
The Semantics of Behavioral VHDL'93 Descriptions�

Egon B�orger Uwe Gl�asser Wolfgang M�uller

Dipartimento di Informatica Heinz Nixdorf Institut Cadlab
Universit�a di Pisa Universit�at-GH Paderborn Universit�at-GH Paderborn
I-56125 Pisa, Italy D-33098 Paderborn, Germany D-33102 Paderborn, Germany

Abstract

We present a rigorous but transparent semantic
de�nition of VHDL'93 covering the complete signal
behavior and time model including the various wait
statements and signal assignment statements. We
present a VHDL interpreter in the form of rules of
a concurrent evolving algebra which faithfully re
ects
and supports the view given in the VHDL'93 standard
language reference manual.

1 Introduction

Approaching the de�nition of a formal semantics
of the IEEE Std-1076 hardware description language
VHDL'87 as well as of the new VHDL'931[VHDL93]
standard is of high interest for the synthesis and the
formal veri�cation of VHDL models.

Borrione and Paillet [BoPa87] have done �rst inves-
tigations de�ning the semantics of a VHDL'87 subset
in terms of a functional model. Further investiga-
tions can be found in [Sal92, SaBo93]. The de�ni-
tion of a subset of the VHDL'87 semantics in terms
of Booyer-Moore Logic is presented by Read and Ed-
wards in [ReEd94]. Wilsey [Wilsey90] de�nes the se-
mantics of a small VHDL'87 subset based on inter-
val temporal logic. Davis [Davis93] has introduced
the denotational semantics of the VHDL simulation
cycle by the use of an intermediate language that
is derived from a very limited behavioral VHDL'87
subset. The structural operational semantics of a
VHDL'87 subset (Femto-VHDL) for HOL veri�cation
is presented by Van Tassel in [VaTa93]. Damm et
al. give the detailed structural operational semantics
of a VHDL'87 subset based on transition systems in
[DJS94]. M�uller introduces a partly denotational and
partly operational approach (High-Level Semantics of

�Published in the Proceedings of EURO-DAC'94/EURO-
VHDL'94, Grenoble, September 19-23, IEEE Press, Los Alami-
tos, CA, 1994.

1Some publications refer to this standard as VHDL'92

VHDL'93) in [Mue93]. Therein the dynamic seman-
tics is sketched by partially ordered events de�ning
Petri-Net-like structures. Olcoz and Colom intro-
duce in [OlCo93] a formal model based on elaborated
VHDL'87 and its execution in terms of Colored Petri-
Nets which covers all basic behavioral properties of
VHDL'87. In [OlCo94] they provide a detailed in-
vestigation of the VHDL'87 simulation cycle distin-
guishing three semantical layers: syntax checking and
design library building, elaboration, and execution.

Almost all of these approaches consider rather re-
stricted subsets of VHDL'87. None of the above ap-
proaches covers the new features of VHDL'93 in de-
tails. The given speci�cations, due to the applied for-
malisms, are often too complex to convey a correct
understanding of the semantics of VHDL for educa-
tional purpose. In this paper we provide a rigorous
but simple semantic de�nition of elaborated VHDL'93
including the new features of postponed processes and
pulse rejection limit [VHDL93]. We de�ne the formal
semantics of VHDL'93 in terms of Gurevich's concur-
rent evolving algebras [Gur91, Gur94]. The
exibility
of this concept allows us to produce our speci�cation
following the terminology and the view presented by
the standard language reference manual [VHDL93].

The remainder of this paper is organized as fol-
lows. In Section 2 we brie
y introduce what is needed
from concurrent evolving algebras. In Section 3 we
develop a mathematical de�nition of VHDL in terms
of a VHDL Algebra considering the signal assignment
and wait statements as well as the full computational
model of interaction between the user de�ned pro-
cesses and the kernel process. Section 4 gives a con-
clusion and future directions.

2 Evolving algebras

Evolving algebras (EAs) can be understood as
`pseudocode over abstract data', without any particu-
lar theoretical prerequisites. Here we list only the ba-
sic de�nitions and refer for a rigorous formalization to
[Gur91, Gur94].

1

The abstract data come as elements of (possibly not
furthermore speci�ed) sets (domains, universes). The
operations allowed on universes will be represented
by partial functions, where we write f(x) = undef if
f is unde�ned at x. Dynamic changes are obtained
through function updates of form \ f(t1; : : : ; tn) := t "
whose execution is to be understood as setting the
value of function f at given arguments. Note that the
0-ary functions play the role of variables in imperative
programming languages.

