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Abstract. Gurevich's [26] Abstract State Machines (ASMs), character-

ized by the parallel execution of abstract atomic actions in a global state,

have been equipped in [13] with a re�nement by standard composition

concepts for structuring large machines that allows reusing machine com-

ponents. Among these concepts are parameterized (possibly recursive)

sub-ASMs. Here we illustrate their power for incremental and modular

system design by unfolding, via appropriate ASM components, the archi-

tecture of the Java Virtual Machine (JVM), resulting from the language

layering in combination with the functional decomposition of the JVM

into loader, veri�er, and interpreter. We survey the ASM models for Java

and the JVM that appear in [34], together with the mathematical and

experimental analysis they support.

1 The Method: Structuring ASMs by Submachines

Although it was by a foundational concern, namely of reconsidering Turing's

thesis in the light of the problem of the semantics of computer programs, that

Gurevich was led to formulate the idea of Abstract State Machines1, it did not

take a long time that the concept was recognized to be of practical importance.

ASMs were soon successfully applied for the modeling and a rigorous analysis of a

variety of complex real-life computing systems: programming languages and their

implementations, processor architectures, protocols, embedded software, etc., see

[5, 6] for a historical account. The �rst industrial application showed up as early

as 1990 in the ASM model de�ning the semantics of PROLOG [2, 3, 10], which

became the oÆcial ISO standard [28] and has been run for experimentation at

Quintus2, see [4] for a survey of these early applications of ASMs in the context

of logic programming. By now a powerful method has been built around the

1 In embryo the notion appeared under the name of dynamic/evolving struc-

tures/algebras in a Technical Report in 1984 [22]; a year later in a note to the

American Mathematical Society [23]; I learnt it in the Spring of 1987 from the sim-

ple examples which appeared later in [24] to illustrate the concept, see [6] for a more

detailed historical account. The �rst complete de�nition, which essentially remained

stable since then, appeared in [26] and in a preliminary form in [25].
2 Before, in the summer of 1990 in a diploma thesis at the University of Dortmund [30],

Angelika Kappel had developed the �rst tool to make such ASMs and in particular

that abstract PROLOG machine executable.



concept of ASM, which supports industrial system design by rigorous high-level

modeling that is seamlessly linked to executable code, namely by mathematically

veri�able, experimentally validatable, and objectively documentable re�nement

steps. Here are some highlights:

{ The reengineering of a central component in a large software package for

constructing and validating timetables for railway systems, work done at

Siemens from May 1998 to March 1999. A high-level ASM model for the

component was built, compiled to C++ and successfully integrated into the

existing software system which since then is in operation at Vienna subways

[14]

{ The ASM de�nition of the International Telecommunication Union standard

for SDL2000 [29]

{ The investigation (veri�cation and validation) of Java and its implementa-

tion by the Java Virtual Machine in terms of ASM models and their Asm-

Gofer executable re�nements for the language and the VM [34]

{ The recent ASM model for the UPnP architecture at Microsoft [15]

For the impressive up-to-date list of annotated references to ASM publications

and tools the reader may consult the ASM website [27].

One of the reasons for the simplicity of Gurevich's notion of Abstract State

Machine|its mathematical content can be explained in less than an hour, see

Chapter 2 of [34] for a textbook de�nition starting from scratch|lies in the fact

that its de�nition uses only conditional assignments, so-called rules of form

if Condition then f (t1; : : : ; tn) := t

expressing guarded atomic actions that yield updates in a well-de�ned (a global)

state. In this respect ASMs are similar to Abrial's Abstract Machines [1] that are

expressed by non-executable pseudo-code without sequencing or loop (Abstract

Machine Notation, AMN). It is true that this leaves the freedom|so necessary

for high-level system design and analysis|to introduce during the modeling

process any control or data structure whatsoever that may turn out to be suitable

for the application under study. However, the other side of the coin is that this

forces the designer to specify standard control or data structures and standard

component based design structures over and over again, namely when it comes

to implement the speci�cations, thus making e�ective reuse diÆcult. For some

time it was felt as a challenge to combine, in a practically viable manner, the

simplicity of the parallel execution model of atomic actions in a global state with

the structuring capabilities of modules and components as part of a large system

architecture, whose execution implies duration and scheduling.

