
1

A Formal Speci�cation of the PVM Architecture�

Egon B�orgera and Uwe Gl�asserb

aDipartimento di Informatica, Universit�a di Pisa, Corso Italia, 40, 56125 Pisa, Italy,

boerger@di.unipi.it

bFB Mathematik-Informatik, Universit�at-GH Paderborn, Warburgerstr. 100, 33098

Paderborn, Germany, glaesser@uni-paderborn.de

We develop a mathematically precise yet transparent de�nition of the Parallel Virtual

Machine PVM. Our model, based upon Gurevich's notion of concurrent evolving algebras,

directly supports the basic intuitions of heterogeneous distributed computing.

Keyword Codes: D.3.1

Keywords: Programming Languages, Formal De�nitions and Theory; Distributed Systems

Introduction

PVM (Parallel Virtual Machine) is a software system2 that serves as a general purpose

environment for heterogeneous distributed computing [?, ?]. We develop here a mathe-

matical de�nition of PVM at a level of abstraction and precision which is tailored to the

needs of a programmer who wants to be brought, fast and reliably, to a correct under-

standing of the system at the C{interface. We build our model in such a way that it can

also be used as basis for a series of stepwise re�nements, leading in a provably correct way

to actual PVM code. Our speci�cation is easily adaptable to extensions and modi�cations

of single features, parts or interfaces of the system; such ease with extensions seems to us

to be a particularly important goal for specifying a complex still changing system.

Our speci�cation methodology is based on Gurevich's concept of evolving algebra. This

method allows to avoid formal overhead, enabling the reader to follow a precise de�nition

without any speci�c previous formal training. For details and the background of sequential

and concurrent evolving algebras see [?, ?]. The present de�nition is based on PVM

Version 3, the current system release [?]. Due to space limitations we treat here only a

few|but typical|routines for message passing and task creation. For a full treatment

see [?].

�In: B. Pehrson and I. Simon (Eds.) IFIP 13th World Computer Congress 1994, Volume I:

Technology/Foundations, Elsevier, Amsterdam.
2The PVM software is public domain and can be obtained from Oak Ridge National Laboratory (ORNL)

by sending electronic mail to netlib@ornl.gov with the message send index from pvm3.

2

The PVM System

Under PVM, a heterogeneous collection of physically interconnected and concurrently

operating computers of a great variety of architectures (including serial, parallel, and vec-

tor computers) appears logically as a single distributed-memory computer. This abstract

parallel computer is called the virtual machine. The constituting member computers,

called host machines, can be dynamically added to or deleted from the virtual machine

{ except a designated master host, the one on which PVM is started and which keeps

control of the dynamic evolution of the overall machine con�guration.

Concurrently running application programs can enroll into PVM as tasks, the basic

computing units of PVM, similar to processes in Unix. Such programs use the virtual

machine through a message{passing interface that provides uniform access to hosts.3 The

underlying message-passing model does not distinguish between local and global intertask

communication. The communicating tasks do not even need to know whether their com-

munication partners reside on the same host or not. To support this view, a homogeneous

global address space is used in which all tasks are uniformly addressed through unique

task identi�ers (tids).

PVM installs on each host machine a daemon process, called pvmd, which acts as a

local supervisor in operations that require task management or intertask communication.

Installation and management of the pvmds (maintenance of the overall machine con�g-

uration) is e�ected through a distinguished daemon | demiurge
4 | the one residing

on the master host. In particular he has to create or delete pvmds on new or deleted

hosts, administrating a corresponding host table an updated read-only copy of which he

broadcasts to the other pvmds each time the con�guration changes.

Parallelization of PVM tasks is possible by using message-passing constructs from the

standard interface library of PVM that supports common concurrent processing paradigms

in the form of well-de�ned primitives. These primitives, which o�er the necessary com-

munication, synchronization, and control features, have to be embedded in the procedural

host language (Fortran77 or C).

1. Basic Data Structures

Our concurrent PVM Algebra has a dynamic set of HOST s, master 2 HOST , each of

an architecture indicated by a function arch into the static domain ARCH 5. The members

of the dynamic set DAEMON work concurrently, each on a di�erent host assigned by a

bijective function host : DAEMON ! HOST , supervising the activities of TASK s on this

host. DAEMON contains a distinguished element demiurge, host(demiurge) = master,

which is in charge of pvmd management as explained above.

