
A formal method for provably correct composition

of a real-life processor out of basic components

(The APE100 Reverse Engineering Study)�

Egon B�orger

Dipartimento di Informatica

Universit�a di Pisa

Corso Italia 40

56125 Pisa, Italy

E-Mail: boerger@di.unipi.it

Fax: ++39 50 887226

Giuseppe Del Castillo

Universit�at Paderborn

FB17 Informatik

Warburger Str. 100

33095 Paderborn, Germany

E-Mail: giusp@uni-paderborn.de

Fax: ++49 5251 603427

Abstract

We present a design approach which allows us to formally specify a real{life processor as

composed out of its basic architectural (formally speci�ed) components. The methodology pro-

vides means to rely upon hierarchical re�nements and modular structuring of the speci�cations

as a discipline to control the behaviour of complex units in terms of the behaviour of their

components. In particular this enables us to prove interesting dynamic properties about the

processor in terms of properties of its basic architectural components. The method makes use

of Gurevich's concept of evolving algebra. We have developed the method to accomplish a re-

verse engineering project for the VLSI implemented microprocessor zCPU, the controller of the

successful APE100 massively parallel machine.

Introduction

The APE100 massively parallel processor has been built as a dedicated machine for
oating point

intensive scienti�c applications and has proved to be rather successful for numerical simulations in

Lattice Gauge Theory (see [3, 4]). As preparation for a possible upgrade to a new APE1000 machine

(see [5]) we have accepted the challenging reverse engineering task to construct formal models for

the architecture in such a way that the upgrading process can be guided by these models. The

models are intended to provide precise descriptions between the existing block diagrams and verbal

explanations on one side and the C-code for the APE100 simulator on the other side; they are

required to be usable for producing executable prototypes and to o�er the possibility to experiment

with design decisions at various levels of abstraction.

We have developed a series of formal models, at di�erent levels of abstraction, which correspond

to views of the architecture as provided by di�erent languages in the APE100 compilation chain (a

�in: Yuri Gurevich and Egon B�orger, "Evolving Algebras. Mini-Course", Technical Report BRICS-NS-95-4,

BRICS, University of Aarhus, July 1995. An abridged version of this paper is in the Proceedings of the First IEEE

International Conference on Engineering of Complex Computer Systems (ICECCS'95).

1

characteristic part of the advanced software environment of APE100, see [1]). The ground model

APESE has been de�ned in [7]; it re
ects the APE100 model of parallel execution as viewed by the

user who approaches the machine as programmer in the high level parallel programming language

Apese, a parallel Fortran like user expandable language especially designed for APE100. In this

paper we show how this model can be transformed by stepwise re�nement to a provably correct

model LEX (loadable executable code) of APE100 at the hardware level, going through mainly

two other intermediate models Assembler and ZIC (zCPU intermediate code) which correspond to

languages of the APE100 compilation chain.

We concentrate our attention here on the VLSI superscalar integer processor zCPU which acts as

controller for APE100 and represents the most original part of the project (including the pipelining

and VLIW parallelism for the execution of compiled ZIC code; see [2] for technical details of the

zCPU). In section 1 we provide a formal description of the standard architectural components

of zCPU, namely the register �le RF (which plays the role of a cache system), the (extended)

ALU, the sequencing and addressing unit (which works as dedicated hardware independently and

concurrently with the main ALU but can cooperate with the latter to calculate complex addresses

for say multidimensional array references), the condition code unit, an instruction decoding unit

and other special auxiliary devices and registers. In section 2 we de�ne a method by which given

units can be composed in a precise way to complex units. Using well known techniques >from the

literature (see [12]) the composition can be done in a modular way. This greatly simpli�es the task

to prove properties of complex units in terms of properties of their simpler constituents. De�ning

the components as evolving algebras (in the sense of Gurevich [14]) to which we add entries and

exits allows us to adopt also the evolving algebra re�nement techniques which have been used

successfully to formally specify and prove properties of complex systems (see for ex. [11, 8, 9]).

In section 3 we explain how for the formal model LEX of the zCPU processor we can make the

following informal statement into a precise mathematical assertion and give a mathematical proof

for it.

Main Theorem. Under precisely stated assumptions on the compiler, the model LEX of the

processor zCPU executes compiled Apese programs correctly.

In the appendices we provide the full abstract de�nition of the zCPU processor, obtained by

putting together the de�nitions of its basic units.

The proof of the theorem, which will be given in a sequel to this paper, proceeds by a series

of correctness theorems which establish that each level n of the re�nement hierarchy leading from

APESE to LEX is correctly implemented by the model at level n+1. Note that the \general strategy

used throughout in APE100 of moving functions from hardware to software, as long as this does not

entail performance penalties" ([6]) results in a sometimes very subtle interplay between the compiler

and the hardware, in particular where it comes to deal with VLIW and pipelining parallelism. The

freedom of abstraction which comes with the notion of evolving algebras allows us to re
ect this

strong role of the compiler within the APE100 project without going into its details; since we want

to concentrate on the architecture, the compiler properties are explicitly formulated as abstract

assumptions for the claims on the behaviour of the processor.

This paper is not the place to compare the new evolving algebra approach to the numerous

other formal speci�cation methodologies in the literature. The goal of this paper is to report on a

challenging reverse engineering project which has been carried out successfully using the evolving

algebra approach. We want to convince the practitioner by an example from real-life that:

2

� one can use the evolving algebra speci�cation methodology to produce readable but never-

theless precise speci�cations without previous formal training and without formal overhead;

� the evolving algebra speci�cation method scales to complex systems.

This explains also why we do not give here a formal de�nition of the underlying semantics

of evolving algebras (which however has been rigorously de�ned in [14]); our speci�cations can be

read and understood as abstract code which can serve as basis for the implementation of executable

prototypes.

1 The Datapath Components of the zCPU

The zCPU processor is built out of several main units, namely:

� the register �le RF;

� the ALU MPY DIV unit (ALU for brevity), an arithmetico-logical unit containing special

independent devices for multiplication and division;

� the CC&STATUS unit, which processes the condition codes and the state information for

handling jumps and exceptions;

� the Address Generation Unit AGU, for calculating program and data addresses;

� the Input/Output Subsystem IOS, providing the interface between zCPU and its data memory

(DATAMEM);

� the INSTR unit, for instruction fetch;

� the units DATAMEM and PROGMEM, data and program memory of the zCPU.

In addition, other components are needed in order to coordinate the operations of the units listed

above, namely some internal registers and a DECODE unit, for decoding instructions words read

from program memory into the appropriate control codes required by the units.