In [13] a solution has been developed that naturally extends the character-

istic ASM notion of synchronous parallel execution of multiple atomic actions

(read: rules) by allowing as rules also calling and execution of submachines,

technically speaking named, parameterized, possibly recursive, ASMs. This def-

inition gently embeds the result of executing an a priori unlimited number n of

micro steps|namely steps of a submachine that has been called for execution



in a given state|into the macro step semantics of the calling ASM, which is

de�ned as the overall result of the simultaneous execution of all its rules in the

given state. The same treatment covers also the classical control constructs for

sequentialization and iteration
3 and opens the way to structuring large ASMs

by making use of instantiatable machine components. Whereas for the AMN of

the B method Abrial explicitly excludes e.g. sequencing and loop from the spec-

i�cation of abstract machines [1, pg. 373], we took a more pragmatic approach

and de�ned these control constructs, and more generally the notion of ASM sub-

machine in such a way that they can be used coherently in two ways, depending

on what is needed, namely to provide black-box descriptions of the behavior of

components or glass-box views of their implementation (re�nement).

In the present survey we illustrate that this notion of submachines, which has

been implemented in AsmGofer [33]4, suÆces for a hierarchical decomposition

of the Java Virtual Machine into components for the loader, the veri�er, and

the interpreter, each of them split into subcomponents for the �ve principal lan-

guage layers (imperative core, static classes, object oriented features, exception

handling and concurrency). We can do this in such a way that adding a com-

ponent corresponds to what in logic is called extending a theory conservatively.

This incremental design approach is the basis for a transparent yet far reaching

mathematical analysis of Java and its implementation on the JVM (correctness

and completeness proofs for the compilation, the bytecode veri�cation, and the

execution, i.e. interpretation), which appears in [34].

Graphical notation. Before we proceed in the next section to explain the

problem of a mathematically transparent model for Java and its implementation

on the JVM, and the solution o�ered in [34], we review here the basic graphical

(UML like) notation we will use for de�ning structured ASMs. To describe the

overall structure of the JVM we only need special ASMs that resemble the

classical Finite State Machines (FSMs) in that their execution is governed by a

set of internal or control states (often also called modes) which split the machine

into �nitely many submachines. Formally these ASMs, which I have called control

state ASMs in [5], are de�ned and pictorially depicted as shown in Fig. 1, with

transition rules of form

if Condition then f (t1; : : : ; tn) := t

whose execution is to be understood as changing (or de�ning, if there was none)

the value of the function f at the given parameters. Note that in a given control

state i , these machines do nothing when no condition condj is satis�ed.

3 The atomicity of this ASM iteration constructor is the key for a rigorous de�nition

of the semantics of event triggered exiting from compound actions of UML activity

and state machine diagrams, where the intended instantaneous e�ect of exiting has

to be combined with the request to exit nested diagrams sequentially following the

subdiagram order, see [7, 8].
4 In [13] we also incorporate into standard ASMs a syntax oriented form of information

hiding, namely through the notion of local machine state, of machines with return

values and of error handling machines.
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Fig. 1. Control state ASM diagrams

The notion of ASM states, di�erently from FSMs, is the classical notion of

mathematical structures where data come as abstract objects, i.e., as elements

of sets (domains, one for each category of data) that are equipped with basic

operations (partial functions) and predicates (attributes or relations). The no-

tion of ASM run is the classical notion of computation of transition systems. An

ASM computation step in a given state consists in executing simultaneously all

updates of all transition rules whose guard is true in the state, if these updates

are consistent.

The synchronous parallelism inherent in the simultaneous execution of all

ASM rules is enhanced by the following concise notation for the simultaneous

execution of an ASM rule R for each x satisfying a given condition �:

forall x with � do R

A frequently encountered kind of functions whose detailed speci�cation is

left open are choice functions, used to abstract from details of static or dynamic

scheduling strategies. ASMs support the following concise notation for an ab-

stract speci�cation of such strategies:

choose x with � do R

meaning to execute rule R with an arbitrary x chosen among those satisfying

the selection property �. If there exists no such x , nothing is done. For choose

and forall rules we also use graphical notations of the following form:

forall x withchoose x with
R R

ϕ ϕ
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Fig. 2. Security oriented decomposition of the JVM