Processes being enrolled into PVM as tasks are globally addressed through functions

tid : TASK ! TID task : TID ! TASK pid : TASK ! PID

which yield identi�ers in appropriate identi�er sets. We assume tid; task to be inverse to

3According to this view, a host takes the role of a processing element in a loosely coupled multiprocessor

system. This analogy does not apply to the case of a host itself being a multiprocessor system.
4Plato (see Timaeus, 40c.) describes demiurge as creative force that shaped the material world.
5ARCH consists of the prede�ned architecture names to be used with PVM 3 as speci�ed in [?].

3

each other. A task identi�er is supposed to encode also the unique daemon under control

of which the task is operating, using a function pvmd : TID ! DAEMON . This function

justi�es to speak about the list TIDx of all t 2 TID of tasks which are concurrently

running under daemon x, formally such that pvmd(t) = x.

In order to describe supervisor actions of daemons in a way which directly supports

basic intuitions about distributed message{passing computing, we introduce an external

dynamic function6 event : DAEMON ! EVENT which assigns to each daemon the

instruction or message he is supposed to execute or read. The rules below are therefore

formulated with conditions containing event(x) = instruction=message expressing that

when daemon x is going to execute/read the instruction/message, then.... Thus we leave

it abstract how a daemon \walks through his sequence of instructions," assuming, for each

x, an event updating mechanism to be given for the sequential evolving algebra formed

by the module of all rules of x.7

Certain PVM instructions result in distributed operations involving two or more hosts

the pvmds of which perform interactions through message{passing. We model inter{pvmd

communication in the transition rules below by abstract updates `forward hRequestMsgi

to y' or `return hReplyMsgi to x,' where x; y refer to the interacting pvmds. They are

supposed to trigger corresponding events for the receiving pvmds. For that reason we

will have a number of communication related transition rules, distinguished by the su�x

` msg', any of which describes the reaction of a pvmd x when receiving a message from

another pvmd y.

Delays might occur when a pvmd requests another pvmd for service. In order to avoid

blocking due to waiting, the requesting pvmd stores its waitcontext, accessed by a unique

wait-id (wid) which is passed along with the request and returned with the reply. The

waitcontext typically includes information about the requesting task (req info : WID !

TASK), the reply data (rep info : WID ! REPLY �), and a request count (waitcount :

WID ! INT , indicating the number of replies a pvmd is still waiting for).

2. Message-Passing Interface

For the speci�cation of PVM's message{passing interface|which o�ers point-to-point

communication from one task to another as well as multicast to a set of tasks|we extend

the basic model by abstract domains related to messages and bu�ers: MESSAGE , TAG ,

DATA , BUFID , ENCODING . PVM speci�es no limit to the size or number of messages8.

To send a message, a task �rst packs the message into a send bu�er and then calls one of

the send functions. To selectively receive messages, a task invokes one of various receive

functions determined by a speci�ed receive context.

The basic message-passing routines of PVM apply a simple communication model9

6Such a function, as explained in [?], is not updated by rules of the system to which it is considered to

be external, but it nevertheless might change its values dynamically, due to actions which are external

to the rule system.
7We use the notion of runs of concurrently working sequential evolving algebras, de�ned in [?].
8Our speci�cation could easily incorporate conditions which re
ect constraints coming from physical

limitations of the underlying hardware and software components.
9For more sophisticated communication mechanisms additional routines and options, not discussed here,

allow to tailor the basic model to individual application requirements, for example direct task-to-task

4

that is based on two fundamental assumptions: for each task there is only one send bu�er

and one receive bu�er; any message transfer between tasks is handled by the responsi-

ble pvmds. The following description of the message-passing model assumes two basic

integrity constraints that are guaranteed by the corresponding routines embedded in the

virtual machine: message-passing is reliable and order-preserving.

2.1. Message Bu�ers

Message bu�ers are addressed through unique identi�ers from BUFID , 0 =2 BUFID .

