defined through which IBM’s Guard-State-Milestone ap-
proach [15] to BPM can be equipped with the systematic ASM refinement method.



exploiting for a better visualization also the old fashioned flowchart representa-
tion means. This holds even more because the ASM method is not exhausted by
using control-state ASMs for small distributed algorithms but by its numerous
(including industrial) applications in a variety of fields has contributed to reduce
the huge gap between much of academic theory and the prevailing software and
hardware practice (see [2],[9, Ch.9],[6] for a survey).

6 Appendix: Reaction to Criticism

Some critic argued that using only one book for the comparison could relativize
the conclusions because the idiosyncrasies may belong less to PNs than to the
way the book’s author uses them. This is possible, however this paper targets
not a person but a proposed scientific method. To all practical purposes, in front
of thousands of PN publications, what better one could have done—without
being an active PN researcher but with the desire to see how PNs behave com-
pared to ASMs when modeling distributed systems—than carefully study a book
about a core use of PNs, written by an author who is considered an authority
in the field and who promises nothing less than a new proof technique at the
level of the Hoare-style proof method, furthermore a very carefully written book
(especially concerning the graphical layout of the PNs) whose examples are well-
known distributed algorithms every computer science student learns so that the
comparison can be explained and followed without need to assume additional
knowledge.

Some critics wondered whether comparing the graphical PN notation and the
graphical flowchart-like notation used for (the non-textual part of) control-state
ASMs is fair. This paper makes no such comparison at all:20 for given PNs and
ASMs we compare the intellectual effort (and the time needed) to define them,
explain them, understand them, justify them as adequate (ground) models of
the requirements, prove properties of interest for them; in making all these com-
parisons we use the behavioral semantics of the graphical notations in which the
models are expressed and which are rigorously defined for PNs as they are for
ASMs (see [9, Sect.2.2.6]). For the behavioral comparison of models we point to
figures which define the models, but we do NOT compare the figures as graphical
objects. For the behavioral comparison of the PN/ASM ground models which are
expected to satisfy given requirements and to “help the practitioner to design
distributed algorithms”[28, p.V] it does not matter whether the graphical layout
of the behavior defining diagrams is or can be furthermore formalized, e.g. to
make the diagrams executable or machine checkable or subject to transforma-
tions, etc. That a rather formalized version of PN diagrams is needed for the
proof-graph method is clear, which brings us to the next critical objection we
heard.

Some critics argued that the reader finds no ASM-based proofs in this paper.
Clearly not; the only thing one could reasonably do in this paper was to point

20 Idiosyncrasies 3 and 3b which do speak about graphical PN features however discuss
only possible deficiencies of PN diagrams; they are not related to flowcharts.



the reader to proofs in [22]—the pseudo-code there is similar to our ASMs, so
the proofs apply mutatis mutandis to concurrent ASMs—to be compared to the
corresponding ones in [28]; in addition in a few places, where the proofs are so
simple to be built directly from scratch we gave some indication which property
or proof scheme to use for this. But also in these cases the proofs can be found
in [22] and be compared with those in [28]. We are not talking here about the
use of machine support for proof activities. The comparison in this paper was
about how to a) model distributed algorithms to “help the practitioner to design
distributed algorithms”[28, p.V] and b) how to verify their properties of interest
“to make intuitive statements and conclusions transparent and precise, this way
deepening the reader’s insight into the functioning of systems” [28, p.143]. The
doubt we epxress is whether using PN proof graphs helps to reach this goal.
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