Ambiguità in Grammatiche e Linguaggi

Nella grammatica

1.
$$E \rightarrow I$$

2.
$$E \rightarrow E + E$$

3.
$$E \rightarrow E * E$$

4.
$$E \rightarrow (E)$$

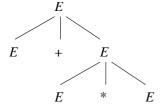
la forma sentenziale E + E * E ha due derivazioni:

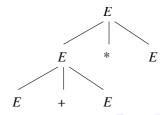
$$E \Rightarrow E + E \Rightarrow E + E * E$$

е

$$E \Rightarrow E * E \Rightarrow E + E * E$$

Questo ci dà due alberi sintattici:





Grammatiche libere da contesto

L'esistenza di varie derivazioni di per sé non è pericolosa, è l'esistenza di vari alberi sintattici che rovina la grammatica.

Esempio: Nella stessa grammatica

5.
$$I \rightarrow a$$

6.
$$I \rightarrow b$$

7.
$$I \rightarrow Ia$$

8.
$$I \rightarrow Ib$$

9.
$$1 \rightarrow 10$$

$$10.~\textit{I} \rightarrow \textit{I}1$$

la stringa a + b ha varie derivazioni:

$$E \Rightarrow E + E \Rightarrow I + E \Rightarrow a + E \Rightarrow a + I \Rightarrow a + b$$

е

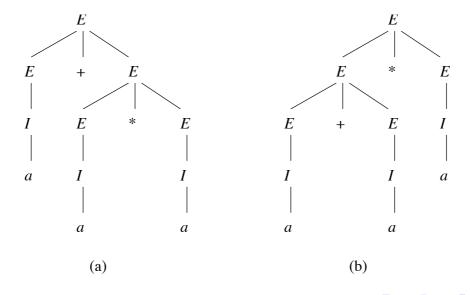
$$E \Rightarrow E + E \Rightarrow E + I \Rightarrow I + I \Rightarrow I + b \Rightarrow a + b$$

Però il loro albero sintattico è lo stesso, e la struttura di a+b è quindi non ambigua.

Definizione: Sia G = (V, T, P, S) una CFG. Diciamo che G è **ambigua** se esiste una stringa in T^* che ha più di un albero sintattico.

Se ogni stringa in L(G) ha al più un albero sintattico, G è detta **non ambigua**.

Esempio: La stringa terminale a + a * a ha due alberi sintattici:



Grammatiche libere da contesto

Rimuovere l'ambiguità dalle grammatiche

- Buone notizie: a volte possiamo rimuovere l'ambiguità
- Cattive notizie: non c'è nessun algoritmo per farlo in modo sistematico
- Ancora cattive notizie: alcuni CFL hanno solo CFG ambigue
- Studiamo la grammatica

$$E \rightarrow I \mid E + E \mid E * E \mid (E)$$
 $I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$

- ullet Non c'è precedenza tra * e +
- Non c'è raggruppamento di sequenze di operatori: E + E + E è inteso come E + (E + E) o come (E + E) + E?

Soluzione: Introduciamo più variabili, ognuna che rappresenta espressioni con lo stesso grado di "forza di legamento"

- Un fattore è un'espressione che non può essere spezzata da un
 o un + adiacente. I nostri fattori sono:
 - Identificatori
 - ② Un'espressione racchiusa tra parentesi.
- Un termine è un'espressione che non può essere spezzata da un +. Ad esempio, a * b può essere spezzata da a1* o *a1. Non può essere spezzata da +, perché ad esempio a1 + a * b è (secondo le regole di precedenza) lo stesso di a1 + (a * b), e a * b + a1 è lo stesso di (a * b) + a1.
- Il resto sono espressioni, cioè possono essere spezzate con * o +.

Grammatiche libere da contesto

Usiamo F per i fattori, T per i termini, e E per le espressioni. Consideriamo la seguente grammatica:

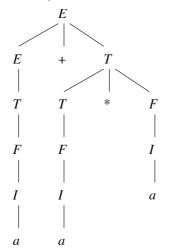
1.
$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

2.
$$F \rightarrow I \mid (E)$$

3.
$$T \rightarrow F \mid T * F$$

4.
$$E \rightarrow T \mid E + T$$

Ora l'unico albero sintattico per a + a * a è:



Perché la nuova grammatica non è ambigua?

- Un fattore è o un identificatore o (E), per qualche espressione E.
- L'unico albero sintattico per una sequenza

$$f_1 * f_2 * \cdots * f_{n-1} * f_n$$

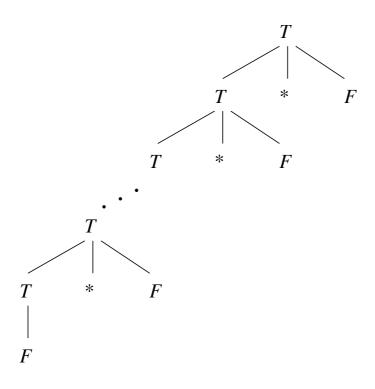
di fattori è quello che dà $f_1 * f_2 * \cdots * f_{n-1}$ come termine e f_n come fattore, come nell'albero del prossimo lucido.

• Un'espressione è una sequenza

$$t_1 + t_2 + \cdots + t_{n-1} + t_n$$

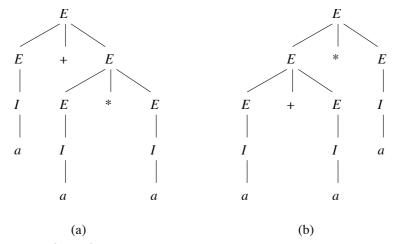
di termini t_i . Può essere solo raggruppata con $t_1 + t_2 + \cdots + t_{n-1}$ come un'espressione e t_n come un termine.