An EA is de�ned by a �nite set of transition rules of
form \ if Cond then Updates " where Cond (condition
or guard) is an expression, the truth of which triggers
simultaneous execution of all updates in the �nite set
of Updates. Our rules will always be constructed so
that the guards imply consistency of updates. The re-
sulting description determines the dynamics of a very
large transition system. We are usually only inter-
ested in states reachable from some designated initial
states, which may be speci�ed in various ways.

An EA often comes together with a set of integrity
constraints, i.e., extralogical axioms and/or rules of
inference, specifying the intended domains. In appli-
cations of EAs one usually encounters a heterogeneous
signature with several universes, which may in general
grow and shrink in time|update forms are provided
to extend a universe: \extend A by t1; : : : ; tn with

Updates endextend" where Updates may (and should)
depend on ti's, setting the values of some functions on
newly created elements ti of A. Without giving explicit
declarations, we shall assume the availability of certain
standard mathematical universes such as booleans, in-
tegers, lists of whatever etc (as well as the standard
operations on them).

A concurrent EA �, is a pair (Ag;Mod) where Ag is
a �nite set of agents and Mod is a function that as-
sociates a sequential EA with each element of Ag. A
concurrent EA can be seen as the de�nition of a set of
concurrently running agents. Each agent is speci�ed
through a �nite set of transition rules operating on a
globally shared structure; this also covers shared vari-
ables. We illustrate the basic concepts of EAs by two
examples:

if Condition

then A := B

B := A

Example 1: Exchange
Values

if List 2 LIST

thenif List 6= hi

then List := tail(List)

Example 2: Remove the
First Element of a List

Example 1 de�nes simultaneous updates of the func-
tions A and B to be performed each time Condition

evaluates to true. Since the assignments are per-
formed in parallel, A becomes the value of B and
vice versa. Example 2 de�nes a rule specifying that
each nonempty List from the domain LIST is to be
replaced by its corresponding list tail. The expression

List 2 LIST is used as an abbreviation referring to
any valid instantiation of List within the underlying
domain LIST .2

The concepts of EAs directly apply to our view of
VHDL whose agents are n user de�ned processes and
one kernel process. Our VHDL speci�cation comes in
the form of two modules one for the kernel process
and one for the asynchronously operating agents of
user de�ned processes. Note that for a sequential user
de�ned process, to execute a rule in which variables
occur means to execute simultaneously all instantia-
tions of this rule obtained by replacing the variables
by elements of the corresponding domains. This in-
tuitive explanation should be su�cient for a correct
understanding of our rules; for a rigorous foundation
of this so-called lockstep interpretation of sequential
EAs see [Gur94].

3 The formal model

3.1 Basic concepts

[VHDL93] de�nes the semantics of the VHDL IEEE
standard in terms of a simulator. In our description
we adopt this view and also the basic terminology of
[VHDL93] as far as possible (see also [OlCo94]).

The model of event driven simulation is based on a
�nite number of user de�ned processes P 2 PROCESS

which|under the supervision of the simulation ker-
nel process|concurrently compute new VALUEs for
given SIGNALs. These signals may cause events at
speci�ed points in TIME. Given the underlying dis-
crete VHDL time model, the domain TIME is lin-
early ordered and contains the distinguished element
current time Tc.

Kernel

first
...

kProcess p

...
k

driver(p , S)

driver(p , S)i

first

Process p
i

value(S)

resolved_value(S)

Figure 1: Updating Signals

A process P cannot directly assign a value to a sig-
nal S but has to schedule the signal value val, desired
at time t, into an ordered list driver(P;S) consisting
of pairs (val; t), so{called TRANSACTIONs (see Fig-
ure 1). The transactions of a driver are linearly or-

2In the remainder of this paper domains are denoted by cap-
italized names whereas the related variables are represented by
the same name but with only the �rst letter capitalized.

2

dered by their time components. For the �rst ele-
ment of each driver holds that its time component
is � Tc. The IEEE standard de�nes that the time
components of the other transactions are > Tc. Since
value(S) for each signal S usually is updated by a set
drivers(S), possible con
icts between the transactions
of the active drivers of S are resolved via a user de-
�ned resolution function; we represent the latter by a
resolved value function which out of the �rst elements
of active drivers(S) chooses one value for the update
of S.