Each unit is speci�ed as an evolving algebra (in the sense of [14]) with entries and exits. The

latter are vehicles for an explicit description of a desired input/output behaviour. This behaviour is

de�ned by �nitely many rules of the evolving algebra and possibly some conditions on the functions

which appear in the rules. Each rule is of the form

if Cond then Updates

where Cond is a �rst-order expression and Updates a �nite set of function updates

f(t1; : : : ; tn) : = t

which are executed simultaneously each time Cond is true1. For the description of the parallelism in

APE100 it is convenient to rely upon the lock-step interpretation of evolving algebras under which

1Note that such a rule transforms a structure (\state") | i.e. a set of functions S over given domains | into

another structure S 0 which di�ers from S by some of the functions being changed for some arguments. Functions

which appear in an evolving algebra but never as outer function f of a function update f(t1; : : : ; tn) := t are called

external : they represent the environment for the evolving algebra.

3

in each step each rule which can be applied is applied. (For an exact de�nition of this lock-step

semantics of evolving algebras see [14]).

The entries and exits can be viewed as terms, which include 0-ary functions. As an experiment

we will use in this paper essentially only 0-ary functions for entries and exits. Each function can be

constrained by conditions, which can serve various purposes. For example, exits are often de�ned

by equations; in the special case of a combinational unit all of them are de�ned as functions of only

entries. Another use of conditions on functions are (integrity) contraints, which are assumed (or

guaranteed) for a correct behaviour of the unit under consideration.

We are going to de�ne now three characteristic units, namely RF, ALU MPY DIV and a regis-

ter: the reader will recognize (and can check through the details provided in the appendices) that

the other basic units can be speci�ed in a similar way.

1.1 The register �le RF

The zCPU register �le de�nes the interaction between 64 general registers and the rest of the

processor. The content reg(addr) of any register addr 2 f 0; : : : ; 63 g becomes accessible through

one of the �ve RF-ports OutPort i (i = 1; 2; 3; 5) and in port
j
(j = 4; 5), where the �fth can be used

as input (in port
5
) and as output (OutPort5) port

2.

The values of the RF-exits OutPort i are computed from the entries addr i using reg by the rules

OutPort i : = reg(addr i) for i = 1; 2; 3: (1)

The entries addr 4 2 f 0; : : : ; 63 g, in port
4
2 INTEGER and write enable4 2 f 0; 1 g are used to

update reg on addr 4 to in port4 if the input port number 4 is enabled for writing: this is formalized

by the rule

if write enable4 then reg(addr 4) : = in port
4
: (2)

Port number 5 is special because it can be used for either reading or writing: in the latter case the

value of OutPort5 becomes unde�ned. Thus, the behaviour of the RF unit with entries addr i; i 2

f 1; : : : ; 5 g, in port
j
;write enablej ; j 2 f 4; 5 g and exits OutPortk; k 2 f 1; 2; 3; 5 g is de�ned by

rules (1), (2) and by the following rule for RF-port number 5:

if write enable5
then reg(addr 5) : = in port

5

OutPort5 : = undef

else OutPort5 : = reg(addr 5)

(3)

The RF unit works under the additional assumption that it is not allowed to read and to write a

register at the same time, as well as to write to the same register through the two input ports 4

and 5. These conditions are formalized by the following integrity contraints on the RF entries:

write enable4) addr4 62 f addr1; addr2; addr3; addr5 g

write enable5) addr5 62 f addr1; addr2; addr3 g

write enable4 ^ write enable5) addr4 6= addr 5:

2We denote internal registers by capital initial letters and try to adhere to the terminology of [6]. The reader

should not confuse the general registers of the register �le and the internal registers of the zCPU. The former are

named by numbers 0; : : : ; 63 and their contents accessed using the function reg, the latter are viewed by us as 0-ary

functions which can be updated by transition rules (see below 1.3).

4

A peculiarity of the RF units consists in its exits: usually exits are de�ned by equations and possibly

depend on the internal state of the unit, while updates are used to modify the internal state of the

unit. In RF the exits are written through updates: this is just a notational shorthand similar to

that used in 1.3. In fact, the functions in port
i
of RF are internal registers of RF, whose exits are

also exits of RF itself.3

1.2 The arithmetical unit ALU MPY DIV

The arithmetical unit of zCPU consists of three parts which can work in parallel, one for the

additive, logical and shift operations, one for (3 types of) multiplication and one for division. The

entries are math code (indicating the operation code), opi (for the two operands), three condition

code entries carry
in
, extend in, zeroin and four entries md ctrl for multiplier and divider control.

The exits are math resout for the computed result, and one for each condition code (the above plus

negative value, over
ow, division by zero). These exits are characterized in a purely functional way.

Technically speaking this means that we abstract from the time needed by the device to compute

the values at the exits which correspond to the values appearing at the entries. In particular,

math resout is de�ned as a function

math resout = math res(math code;md ctrl ; op
1
; op

2
; carry

in
; extend in):

(The exits for condition codes are de�ned in a similar way, see appendix A.2).

In case math code indicates an additive, logical or shift operation, math resout is the usual

combinational function of op
1
, op

2
, carry

in
and extend in (and the functions corresponding to the

condition codes are similarly de�ned).

In case math code indicates an operation for MPY or DIV, the entry md mux (in md ctrl)

distinguishes between multiplicative operations and division. In case of a multiplication the entry

md mux and an additional entry add mul will determine which function will be used to compute

the value of the operation in question on the arguments op
1
, op

2
.

This function is however not combinational, because more than one clock cycle is needed for its

computation by the unit. The two dedicated hardware devices which execute multiplications and

divisions interfere with the main ALU pipeline only when the multiplication or division instructions

are issued or when the result is ready for write{back. Therefore the ALU can execute other

operations while multiplications or divisions are in progress. As a consequence|we consider now

the case of multiplications|at the beginning (when the entrymul in in md ctrl satis�esmul in = 0)

the operands op
i
must be stored in internal registers MulOp

i
of the multiplier and a counter

(MulStep) must be set to determine when the multiplication result is ready, namely after 2 further

clock cycles. The compiler is assumed to guarantee that the distance between two consecutive

multiplicative instructions is at least 3, i.e. that mul in changes >from 0 to 1 and will not assume

0 again before 2 clock cycles.

Thus, the behaviour of the MPY part of the ALU MPY DIV unit is formalized by the rule

if mul in = 0 then start mul(op
1
; op

2
) else mul busy

3This notation is used in other units as well (e.g. DECODE): when a register name (denoted by upper case initial)

appears in the list of exits of a unit, it should be interpreted as explained here.

5

where
start mul(op

1
; op

2
) � MulOp

1
: = op

1

MulOp
2
: = op

2

MulStep : = 1

mul busy � MulStep : =MulStep + 1:

The function mul ready , indicating when the result of the multiplication is ready to be written back

into the destination register, is de�ned by:

mul ready(mul in) = mul in 6= 0 ^MulOp
1
6= undef ^MulOp

2
6= undef ^MulStep � 2:

A similar formalization is done for the behaviour of the DIV{subdevice of ALU MPY DIV, making

use of the fourth entry start div in md ctrl (see appendix A.2).

1.3 A register unit

A register4 X can be viewed as a very simple unit, represented by an evolving algebra with one

entry X:in and one exit X:out , as well as a 0-ary dynamic function X holding its contents. The

unit contains the transition rule

X : = X:in

which formalizes writing the given value into the register, and a de�nition

X:out = X

which de�nes the output of the register unit simply as the content of the register.5 Once this

has been said, we clearly identify X:out and X : in the following we shall write only X , without

distinguishing it notationally from X:out .

