








Chapter 3

Optimality conditions for unconstrained

optimization

Given any f : Rn → R, optimality conditions for the unconstrained minimization
problem

(P ) min{f(x) : x ∈ Rn}

can be achieved exploiting Taylor’s formulas whenever f is differentiable or twice
continuously differentiable. The corresponding optimality conditions for uncon-
strained maximization can be obtained replacing f by −f .

3.1 Optimality conditions

Theorem 3.1. Suppose x̄ ∈ Rn is a local minimum point of (P ).

(i) If f is differentiable at x̄, then ∇f(x̄) = 0;

(ii) If f is twice continuously differentiable at x̄, then ∇2f(x̄) is positive semidef-
inite.

Proof. Local optimality guarantees the existence of ε > 0 such that f(x̄) ≤ f(x)
for all x ∈ B(x̄, ε). Let d ∈ Rn be any direction and t ∈]0, ε[: ‖d‖2 = 1 guarantees
x̄+ td ∈ B(x̄, ε) and therefore f(x̄) ≤ f(x̄+ td).

(i) Taylor’s formula implies

0 ≤ f(x̄+ td)− f(x̄) = t∇f(x̄)Td+ r(f,x̄)(td)

and therefore

∇f(x̄)Td+ r(f,x̄)(td)/t ≥ 0.

Since t = ‖td‖2 , the limit of left-hand side as t → 0+ provides ∇f(x̄)Td ≥ 0.
Considering −d the same reasoning provides also ∇f(x̄)Td ≤ 0. Thus, ∇f(x̄)Td = 0
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holds for any d ∈ Rn. Taking d = −∇f(x̄), the equality reads ‖∇f(x̄)‖2
2

= 0 and
hence ∇f(x̄) = 0 follows.

(ii) The second-order Taylor’s formula (see Theorem 1.7) implies

0 ≤ f(x̄+ td)− f(x̄) = t∇f(x̄)Td+
1

2
t2dT∇2f(x̄)d+ r(f,x̄)(td).

Since (i) guarantees ∇f(x̄) = 0, then

dT∇2f(x̄)d+ r(f,x̄)(td)/2t2 ≥ 0

holds too. Since t2 = ‖td‖2
2
, the limit of the left-hand side as t → 0 provides the

inequality dT∇2f(x̄)d ≥ 0. Since d is an arbitrary direction, ∇2f(x̄) is positive
semidefinite. �

If x̄ ∈ intD minimizes f over some D ⊆ Rn, then the necessary conditions of
Theorem 3.1 hold also in this case: the above proof still works just considering any
ε > 0 which in addition satisfies B(x̄, ε) ⊆ D.

Definition 3.1. x̄ ∈ Rn is called a stationary point of f if ∇f(x̄) = 0.

Looking for stationary points of f amounts to solving the system of n equations
∂f
∂x1

(x1, ..., xn) = 0

...
∂f
∂xn

(x1, ..., xn) = 0

in the n unknowns (x1, . . . , xn). This is generally a nonlinear system, but if the
quadratic function f(x) = 1

2x
TQx + bTx + c is considered then it is actually the

linear system Qx = −b (since ∇f(x) = Qx + b). If f is strictly convex, then
∇2f(x) ≡ Q is positive definite and therefore invertible: x̄ = −Q−1b is the unique
stationary point and it is the unique minimum point (see Theorems 3.2 and 3.3
below). On the contrary, if f is not convex, due to Theorem 3.1(ii) no stationary
point is a local minimum since Q is not positive semidefinite.

Example 3.1. Take n = 2 and f(x1, x2) = (x2 − x2
1)(x2 − 4x2

1):

∇f(x) =

(
16x3

1 − 10x1x2

2x2 − 5x2
1

)
, ∇2f(x) =

[
48x2

1 − 10x2 −10x1

−10x1 2

]
.

Then, ∇f(x) = 0 if and only if x = (0, 0) and moreover

∇2f(0, 0) =

[
0 0
0 2

]
is positive semidefinite (but not definite). Anyway, (0, 0) is not a local minimum
point of (P ). In fact,

f(x1, 2x
2
1) = −2x2

1 < 0
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for any x1 6= 0. Therefore, f is negative along the parabola {x ∈ R2 : x2 = 2x2
1}.

Notice that f is not even a local maximum point of (P ) : ∇2f(0, 0) is not negative
semidefinite and in fact f is positive along all the parabolas {x ∈ R2 : x2 = αx2

1}
with α > 4.

Theorem 3.2. Let f be twice continuously differentiable at x̄ ∈ Rn. If x̄ is a
stationary point of f such that ∇2f(x̄) is positive definite, then it is a strict local
minimum point of (P ) and moreover there exist δ, γ > 0 such that

∀ x ∈ B(x̄, δ) : f(x) ≥ f(x̄) + γ‖x− x̄‖2
2
.