Grammatiche libere da contesto



Derivazioni a sinistra e ambiguità

I due alberi sintattici per a + a * a



danno luogo a due derivazioni:

Grammatiche libere da contesto

In generale:

- Un albero sintattico, ma molte derivazioni
- Molte derivazioni a sinistra implica molti alberi sintattici.
- Molte derivazioni a destra implica molti alberi sintattici.

Teorema 5.29: Data una CFG G, una stringa terminale w ha due distinti alberi sintattici se e solo se w ha due distinte derivazioni a sinistra dal simbolo iniziale.

Dimostrazione:

- (Solo se.) Se due alberi sintattici sono diversi, hanno un nodo dove sono state usate due diverse produzioni: $A \rightarrow X_1 X_2 \cdots X_{l_1} \in B \rightarrow Y_1 Y_2 \cdots Y_{l_m}$ Le corrispondenti
 - $A \rightarrow X_1 X_2 \cdots X_k$ e $B \rightarrow Y_1 Y_2 \cdots Y_m$. Le corrispondenti derivazioni a sinistra useranno queste diverse produzioni e quindi saranno distinte.
- (Se.) Per come costruiamo un albero da una derivazione, è chiaro che due derivazioni distinte generano due alberi distinti.

Grammatiche libere da contesto

Ambiguità inerente

Un CFL L è **inerentemente ambiguo** se **tutte** le grammatiche per L sono ambigue.

Esempio: Consideriamo L =

$$\{a^nb^nc^md^m: n \geq 1, m \geq 1\} \cup \{a^nb^mc^md^n: n \geq 1, m \geq 1\}.$$

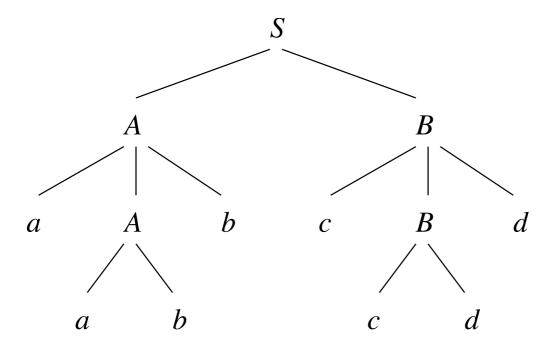
Una grammatica per L è

$$S \rightarrow AB \mid C$$

 $A \rightarrow aAb \mid ab$
 $B \rightarrow cBd \mid cd$
 $C \rightarrow aCd \mid aDd$

$$D \rightarrow bDc \mid bc$$

Guardiamo la struttura sintattica della stringa aabbccdd.



Grammatiche libere da contesto

Vediamo che ci sono due derivazioni a sinistra:

е

Può essere provato che **ogni** grammatica per L si comporta come questa. Il linguaggio L è quindi inerentemente ambiguo.

Linguaggi regolari e grammatiche

- Un linguaggio regolare è anche libero da contesto.
- Da una espressione regolare, o da un automa, si può ottenere una grammatica che genera lo stesso linguaggio.

Grammatiche libere da contesto

Da espressione regolare a grammatica

Per induzione sulla struttura della espressione regolare:

- se E = a, allora produzione $S \rightarrow a$
- ullet se $E=\epsilon$, allora produzione $S o\epsilon$
- se E = F + G, allora produzione $S \rightarrow F \mid G$
- se E = FG, allora produzione $S \to FG$
- ullet se $E=F^*$, allora produzione $S o FS\mid \epsilon$

Esempio

Espressione regolare: 0*1(0+1)*

Grammatica:

$$S \rightarrow ABC$$
 $A \rightarrow 0A \mid \epsilon$
 $B \rightarrow 1$
 $C \rightarrow DC \mid \epsilon$
 $D \rightarrow 0 \mid 1$

Grammatiche libere da contesto

Da automa a grammatica

- Un simbolo non-terminale per ogni stato.
- Simbolo iniziale = stato iniziale.
- Per ogni transizione da stato s a stato p con simbolo a, produzione $S \rightarrow aP$.
- ullet Se p stato finale, allora produzione $P
 ightarrow \epsilon$

-Esempio

Automa:



Grammatica:

$$egin{aligned} Q_0 & o 1 Q_0 \mid 0 Q_2 \ Q_2 & o 0 Q_2 \mid 1 Q_1 \ Q_1 & o 0 Q_1 \mid 1 Q_1 \mid \epsilon \end{aligned}$$

La stringa 1101 è accettata dall'automa. Nella grammatica, ha la derivazione:

$$Q_0 \Rightarrow 1Q_0 \Rightarrow 11Q_0 \Rightarrow 110Q_2 \Rightarrow 1101Q_1 \Rightarrow 1101$$

Grammatiche libere da contesto

Esercizi su minimizzazione e sulle grammatiche

- Sia *L* il linguaggio dato dall'intersezione dei seguenti linguaggi:
 - $L_1 = \{w \in \{0,1\}^* | \text{ in w ci siano almeno due } 0 \text{ consecutivi}\}$
 - $L_2 = \{w \in \{0,1\}^* | \text{ in w non ci siano due } 1 \text{ consecutivi}\}$

Costruire l'automa D per riconoscere L e minimizzarlo se necessario.

- Ideare la grammatica libera per generare i seguenti linguaggi:
 - $\{0^n 1^n \ n \ge 1\}$
 - L'insieme di tutte le stringhe in $\{0,1\}^*$ tali che il numero di 0 sia il doppio del numero di 1.
 - L'insieme delle stringhe di parentesi bilanciate.