2 Composition of the Datapath Components

In this section we show how to compose the basic units to the zCPU processor in such a way that

the behavioural properties we are interested in can be controlled by the \modular" composition

technique.

In doing this, we use the natural pictorial representation of evolving algebras with entries and

exits as boxes with ingoing and outgoing arrows. Composing units then means to connect outgoing

with ingoing arrows. In this paper we can only refer to the literature (see for example [12]), where

it is shown how the resulting notion of computation of a \composed" unit can be de�ned rigorously

in terms of the notion of computation of the components. It is also shown there that all the

combinations we need can be obtained in a modular way from the basic units by applying parallel

or sequential composition and feedback.

We proceed now to show as example how to connect the register �le with the ALU MPY DIV

unit, using some additional small units so as to obtain the kernel for the interpretation of arithmetic

4Note that we refer here to internal registers, not to the general purpose registers of the Register File, represented

in our model by the function reg.
5Note that the crucial e�ect of a register is that the value of the entry is made available for the next step at the

exit.

6

intructions. The connection of outgoing arrows with ingoing arrows is expressed by identifying

exits with entries; as is well known a global speci�cation of the composed unit can be obtained by

substituting in the appropriate places of the components the entries with the exits, according to

those identi�cations.

Here we identify the RF-exits (output ports) OutPort i (i = 1; 2) with the entries op
i
of the

ALU MPY DIV unit, the ALU MPY DIV exit math resout with the Res register entry in and the

Res register exit out with the RF-entry in port
4
.

The �elds of the current (arithmetic) instruction are contained in 4 additional registers, namely

MAC for the mathematical operation code, Ri for the address of the register which contains the

i-th operand (i = 1; 2), RR for the address of the destination register. We connect Ri with the entry

addr i of RF and RR with addr4 (passing through two additional registers RR2 and RR3, which

delay the value for two steps)6. MAC is connected to themath code entry of ALU MPY DIV (again

passing through a delay register MAC 2). Since the value of MAC is also needed for computing a

certain portion of the control code, we connect it to the combinational unit DECODE (instruction

decoding unit).

In particular, DECODE provides the information for enabling writing through the RF-port

number 4. Since this value is needed after 2 steps | namely the time needed to compute the result

of the arithmetic operation | it is passed from a DECODE-exit to the RF-entry write enable4
going through two delay registers WER and WER2.

In this way we have obtained the following unit (arithmetic subunit) which su�ces to compute

the result of simple arithmetic instructions, such as the addition instruction ADD, as we show in the

next section. Note that this unit formalizes a portion of the zCPU block diagram in [6].

For use in the next section, we reassume the relevant rules and conditions of the thus mod-

i�ed arithmetic subunit in the black box form, where all substitutions shown by the �gure are

done (namely [R1 =addr1;R2=addr2;WER2=write enable4;RR3=addr4;Res=in port
4
] for the RF

unit and [MAC2=math code;OutPort1=op1;OutPort2=op2] for the ALU MPY DIV unit):

OutPort1 : = reg(R1)

OutPort2 : = reg(R2)

MAC2 : = MAC

WER : = MAC 2 f ADD; : : :g

RR2 : = RR

Res : = math res(MAC2;md ctrl ;OutPort1;OutPort2; carryin; extendin)

WER2 : =WER

RR3 : = RR2

if WER2 then reg(RR3) : = Res

(note the rules above are grouped according to the pipeline stages).

Similar constructions can be made to compose the units for the execution of input/output

instructions, jumps etc. (see Appendix C).

6For reasons of exposition, instead of just one we introduce here two delay registers for RR which allows us to

abstract from some peculiarity in the compilation scheme of APE100. See also the footnote at the end of the next

section.

7

addr1

addr2

addr3

addr4

addr5

OutPort 3

M
A

C
R

R
R

1
R

2

Res

OutPort 1

op1

in_port 4

write_enable 4

write_enable 5

in_port 5 OutPort 2

op2

OutPort 5

RF

ALU_MPY_DIV

M
A

C
2

R
R

2

R
R

3
W

E
R

W
E

R
2

math_code

md_ctrl

D
E

C
O

D
E

math_resout carryout

carryin

zeroout

zeroin

divzout overflowout
extendout

extendin

negout

Figure 1: Arithmetic subunit of the zCPU

3 Correct Implementation of the ZIC Instruction Set

The two crucial aspects of the compilation strategy for the zCPU are the following: (i) Assembler

instructions are macro-expanded into short sequences of ZIC instructions, whose execution is easily

shown to implement the Assembler instructions correctly; (ii) the ZIC instructions are fed into

an optimizer to �nd a schedule which minimizes the time of their execution through pipelined

VLIWs and avoids structural and data hazards (i.e. no device overbooking occurs and no data are

used before their computation is terminated). We prove in lemmas 1,2 below that this pipelined

instruction execution is correct. The reader should keep in mind that we illustrate the technique

here only for arithmetical instructions but that a similar construction can be made for input{output

and jump instructions in such a way that the correctness of their simultaneous execution together

with arithmetical instructions (VLIW scheme) can be proved rigorously. Due to size restrictions,

we have to leave the details for a sequel to this paper.

Proposition. The (extended) arithmetic subunit executes additive arithmetic instructions correctly.7

7By \extended" we want to point to the fact that minor additional components have to be introduced to take
care of condition code for zero, over
ow etc. A similar proposition can be proved for the extension of the unit for

8

Proof. Due to space limitations we can only illustrate the proof technique by going through the

major steps for an example; we choose the addition instruction ([ADD RR R1 R2]), whose execution

is de�ned by the rule

if MAC = ADD then reg(RR) : = reg(R1) + reg(R2):

This rule is part of the evolving algebra ZIC de�ned in [13], which models APE100 as interpreter

of ZCPU Intermediate Code (and which can easily be shown to implement correctly the APESE

ground model for APE100 presented in [7]). Its execution presents the three usual phases (we skip

the condition codes, which are computed in the second phase):

read operands � OutPort1 : = reg(R1)

OutPort2 : = reg(R2)

calc result � if MAC = ADD then Res : = OutPort1 + OutPort2

write result � if MAC = ADD then reg(RR) : = Res

In the general case, Res will take math res(MAC ;md ctrl ;OutPort1;OutPort2; carry in; extend in)

(which forMAC = ADD takes the value OutPort1+OutPort2, independently of the value of md ctrl ,

carry
in
and extend in).

This leads to an intermediate model ZICPH where the execution of ZIC-instructions is decom-

posed into three (or more, for some other instructions) sequential steps, such that the following

intuitive statement can be made precise and proved by induction on the length of ZIC-computations.

Lemma 1. The evolving algebra ZICPH implements the model ZIC correctly.

The second step in the proof of the proposition introduces the parallelism due to pipelining.