2 The Java/JVM Modeling and Analysis Problem

The scienti�c problem to solve was to investigate in which sense and to what

extent one can provide a rigorous justi�cation of the claim that Java and the

JVM provide a safe and secure, platform independent programming environment

for the internet. This claim goes beyond the traditional correctness problem for

language compilation and the interpretation of the compiled code on a virtual

or real machine, a classical problem which has been studied extensively for other

source code languages and compiler target machines, including some work where

ASMs are used as modeling device (e.g. [12, 9, 18, 19]. Not only is the problem

of trusted (i.e. fully correct) realistic compilation not yet solved (see [16, 17] for

a thorough discussion), the case of Java and its implementation on the JVM

adds further problems, partly due to the fact that the access to resources by

the executed code is controlled not by the operating system, but by the JVM

that interprets this code, namely dynamically loaded and veri�ed bytecode. As

a result one has at least three new correctness and completeness problems, as

illustrated in Fig. 2, namely concerning:

{ The loading mechanism which dynamically loads classes; the binary rep-

resentation of a class is retrieved and installed within the JVM|relying

upon some appropriate name space de�nition to be used by the security

manager|and then prepared for execution by the JVM interpreter
{ The bytecode veri�er, which checks certain code properties at link-time, e.g.

conditions on types and on stack bounds which one wants to be satis�ed at

run-time
{ The access right checker, i.e., a security manager which controls the access

to the �le system, to network addresses, to critical windowing operations,

etc.

The goal of the project was to provide an abstract (read: platform indepen-

dent), rigorous but transparent, modular de�nition of Java and the JVM that



can be used as a basis for a mathematical and an experimental analysis of the

above claim. First of all this modeling work should re
ect SUN's design deci-

sions, it should provide for the two manuals [20, 21, 31] what in [5, 11] has been

called a ground model, i.e. a suÆciently rigorous and complete, provably consis-

tent, mathematical model that faithfully represents the given natural language

descriptions. Secondly it should o�er a correct high-level understanding of

{ the source language, to be practically useful for Java programmers,

{ the virtual machine, to o�er the implementors a rigorous, implementation

independent basis for the documentation, the analysis, and the comparison

of implementations.

We tried to achieve the goal by constructing stepwise re�ned ASM models of

Java, the JVM (including the loader and the bytecode veri�er), and a Java-

to-JVM compiler, which are abstract, but nevertheless can in a natural way

be turned into executable validatable models, and for which we can prove the

following theorem.

Main Theorem. Under conditions that are explicitly stated in [34],

any well-formed and well-typed Java program, when compiled satisfying

the properties listed for the compiler, passes the bytecode veri�er and is

executed on the JVM. During this execution, none of the run-time checks

of the properties that have been analyzed by the veri�er is violated,

and the generated bytecode is interpreted correctly with respect to the

expected source code behavior as de�ned by the Java ASM.

In the course of proving the theorem, we were led to clarify various ambi-

guities and inconsistencies we discovered in the Java/JVM manuals and in the

implementations, concerning fundamental notions like legal Java program, legal

bytecode, veri�able bytecode, etc. Our analysis of the JVM bytecode veri�er,

which we relate to the static analysis of the Java parser (rules of de�nite assign-

ment and reachability analysis), led us to de�ne a novel (subroutine call stack

free) bytecode veri�er which goes beyond previous work in the literature.

In the next section we explain the dependency graph which surveys how we

split the proof of the main theorem in subproofs for the JVM components.

3 Decomposition of Java/JVM into Components

To make such a complex modeling and analysis problem tractable one has to split

it into a series of manageable subproblems. To this end we construct the ASM

for the JVM out of submachines for its security relevant components|the ones

which appear in Fig. 2: loader, veri�er, preparator, interpreter|and de�ne each

component incrementally via a series of submachines, put together by parallel

composition and forming a sequence of conservative extensions, which is guided

by the layering of Java and of the set of JVM instructions into increasingly richer

sublanguages.
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Fig. 3. Dependency Graph

Components for Language Layers. Since this language layering is common

to all JVM components, we explain it �rst. We factor the sets of Java and of

JVM instructions into �ve sublanguages, by isolating language features which

represent milestones in the evolution of modern programming languages and

of the techniques for their compilation, namely imperative (sequential control),

procedural (module), object-oriented, exception handling, and concurrency fea-

tures. This decomposition can be made in such a way that in the resulting se-

quence of machines, each ASM is a purely incremental|similar to what logicians

call a conservative|extension of its predecessor, because each of them provides

the semantics of the underlying language, instruction by instruction. The gen-

eral compilation scheme compile can then be de�ned between the corresponding

submachines by a simple recursion. We illustrate this in Fig. 4.