During a simulation cycle a process becomes sus-
pended when reaching a wait statement which delays
the process execution until (a) the timeout of a speci-
�ed TIMER is reached, or (b) one of the corresponding
signals is updated, or (c) a given expression becomes
true if one of the corresponding signals is updated.

If all user de�ned processes are suspended, the
kernel process becomes enabled and (i) determines
the value for the next time Tn; (ii) sets the new
current simulation time Tc if required; (iii) updates
the relevant signals and resets the corresponding ac-
tive drivers to inactive; and (iv) resumes the sus-
pended processes (the processes are invoked by be-
coming enabled).

The kernel decides the type of processes which are
invoked during the next simulation cycle (enabled =

postponed or enabled = process)3. Thus, we have to
distinguish three consecutive phases for the kernel (see
also Figure 4): the delta cycle in which the current
time Tc does not change, but new values might be as-
signed to signals and suspended non{postponed pro-
cesses are invoked; the postponed cycle when, just be-
fore Tc will advance, the postponed processes are en-
abled; and the time cycle where the simulation time is
advanced.

As initialization we suppose the kernel to be in
phase delta cycle, current time Tc to be set to 0,
enabled = process, and the initialization of drivers ac-
cording to the de�nitions in [VHDL93]. We also as-
sume that �rst the non-postponed processes and then
the postponed processes are invoked once.

3.2 User de�ned processes

The rules in this section constitute an agent, one
for each user de�ned process de�ning the semantics of
signal assignment and of various wait statements.

3.2.1 Processing statements

In order to concentrate on the essential behavioral fea-
tures of VHDL'93, we assume that the control
ow of
each (sequential) iterative process is determined by

3
enabled = kernel denotes that the kernel process is active.

SIMULATION

START OF

Initialization

*

...1

All Processes Suspended

enabledenabled
nProcess Process

END OF

SIMULATION

Kernel process enabled

Figure 2: The Basic Simulation Cycle

the environment which provides the dynamic changes
of values for the external function program counter4.
To express that a user de�ned process P can be ex-
ecuted only when P is not suspended and when all
processes of the same type as P are enabled, we use
the following abbreviation:
Process does statement�
suspended(Process) = false ^ type(Process) = enabled
^program counter(Process) = statement

Recall that enabled can assume the three values
kernel; process; postponed indicating that the agents of
that type are the ones currently executed. Since
type(P) is either postponed or process the condition
type(P) = enabled ensures that in each simulation
cycle only the corresponding processes are executed|
either postponed or non-postponed processes. Type
process stands for non{postponed processes.

3.2.2 Signal assignments

In this paper we consider only the most general form of
signal assignment|the inertial signal assignment with
an explicit speci�cation of the rejection pulse limit.
This statement newly introduced to VHDL'93 super-
sedes the behavior of the transport signal assignment
and the inertial signal assignment of VHDL'87. The
statement is of form hS (REJECT Pulse INERTIAL

X1 AFTER T ime1; :::i: In VHDL'93, the optional rejec-
tion pulse limit Pulse speci�es a time interval of trans-
actions which are not rejected (removed) from the
driver when scheduling the new waveform elements.
For Pulse = Time1, the behavior of the statement
is the same as a transport signal assignment. When
Pulse = 0 the statement is equivalent to the VHDL'87
inertial signal assignment.

The general intuitive meaning of a signal assign-
ment when carried out by some process P is to sched-
ule future values, on the driver identi�ed through

4An external function in the sense of [Gur91] is a function
which is not updated by the rules of the system under con-
sideration; nevertheless such a function might be updated by
the environment and thus represents a precise interface for the
system.

3

driver(P;S) of process P of signal S. This is done
by inserting new transactions (waveform elements) to
the driver and removing previously scheduled trans-
actions (preemptive scheduling). Recall, that VHDL
requires the sequence of the waveform elements of the
statements as well the transactions in the driver to be
strictly increasing w.r.t. the time component. Each
driver has exactly one distinguished element (first)
which is � Tc. Note here that in our model time is
represented by the absolute time w.r.t. Tc.

Waveform’:

Driver:

1 c>Time +T

...

...
1 c

 Time +T
X1

...
=X1

rejected

: unmarked transaction : marked transaction

...

1=X

...
not rejected

< Tc

first

< (Time − Pulse) +T1 c

replace
not rejected

Figure 3: Preemptive Scheduling for Inertial Delay

In the special case of Time1 = 0, the whole driver
is replaced by the list h(X1; T ime

0

1); : : : ; (Xn; T ime
0

n)i

where Time0i = Timei + Tc denotes the absolute time
w.r.t. the current simulation time Tc. Since this means
that the �rst transaction is replaced, the driver has to
be set to active by de�nition.