The rules of ZICPH are modi�ed in such a way that no con
ict arises when they are executed not

any more sequentially, but in parallel (using the lock-step semantics of evolving algebras, see [14]),

leading to the model LEX (\loadable executable code", the �nal level in the APE100 compilation

chain). A rigorous formulation and a transparent proof can be given for the following statement.

Lemma 2. Under the assumption that the compiler guarantees data and control independence of

instructions which enter the pipe, the model LEX implements the model ZICPH correctly.

Note that the optimizer mentioned above makes sure that the assumption of the lemma is

guaranteed. The two preceding lemmas prove the proposition.

Proof. Due to the modular character of our formalization, the proof can be given instructionwise;

essentially it consists in a local analysis of the e�ect of the LEX rules for each type of ZIC instruction.

Again we illustrate the proof principle for the case of the ADD instruction.

The phases (the sequential steps) of the execution of instructions in ZICPH become pipe stages

in LEX, where at each step all the rules are applied simultaneously. The main problem is to make

sure that each pipe stage operates on the correct data.

When for the given instruction (ADD) it comes to execute calc result (in the second pipe stage),

the value of MAC in the preceding stage is needed; therefore MAC is delayed by MAC 2 : =MAC

and replaced in math res by MAC2.

multiplications and divisions.

9

Similarly, in the third pipe stage, for writing the result to the destination register the three

values for the RF-entries write enable4, addr 4 and in port
4
are needed. The value of write enable4

must be 1 if MAC = ADD; as this value is computed by the DECODE unit in the �rst pipe

stage, it must be delayed twice (through registers WER and WER2). Similarly, the address of the

destination register RR is read in the �rst pipe stage and needed in the third one (at the RF-entry

addr 4); therefore, it is delayed twice through the registers RR2 and RR3.
8 Finally, the result to

be written has been computed by calc result (and placed in the Res register) in the previous pipe

stage; therefore, no delay registers are needed for it, and the rule write result of the LEX model is

obtained by the write result rule of the ZICPH model, by replacing MAC = ADD by WER2 and RR

by RR3.

Conclusion

We have shown on an example how to prove that the hardware level model LEX of the APE100

control processor zCPU executes compiled programs correctly if the compiler satis�es the assump-

tions which are realized by the APE100 compilation chain. Along these lines [13] has developed the

speci�cation of the zCPU processor which is the basis for the complete correctness proof, which we

have to leave for a sequel to this paper. In the appendix we list the complete formal de�nition of

the zCPU, without further explanation.

Note that from the software point of view zCPU and the MAD chip|the
oating point unit of

the APE100 processor|can be seen as di�erent elements of just one VLIW system. In terms of our

speci�cation method this means that zCPU and MAD can be seen as modules of APE100 whose

architectural composition and dynamic interaction can be fully described by our methodology in a

precise yet simple way. Note also that the case of zCPU and of APE100 reverse engineering is not

restrictive. Our methodology can be applied to other processors as well. Se for ex. [10] where the

evolving algebra methodology is used to prove the correctness of general pipelining principles for

RISC architectures.

Acknowledgement

We are particularly grateful to Ra�aele Tripiccione >from the APE group in Pisa for numerous

hours spent during the last two years for explaining to us the secrets of the APE100 project.

8As has been noted above, the zCPU has not two but only one delay register for RR. Therefore, the value of

RR has to be taken during the second pipe stage | this is assured in APE100 by the compiler. In [13] the model

is developed with all the details which are needed to describe exactly the behaviour of the zCPU on the basis of the
APE100 compilation scheme.

10

Appendices

In the following four appendices we list with only a few more explanations the full abstract de�ni-

tion of the zCPU processor. Appendix A de�nes each single unit separately. Appendix B contains

the block diagram of the zCPU, giving a rough representation of the units described in Appendix A

and their connections. Appendix C de�nes how the units are composed, by producing formal iden-

ti�cations among exits and entries (corresponding to the connections shown in the block diagram).

Appendix D lists the �nal de�nition of the zCPU after all the substitution are done.

A De�nition of the zCPU units

Before listing the de�nitions of the units, we de�ne the two main sets of operation codes for the

instructions which can be executed by the zCPU, i.e. MAC-type instructions (arithmetic) and

IOC-type instructions (input/output, jumps). The MAC-type operation codes are:

MATH OP = ALU OP [MUL OP [DIV OP [fNOPg

where

ALU OP = LOGIC [ADDER [SHIFTER

LOGIC = f OR; AND; NOR; NAND; XOR; ZERO; XNOR; FFg

ADDER = f ADD; ADDC; SUB; SUBC; CMPg

SHIFTER = f LSH; ASH; XSH; ROTg

MUL OP = f MUL1; MUL2; MULA2; MUL3g

DIV OP = f DIV1; DIV2 g

The IOC-type operation codes are:

IOC OP = LOAD [STORE [BRANCH [SPECIAL[fIONOPg

where

LOAD = f LD; LDA; LDPA; LDSRg

STORE = f ST; STSR g

BRANCH = f JUMP; SKIPg

SPECIAL = f FLD; FST; HALT; BREAK; SETF; CLEARFg

A.1 Unit RF (Register File)

Entries: addr 1; addr2; addr3; addr4; in port
4
;write enable4; addr5; in port

5
;write enable5

Exits: OutPort1;OutPort2;OutPort3;OutPort5

Integrity constraints:

write enable4) addr4 62 f addr1; addr2; addr3; addr5 g

write enable5) addr5 62 f addr1; addr2; addr3 g

write enable4 ^ write enable5) addr 4 6= addr 5

Transition rules:

11

read reg
1;2

�

� OutPort1 : = reg(addr1)

OutPort2 : = reg(addr2)

read reg
3
�

� OutPort3 : = reg(addr3)

write reg
4
�

� if write enable4
then reg(addr4) : = in port

4

rw reg
5
�

� if write enable5
then reg(addr5) : = in port

5

OutPort5 : = undef

else OutPort5 : = reg(addr 5)

Note that port 5 of the RF can be used for reading and writing.

A.2 Unit ALU (ALU/Multiplier/Divider)

Entries: math code ; op
1
; op

2
; carry

in
; extend in; zeroin;md ctrl

Exits: math resout; carryout; divzout; negout; over
owout
; extendout; zeroout

Abbreviations:

md ctrl � mul in; start div ;md mux ; add mul

Note that md ctrl stands for \multiplier/divider control".