The content of a bu�er may be any sequence in DATA accessed by cont : BUFID !

DATA
�. An encoding : BUFID ! ENCODING = fPvmDataDefault;PvmDataRaw;

PvmDataInPlaceg, associated to send bu�ers, speci�es the method used for packing mes-

sages: PvmDataDefault refers to External Data Representation (XDR); PvmDataRaw to

the original data format; PvmDataInPlace means that the data items have to be copied di-

rectly out of the user's memory (for details cf. [?]). Two injective functions sendbuf ; recvbuf

from TASK into BUFID yield the send and receive bu�ers of tasks.

The routine pvm initsend() creates, for the task which wants to start a sending oper-

ation, an empty send bu�er with the speci�ed encoding scheme and returns the bu�er

identi�er. pvm pk*(Pointer ;Nitem; Stride)|there is one pack routine for each individ-

ual data type � 2 fbyte; cplx; dcplx; double; float; int; long; shortg10|packs the number

Nitem of data into the send bu�er; Pointer refers to the location of the �rst data item and

Stride to the relative distance to the next one. The formal de�nitions of these routines

are given by the rules11:

pvm initsend()

if event(x) = initsend(Encoding)

from Task

then

extend BUFID by b with

sendbuf (Task) := b

cont(b) := hi

encoding(b) := Encoding

return hbi to Task

endextend

pvm pk*()

if event(x) = pk
�(Pointer ;Nitem; Stride)

from Task

then

cont(sendbuf (Task)) :=

append(data�(Pointer ;Nitem; Stride);

cont(sendbuf (Task)))

2.2. Sending

A message consists of receiver and sender tid, an integer tag, and the data, accessible

through functions de�ned on MESSAGE with values in TID (recvtid; sendtid), TAG

(msgtag), DATA � (msgdata). Thus each pvmd x holds a sequence msgseq(x) of quadru-

ples hRecvT id; SendT id;MsgTag;BufIdi representing the messages waiting|in the order

of their arrival at x|to be received by one of its local tasks. BufId identi�es the local

bu�er containing the message data.

communication, certain group functions, or multiple send and receive bu�ers.
10For packing strings a simpler routine is used which we do not describe here.
11Note that the updates in evolving algebra rules are thought of as being executed simultaneously.

5

pvm send(Tid,Tag) puts the information, stored in the send bu�er of the sending task,

into a newly created message that is sent to Tid with label Tag . If the daemon of

the receiver is the daemon of the sender, sending the message means to enqueue it into

the daemon's message queue; if the message is expected by the receiver|expressed by

a function expecting : TASK ! h(TID + f�1g) � (TAG + f�1g)i as a combination of

options for the message Tag and sender Tid, where `-1' indicates matching every possible

combination|it is immediately put into the receiver's receive bu�er. Otherwise the mes-

sage will be forwarded as intertask{message. Upon arrival an intertask{message is put

into the receiver's receive bu�er (if expected by the receiver) or enqueued by the receiver's

daemon. This meaning of the routine pvm send() is formally de�ned by the rules12:

pvm send()

if event(x) = send(Tid ;Tag) from Task

then

CREATE mssg m : (Tid ;Tag ;Task)

WITH sendmsg(m;Tid ;Tag ;Task)

through x

where

sendmsg(M;Tid ;Tag ;Task) through x

� if pvmd(Tid) = x

then enqueue(M;msgseq(x))

else forward intertask msghMi to

pvmd(Tid)

CREATE mssg M : (Tid ;Tag ;Task)

WITH Updates

� extend MESSAGE by M with

msgdata(M) := cont(sendbuf (Task))

recvtid(M) := Tid

msgtag(M) := Tag

sendtid(M) := tid(Task)

Updates

endextend

enqueue(M;msgseq(x))

� extend BUFID by b with

cont(b) :=msgdata(M)

msgseq(x) := msgseq(x)_hLabels; bi

if MatchRecvContext

then

recvbuf (receiver) := b

expecting (receiver) := undef

endextend

intertask msghi

if event(x) = intertask msghMi from y

thenif MatchRecvContext

then

extend BUFID by b with

cont(b) := msgdata(M)

recvbuf (receiver) = b

endextend

expecting(receiver) := undef

else enqueue(M;msgseq(x))

where Labels � recvtid(M); sendtid(M); msgtag(M); receiver � task(recvtid(M));
MatchRecvContext � matching(hsendtid(M); msgtag(M)i; expecting(receiver))