In the other case, when Time1 > 0, the wave-
form, which by de�nition is linearly ordered, is sim-
ply appended to the previously shrunken driver. The
driver is shrunk by only keeping the transactions with
< Time1 + Tc. We describe this by the function
�<: DRIVER � TIME ! DRIVER which yields the
driver containing precisely those transactions which
have time component < Time1 + Tc. The further ac-
tions are de�ned in [VHDL93] by a 5 step algorithm in
terms of marking transactions and removing the un-
marked transactions in Step 5.
In Step 1, the newly inserted waveform elements (new
transactions) are marked. Step 2 marks those transac-
tions whose time components are \less than the time
at which the �rst new transaction is projected to occur
minus the pulse rejection limit." Step 3 de�nes that
\for each remaining unmarked, old transaction, the
old transaction is marked if it immediately precedes
an unmarked transaction and its value component is
the same as that of the marked transaction". Finally,
Step 4 marks the �rst element.

Corresponding to this algorithm, in our model, the
resulting driver driver(S; P) is obtained as a composi-
tion of four separate sublists5: the �rst element, the

5The composition of lists is de�ned by the ^ operator.

part kept by the rejection pulse limit, the not rejected
rest, and the new transactions. In this composition
driver0 re
ects the shrunken driver. driver00 corre-
sponds to Step 2 of the above algorithm. The func-
tion reject implements Step 3. reject only keeps those
transactions at the right end of the driver whose value
is equal to the value of the �rst new transaction (X1):

reject(TList; V al) �
if TList = hi _ value(last(TList)) 6= V al
then return hi

else return reject(front(TList; V al))^last(TList)

The full speci�cation of the statement is given by the
following transition rule6.

if Process does hS (REJECT Pulse INERTIAL
X1 AFTER Time1; : : : ;XnAFTER Timeni

thenif Time1 = 0
then driver(Process; S) :=Waveform0

active(driver(Process; S)) := true
else driver(Process; S) :=

first(driver(Process; S))^driver00^

reject(driver000;X1)
^Waveform0

where
driver0 = tail(driver(Process; S) �< (Time1 + Tc))^
driver00 = (driver0 �< ((Time1 � Pulse) + Tc))^
driver000 = driver0 � driver00

In this rule Waveform0 is composed by replacing the
relative time of each element of Waveform by the ab-
solute time Time0j: Waveform0 = h(X1; T ime

0

1); :::i.

3.2.3 Wait statements

The rules for wait statements de�ne how processes
are suspended due to wait requirements for a speci-
�ed time period, a signal, or the truth of a condition.

For modelingWAIT FOR statements, we introduce
the concept of timers. Timers are objects which are set
when a WAIT FOR statement is evaluated. That is,
if Process WAITs FOR Time, then a new timer with
timeout Tc + Time is created at which the Process is
suspended by suspended(Process) := true. The func-
tion waiting identi�es the process which is waiting for
the expiration time.

if Process does hWAIT FOR Timei
then suspended(Process) := true

extend TIMER by t with
timeout(t) := Time+ Tc
waiting(t) := Process
endextend

If a Process WAITs ON a set of Signals then the
Process is suspended and added to the set of processes
which are waiting for changes of a signal, i.e., each
signal in this sensitivity list holds in waiting(s) the

6Since we want to abstract from the details of expression
evaluationwe interpretXi as placeholders for the corresponding
values

4

set of processes which are suspended on s. If a Pro-
cess WAITs UNTIL an expression Expr it is resumed
when the expression evaluates to true. The evaluation
of the current waiting condition, which is stored in
waitcond(Process), is performed i� at least one signal
in this expression changes. Those signals are extracted
from the expression by condsignals(Expr).

if Process does hWAIT UNTIL Expri
then waitcond(Process) := Expr

suspended(Process) := true
if s 2 condsignals(Expr)
then waiting(s) := waiting(s)^hProcessi

By WAIT UNTIL suspensions a Process is added to
waiting(s) of each s 2 condsignals(Expr).