Proof. It is enough to prove the above inequality as it guarantees strict local
optimality too. Taking any x ∈ Rn, the second-order Taylor’s formula (see Theorem
1.7) implies

f(x)− f(x̄) = ∇f(x̄)T (x− x̄) +
1

2
(x− x̄)T∇2f(x̄)(x− x̄) + r(f,x̄)(x− x̄)

=
1

2
(x− x̄)T∇2f(x̄)(x− x̄) + r(f,x̄)(x− x̄)

≥ 1

2
λmin‖x− x̄‖22 + r(f,x̄)(x− x̄)

and therefore

[f(x)− f(x̄)]/‖x− x̄‖2
2
≥ λmin/2 + r(f,x̄)(x− x̄)/‖x− x̄‖2

2

where λmin > 0 is the minimum eigenvalue of ∇2f(x̄).1 Choose any positive thresh-
old ε < λmin/2. Since the limit of the right-hand side as x → x̄ is λmin/2, there
exists δ > 0 such that

∀ x ∈ B(x̄, δ) : [f(x)− f(x̄)]/‖x− x̄‖2
2
≥ (λmin/2− ε).

Setting γ = λmin/2− ε, the thesis follows from the above inequality. �

If f is a strictly convex quadratic function, then the above theorem holds with
γ = λmin/2 (where λmin is the minimum eigenvalue of Q) and any δ > 0. In fact,
x̄ = −Q−1b is the unique stationary point of f and

∀ x ∈ Rn : f(x)− f(x̄) =
1

2
(x− x̄)TQ(x− x̄).

3.2 Optimality conditions in the convex case

Theorem 3.3. Let f be convex and differentiable (on Rn). Then, x̄ ∈ Rn is a
minimum point of (P ) if and only if ∇f(x̄) = 0.

1Given any symmetric matrix Q ∈ Rn×n the inequality yTQy ≥ λmin‖y‖22 holds for any y ∈ Rn

where λmin denotes the minimum eigenvalue of Q
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Proof. Only if) It is just Theorem 3.1(i).

If) By Theorem 2.3 the convexity of f guarantees

f(y) ≥ f(x̄) +∇f(x̄)T (y − x̄)

for any y ∈ Rn. Since ∇f(x̄) = 0, the optimality of x̄ follows immediately. �

Notice that any (twice continuously differentiable) convex function f satisfies the
second-order optimality condition of Theorem 3.1 at any point (see Theorem 2.5).
Moreover, it does not have any global maximum point unless it is a constant function:
in fact, a maximum point is a stationary point (just apply Theorem 3.1 to −f) and
hence it is also a minimum point by Theorem 3.3. The same reasoning applies to
local maximum points, which may exist if they are actually also minimum points.

The minimum points of the convex quadratic function f(x) = 1
2x

TQx+ bTx+ c
are the solutions of the linear system Qx + b = 0. If Q is positive definite, then
−Q−1b is the unique minimum point. If Q is positive semidefinite but not positive
definite, there are infinitely many minimum points if at least one exists but f could
be unbounded by below.

Proposition 3.1. Let f(x) = 1
2x

TQx + bTx + c be convex. Then, f is unbounded
by below if and only if there exists x̂ ∈ Rn such that Qx̂ = 0 and bT x̂ 6= 0.

Proof. If) Take x(t) = tx̂. If bT x̂ > 0 (< 0), then

f(x(t)) = t(bT x̂) + c→ −∞ as t→ −∞ (+∞)

Only if) Since Q is symmetric, there exists an orthonormal basis {x1, . . . , xn} of Rn

composed by eigenvectors of Q, that is xi
T
xj = 0 for all i 6= j and Qxi = λix

i for
all i = 1, . . . , n where λ1, . . . , λn are the eigenvalues of Q. Given any x ∈ Rn, there

exist γ1, . . . , γn ∈ R such that x =
n∑
i=1

γix
i. Therefore,

f(x) =
1

2

n∑
i=1

λiγ
2
i +

n∑
i=1

(bTxi)γi =

n∑
i=1

[
1

2
λiγ

2
i + (bTxi)γi].

Ab absurdo, suppose bTx = 0 whenever Qx = 0, which implies that bTxi = 0 if
λi = 0. Therefore, each nonzero term in the above sum gets its minimum value for
γi = γ̄i = −bTxiλi, and f is bounded by below since

f(x) ≥
∑
i∈I

[
1

2
λiγ̄

2
i + (bTxi)γ̄i] = −

∑
i∈I

(bTxi)2/2λi

where I = {i : |λi 6= 0}. �
