De�nitions:

math resout = math res(math code;md ctrl ; op
1
; op

2
; carry

in
; extend in)

carry
out

= carry(math code; op
1
; op

2
; carry

in
)

divzout = divz(op2)

neg
out

= neg(math code;md ctrl ; op
1
; op

2
; carry

in
; extend in)

over
ow
out

= over
ow(math code; op
1
; op

2
; carry

in
)

extendout = extend(op
1
; op

2
)

zeroout = zero(math code;md ctrl ; op
1
; op

2
; carry

in
; extend in; zeroin)

where

math res(math code;md ctrl ; op
1
; op

2
; carry

in
; extendin) =

if math code 62 MUL OP [DIV OP

then alu res(math code; op
1
; op

2
; carry

in
; extend in)

else mul div res(md ctrl)

alu res(math code; op
1
; op

2
; carry

in
; extend in) =

if math code = ADD then add(op1; op2)

else if math code = ADDC then addc(op
1
; op

2
; carry

in
)

else : : :

12

mul div res(md ctrl) =

if md mux 2 f 0; 1 g

then if mul ready(mul in)

then mul res(md mux ; add mul ;MulOp1 ;MulOp2)

else undef

else if div ready(div start) _mod ready(div start)

then div res(DivOp1 ;DivOp2)

else undef

mul ready(mul in) = (mul in 6= 0 ^MulOp1 6= undef ^MulOp2 6= undef ^MulStep � 2)

div ready(div start) = (start div 6= 1 ^DivOp1 6= undef ^ DivOp2 6= undef ^DivStep = 34)

mod ready(div start) = (start div 6= 1 ^DivOp1 6= undef ^ DivOp2 6= undef ^DivStep = 35)

Note that, in the zCPU, computing multiplications needs two clock cycles; for the division, the ALU makes

the quotient available after 34 clock cycles, the remainder of the division after 35 clock cycles. The de�nitions

above are needed to express this behaviour of the ALU (see also the transition rules below and the related

remark).

mul res(md mux ; add mul ; x; y) =

if md mux = 0 ^ add mul = 0 then mull(x; y)

else if md mux = 0 ^ add mul = 1 then mula(x; y)

else mulm(x; y)

div res(x; y) =

if div ready(div start) then div(x; y)

else if mod ready(div start) then mod(x; y)

else undef

divz(op
2
) = (op

2
= 0)

neg(math code;md ctrl ; op
1
; op

2
; carry

in
; extend in) = (math resout < 0)

zero(math code;md ctrl ; op
1
; op

2
; carry

in
; extend in; zeroin) =

if math code 62 f ADDC; SUBC; MUL3g

then math resout = 0

else (math resout = 0) ^ zeroin

Transition rules (for multiplier and divider subunits):

mul rule �

� if mul in = 0

then MulOp1 : = op
1

MulOp2 : = op
2

MulStep : = 1

else MulStep : = MulStep + 1

13

div rule �

� if start div = 1

then DivOp1 : = op
1

DivOp2 : = op
2

DivStep : = 1

else DivStep : = DivStep + 1

Note that the way multiplications and divisions are computed requires two di�erent actions: �rst, the

multiplier/divider must be activated (bymul in/start div) in order to begin computing the operation; second,

the result must be stored (when it is ready). In the meantime a new multiplication/division should not be

started. As in the zCPU we have di�erent operation codes for starting and ending multiplications/divisions,

it is responsibility of the compiler to schedule instructions in such a way that the ALU is always provided

with the correct values of mul in/start div . Note that, except for the rules which formalize the interaction

between the main ALU and the multiplier and divider subunits, all the ALU functions are speci�ed by pure

equations without using any transition rules.

A.3 Unit CC&STATUS (Condition Codes & Status Register)

Entries: math cc; if status
in
; haltin; parity err in; enable cc;write mask ; val

Exits: zcpu ex ; status register

Abbreviations:

math cc � carry
in
; divz in; negin; over
ow in

; extend in; zeroin
enable cc � en carry ; en divz ; en neg; en over
ow ; en extend ; en zero

Only certain instructions require that the condition code registers are set: therefore writing into those

registers is governed by enabling bits (enable cc). See below the \write cc math" rule.

update mask(val) � Msk Carry : = val [3]

Msk Divz : = val [7]

Msk iFstatus : = val [11]

Msk Neg : = val [15]

Msk oVer
ow : = val [19]

Msk eXtend : = val [23]

Msk Zero : = val [27]

De�nitions:

status register = Ex Parity :ParityErr :Ex Halt :Halt

:Msk Zero :Ex Zero :Zero : 0

:Msk eXtend :Ex eXtend : eXtend : 0

:Msk oVer
ow :Ex oVer
ow : oVer
ow : 0

:Msk Neg :Ex Neg :Neg : 0

:Msk iFstatus :Ex iFstatus : iFstatus : 0

:Msk Divz :Ex Divz :Divz : 0

:Msk Carry :Ex Carry :Carry :ExcpReg

The status register contains in one machine word the relevant information about the condition codes and

exceptions (\status information"): it is accessible through the instructions LDSR and STSR.

14

zcpu ex = Halt _ ParityErr _ (iFstatus ^Msk iFstatus) _

_ (Carry ^Msk Carry)_ (Divz ^Msk Divz) _

_ (Neg ^Msk Neg) _ (oVer
ow ^Msk oVer
ow)_

_ (eXtend ^Msk eXtend) _ (Zero ^Msk Zero)

Note that we summarize the status information in the de�nition of the exit status register: its dynamic change

is re
ected by the local updates of its components through the transition rules given below. Similarly, the

exit zcpu ex | used for detecting conditions leading to exceptions | depends on the value of registers

contained in the CC&Status unit.

Transition rules:

write cc math �

� if en carry then Carry : = carry
in

if en divz then Divz : = divz in
if en neg then Neg : = neg

in

if en over
ow then oVer
ow : = over
ow
in

if en extend then eXtend : = extend in
if en zero then Zero : = zeroin

write cc ifstatus �

� iFstatus : = if status
in

Note that, in APE100, the value of if status
in
bit depends on the state of the
oating point units of APE100.

write cc halt �

� Halt : = halt in

write cc parity �

� ParityErr : = parity err
in

write exception mask(write mask ; val) �

� if write mask

then update mask(val)

exception rule �

� if :ExcpReg

then ExcpReg : = zcpu ex

Ex Halt : = Halt

Ex Parity : = ParityErr

Ex iFstatus : = iFstatus

Ex Carry : = Carry

Ex Divz : = Divz

Ex Neg : = Neg

Ex oVer
ow : = oVer
ow

Ex eXtend : = eXtend

Ex Zero : = Zero

A.4 Unit AGU (Address Generation Unit)

Entries: abs in; pmain; base; disp; pma mux
in

15

Exits: dmaout; pmaout

De�nitions:

dmaout = gen addr (absin; pmain; base; disp)

pma
out

= next pma(absin; pma in; base; disp; pma mux
in
)

where

gen addr(abs in; pmain; base; disp) =

(1� abs in)pma in + base + disp

next pma(abs in; pmain; base; disp; pma mux
in
) =

if pma mux
in
= 0 then 0

else if pma mux in = 1 then pma in + 1

else gen addr (absin; pma in; base; disp)

Note that upon insertion of the AGU unit into the zCPU processor the exits dmaout and pmaout will be

written into the registers DMA and PMA resp. (see A.11 and C.11 for further explanation.)

A.5 Unit PROGMEM (Program Memory)

Entries: addr

Exits: pmd
out

De�nitions:

pmd
out

= instr(addr)

Note that addr will be provided by the Address Generation Unit (AGU) and pmdout will be read by the

Instruction Fetch unit (INSTR). See C.5 and C.7 below.