A related structuring principle, which helped us to keep the size of the models

small, consists in grouping similar instructions into one abstract instruction each,

coming with appropriate parameters. These parameters become parameters of
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the corresponding ASM rules describing the semantical e�ect of those instruc-

tions. This goes without leaving out any relevant language feature, given that

the specializations can be regained by mere parameter expansion, a re�nement

step whose correctness is easily controllable instruction-wise.

Execution Component.We now turn to explain the vertical components of the

ASM model for the JVM. In one component we describe the trustful execution of

bytecode that is assumed to be successfully loaded and linked (i.e., prepared and

veri�ed to satisfy the required link-time constraints). The resulting sequence of

stepwise re�ned trustful VMs, namely trustfulVMI , trustfulVMC , trustfulVMO ,

trustfulVME , and trustfulVMT , yields a succinct de�nition of the functional-

ity of JVM execution in terms of language layered submachines execVM and

switchVM (Fig. 5).

The language layered machine execVM describes the e�ect of each single

JVM instruction on the current frame, whereas switchVM is responsible for

frame stack manipulations upon method call and return, class initialization

and exception capture. This piecemeal description of single JVM instructions

can be done similarly for the instructions provided in Java, yielding a succinct

de�nition of the semantics of Java in terms of language layered submachines

JavaI ; JavaC ; JavaO ; JavaE , and JavaT . Exploiting the correspondence between

these components for the Java/JVMmachines yields a simple recursive de�nition

of a compilation scheme for Java programs to JVM code, see Fig. 4, the detailed

de�nition is in Part II of [34]. The conservativity of the component extensions

allowed us to incrementally prove this compilation scheme to be correct, as is

expressed by the following theorem.

Theorem 1 (Correctness of the compiler). The ASMs for Java and the

JVM, running through given Java code and its compilation to JVM code, pro-
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duce in corresponding method code segments the same values for (local, global,

heap) variables and the same results of intermediate calculations, for the current

method as well as for the method calls still to be completed.

The proof includes a correctness proof for the handling of Java exceptions in

the JVM, a feature which considerably complicates the bytecode veri�cation, in

the presence of embedded subroutines, class and object initialization, and con-

currently working threads. Obviously, the statement of the theorem as phrased

here is vague. In fact, it is part of the modeling and analysis work to provide

a precise meaning of this intuitive statement, expressing that runs of the Java

machine on a Java program and the corresponding runs of the JVM machine on

the compiled program are equivalent. It took us 10 pages to make the underlying

notion of corresponding runs and of their equivalence suÆciently precise to be

able to carry out a proof for the correctness theorem, see Chapter 14 of [34]. The

83 case distinctions of that 24 pages long proof are not a bizarre e�ect of our

modeling, but directly derive from|indeed are structured into|the situations

which do occur during a Java computation for expression evaluation and state-

ment execution, treated separately for each of the �ve language layers. This is

a strength of the method that by localizing the proof obligations one has a key

to modularize the overall proof: each new expression or statement feature will

bring with it a clearly identi�able group of new cases to consider for de�nition

(modeling) and proof (veri�cation).

It was crucial for the compiler correctness proof to go through to take into

account also some structural static constraints about Java runs, in particular

conditions under which it can be proved that well-formed and well-typed Java

programs are type safe, including the so called de�nite assignment rules for

variables and the reachability analysis for statements. In fact we were led to

correct some inconsistencies in those rules as de�ned in SUN's manuals (see

below).
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Checking Component. The second group of language layered component ma-

chines we de�ne are auxiliary machines whose parallel composition constitutes

the defensiveVM. Their purpose is to de�ne the veri�er functionality in run-time

terms of trustfulVM execution from a language layered component check . Since

it is diÆcult to obtain a well motivated and clear de�nition of the bytecode veri-

�cation functionality, we tried to accomplish also that task locally: guided by the

language structure that allows to successively re�ne the checking conditions|

from the imperative to the dynamic submachine|we took advantage from know-

ing for each type of instruction some run-time conditions which can guarantee

its safe executability. To be more precise, as the architectural de�nition in Fig. 6

shows, the defensiveVM checks at run-time, before every execution step, the

structural constraints which describe the veri�er functionality (restrictions on

run-time data: argument types, valid return addresses, resource bounds) guar-

anteeing safe execution. (Note that the static constraints on the well-formedness

of the bytecode in Java class �les are checked at link-time.) The detailed def-

inition is given in Chapter 15 of [34]. For this new ASM defensiveVM, by its

construction out of its component trustfulVM, one has the following theorem.