3.3 The kernel process

The kernel is an agent which starts executing only
when all user de�ned processes are suspended. We
abbreviate this by:

AllProcessesSuspended�
8P 2 PROCESS : type(P) = enabled)
suspended(P) = true ^
enabled 2 fprocess; postponedg

This speci�es that all processes of the currently en-
abled type process or postponed have to be suspended.
Then the kernel computes whether the next simula-
tion cycle has to be a delta cycle, a postponed cy-
cle, or whether the time can be advanced and sets
phase 2fdelta cycle, postponed cycle, time cycleg accord-
ingly (see Figure 2).

If the expected next time Tn is equal to the current
time Tc,

7 the kernel goes into phase delta cycle. Oth-
erwise, if Tn > Tc, the kernel goes either from delta
cycle to postponed cycle or from the latter to time cy-
cle phase (see Figure 4). Tn is computed by taking
the minimum of all timeouts � Tc (mintimer) and of
times of all drivers8 (mindriver).

if AllProcessesSuspended
then enabled := kernel

if Tn = Tc
then phase := delta cycle
elsif phase = delta cycle

then phase := postponed cycle
else phase := time cycle

UpdateDrivers(Tn)
where Tn =minfmindriver; mintimerg

mintimer =
minftimeout(t) j t 2 TIMER; timeout(t) � Tcg and

mindriver =
minftime(t) j 9d 2 DRIVER : active(d) = i; t = tig;

where ttrue = first(d) and tfalse = scd(d):

7This is the case if there are some active drivers or if at least
one timeout is set to Tc.

8In the case of active drivers the time of the newly scheduled
�rst element has to be considered. In the case of inactive drivers
the time of the second element has to be considered.

Note here, that in the case of a time cycle all drivers
have to be updated w.r.t. the new time Tn by
UpdateDrivers. If any transaction is scheduled for the
Tn in any driver these drivers are updated to their
tails, i.e., the �rst element is removed. By de�nition
these drivers become active. Due to the ordering of
drivers, we can determine these drivers by checking
their second element to Tn.
UpdateDrivers(t) �
if d 2 DRIV ER ^ tail(d) 6= hi ^ time(scd(d)) = t
then d := tail(d)

active(d) := true

There are three rules describing what the kernel does
in each of its three di�erent phases (delta cycle, post-
poned cycle, time cycle). In the delta cycle and time
cycle phase, the kernel checks whether there may be
any events on signals (EventOnSignals). Thereafter
the kernel changes to subphase process resumption in
order to resume the user de�ned processes. In phase
time cycle, the kernel additionally has to advance the
current time to Tn before. In the case that Tn ex-
ceeds the limit TIME0HIGH the simulation completes
by setting enabled := undef (cf. Figure 2). When
in phase postponed cycle, the kernel simply invokes
all already resumed postponed processes by setting
enabled := postponed.

Delta Cycle :
if enabled = kernel ^ phase = delta cycle
then EventOnSignals

enabled := process resumption

Time Cycle :
if enabled = kernel ^ phase = time cycle
then EventOnSignals

if Tn > TIME'HIGH

then enabled := undef

else Tc := Tn
enabled := process resumption

where Tn =minfmindriver; mintimerg

Postponed Cycle :
if enabled = kernel ^ phase = postponed cycle
then enabled := postponed

EventOnSignals sets an event on those signals which
have at least one active driver and whose current value
value is di�erent from the newly resolved value. In
the case of an event, the current value is replaced by

postponed_cycledelta_cycle

T = Tn c

cnT > T
n cT = T

cnT > Ttime_cycle

Figure 4: Di�erent Phases of the VHDL Simulator

5

the resolved value (resolved value) applying the user
de�ned resolution function (see also Figure 1). The
active drivers are reset since this property holds only
for one simulation cycle.

EventOnSignals �
if 9d 2 drivers(Signal) : active(d) = true ^

value(Signal) 6= resolved value(Signal)
then event(Signal) := true

value(Signal) := resolved value(Signal)
active(d) := false

In subphase process resumption which applies to delta
and time cycles only processes may resume on signals
and on expired timers. For starting the resumed pro-
cesses, phase has to be set to enabled again.

if enabled = process resumption ^
phase = delta cycle _ phase = time cycle

then ResumeOnTimers
ResumeOnSignals
enabled := process

ResumeOnTimers resumes all processes in waiting

whose timeout has reached the already updated Tc.
ResumeOnSignals resumes the processes which are
sensitive to signals s with event(s) := true. All pro-
cesses of the set waiting of each of these signal are
resumed. In case of suspension by WAIT UNTIL,
i.e., waitcond is de�ned, the corresponding condition
condvalue has to be checked. When applying this func-
tion, each appearance of each signal S now refers to
the already updated current values of S. Finally, event
and waitcond have to be initialized for the next simu-
lation cycle.
ResumeOnTimers �
if Timer 2 TIMER ^ timeout(Timer) = Tc
then suspended(waiting(Timer)) := false