2.3. Receiving
PVM supports blocking and non{blocking receive routines. Blocking recv requested

from Task sets the receive bu�er of Task to the bu�d of an expected message and re-
turns bu�d to Task , if an appropriate message is actually waiting in the message queue;

12The corresponding multicast routine pvm mcast() can be handled in almost the same way.

6

otherwise, the given receive context is used to update the expecting function of Task .
Non{blocking nrecv does the same except for returning 0 to Task in case there is no mes-
sage of the expected type in msgseq. Formally this is expressed by two rules, where the
function:

d : hTID � TID � TAG � BUFID i� � hTID � (TID + f�1g)� (TAG + f�1g)i ! BUFID �

selects, out of msgseq, the messages corresponding to expecting :

pvm recv()

if event(x) = recv(Tid ;Tag) from Task

thenif msgseq(x)dMsgSelect= []

then

expecting (Task) := hTid ;Tag i

else

RecvMsg(Tid ;Tag ;Task) Through x

pvm nrecv()

if event(x) = nrec(Tid ;Tag) from Task

thenif msgseq(x)dMsgSelect= []

then

return h0i to Task

else

RecvMsg(Tid ;Tag ;Task) Through x

where MsgSelect� htid(Task);Tid ;Tag i

RecvMsg(Tid ;Tag ;Task) Through x

� let msgseq(x)dMsgSelect= [bjbu�ds]
return hbi to Task

recvbuf (Task) := b

msgseq(x) := delete htid(Task);Tid ;Tag ; bi from msgseq(x)

3. Process Control

To exemplify the formal treatment of process control constructs, we present two signif-

icant examples.

3.1. Creating Tasks

The routine pvm spawn() enables dynamic subtask creation. On initiating a spawn

operation the spawning task becomes parent of the (Ntask many) new subtasks to be

created, each of which is assumed to run a copy of a given executable File (possibly with

a list of Arguments). The spawning task may a�ect the selection of hosts to spawn on

through a mode parameter: in transparent mode tasks are automatically executed on

the most appropriate hosts w.r.t. certain load measures; in architecture-dependent mode

the calling task speci�es the architecture; in low-level mode it speci�es a particular host.

Parameters Flag and Where are used to specify a combination of options as a sum of:

0 PvmTaskDefault - PVM chooses where to spawn the processes; 1 PvmTaskHost - the

Where argument speci�es a particular host to spawn on; 2 PvmTaskArch -Where speci�es

a type of architecture to spawn on using ARCH; 4 PvmTaskDebug - starts these processes

up under debugger; 8 PvmTaskTrace - the PVM calls in these processes will generate

trace data13.

In assigning tasks to hosts upon spawning, PVM's in principle non{deterministic choice

depends in particular upon the environment (e.g. the operating system) and the internal

13This feature is not yet implemented, cf. [?].

7

load balancing scheme (which is transparent to the user). We abstract from details of this

complex selection procedure by using a dynamic external function hostselect which we

assume, as integrity constraint, to be consistent with the options set by the user (through

Flag, Where, Ntask).

The outcome of an attempt to spawn a task which has been assigned to a host de-

pends on the availability of resources, and on whether a suitable copy of the relevant File

is present on that host. We model the behaviour of the system using again a dynamic

external function try to spawn which provides the necessary SPAWNREPORT. Since

computing this function may be rather time consuming and thus is not an atomic action,

spawning has two phases, modeled by separate rules: a spawn operation is triggered by

calling try to spawn with the appropriate argument values computed using hostselect. On

completion of this operation try to spawn returns, to the calling pvmd, the resulting list

of pids, one for each successfully created process required to spawn a new task, by gener-

ating an ext spawn report event.