Theorem 2 (Correctness of defensive checking). If the defensiveVM ex-

ecutes a program P successfully, then so does the trustfulVM, with the same

semantical e�ect.

Since we formulate the run-time check ing conditions referring to the types of

values in registers and on the operand stack, instead of the values themselves, we

can lift them to link-time checkable bytecode type assignments, i.e. assignments of

certain type frames to code indices of method bodies. When lifting the run-time

constraints, we make sure that if a given bytecode has a type assignment, then

the code runs on the defensive VM without violating any of the run-time check

conditions. For example, at run-time the values of the operands and the values

stored in local variables belong to the assigned types; if there is a verify type

assigned to a local variable, then at run-time the local variable contains a value

which belongs to that verify type; if the type is a primitive type, then the value



is of exactly that type; if the type is a reference type, then the value is a pointer

to an object or array which is compatible with that type; the same is true for the

verify types assigned to the operand stack, etc. The main diÆculty is due to the

subroutines, more precisely to the Jsr(s) and Ret(x) instructions which are used

in the JVM to implement the �nally block of Java try statements in the exception

handling mechanism of Java. The problem is to correctly capture what is the

type of return addresses from subroutines; as a matter of fact concerning this

point we have identi�ed in Chapter 16 of [34] a certain number of problems and

inconsistencies in current implementations of the bytecode veri�er. The outcome

of this analysis is the following theorem, whose proof documents for all the cases

that can occur for the single instructions in the given run why typable code can

be safely executed.

Theorem 3 (Soundness of Bytecode Type Assignments). Typable byte-

code satis�es at run-time a set of invariants guaranteeing that when the code

is run on the defensiveVM, it does not violate any of the dynamic constraints

de�ned in the check component.

The notion of bytecode type assignment also allows us to prove the complete-

ness of the compilation scheme mentioned above. Completeness here means that

bytecode which is compiled from a well-formed and well-typed Java program in

a way that respects our compilation scheme, can be typed successfully, in the

sense that it does have type assignments. More precisely we prove the general

statement below, which implies the correctness of our Java-to-JVM compiler.

We re�ne our compiler to a certifying code generator, which issues instructions

together with the type information needed for the bytecode veri�cation. Hence,

the result of the extended compilation is not only a sequence of bytecode in-

structions but a sequence of triples (instr ; regT ; opdT ), where (regT ; opdT ) is

what we call a type frame for the instruction instr . We then prove that the

so generated type frames satisfy the conditions for bytecode type assignments.

This is yet another example of structuring de�nition and proof by conservative

(purely incremental) extension.

When working on this proof, we detected a not so obvious inconsistency in

the design of the Java programming language, namely an incompatibility of the

reachability notions for the language and the JVM, related to the treatment of

boolean expressions and the rules for the de�nite assignement of variables. The

program in Fig. 7

shows that bytecode veri�cation is not possible the way SUN's manuals suggest:

although valid, the program is rejected by any bytecode veri�er we have tried

including JDK 1.2, JDK 1.3, Netscape 4.73-4.76, Microsoft VM for Java 5.0 and

5.5 and the Kimera Veri�er (http://kimera.cs.washington.edu/). The problem is

that in the eyes of the veri�er the variable i is unusable at the end of the method

at the return i instruction, whereas according to 16.2.14 in [21] the variable i

is de�nitely assigned after the try statement. Our rules of de�nite assignment

for the try statement are stronger and therefore the program is already rejected

by our compiler. In [34] we exhibit another program that illustrates a similar



class Test {

static int m(boolean b) {

int i;

try {

if (b) return 1;

i = 2;

} finally { if (b) i = 3; }

return i;

}

}

Fig. 7. A valid Java program rejected by all known veri�ers

problem for labeled statements. In conclusion, one can avoid this inconsistency

by slightly restricting the class of valid programs by sharpening the rules for

de�nite assignment for �nally and for labeled statements. As a result we could

establish the following desirable property for the class of certifying compilers.