ResumeOnSignals �
if s 2 SIGNAL^ event(s) = true
then event(s) := false

if Process 2 waiting(s)
thenif waitcond(Process) = undef

then suspended(Process) := false
elsif condvalue(waitcond(Process)) = true

then waitcond(Process) := undef

suspended(Process) := false

4 Conclusion & future directions

We presented a rigorous but yet intuitive VHDL'93
algebra aiming at a clean and complete model which
supports the understanding of the VHDL'93 language
reference manual. In this paper, due to limited space,
we did not treat the behavior of shared variables and
ports (cf. [BGM94]). In a next step we will start to
investigate the implementation of adequate tools for
machine assisted analysis and veri�cation of EA mod-
els. We are also working an UDL/I algebra with the
ultimate goal to provide a uniform framework for com-
parison of VHDL and UDL/I properties.

Acknowledgements

We would like to thank Uschi Hudson, Christel
Oczko, Sera�n Olcoz, Franz J. Rammig, Simon Read
as well as the unknown reviewers for their valuable
comments when reviewing this article.

References

[BGM94] E. B�orger, U. Gl�asser and W. M�uller. A Formal
Speci�cation of the Semantics of Behavioral VHDL'93
Descriptions. Technical Report, 1994 (to appear).

[BoPa87] D. Borrione and J.L. Paillet. An approach to
the formal veri�cation of VHDL descriptions. Report
No. 683-I, IMAG/ARTEMIS, Grenoble, Nov. 1987.

[DJS94] W. Damm, B. Josko, and R. Schl�or. Speci�cation
and Veri�cation of VHDL-based System-Level Hard-
ware Designs. In Speci�cation and Validation Methods,
E. B�orger (ed.). OUP, Oxford, 1994 (to appear).

[Davis93] K.C. Davis. A Denotational De�nition of the
VHDL Simulation Kernel. In CHDL'93, Ottawa, May
1993, North-Holland, Amsterdam, 1993.

[Gur91] Y. Gurevich. Evolving Algebras { A Tutorial
Introduction. In Bulletin of the EATCS, Feb. 1991,
No.43, pp.264-284.

[Gur94] Y. Gurevich. Evolving Algebra 1993: Lipari
Guide. In Speci�cation and Validation Methods, E.
B�orger (ed.). OUP, Oxford, 1994 (to appear).

[Mue93] W. Mueller. Approaching the Denotational Se-
mantics of Behavioral VHDL92 Descriptions. In 1st

APCHDLSA, Brisbane, Australia, Dec. 1993.

[OlCo93] S. Olcoz and J.M. Colom. Toward a Formal
Semantics of IEEE Std. VHDL 1076. In EURO-

VHDL/EURO-DAC'93, Hamburg, Sept. 1993.

[OlCo94] S. Olcoz and J.M. Colom. The Discrete Event
Simulation Semantics of VHDL. In Int. Conf. on Sim-

ulation and HDLs, Tempe, Arizona, SCS, Jan. 1994.

[ReEd94] S. Read and M. Edwards. A Formal Semantics of
VHDL in Booyer-Moore Logic. In CEEDA'94, Poole,
UK, April 7-8, SCSI, San Diego, 1994.

[SaBo93] A. Salem and D. Borrione. Formal Semantics
of VHDL timing constructs. In VHDL for simulation,

synthesis, and formal proof, J. Mermet (ed.). Kluwer,
London, 1993.

[Sal92] A. Salem. Veri�cation formelle des circuits digi-
taux decrits en VHDL. PhD Thesis, Universite Joseph
Fourier, Grenoble, October 1992.

[VaTa93] J. P. Van Tassel. Femto-VHDL: The Semantics
of a Subset of VHDL and its Embedding in the HOL
Proof Assistant. PhD Thesis, University of Cambridge,
July 1993.

[VHDL93] IEEE Standard VHDL Language Reference
Manual. IEEE Std 1076-1993. The Institute of Electri-
cal and Electronics Engineers, New York, USA, 1994.

[Wilsey90] P.A. Wilsey. Developing a Formal Semantics
Description of VHDL. In Proc. of the 1st European

Conf. on VHDL, Sept. 5-7, IMT, Marseille, 1990.

6