A.6 Unit DATAMEM (Data Memory)

Entries: addr ; datain;mem write enable

Exits: dataout

De�nitions:

dataout = mem(addr)

Transition rules:

write mem �

� if mem write enable

then mem(addr) : = data in

Note that data in will be read from the Input/Output Subsystem (IOS), namely from its val to store exit

(see C.6).

A.7 Unit INSTR (Instruction Fetch)

Entries: pmd
in

Exits: MAC ;RR;R1 ;R2 ; IOC ;RD ;RA;Disp

16

De�nitions:

MAC = MAC (PMD)

RR = RR(PMD)

R1 = R1 (PMD)

R2 = R2 (PMD)

IOC = IOC (PMD)

RD = RD(PMD)

RA = RA(PMD)

Disp = Disp(PMD)

Transition rules:

instruction fetch �

� PMD : = pmd
in

A.8 Unit IOS (Input/Output Subsystem)

Entries: st data ; val from RF ; status register ;

ld addr ; dma in; val from mem

Exits: Dat ; val to load ; val to store

Note that st data, ld addr , dma in and val from mem take their values from the registers StData , LdAddr2,

DMA and from the exit dataout of unit DATAMEM respectively (see C.8). Note also that for notational

simplicity we declare the register Dat to be also an IOS exit.

De�nitions:

val to store = if st data then val from RF else status register

val to load = if ld addr then DMA2 else Dat

Transition rules:

delay DMA �

� DMA2 : = dma in

Note that this update of DMA2 is in accordance with the view of DMA2 as delay register for DMA; namely

in C.8 dmain will be replaced by DMA.

read mem �

� Dat : = val from mem

A.9 Unit EVALCOND (Evaluation of Branch Conditions)

Entries: which cond ; carry
in
; if status

in
; neg

in
; over
ow

in
; zeroin

Exits: yes no

De�nitions:

yes no = eval cond(which cond ; carry
in
; if status

in
; neg

in
; over
ow

in
; zeroin)

Note that yes no will be connected to the corresponding DECODE entry (see C.10).

17

A.10 Unit DECODE (Instruction Decoding)

Entries: math code ; io code; yes no

Exits: pma mux
out

; absout; haltout;MAC2;WER;EnableCC ;MDCtrl;

MemWE ; StData;WED ;LdAddr;WrMask ;Cancel

Abbreviations:

EnableCC � En Carry ;En Divz ;En Neg ;En oVer
ow ;En eXtend ;En Zero

MDCtrl � MulIn; StartDiv ;MDMux ;AddMul

De�nitions:

absout = IOC 62 f LDPA; SKIPg

pma mux
out

= if (io code 2 f JUMP; SKIPg ^ yes no ^ :Cancel) then 2 else 1

haltout = (io code = HALT)^ :Cancel

Transition rules:

MAC decode �

� MAC 2 : = math code

WER : = (math code 2 MATH OP n fCMP; MUL1; DIV1g)^ :Cancel

Note that the update ofMAC 2 is in accordance with the view ofMAC 2 as delay ofMAC ; indeed math code

is a DECODE entry which in C.10 will be replaced by MAC .

decode EnableCC �

� En Carry : = (math code 2 LOGIC [ADDER) ^ :Cancel

En Divz : = (math code = DIV1)^ :Cancel

En Neg : = (math code 2 MATH OP n fMUL1; DIV1g) ^ :Cancel

En oVer
ow : = (math code 2 LOGIC [ADDER [fASHg) ^ :Cancel

En eXtend : = (math code 2 SHIFTER)^ :Cancel

En Zero : = (math code 2MATH OP n fMUL1; DIV1g)^ :Cancel

decode MDCtrl �

� MulIn : = (math code 6= MUL1) _ Cancel

StartDiv : = (math code = DIV1) ^ :Cancel

MDMux : = (if (math code = DIV2) then 2

else if (math code = MUL3) then 1

else 0) (1� Cancel)

AddMul : = (math code = MULA2) ^ :Cancel

IOC decode �

� MemWE : = (io code 2 f ST; STSRg)^ :Cancel

StData : = (io code = ST) ^ :Cancel

WED : = (io code 2 f LD; LDA; LDPAg)^ :Cancel

LdAddr : = (io code 2 f LDA; LDPA g)^ :Cancel

WrMask : = (io code = LDSR) ^ :Cancel

Cancel : = (io code 2 f JUMP; SKIPg ^ yes no ^ :Cancel)

18

A.11 Registers

In order to implement pipelining, we need also to introduce some delay registers. As all the registers

behave in the same way, we can de�ne the behaviour of a \register unit" by means of the following

schema (describing a generic register X)9:

Entries: X:in

Exits: X:out

De�nitions:

X:out = X

Transition rules:

write register X �

� X : = X:in

(Recall that, for brevity, we write simply X in place of X:out within terms and transition rules).

In the zCPU we have the following delay registers: WER2;RR2;WED2;RD2;LdAddr2;WrMask2.

We have also three other registers in the zCPU:

� Res, used as temporary storage for the ALU results;

� PMA (program memory address), the program counter;

� DMA (data memory address), containing the computed address needed for load/store oper-

ations.

9See also 1.3 for more details on internal registers.

19

B ZCPU Block Diagram

The following block diagram represents pictorially the zCPU at the level of its main building blocks.

It is intended as an help to get an intuitive idea of what is formally de�ned in Appendices A, C and

D, rather than as a complete reference (for example, the units DATAMEM and PROGMEM are

not represented, as well as some other items which are instead included in the textual description).

R
D

2

MDCtrl

MAC2

MAC

R
A

R
R

2
R

D
2

StData

R
1

M
em

W
E

St
D

at
a

R
2

M
D

C
tr

l

M
A

C
2

W
E

R
2 L

dA
dd

r2
W

rM
as

k2

W
E

D
2

(d
el

ay
 r

eg
is

te
rs

)

E
na

bl
eC

C

O
ut

Po
rt

3
O

ut
Po

rt
1

O
ut

Po
rt

2

O
ut

Po
rt

5

in
_p

or
t_

4
w

e4

A
L

U

R
F

R
es

PM
A

D
M

A

A
G

U

C
C

&
St

at
us

math_cc

E
va

lC
on

d

in
_p

or
t_

5
w

e5

IO
S

status_register

val_to_load

yes_no

math_res

RRR1R2IOCRDRADisp

a5 a4 a1a2a3

RD2 RR2

Disp

LdAddr2

E
na

bl
eC

C

W
rM

as
k2

ye
s_

no

pm
a_

m
ux

pma_mux

WED2

WER2

val_to_store

DMA

data_out

Dat

D
E

C
O

D
E

ab
s

abs

20

C Composition of the zCPU units

This appendix contains the identi�cations of exits and entries, which are needed to compose the

zCPU units described above, according to the block diagram shown in Appendix B. We proceed

in the same order as in Appendix A, de�ning a substitution for the entries of each unit presented

there.