Theorem 4 (Compiler Completeness Theorem). The family of type frames

generated by the certifying compiler for the body of a method � is a bytecode type

assignment for �.

As a corollary, the Java-to-JVM compiler we de�ne is correct since it is

extended conservatively by a certifying compiler.

Bytecode Veri�er Component. Having distilled the bytecode veri�er func-

tionality in the notion of bytecode type assignment, we are ready to extend the

trustfulVM by a new component, a link-time bytecode veri�er. Before trust-

fulVM can run a method in a class that has been loaded, for each method in

that class the veri�er attempts to compute a|in fact a most speci�c|bytecode

type assignment for the method. The (architecture of the) resulting machine

diligentVM is de�ned in Fig. 8.

One has to show that the verifyVM component is sound and complete, which

is expressed by the following two theorems that we can prove for our novel

(subroutine call stack free) bytecode veri�er.

Theorem 5 (Bytecode Veri�er Soundness). During the computation of the

veri�er for any given method body, the bytecode type frames computed so far

satisfy the conditions for bytecode type assignments. verifyVM terminates, either

rejecting the code with a type failure detection (in case the method body is not

typable) or accepting it and issuing a bytecode type assignment for it.

Theorem 6 (Bytecode Veri�er Completeness). If a method body has a

bytecode type assignment, then verifyVM accepts the code and during the veri-

�cation process the type frames computed so far by verifyVM are more speci�c

than that bytecode type assignment.
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Components of the Bytecode Veri�er. To compute a bytecode type assign-

ment for a given method, verifyVM at each step chooses a still to be veri�ed

code index pc, starting at code index 0, to check the type conditions there. Upon

successful check, as de�ned for the defensiveVM, the veri�er marks for further

veri�cation steps the indices of all successors of pc that can be reached by the

computation, trying to propagate the type frame computed at pc to each pos-

sible immediate successor of pc. This provides the architecture of the machine

verifyVM, built out of three components check, propagate, succ as de�ned in

Fig. 9.

At this point it should not any more come as a surprise to the reader that

the two new components of verifyVM, namely the ASM propagateVM and the

function succ, are language layered similarly to the predicate check de�ned al-

ready above as part of defensiveVM. A further reuse of previously de�ned ma-

chines stems from the fact that the submachine propagateVM , together with the
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.j .class
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Sun−JVM

Java−ASM

JVM−ASM
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Fig. 10. Relationship between di�erent machines

function succ, de�nes a link-time simulation (type version) of the trustfulVM

illustrated above.

In a similar way the loading mechanism can be introduced by re�ning the

components execVM and switchVM, see Chapter 18 in [34].

The modular component-based structure of both de�nitions and proofs ex-

plained above for Java and the JVM is reassumed in Fig. 3, showing how the

components and the proofs of their basic properties �t together to establish

the desired property for the compilation and safe execution of arbitrary Java

programs on the dynamicVM, as expressed above in the Main Theorem.

AsmGofer executable re�nements.The experimentation with the AsmGofer

executable re�nements of the models outlined above was crucial to get the mod-

els and the proofs of our theorems right. AsmGofer is an ASM programming

system developed by Joachim Schmid and available at www.tydo.de/AsmGofer.

It extends TkGofer to execute ASMs which come with Haskell de�nable external

functions. It provides step-by-step execution and comes with GUIs to support

debugging of Java/JVM programs. First of all it allows to execute the Java

source code in our Java ASM and to observe that execution|there is no coun-

terpart for this in SUN's development environment, but similar work has been

done independently, using the Centaur system, by Marjorie Russo in her recent

PhD thesis [32]. Furthermore one can compile Java programs to bytecode which

can be executed either on our ASM for JVM or (using Jasmin for the conver-

sion to binary class format) on SUN's implementation. More generally, for the

executable versions of our machines, the formats for inputting and compiling

Java programs are chosen in such a way that the ASMs for the JVM and the

compiler can be combined in various ways with current implementations of Java

compilers and of the JVM, as illustrated in Fig. 10.
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