if event(x) =

spawn(File; Args; F lag;Where ;Ntask)

from Task

thenif hostselect(Flag;Where ;Ntask ; x) =

hlocal; remotei

& local = hx; n0i

& remote = hpvmd
1
; n1i; : : : ; hpvmd

m
; nmi

then

let tid = tid(Task)

extend WID by wid with

req info(wid) := tid

rep info(wid) := hi

waitcount(wid) := nm + signum(n0)

if n0 > 0

then trigger

try to spawnhparams; n0; widi

if nm > 0

then forward

spawn req msghparams; ni; wid; tidi

to pvmd
i

(i = 1; : : : ; m)

endextend

where params � File; Args; F lag;Where

if event(x) =

ext spawn reporthWid ; hPid1; :::; P idnii

then

let tid = req info(Wid)

extend TIDx by tid
1
; : : : ; tidn with

let Tids = tid
1
; : : : ; tidn

extend TASK by t1; : : : ; tn with
...

pvmd(tidj) := x

enroll (tj ; tidj ; tid; P idj)
...

if pvmd(tid) = x

then RepInfoSpawn(Tids ;Wid)

else

return spawn rep msghTids ;

rep info(Wid)i to pvmd(tid)

endextend

endextend

where enroll (Task ;Tid ; Parent; P id)

� tid(Task) := Tid

parent(Task) := Parent

pid(Task) := Pid

When receiving an ext spawn report, the pvmd enrolls the reported processes as tasks.

Depending on whether the task that has initiated the spawn request is local or not, the

resulting list of new tids either is appended to the local wait context (in RepInfoSpawn) or

it is returned to the corresponding remote pvmd. We omit the straightforward formaliza-

tion of RepInfoSpawn(Wid ;Tids) : the returned wait identi�erWid provides access to the

local wait context where the request counter waitcount(Wid) and the list rep info(Wid)

8

of tids of successfully spawned tasks are updated; upon �nal completion, the result of the

distributed spawn operation is returned to the calling task req info(Wid).

The rules for interaction between the spawning task pvmd and the pvmds on selected

remote hosts are:
spawn req msghi

if event(x) =

spawn req msghParams;Wid ;Tid i from y

then

extend WID by wid with

req info(wid) := Tid

rep info(wid) :=Wid

endextend

trigger try to spawnhParams; widi

where Params � File; Args; F lag;Where ; N

spawn rep msghi

if event(x) =

spawn rep msghTids ;Wid i from y

then

RepInfoSpawn(Tids ;Wid)

3.2. Killing Tasks

The routine pvm kill(Tid) causes the pvmd to kill the task identi�ed by Tid . In

the formal description a symbolic system command, kill process, is used to express the

resulting interaction between PVM and the operating system. If the task to be killed

resides on a remote processor, the local pvmd forwards a kill message to the corresponding

remote pvmd. Upon receiving a kill msg a pvmd acts as if it had received a pvm kill by

one of its local tasks.

pvm kill()

if event(x) = kill(Tid) from Task

thenif pvmd(Tid) = x

then

delete Tid from TID

kill process(pid(task(Tid)))

else

forward kill msghTid i to pvmd(Tid)

kill msghi

if event(x) = kill msghTid i from y

then

delete Tid from TID

kill process(pid(task(Tid)))

REFERENCES

1. G. A. Geist and V. S. Sunderam. Network-based concurrent computing on the PVM system.
Concurrency: Practice and Experience, 4(4):293{311, June 1992.

2. C. C. Douglas, T. G. Mattson, and M. H. Schultz. Parallel Programming Systems for
Workstation Clusters. Technical Report YALEU/DCS/TR-975, Dept of Computer Science,
Yale University, August 1993.

3. Y. Gurevich. Evolving algebras { a tutorial introduction. Bulletin of the EATCS, (43):264{
284, February 1991.

4. Y. Gurevich. Evolving Algebra 1993: Lipari Guide. In E. B�orger, editor, Speci�cation and

Validation Methods. Oxford University Press, 1994 (to appear).

9

5. A. Geist et al. PVM 3 User's Guide and Reference Manual. Technical Report ORNL/TM-
12187, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, May 1993.

6. E. B�orger and U. Gl�asser. A formal speci�cation of the PVM architecture. Technical Report,
1994 (to appear).