In order to resolve possible ambiguities between names used within de�nitions of di�erent

units, as well as to ease the task of following the connection paths between the units, we adopt the

notational convention of pre�xing names of exits by the unit name (for example, the exit carry
out

of the ALU unit is globally identi�ed as ALU:carry
out

).

For more clarity and consistency of notation, we also use similar pre�xes before the name of

registers de�ned in A.11: the convention here is that the pre�x of the register name is the name of

the unit which provides the value to be written in the register (see C.11).

However, each register has a unique name, which allows us to remove all the pre�xes from

register names in the �nal description of the zCPU (Appendix D).

C.1 Unit RF (Register File)

addr1 = INSTR:R1

addr2 = INSTR:R2

addr3 = INSTR:RA

addr4 = INSTR:RR2

in port
4

= ALU:Res

write enable4 = DECODE:WER2

addr5 = INSTR:RD2

in port5 = IOS:val to load

write enable5 = DECODE:WED2

C.2 Unit ALU (ALU/Multiply/Divide)

math code = DECODE:MAC2

op
1

= RF:OutPort1

op
2

= RF:OutPort2

carry
in

= CC&STATUS:carry
out

extend in = CC&STATUS:extendout
zeroin = CC&STATUS:zeroout
mul in = DECODE:MulIn

start div = DECODE:StartDiv

md mux = DECODE:MDMux

add mul = DECODE:AddMul

where

CC&STATUS:carry
out

� CC&STATUS:status register [1]

CC&STATUS:extendout � CC&STATUS:status register [21]

CC&STATUS:zeroout � CC&STATUS:status register [25]

21

C.3 Unit CC&STATUS (Condition Codes & Status Register)

carry
in

= ALU:carry
out

divz in = ALU:divzout
neg

in
= ALU:neg

out

over
ow
in

= ALU:over
ow
out

extend in = ALU:extendout
zeroin = ALU:zeroout
if status

in
[external function]

halt in = DECODE:haltout
parity err

in
= parity check(PMD)

en carry = DECODE:En Carry

en divz = DECODE:En Divz

en neg = DECODE:En Neg

en over
ow = DECODE:En oVer
ow

en extend = DECODE:En eXtend

en zero = DECODE:En Zero

write mask = DECODE:WrMask2
val = IOS:Dat

C.4 Unit AGU (Address Generation Unit)

absin = DECODE:absout
pma

in
= AGU:PMA

base = RF:OutPort3

disp = INSTR:Disp

pma mux
in

= DECODE:pma mux
out

C.5 Unit PROGMEM (Program Memory)

addr = AGU:PMA

C.6 Unit DATAMEM (Data Memory)

addr = AGU:DMA

data in = IOS:val to store

mem write enable = DECODE:MemWE

C.7 Unit INSTR (Instruction Fetch)

pmd
in

= PROGMEM:pmd
out

22

C.8 Unit IOS (Input/Output Subsystem)

st data = DECODE:StData

val from RF = RF:OutPort5

status register = CC&STATUS:status register

ld addr = DECODE:LdAddr2
dma in = AGU:DMA

val from mem = DATAMEM:dataout

C.9 Unit EVALCOND (Evaluation of Branch Conditions)

which cond = INSTR:R1

carry
in

= CC&STATUS:carry
out

if status
in

= CC&STATUS:if status
out

neg
in

= CC&STATUS:neg
out

over
ow
in

= CC&STATUS:over
ow
out

zeroin = CC&STATUS:zeroout

where

CC&STATUS:carry
out

� CC&STATUS:status register [1]

CC&STATUS:if status
out

� CC&STATUS:status register [9]

CC&STATUS:neg
out

� CC&STATUS:status register [13]

CC&STATUS:over
ow
out

� CC&STATUS:status register [17]

CC&STATUS:zeroout � CC&STATUS:status register [25]

C.10 Unit DECODE (Instruction Decoding)

math code = INSTR:MAC

io code = INSTR:IOC

yes no = EVALCOND:yes no

C.11 Registers

DECODE:WER2:in = DECODE:WER

INSTR:RR2:in = INSTR:RR

DECODE:WED2:in = DECODE:WED

INSTR:RD2:in = INSTR:RD

DECODE:LdAddr2:in = DECODE:LdAddr

DECODE:WrMask2:in = DECODE:WrMask

ALU:Res:in = ALU:math resout
AGU:PMA:in = AGU:pma

out

AGU:DMA:in = AGU:dmaout

23

D Full de�nition of the zCPU

This appendix contains the full de�nition of the zCPU processor. It is obtained by combining

the units of Appendix A, performing the substitutions corresponding to the equations listed in

Appendix C and to the equations de�ning the exits of the di�erent units. For further explanations

see [13]. Note that the zCPU itself can be seen as a unit, with its own entries and exits.

Unit zCPU

Entries: if status
in

Exits: zcpu ex

Abbreviations:

absolute � IOC 62 f LDPA; SKIPg

yes no � eval cond(R1 ;Carry ; iFstatus;Neg; oVer
ow ;Zero)

pma mux � if (IOC 2 f JUMP; SKIPg ^ yes no ^ :Cancel)

then 2

else 1

val to store � if StData then OutPort5 else status register

val to load � if LdAddr2 then DMA2 else Dat

status register � Ex Parity :ParityErr :Ex Halt :Halt

:Msk Zero :Ex Zero :Zero : 0

:Msk eXtend :Ex eXtend : eXtend : 0

:Msk oVer
ow :Ex oVer
ow : oVer
ow : 0

:Msk Neg :Ex Neg :Neg : 0

:Msk iFstatus :Ex iFstatus : iFstatus : 0

:Msk Divz :Ex Divz :Divz : 0

:Msk Carry :Ex Carry :Carry :ExcpReg

Integrity constraints:

WER2) RR2 62 fR1 ;R2 ;RA;RD2 g

WED2) RD2 62 fR1 ;R2 ;RA g

WER2 ^WED2) RR2 6= RD2

Note that it is possible to ensure that these contraints are satis�ed by imposing appropriate contraints on

the compiler.

De�nitions:

zcpu ex = Halt _ ParityErr _ (iFstatus ^Msk iFstatus) _

_ (Carry ^Msk Carry) _ (Divz ^Msk Divz) _

_ (Neg ^Msk Neg) _ (oVer
ow ^Msk oVer
ow) _

_ (eXtend ^Msk eXtend) _ (Zero ^Msk Zero)

24

Transition rules:

instruction fetch �

� PMD : = instr(PMA)

MAC decode �

� MAC 2 : =MAC

WER : = (MAC 2 MATH OP n fCMP; MUL1; DIV1g)^ :Cancel

decode EnableCC �

� En Carry : = (MAC 2 LOGIC [ADDER) ^ :Cancel

En Divz : = (MAC = DIV1) ^ :Cancel

En Neg : = (MAC 2 MATH OP n fMUL1; DIV1g) ^ :Cancel

En oVer
ow : = (MAC 2 LOGIC [ADDER [fASHg) ^ :Cancel

En eXtend : = (MAC 2 SHIFTER)^ :Cancel

En Zero : = (MAC 2MATH OP n fMUL1; DIV1g)^ :Cancel

decode MDCtrl �

� MulIn : = (MAC 6= MUL1) _ Cancel

StartDiv : = (MAC = DIV1) ^ :Cancel

MDMux : = (if (MAC = DIV2) then 2 else if (MAC = MUL3) then 1 else 0)(1� Cancel)

AddMul : = (MAC = MULA2) ^ :Cancel

IOC decode �

� MemWE : = (IOC 2 f ST; STSRg) ^ :Cancel

StData : = (IOC = ST) ^ :Cancel

WED : = (IOC 2 f LD; LDA; LDPAg) ^ :Cancel

LdAddr : = (IOC 2 f LDA; LDPAg) ^ :Cancel

WrMask : = (IOC = LDSR) ^ :Cancel

Cancel : = (IOC 2 f JUMP; SKIP g ^ yes no ^ :Cancel)

Note the condition on the right side of the Cancel update expresses that a jump is going to take place, which

implies that the instruction word following the jump, which has already been fetched, must be canceled (i.e.

decoded as a \no operation"). This works under the compiler condition that there are never two immediately

successive jumps.

delay WER RR �

� WER2 : =WER

RR2 : = RR

IOC delay �

� WED2 : =WED

LdAddr2 : = LdAddr

WrMask2 : = WrMask

delay RD �

� RD2 : = RD

read operands �

� OutPort1 : = reg(R1)

OutPort2 : = reg(R2)

25

read addr reg �

� OutPort3 : = reg(RA)

read data reg �

� OutPort5 : = reg(RD2)

write result �

� if WER2

then reg(RR2) : = Res

write dest reg �

� if WED2

then reg(RD2) : = val to load

calc result �

� Res : = math res(MAC2;MulIn; StartDiv ;MDMux ;AddMul;

OutPort1;OutPort2;Carry ; eXtend)

mul rule �

� if MulIn = 0

then MulOp1 : = OutPort1
MulOp2 : = OutPort2
MulStep : = 1

else MulStep : = MulStep + 1

div rule �

� if StartDiv = 1

then DivOp1 : = OutPort1
DivOp2 : = OutPort2
DivStep : = 1

else DivStep : = DivStep + 1

write cc math �

� if En Carry

then Carry : = carry(MAC2;OutPort1;OutPort2;Carry)

if En Divz

then Divz : = divz(OutPort2)

if En Neg

then Neg : = neg(MAC2;MulIn; StartDiv ;MDMux ;AddMul ;

OutPort1;OutPort2;Carry; eXtend)

if En oVer
ow

then oVer
ow : = over
ow(MAC 2;OutPort1;OutPort2;Carry)

if En eXtend

then eXtend : = extend(OutPort1;OutPort2)

if En Zero

then Zero : = zero(MAC2;MulIn; StartDiv ;MDMux ;AddMul ;

OutPort1;OutPort2;Carry; eXtend;Zero)

26

write cc ifstatus �

� iFstatus : = if status
in

write cc halt �

� Halt : = (IOC = HALT) ^ :Cancel

write cc parity �

� ParityErr : = parity check(PMD)

exception rule �

� if :ExcpReg

then ExcpReg : = zcpu ex

Ex Halt : = Halt

Ex Parity : = ParityErr

Ex iFstatus : = iFstatus

Ex Carry : = Carry

Ex Divz : = Divz

Ex Neg : = Neg

Ex oVer
ow : = oVer
ow

Ex eXtend : = eXtend

Ex Zero : = Zero

calc PMA �

� PMA : = if pma mux = 0 then 0

else if pma mux = 1 then PMA+ 1

else (1� absolute)PMA+OutPort3 + Disp

calc DMA �

� DMA : = (1� absolute)PMA+ OutPort3 + Disp

delay DMA �

� DMA2 : = DMA

write mem �

� if MemWE

then mem(DMA) : = val to store

read mem �

� Dat : = mem(DMA)

write mask �

� if WrMask2
then update mask(val to load)

where update mask(val) �

� Msk Carry : = val [3]

Msk Divz : = val [7]

Msk iFstatus : = val [11]

Msk Neg : = val [15]

Msk oVer
ow : = val [19]

Msk eXtend : = val [23]

Msk Zero : = val [27]

27

References

[1] The APE100 Collaboration, APE100 Primer , INFN, A100/PRIM/G02.

[2] The APE100 Collaboration, zCPU User Guide, INFN, A100/ZCPU/G01.

[3] A. Bartoloni et al., A Hardware Implementation of the APE100 Architecture, in: International

Journal of Modern Physics, C 4 (1993), p. 969.

[4] A. Bartoloni et al., The Software of the APE100 Processor , in: International Journal of Modern

Physics, C 4 (1993), p. 955.

[5] A. Bartoloni et al., APEmille: A Parallel Processor in the Tera
ops Range, manuscript, 1995.

[6] G. Bastianello et al., A high performance single chip processing unit for parallel processing and

data acquisition systems , in: Nuclear Instruments and Methods in Physics Research, A324

(1993), p. 543.

[7] E. B�orger, G. Del Castillo, P. Glavan, D. Rosenzweig, Towards a mathematical speci�cation of

the APE100 architecture: the APESE model , in: B. Pehrson and I. Simon (Eds.), IFIP 13th

World Computer Congress 1994 , Volume I: Technology/Foundations , Elsevier, Amsterdam,

396{401.

[8] E. B�orger, I. Durdanovic, Correctness of Compiling Occam to Transputer Code, March 1995.

[9] E. B�orger, U. Gl�asser, W. M�uller, Formal De�nition of an Abstract VHDL'93 Simulator by

EA-Machines , in: Carlos Delgado Kloos and Peter T. Breuer (Eds.), Formal Semantics for

VHDL, pp. 107{139, Kluwer Academic Publishers, 1995.

[10] E. B�orger, S. Mazzanti, A correctness proof for pipelining in RISC architectures (manuscript).

[11] E. B�orger, D. Rosenzweig, The WAM - De�nition and Compiler Correctness , in: Logic Pro-

gramming: Formal Methods and Practical Applications (C.Beierle, L.Pl�umer, Eds.), Elsevier

Science B.V./North-Holland, Series in Computer Science and Arti�cial Intelligence, 1995, pp.

20{90 (chapter 2).

[12] A. Br�uggemann, L. Priese, D. R�odding, R. Sch�atz, Modular decomposition of automata, in:

Springer LNCS 171, 1984, 198-236.

[13] G. Del Castillo, Descrizione matematica dell'architettura parallela APE100 , Tesi di Laurea (in

Italian), Universit�a di Pisa, Pisa, 1995.

[14] Y. Gurevich, Evolving Algebras 1993: Lipari Guide, in: Speci�cation and Validation Methods,

Ed. E. B�orger, Oxford University Press, 1995.

28

